JP2009219288A - Motor driving device - Google Patents

Motor driving device Download PDF

Info

Publication number
JP2009219288A
JP2009219288A JP2008061772A JP2008061772A JP2009219288A JP 2009219288 A JP2009219288 A JP 2009219288A JP 2008061772 A JP2008061772 A JP 2008061772A JP 2008061772 A JP2008061772 A JP 2008061772A JP 2009219288 A JP2009219288 A JP 2009219288A
Authority
JP
Japan
Prior art keywords
output
command signal
pwm
value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008061772A
Other languages
Japanese (ja)
Other versions
JP5277671B2 (en
Inventor
Haruyuki Suzuki
晴之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008061772A priority Critical patent/JP5277671B2/en
Publication of JP2009219288A publication Critical patent/JP2009219288A/en
Application granted granted Critical
Publication of JP5277671B2 publication Critical patent/JP5277671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor driving device compatible with positive/negative voltage command signals by a circuit scale smaller than that of the conventional one. <P>SOLUTION: The motor driving device 10 includes a comparator 11 for comparing signals with each other, an error amplifier 12 for amplifying an output signal of the comparator 11, a PWM conversion means 20 for converting a voltage signal into a pulse width signal, a PWM drive part 13 for PWM-driving a motor, a switching element part 14 for performing switching operation, a resistance element 15, an ADC 16 for converting an analog signal into a digital signal, and a polarity switching part 17 for switching the signal polarity. The PWM conversion means 20 has an integration part 21 to output an error integrated value Vint, and a nonlinear conversion part 22 that performs nonlinear conversion so as to exclude a prescribed range from the input error integrated value Vint and outputs a PWM command signal PWMin, in which the prescribed range is excluded, to the PWM drive part 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、モータを駆動するモータ駆動装置に関する。   The present invention relates to a motor driving device that drives a motor.

従来、モータの電機子巻線コイルに電流を流してモータを動作させるとき、印加電圧指令信号に比例したパルスデューティ比で電源電圧をスイッチングするPWM(Pulse Width Modulation:パルス幅変調)駆動方式が一般に用いられる。また、スイッチング素子の接地側又は電源側に接続された抵抗の電位差によりモータ電流を検出し、この検出電流をフィードバックして電流制御する駆動方式も提案されている。   Conventionally, the PWM (Pulse Width Modulation) drive system that switches the power supply voltage with a pulse duty ratio proportional to the applied voltage command signal is generally used when operating the motor by passing a current through the armature coil of the motor. Used. In addition, a drive system has been proposed in which a motor current is detected based on a potential difference between resistors connected to the ground side or the power supply side of the switching element, and the detected current is fed back to control the current.

しかしながら、印加電圧指令信号が小さくパルス幅が短いと抵抗電位差を検出できる時間が短く、正常な電流検出ができない。これを避けるため、一定幅以下のパルスを制限するのが好ましいが、単にパルス幅を制限したのではモータ電流に歪みが生じてしまうという課題があった。そこで、適宜逆パルス(逆ベクトル)を選択して平均電圧を調整し、電流ひずみを低減するものが提案されている(例えば、特許文献1参照)。
再公表特許WO2003/030348号公報
However, if the applied voltage command signal is small and the pulse width is short, the time during which the resistance potential difference can be detected is short, and normal current detection cannot be performed. In order to avoid this, it is preferable to limit the pulses having a certain width or less. However, simply limiting the pulse width causes a problem that the motor current is distorted. In view of this, there has been proposed a technique in which a reverse pulse (reverse vector) is appropriately selected to adjust an average voltage to reduce current distortion (see, for example, Patent Document 1).
Republished patent WO2003 / 030348

しかしながら、特許文献1に示された方式では、詳細な記述がないが、負の電圧指令信号のときに電圧指令信号の絶対値が小さいときは、時間幅を制限するパルスの極性や逆ベクトルの方向、及びそれらを選択するための誤差積算値の符号関係を逆にする必要があった。したがって、特許文献1に示されたものは、正負の電圧指令信号に対応させるためには回路規模が大きくなるという課題があった。   However, although there is no detailed description in the method disclosed in Patent Document 1, if the absolute value of the voltage command signal is small when the voltage command signal is negative, the polarity of the pulse that limits the time width or the inverse vector It was necessary to reverse the sign relationship between the direction and the error integrated value for selecting them. Therefore, the technique disclosed in Patent Document 1 has a problem that the circuit scale becomes large in order to deal with positive and negative voltage command signals.

