JP2006074951A - Controller for ac motor - Google Patents

Controller for ac motor Download PDF

Info

Publication number
JP2006074951A
JP2006074951A JP2004257822A JP2004257822A JP2006074951A JP 2006074951 A JP2006074951 A JP 2006074951A JP 2004257822 A JP2004257822 A JP 2004257822A JP 2004257822 A JP2004257822 A JP 2004257822A JP 2006074951 A JP2006074951 A JP 2006074951A
Authority
JP
Japan
Prior art keywords
phase
voltage
current
value
electrical angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004257822A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Shoji
満博 正治
Takaaki Karikomi
卓明 苅込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004257822A priority Critical patent/JP2006074951A/en
Publication of JP2006074951A publication Critical patent/JP2006074951A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress an offset of a current by reducing a deviation of a voltage SW timing caused by a detection error of a position detector in a controller for an AC motor driving with a rectangular wave voltage. <P>SOLUTION: This controller for the AC motor calculates an amount of phase correction corresponding to an offset of the current detected in a current sensor, calculates electrical angular speed by using an electrical angle θ detected in the position detector 6, converts a reference phase difference from the start to the last of a voltage SW pattern to a reference phase difference time t' by dividing it by the electrical angular speed ω, converts the value adding the amount of phase correction by the offset of the current to a phase error (θsw*-θnext) between an electrical angle target θsw* for switching the voltage SW pattern at the next control calculation and an estimated electrical angle at the next control calculation to a phase error time Δt by dividing it by the electrical angular speed ω, corrects the reference phase difference time by the phase error time, and set a carrier period according to the corrected value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は交流電動機の制御装置に関し、特に矩形波電圧駆動でインバータを制御する制御装置に関する。   The present invention relates to a control device for an AC motor, and more particularly to a control device that controls an inverter with a rectangular wave voltage drive.

従来における交流電動機の制御装置としては下記特許文献1に記載のものがある。
このような交流電動機の制御方法で、電動機に電流を供給するインバータを制御する方式として、PWM電圧駆動方式では出力電圧が制限を受ける動作領域等において用いられる矩形波電圧駆動方式がある。特許文献1に記載の矩形波電圧駆動方式においては、一定間隔のクロックで動作するタイマカウンタを使用し、カウント値が目標値に達する毎に電圧スイッチングパターン(以下、電圧SWパターンと略記)を切り替えて出力している。電圧SWパターンの開始から終わりまでの位相差目標値は、電圧SWパターン一区間の開始から終わりまでの理想的な基準位相差を求め、目標トルクと推定トルクの偏差に基づく位相誤差により基準位相差を補正して求めている。そしてカウンタ目標値は、位相差目標値を時間換算した値に従って決めており、電気角θを求める位置検出器を不要としている。
As a conventional control device for an AC motor, there is one described in Patent Document 1 below.
As a method for controlling the inverter that supplies current to the motor by such an AC motor control method, the PWM voltage drive method includes a rectangular wave voltage drive method that is used in an operation region where the output voltage is limited. In the rectangular wave voltage driving method described in Patent Document 1, a timer counter that operates with a clock at a fixed interval is used, and a voltage switching pattern (hereinafter abbreviated as a voltage SW pattern) is switched every time the count value reaches a target value. Is output. The phase difference target value from the start to the end of the voltage SW pattern is obtained as an ideal reference phase difference from the start to the end of one section of the voltage SW pattern, and the reference phase difference is determined by the phase error based on the deviation between the target torque and the estimated torque. It is obtained by correcting. The counter target value is determined according to a value obtained by time-converting the phase difference target value, and a position detector for obtaining the electrical angle θ is unnecessary.

特開2002−359996号公報JP 2002-359996 A

上記のように、従来例においては、位相差基準値をトルク偏差に基づく位相誤差で補正することによって位相差目標値を算出するという構成になっていたため、トルク推定を行わず、レゾルバ等の位置検出器の検出量に基づいて位相差目標値を決めるような制御を行う場合には、位置検出器の検出誤差によって電圧SWタイミングにズレが生じ、電流にオフセットが発生する場合がある、という問題があった。
本発明は上記の問題を解決するためになされたものであり、矩形波電圧駆動制御において、位置検出器の検出誤差に起因する電圧SWタイミングのズレを減少させ、電流のオフセットを抑制した交流電動機の制御装置を提供することを目的とする。
As described above, in the conventional example, the phase difference target value is calculated by correcting the phase difference reference value with the phase error based on the torque deviation. When performing control such that the phase difference target value is determined based on the detection amount of the detector, the voltage SW timing may be shifted due to the detection error of the position detector, and the current may be offset. was there.
The present invention has been made to solve the above-described problem, and in the rectangular wave voltage drive control, an AC motor in which a deviation in voltage SW timing caused by a detection error of a position detector is reduced and a current offset is suppressed. An object of the present invention is to provide a control device.

上記の目的を達成するため、本発明においては、電流検出手段で検出した電流のオフセットを検出し、その電流オフセットに対応した位相補正量を算出し、また、位置検出器で検出した電気角θを用いて電気角速度ωを算出し、一つの電圧SWパターンの開始から終わりまでの基準位相差を電気角速度ωで除算することにより基準位相差時間t’に換算し、次回の制御演算時の電圧SWパターン切り替えの電気角目標値θswと次回の制御演算時における電気角予測値θnextとの位相誤差(θsw−θnext)を上記の位相補正量で補正した値を電気角速度ωで除算することにより位相誤差時間△tに換算し、この位相誤差時間で前記基準位相差時間を補正し、補正後の値に応じてキャリア周期を設定するように構成している。 In order to achieve the above object, in the present invention, the offset of the current detected by the current detecting means is detected, the phase correction amount corresponding to the current offset is calculated, and the electrical angle θ detected by the position detector is calculated. Is used to calculate the electrical angular velocity ω, and the reference phase difference from the start to the end of one voltage SW pattern is divided by the electrical angular velocity ω to convert it into the reference phase difference time t ′, and the voltage at the next control calculation A value obtained by correcting the phase error (θsw * −θnext) between the SW angle switching electrical angle target value θsw * and the predicted electrical angle θnext at the next control calculation by the above phase correction amount is divided by the electrical angular velocity ω. Is converted into a phase error time Δt, the reference phase difference time is corrected with this phase error time, and the carrier period is set according to the corrected value.

電流オフセットに対応した位相補正量によって電気角目標値θswと次回の制御演算時における電気角予測値θnextとの位相誤差を補正することにより、位置検出器の誤差による電圧SWパターン切り替えタイミングのズレを減らし、電流のオフセットを抑制できる、という効果がある。 By correcting the phase error between the electrical angle target value θsw * and the predicted electrical angle value θnext at the next control calculation by the phase correction amount corresponding to the current offset, the deviation of the voltage SW pattern switching timing due to the position detector error is corrected. This can reduce the current offset and suppress the current offset.

図1は、この発明を適用する交流電動機の制御装置の構成を示す一実施例のブロック図である。
図1において、電圧位相生成手段1では、外部から入力されるトルク指令値Tおよび現在の回転速度ωを指標としてテーブル参照により求めた電圧位相目標値αを出力する。具体的には、例えば制御の対象となる電動機の評価試験等において、トルク指令値Tと回転速度ωとに対する電圧位相目標値αの値をテーブルデータとして求めておくことにより、そのときのトルク指令値Tと回転速度ωに対応した電圧位相目標値αの値をテーブル参照によって求めることができる。
FIG. 1 is a block diagram of an embodiment showing a configuration of an AC motor control apparatus to which the present invention is applied.
In FIG. 1, the voltage phase generating means 1 outputs a voltage phase target value α * obtained by referring to a table using an externally input torque command value T * and the current rotational speed ω as indices. Specifically, for example, in the evaluation test of the electric motor to be controlled, the value of the voltage phase target value α * with respect to the torque command value T * and the rotational speed ω is obtained as table data. The value of the voltage phase target value α * corresponding to the torque command value T * and the rotation speed ω can be obtained by referring to the table.

制御手段2は、矩形波制御手段2−1とPWM制御手段2−2からなる。本発明は矩形波電圧駆動に関するものなので、以下、矩形波制御手段2−1について主として説明し、PWM制御手段2−2については必要のある個所のみを説明する。   The control unit 2 includes a rectangular wave control unit 2-1 and a PWM control unit 2-2. Since the present invention relates to rectangular wave voltage driving, the rectangular wave control means 2-1 will be mainly described below, and only necessary portions of the PWM control means 2-2 will be described.

矩形波制御手段2−1は、電圧位相生成手段1から出力された電圧位相目標値αと、位置検出器6(例えばレゾルバ)で検出された電動機5の電気角θと、電気角θを入力とする速度演算手段7で求めた電気角速度ω(回転速度)とを入力し、オン/オフ信号の駆動信号Pを演算して出力する(詳細後述)。この駆動信号Pでインバータ3を制御し、インバータ3から振幅が電源電圧Vdcか0(または+Vdc/2か−Vdc/2)の3相の矩形波電圧Vu、Vv、Vwを出力し、それによって3相の電動機5を駆動する。 The rectangular wave control means 2-1 determines the voltage phase target value α * output from the voltage phase generation means 1, the electrical angle θ of the electric motor 5 detected by the position detector 6 (for example, a resolver), and the electrical angle θ. The electric angular velocity ω (rotational speed) obtained by the velocity calculating means 7 as an input is input, and the drive signal P of the on / off signal is calculated and output (details will be described later). The inverter 3 is controlled by this drive signal P, and three-phase rectangular wave voltages Vu, Vv, Vw having an amplitude of the power supply voltage Vdc or 0 (or + Vdc / 2 or −Vdc / 2) are output from the inverter 3, thereby The three-phase motor 5 is driven.

上記の電圧位相生成手段1および制御手段2はコンピュータ等で構成され、所定周期で繰り返し演算を行って駆動信号Pを演算する。
上記の駆動信号Pはオン/オフ信号であり、インバータ3の出力は駆動信号Pに同期して出力される。つまり、駆動信号Pのオン/オフの切り替わるタイミングがそのまま矩形波電圧の切り替わるタイミングとなる(厳密にはオンとオフが逆になることもある)。そして矩形波電圧駆動では、印加する電圧振幅は電源電圧Vdcか0(+Vdc/2か−Vdc/2)であって振幅を制御できないので、電圧位相を電圧位相目標値αに追従させるように制御することにより、与えられたトルク指令値Tを実現するように電動機5のトルク制御を行う。つまりトルクと電圧位相には相関があるので、電圧位相を制御することによってトルクを制御することが出来る。この電圧位相を制御するには後述する電圧SWパターンを切り替えることによって行う。
The voltage phase generation means 1 and the control means 2 are constituted by a computer or the like, and calculate the drive signal P by repeatedly performing calculations at a predetermined cycle.
The drive signal P is an on / off signal, and the output of the inverter 3 is output in synchronization with the drive signal P. That is, the timing at which the drive signal P is switched on / off is the timing at which the rectangular wave voltage is switched as it is (strictly speaking, on and off may be reversed). In the rectangular wave voltage drive, the applied voltage amplitude is the power supply voltage Vdc or 0 (+ Vdc / 2 or −Vdc / 2) and the amplitude cannot be controlled, so that the voltage phase follows the voltage phase target value α *. By controlling, the torque control of the electric motor 5 is performed so as to realize the given torque command value T * . That is, since there is a correlation between the torque and the voltage phase, the torque can be controlled by controlling the voltage phase. This voltage phase is controlled by switching a voltage SW pattern described later.