本発明は、従来の課題を解決するためになされたものであり、従来よりも小さい回路規模で正負の電圧指令信号に対応させることができるモータ駆動装置を提供することを目的とする。   The present invention has been made in order to solve the conventional problems, and an object of the present invention is to provide a motor drive device that can cope with positive and negative voltage command signals with a circuit scale smaller than that of the prior art.

本発明のモータ駆動装置は、モータコイルに駆動パルスを与えて電圧を印加するモータ駆動装置であって、電圧指令信号をパルス幅指令信号に変換する信号変換手段と、前記パルス幅指令信号に応じた駆動パルスを前記モータコイルに出力する駆動パルス出力手段とを備え、前記信号変換手段は、前記電圧指令信号と前記パルス幅指令信号との差を積算して誤差積算値を出力する積算部と、前記誤差積算値から予め定められた範囲の出力を除外して出力する出力除外部とを備え、前記出力除外部の出力に応じたパルス幅指令信号を出力するものである構成を有している。   The motor drive device of the present invention is a motor drive device that applies a voltage by applying a drive pulse to a motor coil, and converts a voltage command signal into a pulse width command signal, and a response to the pulse width command signal. Drive pulse output means for outputting the drive pulse to the motor coil, and the signal conversion means integrates the difference between the voltage command signal and the pulse width command signal and outputs an error integrated value; An output exclusion unit that excludes and outputs an output in a predetermined range from the error integrated value, and outputs a pulse width command signal corresponding to the output of the output exclusion unit. Yes.

この構成により、本発明のモータ駆動装置は、予め定められた範囲の出力を誤差積算値から除外することにより、一定幅以下のパルスを制限することができ、正負の電圧指令信号に対して適切なパルス幅指令信号をモータコイルに出力することができる。したがって、本発明のモータ駆動装置は、正負の電圧指令信号に対応させるための別個の回路を必要としないので、従来よりも小さい回路規模で正負の電圧指令信号に対応させることができる。   With this configuration, the motor drive device of the present invention can limit pulses having a certain width or less by excluding the output in a predetermined range from the error integrated value, and is appropriate for positive and negative voltage command signals. A simple pulse width command signal can be output to the motor coil. Therefore, the motor drive device of the present invention does not require a separate circuit for responding to the positive and negative voltage command signals, and can therefore correspond to the positive and negative voltage command signals with a circuit scale smaller than that of the prior art.

また、本発明のモータ駆動装置は、前記出力除外部が、予め定められた範囲の入力値に対して一定の出力値に変換するための量子化を行うものである構成を有している。   Further, the motor drive device of the present invention has a configuration in which the output excluding unit performs quantization for converting an input value in a predetermined range into a constant output value.

この構成により、本発明のモータ駆動装置は、より単純な構成で短パルス除外による電圧誤差補償を行うことができる。   With this configuration, the motor drive device of the present invention can perform voltage error compensation by excluding short pulses with a simpler configuration.

さらに、本発明のモータ駆動装置は、前記出力除外部が、予め定められた基準入力値及び基準出力値に基づき、前記出力除外部の入力値と出力値との関係を示す入出力特性に対し、前記基準入力値を境に前記入出力特性を予め定められたオフセット量だけ前記基準出力値の正負方向にオフセットさせるものである構成を有している。   Furthermore, in the motor drive device of the present invention, the output excluding unit is based on a predetermined reference input value and a reference output value, and has an input / output characteristic indicating a relationship between the input value and the output value of the output excluding unit. The input / output characteristics are offset in the positive / negative direction of the reference output value by a predetermined offset amount with the reference input value as a boundary.