なお、制御手段2におけるPWM制御手段2−2は、PWM電圧駆動を行う領域では、電流センサ4で検出した検出電流Iu、Ivを用いて一般的なトルク制御演算を行い、インバータ3をPWM信号で制御し、電動機5の各相に与える電圧値を変えてトルク制御を行う。上記のPWM制御における一般的なトルク制御演算とは、例えば、入力したトルク指令値と電動機5の回転角度とに基づいてd軸電流指令値とq軸電流指令値を算出し、d軸電流指令値と実際のd軸電流値との偏差に基づき比例積分演算を行ってd軸電圧指令値を演算し、同様にq軸電流指令値と実際のq軸電流値との偏差に基づいてq軸電圧指令値を演算する。なお、実際のd軸電流値とq軸電流値は、検出電流Iu、Iv(IwはIuとIvから算出可能)から3相2相変換を行って求める。そしてd軸電圧指令値とq軸電圧指令値を2相3相変換し、3相電圧指令値を演算する。この3相電圧指令値からPWM信号のデューティ指令値を演算し、このデューティ指令値と所定のキャリア信号(三角波や鋸歯状波など)とを比較することにより、駆動信号Pを求めるものである。   Note that the PWM control means 2-2 in the control means 2 performs a general torque control calculation using the detected currents Iu and Iv detected by the current sensor 4 in the region where the PWM voltage drive is performed, and the inverter 3 outputs the PWM signal. The torque is controlled by changing the voltage value applied to each phase of the electric motor 5. The general torque control calculation in the above-described PWM control is, for example, calculating a d-axis current command value and a q-axis current command value based on the input torque command value and the rotation angle of the electric motor 5, and d-axis current command The proportional-integral calculation is performed based on the deviation between the value and the actual d-axis current value to calculate the d-axis voltage command value, and the q-axis is similarly calculated based on the deviation between the q-axis current command value and the actual q-axis current value. Calculate the voltage command value. The actual d-axis current value and q-axis current value are obtained by performing three-phase to two-phase conversion from the detected currents Iu and Iv (Iw can be calculated from Iu and Iv). Then, the d-axis voltage command value and the q-axis voltage command value are two-phase / three-phase converted to calculate a three-phase voltage command value. The drive signal P is obtained by calculating the duty command value of the PWM signal from the three-phase voltage command value and comparing the duty command value with a predetermined carrier signal (such as a triangular wave or a sawtooth wave).

本発明で用いる矩形波電圧駆動を行う場合には、上記キャリア信号と比較するデューティ指令値のデューティ比を0[%]か100[%]のどちらかにセットすることにより矩形波(Vdcか0の2値)の駆動信号Pを生成することが出来る。なお、一般に、矩形波電圧駆動は、高電圧が必要な弱め界磁領域で用いられ、その他の領域ではPWM制御が用いられる。   When the rectangular wave voltage drive used in the present invention is performed, the rectangular wave (Vdc or 0) is set by setting the duty ratio of the duty command value to be compared with the carrier signal to 0 [%] or 100 [%]. Drive signal P can be generated. In general, the rectangular wave voltage drive is used in a field weakening region where a high voltage is required, and PWM control is used in other regions.

また、矩形波制御手段2−1において、電圧位相を電圧位相目標値αに追従させるように制御するには、電圧SWパターン(詳細後述)を電圧位相目標値αに応じて決まるタイミングで切り替えることによって行う。
電圧SWパターンやキャリア周期の設定はキャリア信号の三角波や鋸歯状波の谷で有効になり、同時に制御演算を開始するための割り込みが発生する。そして電圧SWパターン切り替えタイミングが適切になるように、キャリア周期を変更して矩形波のパターン(電圧SWパターン)が切り替わるタイミングを調整している。つまり、矩形波を作るためのキャリア信号(例えば三角波)の周期を、電圧SWパターンの切り替わり時点とキャリア信号の谷(割り込み演算開始時)とが一致するように制御することにより、電圧位相を電圧位相目標値αに追従させるように制御している。
In addition, in order to control the voltage phase to follow the voltage phase target value α * in the rectangular wave control means 2-1, the voltage SW pattern (detailed later) is determined at a timing determined according to the voltage phase target value α *. Do by switching.
The setting of the voltage SW pattern and the carrier cycle is effective at the trough of the triangular wave or sawtooth wave of the carrier signal, and at the same time, an interrupt for starting the control calculation is generated. The timing at which the rectangular wave pattern (voltage SW pattern) is switched is adjusted by changing the carrier cycle so that the voltage SW pattern switching timing is appropriate. In other words, the voltage phase is set to voltage by controlling the period of the carrier signal (for example, triangular wave) for creating the rectangular wave so that the switching point of the voltage SW pattern coincides with the valley of the carrier signal (at the start of the interrupt calculation). Control is performed to follow the phase target value α * .

また、電流センサ4の検出電流Iu、Ivは、電流オフセット検出器8に入力され、電流オフセット検出器8は、各相電流のオフセット分Iu0、Iv0、Iw0を出力する。なお、Iwは、Iw=−Iu−Ivから算出する。
また、PI制御器9〜11は、上記のオフセット分Iu0、Iv0、Iw0を入力し、PI(比例、積分)ゲインで増幅し、位相補正量△θu0、△θv0、△θw0とし、これを矩形波生成器2に送る。
矩形波生成器2において、矩形波制御手段2−1は、前記の電圧SWパターン切替え電気角の演算において、上記位相補正量△θu0、△θv0、△θw0に基づいて電圧SWパターン切替え電気角を補正する(詳細後述)。
The detected currents Iu and Iv of the current sensor 4 are input to the current offset detector 8, and the current offset detector 8 outputs offset amounts Iu0, Iv0, and Iw0 of each phase current. Note that Iw is calculated from Iw = −Iu−Iv.
The PI controllers 9 to 11 receive the offsets Iu0, Iv0, and Iw0 and amplify them with PI (proportional and integral) gains to obtain phase correction amounts Δθu0, Δθv0, and Δθw0, which are rectangular. Send to wave generator 2.
In the rectangular wave generator 2, the rectangular wave control means 2-1 calculates the voltage SW pattern switching electrical angle based on the phase correction amounts Δθu0, Δθv0, Δθw0 in the calculation of the voltage SW pattern switching electrical angle. Correct (details will be described later).

(実施例)
以下、実施例におけるキャリア周期の設定方法について詳細に説明する。
図2は、キャリア周期の設定方法を示す信号波形図である。
図2においては、キャリア信号(三角波)の谷(時点tやt)において制御演算の割り込みが行われると共に、電圧SWパターンが切り替えられている。電圧SWパターンは、U、V、Wの三相各相に与える電圧のパターン、つまり三相の何れを“1”つまりVdcにし、何れを“0”にするかのパターンであり、例えば時点t〜tにおいては「Vu=1(Vdc)、Vv=0、Vw=0」になっている。
(Example)
Hereinafter, the carrier period setting method in the embodiment will be described in detail.
FIG. 2 is a signal waveform diagram showing a carrier period setting method.
In FIG. 2, the control calculation is interrupted and the voltage SW pattern is switched at the valleys (time points t 0 and t 1 ) of the carrier signal (triangular wave). The voltage SW pattern is a voltage pattern applied to each of the three phases U, V, and W, that is, a pattern of which one of the three phases is set to “1”, that is, Vdc, and which is set to “0”. 0 in ~t 1 is in a "Vu = 1 (Vdc), Vv = 0, Vw = 0 ".

時点tで行われる制御演算1では、次の電圧SWパターン一区間のキャリア周期Tnextを、制御演算1開始時の電気角θと電気角速度ω、現在のキャリア周期Tnowを用いて、以下のように算出する。 In the control calculation 1 performed at the time point t 0 , the carrier cycle Tnext of one section of the next voltage SW pattern is used as follows using the electrical angle θ and the electrical angular velocity ω at the start of the control calculation 1 and the current carrier cycle Tow. To calculate.

まず、(数1)式に示すように、一つの電圧SWパターンの、開始から終わりまでの基準位相差π/3[rad]を電気角速度ωで除算することにより時間t’(基準位相差時間)に換算する。
t’=π/3ω …(数1)
次に、(数2)式に示すように、次の電圧SWパターン切り替え時の電気角予測値θnextを算出する。
θnext=θ+ωTnow …(数2)
なお、現在のキャリア周期Tnowは、前回のキャリア周期設定で算出された次のキャリア周期Tnextに相当する。
First, as shown in Equation 1, time t ′ (reference phase difference time) is obtained by dividing the reference phase difference π / 3 [rad] from the start to the end of one voltage SW pattern by the electrical angular velocity ω. ).
t ′ = π / 3ω (Equation 1)
Next, as shown in the equation (2), an electrical angle predicted value θnext at the time of switching the next voltage SW pattern is calculated.
θnext = θ + ωTnow (Equation 2)
The current carrier cycle Tow corresponds to the next carrier cycle Tnext calculated in the previous carrier cycle setting.

次回の電圧SWパターン切り替えの電気角目標値θswは、電気角θと、電圧位相目標値αと、電動機に入力すべき電圧のSWパターンとの関係を示す図3に基づき、θsw0〜θsw5の内からθnextと最も近い電気角を選択し、また、現在の回転方向から次の電圧SWパターン切り替え以降に出力する電圧SWパターンを判定する。例えば、図3において、θnextが(2π/3)−αに最も近い値であった場合は、次回の電圧SWパターン切り替えの電気角目標値θswとしてθsw2を選択し、次回の電圧SWパターンは「Vu=−Vdc/2、Vv=−Vdc/2、Vw=+Vdc/2」のパターンとなる。 The electrical angle target value of the next voltage SW pattern switching .theta.sw *, based on FIG. 3 showing the electrical angle theta, the voltage phase target value alpha *, the relationship between the SW pattern of voltage to be input to the motor, θsw0 * ~ The electrical angle closest to θnext is selected from θsw5 * , and the voltage SW pattern output after the next voltage SW pattern switching is determined from the current rotation direction. For example, in FIG. 3, if θnext is the closest value to (2π / 3) −α * , θsw2 * is selected as the electrical angle target value θsw * for the next voltage SW pattern switching, and the next voltage SW The pattern is “Vu = −Vdc / 2, Vv = −Vdc / 2, Vw = + Vdc / 2”.