この構成により、本発明のモータ駆動装置は、出力除外部の処理の単純化を図ることができ、さらに回路やプログラム等を簡素化できる。   With this configuration, the motor drive device of the present invention can simplify the processing of the output exclusion unit, and can further simplify the circuit, program, and the like.

さらに、本発明のモータ駆動装置は、前記出力除外部が、前記入力値と前記基準入力値との差が大きくなるに従って前記オフセット量を小さくするものである構成を有している。   Furthermore, the motor drive device of the present invention has a configuration in which the output exclusion unit reduces the offset amount as the difference between the input value and the reference input value increases.

この構成により、本発明のモータ駆動装置は、入力値の所定範囲を出力から除外しつつ、大きな電圧指示に対しては入力値と出力値との差を小さくすることができるので、モータコイルに流す電流の歪みを小さくすることができる。   With this configuration, the motor driving device of the present invention can reduce the difference between the input value and the output value for a large voltage instruction while excluding the predetermined range of the input value from the output. The distortion of the flowing current can be reduced.

また、この構成により、本発明のモータ駆動装置は、大きな電圧指示に対して出力飽和やオーバフロー等を避けることができる。   Also, with this configuration, the motor drive device of the present invention can avoid output saturation, overflow, etc. for large voltage instructions.

さらに、本発明のモータ駆動装置は、前記駆動パルスがオン状態のときに前記モータコイルに流れる電流を検出する電流検出手段と、前記電流検出手段が検出した検出電流値と予め定められた電流指令信号値との差に応じて前記電圧指令信号を出力し、前記モータコイルに流れる電流を前記電流指令信号に応じた値に制御する電流制御手段とを備えた構成を有している。   Furthermore, the motor drive device of the present invention includes a current detection means for detecting a current flowing through the motor coil when the drive pulse is in an on state, a detected current value detected by the current detection means and a predetermined current command. The voltage command signal is output in accordance with a difference from the signal value, and current control means for controlling the current flowing in the motor coil to a value in accordance with the current command signal is provided.

この構成により、本発明のモータ駆動装置は、電流フィードバックにより、電源電圧変動やスイッチ素子の抵抗のばらつき、あるいはコイル抵抗などの変動があってもモータ電流が変動することなく、目標電流指令信号に応じた電流でモータを駆動することができる。したがって、本発明のモータ駆動装置は、安定でかつ精密なモータ駆動制御を行うことができる。   With this configuration, the motor driving device according to the present invention can generate the target current command signal without fluctuation of the motor current even if there is fluctuation of the power supply voltage, fluctuation of the resistance of the switch element, fluctuation of the coil resistance or the like due to current feedback. The motor can be driven with a corresponding current. Therefore, the motor drive device of the present invention can perform stable and precise motor drive control.

本発明は、従来よりも小さい回路規模で正負の電圧指令信号に対応させることができるという効果を有するモータ駆動装置を提供することができるものである。   The present invention can provide a motor drive device having an effect of being able to cope with positive and negative voltage command signals with a circuit scale smaller than that of the prior art.

以下、本発明の一実施の形態について図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(第1の実施の形態)
まず、本発明に係るモータ駆動装置の第1の実施の形態における構成について説明する。図1は、本実施の形態におけるモータ駆動装置の構成を示すブロック図である。
(First embodiment)
First, the configuration of the motor drive device according to the first embodiment of the present invention will be described. FIG. 1 is a block diagram showing a configuration of a motor drive device according to the present embodiment.