なお、図3においては、各電圧SWパターンが0を中心とした+Vdc/2と−Vdc/2の2値の矩形波なっている。これは電動機の3相巻線をY接続した場合には、電源電圧Vdc端子と接地端子との間に、U、V、Wの3相のうちの何れか2相の巻線が直列に接続された回路が接続されることになるので、中性点を0とすれば、Vdc端子側に接続された相に+Vdc/2、接地端子側に接続された相に−Vdc/2が印加されたものと表示することが出来ることによる。したがって前記図2に示したように、+Vdc/2を“1”(Vdc)、−Vdc/2を“0”で表してもよい。   In FIG. 3, each voltage SW pattern is a binary rectangular wave of + Vdc / 2 and −Vdc / 2 with 0 as the center. This is because, when the three-phase winding of the motor is Y-connected, any two of the three phases U, V, and W are connected in series between the power supply voltage Vdc terminal and the ground terminal. If the neutral point is set to 0, + Vdc / 2 is applied to the phase connected to the Vdc terminal side, and -Vdc / 2 is applied to the phase connected to the ground terminal side. It is because it can be displayed. Therefore, as shown in FIG. 2, + Vdc / 2 may be represented by “1” (Vdc) and −Vdc / 2 may be represented by “0”.

上記のように、次の電圧SWパターン切り替えの電気角目標値θswを、θsw0〜θsw5から電気角予測値θnextが最も近いものを選択して求め、θnextとθswの差分を位相誤差とし、その位相誤差(θsw−θnext)を前記の位相補正量△θu0、△θv0、△θw0で補正した値を電気角速度ωで除算することにより位相誤差時間△tに換算する。その際、下記(数3)式〜(数8)式に示すように、電気角目標値θswがθsw0〜θsw5のうちのどれに近いかによって、位相補正量△θu0、△θv0、△θw0のうちの何れかで補正を行う。 As described above, the electrical angle target value of the next voltage SW pattern switching θsw *, θsw0 * ~θsw5 * calculated by selecting those electrical angle prediction value θnext is closest to the phase error a difference θnext and .theta.sw * And the phase error (θsw * −θnext) corrected by the above-described phase correction amounts Δθu0, Δθv0, Δθw0 is divided by the electrical angular velocity ω to be converted into a phase error time Δt. At that time, as shown in the following formulas (3) to (8), depending on which of the electrical angle target values θsw * is close to θsw0 * to θsw5 * , the phase correction amounts Δθu0, Δθv0, Correction is performed at any one of Δθw0.

θswがθsw0の場合 △t=(θsw−θnext+Δθiu)/ω …(数3)
θswがθsw1の場合 △t=(θsw−θnext−Δθiw)/ω …(数4)
θswがθsw2の場合 △t=(θsw−θnext+Δθiv)/ω …(数5)
θswがθsw3の場合 △t=(θsw−θnext−Δθiu)/ω …(数6)
θswがθsw4の場合 △t=(θsw−θnext+Δθiw)/ω …(数7)
θswがθsw5の場合 △t=(θsw−θnext−Δθiv)/ω …(数8)
ただし、図3に示したように、
θsw0の場合とは、θswの電気角θが0−αに近い場合
θsw1の場合とは、θswの電気角θが(1/3)π−αに近い場合
θsw2の場合とは、θswの電気角θが(2/3)π−αに近い場合
θsw3の場合とは、θswの電気角θがπ−αに近い場合
θsw4の場合とは、θswの電気角θが(4/3)π−αに近い場合
θsw5の場合とは、θswの電気角θが(5/3)π−αに近い場合
にそれぞれ相当する。
When θsw * is θsw0 * Δt = (θsw * −θnext + Δθiu) / ω (Equation 3)
When θsw * is θsw1 * Δt = (θsw * −θnext−Δθiw) / ω (Equation 4)
When θsw * is θsw2 * Δt = (θsw * −θnext + Δθiv) / ω (Equation 5)
When θsw * is θsw3 * Δt = (θsw * −θnext−Δθiu) / ω (Equation 6)
When θsw * is θsw4 * Δt = (θsw * −θnext + Δθiw) / ω (Equation 7)
When θsw * is θsw5 * Δt = (θsw * −θnext−Δθiv) / ω (Equation 8)
However, as shown in FIG.
θsw0 case of A *, θsw * If the electrical angle θ is the case θsw1 * close to 0-α * and is of, θsw * of the electrical angle θ is (1/3) π-α case θsw2 * close to the * If a, θsw * If the electrical angle θ is the case θsw3 * close to (2/3) π-α * and is of, in the case θsw * of the electrical angle θ is the case θsw4 * close to the π-α * is When the electrical angle θ of θsw * is close to (4/3) π-α * , the case of θsw5 * corresponds to the case where the electrical angle θ of θsw * is close to (5/3) π-α * , respectively. .

次に、下記(数9)式、(数10)式に示すように、前記の基準位相差π/3を時間に換算したt’(前記数1式)を、上記の△tで補正して時間tとし、これを次回のキャリア周期Tnextとする。
t=t’+△t …(数9)
Tnext=t …(数10)
また、次回の電圧SWパターンは、次の電圧SWパターン切り替えの電気角目標値θswと回転方向から、図3に基づいて選択する。
Next, as shown in the following (Expression 9) and (Expression 10), t ′ (Expression 1) obtained by converting the reference phase difference π / 3 into time is corrected by the above Δt. Time t, and this is the next carrier cycle Tnext.
t = t ′ + Δt (Equation 9)
Tnext = t (Equation 10)
Further, the next voltage SW pattern is selected based on FIG. 3 from the electrical angle target value θsw * of the next voltage SW pattern switching and the rotation direction.

上記のように位相誤差(θsw−θnext)を電流オフセットに相当する位相補正量で補正した値を時間に換算し、その換算した値△tだけt’を補正してやれば、位置検出器の誤差に起因する電流オフセットを補正し、次回の電圧SWパターン切り替えタイミングをキャリア信号の谷に一致させるように制御することが出来る。 If the value obtained by correcting the phase error (θsw * −θnext) with the phase correction amount corresponding to the current offset as described above is converted into time, and t ′ is corrected by the converted value Δt, the error of the position detector is obtained. It is possible to correct the current offset due to the above and control the next voltage SW pattern switching timing to coincide with the valley of the carrier signal.

次に、図1の電流オフセット検出手段8における電流オフセットの検出について説明する。
図4は、電流オフセット検出手段8の構成を示すブロック図である。
図4において、8−1、8−2、8−3は、時定数が充分に大きいローパスフィルタであり、これらのローパスフィルタを用いて、各相電流の直流成分を検出する。このようにして求めた各相電流の直流成分がオフセットに相当する。
Next, detection of current offset in the current offset detection means 8 of FIG. 1 will be described.
FIG. 4 is a block diagram showing the configuration of the current offset detection means 8.
In FIG. 4, reference numerals 8-1, 8-2, and 8-3 are low-pass filters having sufficiently large time constants, and the DC component of each phase current is detected using these low-pass filters. The DC component of each phase current thus obtained corresponds to the offset.

これらのローパスフィルタは、例えば一般的な1次遅れのフィルタを用いる。また、ローパスフィルタではなく、電気角一周期分の時間平均値を求めるように構成しても良い。
なお、図4においては、W相電流IwをU相電流IuとV相電流Ivから演算で求める場合を例示したが、各相ごとに電流センサを備え、各相ごとにそれぞれに電流値を計測してもよい。
For these low-pass filters, for example, a general first-order lag filter is used. Further, instead of the low-pass filter, a time average value for one electrical angle cycle may be obtained.
In FIG. 4, the case where the W-phase current Iw is obtained from the U-phase current Iu and the V-phase current Iv is illustrated as an example. However, a current sensor is provided for each phase, and a current value is measured for each phase. May be.

次に、作用を説明する。
図5は、位置検出器の誤差の一例を示した図である。
図5に示したように、破線で示した実際の電気角1に対して、実線で示した位置検出器の検出電気角2は電気角周期とほぼ同じ周期の正弦波状の誤差を持っている。このような誤差を持っていると、例えばU相電圧を目標電圧波形3に示すように電気角が0[rad]とπ[rad]でスイッチングさせようとしても、電流オフセット補正を行わない場合は、実電圧波形4のようにオンの区間が短くなり、オフの区間が長くなるので、U相電流は負の方向にオフセットしてしまう。
Next, the operation will be described.
FIG. 5 is a diagram illustrating an example of an error of the position detector.
As shown in FIG. 5, the detected electrical angle 2 of the position detector indicated by the solid line has a sinusoidal error having substantially the same period as the electrical angular period, with respect to the actual electrical angle 1 indicated by the broken line. . If there is such an error, for example, when the U-phase voltage is switched at an electrical angle of 0 [rad] and π [rad] as shown in the target voltage waveform 3, current offset correction is not performed. Since the ON section is shortened and the OFF section is lengthened as in the actual voltage waveform 4, the U-phase current is offset in the negative direction.

しかし、前記△t(位相誤差時間)の演算において、U相電流Iuについての(数3)式、(数6)式に示したように補正すると、U相電流が負の方向にオフセットしても実電圧波形5に示すように、電流オフセット量に応じて電圧のオン区間を長くし、オフ区間を短くするように作用するので、位置検出器の検出誤差による電圧オン区間とオフ区間の不平衡が抑制され、電流オフセットを減少させることができる。V相電流、W相電流についても同様である。   However, in the calculation of Δt (phase error time), if the U-phase current Iu is corrected as shown in the equations (3) and (6), the U-phase current is offset in the negative direction. As shown in the actual voltage waveform 5, the voltage ON section is lengthened and the OFF section is shortened according to the current offset amount, so that the voltage on section and the off section are not detected due to the detection error of the position detector. The balance is suppressed and the current offset can be reduced. The same applies to the V-phase current and the W-phase current.

本発明を適用する交流電動機の制御装置の構成を示す一実施例のブロック図。The block diagram of one Example which shows the structure of the control apparatus of the alternating current motor to which this invention is applied. 実施例1におけるキャリア周期の設定方法を説明するための信号波形図。FIG. 4 is a signal waveform diagram for explaining a carrier period setting method in the first embodiment. 電動機に入力すべき電圧のSWパターンを示す図。The figure which shows SW pattern of the voltage which should be input into an electric motor. 電流オフセット検出手段8の構成を示すブロック図。FIG. 3 is a block diagram showing the configuration of current offset detection means 8. 位置検出器の誤差とそれによる電圧SWパターンのずれの一例を示した図。The figure which showed an example of the error of a position detector, and the shift | offset | difference of the voltage SW pattern by it.

符号の説明Explanation of symbols

1…電圧位相生成手段 2…制御手段
2−1…矩形波制御手段 2−2…PWM制御手段
3…インバータ 4…電流センサ
5…電動機 6…位置検出器
7…速度演算手段 8…電流オフセット検出手段
8−1、8−2、8−3…ローパスフィルタ

DESCRIPTION OF SYMBOLS 1 ... Voltage phase generation means 2 ... Control means 2-1 ... Rectangular wave control means 2-2 ... PWM control means 3 ... Inverter 4 ... Current sensor 5 ... Electric motor 6 ... Position detector 7 ... Speed calculation means 8 ... Current offset detection Means 8-1, 8-2, 8-3 .. Low pass filter

Claims (3)