図1に示すように、本実施の形態におけるモータ駆動装置10は、信号を比較する比較器11と、比較器11の出力信号を増幅する誤差増幅器12と、電圧信号をパルス幅信号に変換するPWM変換手段20と、モータをPWM駆動するPWM駆動部13と、スイッチング動作を行うスイッチング素子部14と、抵抗素子15と、アナログ信号をデジタル信号に変換する変換器(以下「ADC」という。)16と、信号の極性を切り替える極性切替部17とを備えている。このモータ駆動装置10は、例えばマイクロコンピュータで構成される。   As shown in FIG. 1, the motor drive device 10 according to the present embodiment converts a comparator 11 that compares signals, an error amplifier 12 that amplifies the output signal of the comparator 11, and a voltage signal into a pulse width signal. The PWM conversion means 20, the PWM drive part 13 which carries out PWM drive of the motor, the switching element part 14 which performs switching operation | movement, the resistive element 15, and the converter (henceforth "ADC") which converts an analog signal into a digital signal. 16 and a polarity switching unit 17 for switching the polarity of the signal. The motor drive device 10 is constituted by a microcomputer, for example.

比較器11は、モータコイル100に流す電流として予め定められた目標電流指令信号Icmdと、後述する極性切替部17が出力する検出電流値Idetとを比較し、その差を示す差分信号を出力するようになっている。なお、比較器11は、本発明に係る電流制御手段を構成する。   The comparator 11 compares a target current command signal Icmd predetermined as a current to be passed through the motor coil 100 with a detected current value Idet output from a polarity switching unit 17 described later, and outputs a difference signal indicating the difference. It is like that. The comparator 11 constitutes current control means according to the present invention.

誤差増幅器12は、比較器11が出力した差分信号を増幅し、増幅した差分信号を電圧指令信号VcmdとしてPWM変換手段20に出力するようになっている。ここで、電圧指令信号Vcmdは、モータコイル100に印加すべき電圧に相当する信号である。なお、誤差増幅器12は、本発明に係る電流制御手段を構成する。   The error amplifier 12 amplifies the difference signal output from the comparator 11 and outputs the amplified difference signal to the PWM conversion means 20 as a voltage command signal Vcmd. Here, the voltage command signal Vcmd is a signal corresponding to a voltage to be applied to the motor coil 100. The error amplifier 12 constitutes current control means according to the present invention.

本実施の形態におけるモータ駆動装置10においては、誤差増幅器12が電圧指令信号Vcmdを出力することにより、目標電流指令信号Icmdと検出電流値Idetとの差が小さくなるように電流がフィードバック制御されるようになっている。ここで、誤差増幅器12のゲインを高くすることで、目標電流指令信号Icmdに比例した電流をモータコイル100に流すことができる。電圧指令信号Vcmdだけでは、モータ電流は電源電圧変動やスイッチング素子部14の抵抗のばらつき、あるいはコイル抵抗などの変動によって変動してしまうが、電流フィードバックによりこれらの影響を補償することができる。なお、本実施の形態では、電圧指令信号Vcmdをデジタル値として説明するが、アナログ値でもかまわない。   In motor driving apparatus 10 in the present embodiment, current is feedback controlled so that difference between target current command signal Icmd and detected current value Idet is reduced by error amplifier 12 outputting voltage command signal Vcmd. It is like that. Here, by increasing the gain of the error amplifier 12, a current proportional to the target current command signal Icmd can be passed through the motor coil 100. Only with the voltage command signal Vcmd, the motor current fluctuates due to power supply voltage fluctuations, fluctuations in the resistance of the switching element unit 14, fluctuations in coil resistance, etc., but these effects can be compensated for by current feedback. In the present embodiment, the voltage command signal Vcmd is described as a digital value, but an analog value may be used.

PWM変換手段20は、積算部21と、非直線変換部22とを備えている。なお、PWM変換手段20は、本発明に係る信号変換手段を構成する。   The PWM conversion means 20 includes an integration unit 21 and a non-linear conversion unit 22. The PWM converter 20 constitutes a signal converter according to the present invention.