電源電圧の最高値と最低値を所定の電圧スイッチングパターンで電動機巻線の各相に印加する矩形波電圧駆動を行う交流電動機の制御装置において、
外部から与えられたトルク指令値と現在の回転速度とに応じた電圧位相目標値を出力する電圧位相生成手段と、
電動機の電気角を検出する位置検出器と、
前記電圧位相目標値と、前記電動機の電気角と、前記電動機の電気角速度から前記電動機を駆動する矩形波の駆動信号を演算する矩形波制御手段と、
前記矩形波の駆動信号に応じた矩形波電圧を前記電動機巻線の各相に印加して前記電動機を駆動するインバータと、
前記電動機巻線の各相に流れる電流を検出する電流検出手段と、
前記電流検出手段で検出した電流のオフセットを検出する電流オフセット検出手段と、
前記電流オフセット検出手段で検出した電流オフセットに対応した位相補正量を算出する位相補正量算出手段と、を備え、
前記矩形波制御手段は、キャリア信号の谷の位置毎に制御演算を開始するための割り込みを繰り返し発生すると共に前記電圧スイッチングパターンの設定と前記キャリア信号のキャリア周期の設定とを行い、
かつ、前記位置検出器で検出した電気角から電気角速度を算出し、一つの電圧スイッチングパターンの開始から終わりまでの基準位相差を電気角速度で除算することにより基準位相差時間に換算し、次回の制御演算時の電圧スイッチングパターン切り替えの電気角目標値と次回の制御演算時における電気角予測値との位相誤差を前記位相補正量で補正した値を電気角速度で除算することにより位相誤差時間に換算し、この位相誤差時間で前記基準位相差時間を補正し、補正後の値に応じて次回のキャリア周期を設定するように構成したことを特徴とする交流電動機の制御装置。
In a control device for an AC motor that performs rectangular wave voltage drive that applies the highest value and the lowest value of the power supply voltage to each phase of the motor winding in a predetermined voltage switching pattern,
Voltage phase generation means for outputting a voltage phase target value according to a torque command value given from the outside and the current rotation speed;
A position detector for detecting the electrical angle of the electric motor;
Rectangular wave control means for calculating a drive signal of a rectangular wave for driving the electric motor from the voltage phase target value, the electric angle of the electric motor, and the electric angular velocity of the electric motor;
An inverter that drives the electric motor by applying a rectangular wave voltage corresponding to the rectangular wave driving signal to each phase of the motor winding;
Current detecting means for detecting a current flowing in each phase of the motor winding;
Current offset detection means for detecting an offset of the current detected by the current detection means;
Phase correction amount calculation means for calculating a phase correction amount corresponding to the current offset detected by the current offset detection means,
The rectangular wave control means repeatedly generates an interrupt for starting a control calculation for each valley position of the carrier signal and performs setting of the voltage switching pattern and setting of a carrier period of the carrier signal,
In addition, the electrical angular velocity is calculated from the electrical angle detected by the position detector, and the reference phase difference from the start to the end of one voltage switching pattern is divided by the electrical angular velocity to be converted into a reference phase difference time. The phase error between the target value of the electrical angle for switching the voltage switching pattern at the time of control calculation and the predicted value of the electrical angle at the time of the next control calculation is converted to the phase error time by dividing the value corrected by the phase correction amount by the electrical angular velocity. The control apparatus for an AC motor is configured to correct the reference phase difference time with the phase error time and set a next carrier cycle according to the corrected value.
前記位相補正量算出手段は、U相電流、V相電流、W相電流の各相毎に位相補正量を算出し、次回の制御演算時の電圧スイッチングパターン切り替えの電気角目標値に応じて定まる上記位相補正量のうちの何れかによって前記位相誤差を補正するように構成したことを特徴とする請求項1に記載の交流電動機の制御装置。   The phase correction amount calculation means calculates a phase correction amount for each phase of the U-phase current, V-phase current, and W-phase current, and is determined according to the electrical angle target value for voltage switching pattern switching at the next control calculation. 2. The control apparatus for an AC motor according to claim 1, wherein the phase error is corrected by any one of the phase correction amounts. 前記電流オフセット検出手段は、各相の電流をそれぞれ平滑するローパスフィルタからなり、各相電流の直流分を電流オフセットとして出力するものである、ことを特徴とする請求項1に記載の交流電動機の制御装置。   2. The AC motor according to claim 1, wherein the current offset detection unit includes a low-pass filter that smoothes a current of each phase, and outputs a direct current component of each phase current as a current offset. Control device.
JP2004257822A 2004-09-06 2004-09-06 Controller for ac motor Pending JP2006074951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004257822A JP2006074951A (en) 2004-09-06 2004-09-06 Controller for ac motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257822A JP2006074951A (en) 2004-09-06 2004-09-06 Controller for ac motor

Publications (1)

Publication Number Publication Date
JP2006074951A true JP2006074951A (en) 2006-03-16

Family

ID=36154939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257822A Pending JP2006074951A (en) 2004-09-06 2004-09-06 Controller for ac motor

Country Status (1)

Country Link
JP (1) JP2006074951A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033921A (en) * 2007-07-30 2009-02-12 Honda Motor Co Ltd Controller of motor
WO2009047997A1 (en) 2007-10-09 2009-04-16 Toyota Jidosha Kabushiki Kaisha Ac motor control device and ac motor control method
JP2010063335A (en) * 2008-09-08 2010-03-18 Denso Corp Controller for rotary machine
JP2010064622A (en) * 2008-09-11 2010-03-25 Honda Motor Co Ltd Electric power steering device
JP2010183732A (en) * 2009-02-05 2010-08-19 Toyota Motor Corp Controller of ac motor
WO2015003619A1 (en) * 2013-07-09 2015-01-15 Shenzhen Byd Auto R&D Company Limited Motor control system of electric vehicle and controlling method for motor control system of electric vehicle and electric vehicle
CN104442444A (en) * 2013-09-18 2015-03-25 比亚迪股份有限公司 Motor control system for electric vehicles and electric vehicle with same
CN109874393A (en) * 2016-09-30 2019-06-11 日本电产东测有限公司 Control device, control method, motor and electric oil pump

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126890A (en) * 1985-11-26 1987-06-09 Sanyo Denki Co Ltd Controller for brushless motor
JPS6387195A (en) * 1986-09-29 1988-04-18 Nissan Motor Co Ltd Controller for synchronous motor
JPH1075597A (en) * 1996-08-30 1998-03-17 Toshiba Corp Device for driving brushless dc fan motor
JP2000116175A (en) * 1998-09-30 2000-04-21 Sony Corp Brushless motor
JP2001298992A (en) * 2000-04-18 2001-10-26 Toyota Motor Corp Motor controller
JP2002165477A (en) * 2000-11-21 2002-06-07 Mitsubishi Electric Corp Inverter and blower
JP2002315381A (en) * 2001-04-11 2002-10-25 Denso Corp Drive controller and control method of brushless motor
JP2004023920A (en) * 2002-06-18 2004-01-22 Hitachi Ltd Ac motor controller
JP2004129379A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp Motor control device and computer-readable recording medium stored with program for making computer execute driving control of motor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126890A (en) * 1985-11-26 1987-06-09 Sanyo Denki Co Ltd Controller for brushless motor
JPS6387195A (en) * 1986-09-29 1988-04-18 Nissan Motor Co Ltd Controller for synchronous motor
JPH1075597A (en) * 1996-08-30 1998-03-17 Toshiba Corp Device for driving brushless dc fan motor
JP2000116175A (en) * 1998-09-30 2000-04-21 Sony Corp Brushless motor
JP2001298992A (en) * 2000-04-18 2001-10-26 Toyota Motor Corp Motor controller
JP2002165477A (en) * 2000-11-21 2002-06-07 Mitsubishi Electric Corp Inverter and blower
JP2002315381A (en) * 2001-04-11 2002-10-25 Denso Corp Drive controller and control method of brushless motor
JP2004023920A (en) * 2002-06-18 2004-01-22 Hitachi Ltd Ac motor controller
JP2004129379A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp Motor control device and computer-readable recording medium stored with program for making computer execute driving control of motor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033921A (en) * 2007-07-30 2009-02-12 Honda Motor Co Ltd Controller of motor
JP4688172B2 (en) * 2007-07-30 2011-05-25 本田技研工業株式会社 Electric motor control device
WO2009047997A1 (en) 2007-10-09 2009-04-16 Toyota Jidosha Kabushiki Kaisha Ac motor control device and ac motor control method
US8373380B2 (en) 2007-10-09 2013-02-12 Toyota Jidosha Kabushiki Kaisha Device and method for controlling alternating-current motor
JP2010063335A (en) * 2008-09-08 2010-03-18 Denso Corp Controller for rotary machine
JP2010064622A (en) * 2008-09-11 2010-03-25 Honda Motor Co Ltd Electric power steering device
CN101800508B (en) * 2009-02-05 2013-01-09 丰田自动车株式会社 Alternating-current motor control apparatus
US8148927B2 (en) 2009-02-05 2012-04-03 Toyota Jidosha Kabushiki Kaisha Alternating-current motor control apparatus
JP4692647B2 (en) * 2009-02-05 2011-06-01 トヨタ自動車株式会社 AC motor control device
JP2010183732A (en) * 2009-02-05 2010-08-19 Toyota Motor Corp Controller of ac motor
WO2015003619A1 (en) * 2013-07-09 2015-01-15 Shenzhen Byd Auto R&D Company Limited Motor control system of electric vehicle and controlling method for motor control system of electric vehicle and electric vehicle
US9577569B2 (en) 2013-07-09 2017-02-21 Byd Company Limited Motor control system of electric vehicle and controlling method for motor control system of electric vehicle and electric vehicle
CN104442444A (en) * 2013-09-18 2015-03-25 比亚迪股份有限公司 Motor control system for electric vehicles and electric vehicle with same
CN109874393A (en) * 2016-09-30 2019-06-11 日本电产东测有限公司 Control device, control method, motor and electric oil pump
US11378070B2 (en) 2016-09-30 2022-07-05 Nidec Tosok Corporation Control device, control method, motor, and electric oil pump
CN109874393B (en) * 2016-09-30 2022-08-05 日本电产东测有限公司 Control device, control method, motor, and electric oil pump

Similar Documents

Publication Publication Date Title
JP6266161B2 (en) AC rotating machine control device and electric power steering control device
JP2007202365A (en) Power converter device and motor drive unit using it
JP5505042B2 (en) Neutral point boost DC-three-phase converter
JPWO2019008676A1 (en) Inverter device and electric power steering device
JP5233861B2 (en) Motor control device
JP5514660B2 (en) Load control device
JP5278723B2 (en) Motor control device and motor control method
WO2014024460A1 (en) Motor control apparatus
JP7280170B2 (en) Motor control device, motor control method, hybrid system, boost converter system, electric power steering system
JP2019140815A (en) Motor control device
JP6579195B2 (en) Power control method and power control apparatus
JP2013066340A (en) Motor controller
JP2005065439A (en) Control method for voltage-type inverter
JP2006074951A (en) Controller for ac motor
JP6674765B2 (en) Electric motor control device and electric vehicle using the same
JP4539192B2 (en) AC motor control device
CN112567620B (en) Inverter device
JP6458684B2 (en) Power control method and power control apparatus
JP5473071B2 (en) Load control device
JP2005269722A (en) Motor drive controller
JP2006081322A (en) Ac motor control unit
JP6471670B2 (en) Power control method and power control apparatus
JP2011061956A (en) Device for controlling electric motor
JP2011109848A (en) Motor drive control device
JP2006304417A (en) Inverter controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005