積算部21は、減算器21aと、メモリ21bと、加算器21cと、メモリ21dとを備えている。   The integrating unit 21 includes a subtractor 21a, a memory 21b, an adder 21c, and a memory 21d.

減算器21aは、1サンプル前のPWM指令信号PWMinを電圧指令信号Vcmdから減算するものであって、電圧指令信号VcmdとPWM指令信号PWMinとの差を計算するようになっている。   The subtractor 21a subtracts the PWM command signal PWMin one sample before from the voltage command signal Vcmd, and calculates the difference between the voltage command signal Vcmd and the PWM command signal PWMin.

メモリ21bは、1サンプル前のPWM指令信号PWMin値を記憶するようになっている。例えば、メモリ21bは、PWM周期ごとに現在のPWM指令信号PWMinをサンプリングして更新するようになっている。   The memory 21b stores the PWM command signal PWMin value one sample before. For example, the memory 21b samples and updates the current PWM command signal PWMin every PWM cycle.

加算器21c及びメモリ21dは、1サンプル(例えばPWM周期)ごとに減算器21aの出力信号を積算して誤差積算値Vintを非直線変換部22に出力するようになっている。   The adder 21c and the memory 21d integrate the output signals of the subtractor 21a for each sample (for example, PWM cycle) and output an error integrated value Vint to the non-linear conversion unit 22.

非直線変換部22は、入力した誤差積算値Vintから所定範囲を除外するよう非直線変換し、所定範囲を除外したPWM指令信号PWMinをPWM駆動部13に出力するようになっている。このPWM指令信号PWMinは、モータコイル100をPWM駆動するためのパルス幅に相当する信号である。なお、非直線変換部22は、本発明に係る出力除外部を構成するものであり、その詳細については後述する。   The non-linear conversion unit 22 performs non-linear conversion so as to exclude a predetermined range from the input error integrated value Vint, and outputs a PWM command signal PWMin excluding the predetermined range to the PWM drive unit 13. This PWM command signal PWMin is a signal corresponding to a pulse width for PWM driving the motor coil 100. The nonlinear conversion unit 22 constitutes an output exclusion unit according to the present invention, and details thereof will be described later.

PWM駆動部13は、入力したPWM指令信号PWMin値に応じたパルス幅でモータコイル100をスイッチング制御してPWM駆動できるように、スイッチング素子部14のオン及びオフを行うパルス(スイッチング信号UH、UL、VH、VL)を出力するようになっている。なお、PWM駆動部13は、本発明に係る駆動パルス出力手段及び電流検出手段を構成する。   The PWM drive unit 13 turns on and off the switching element unit 14 (switching signals UH and UL) so that the motor coil 100 can be subjected to switching control with a pulse width corresponding to the input PWM command signal PWMin value and can be PWM driven. , VH, VL). The PWM drive unit 13 constitutes drive pulse output means and current detection means according to the present invention.

スイッチング素子部14は、例えばFETやトランジスタで構成されるスイッチング素子14a〜14dを備えている。なお、本実施の形態においては、スイッチング素子14a〜14dは、それぞれ、スイッチング信号UH、UL、VH、VLがハイレベルのときオンになる論理とする。また、モータコイル100は、スイッチング素子14aと14bとの接続点aと、スイッチング素子14cと14dとの接続点bとの間でHブリッジ接続されている。   The switching element unit 14 includes switching elements 14a to 14d configured by, for example, FETs or transistors. In the present embodiment, the switching elements 14a to 14d have logic that turns on when the switching signals UH, UL, VH, and VL are at a high level, respectively. The motor coil 100 is H-bridge connected between a connection point a between the switching elements 14a and 14b and a connection point b between the switching elements 14c and 14d.

抵抗素子15は、モータコイル100に流れる電流に比例した電位差信号Isnsを発生させるためのものである。この抵抗素子15は、モータコイル100の接地側のスイッチング素子14b及び14dにおける接地側端子を結合した点と、接地との間に挿入されている。このため、抵抗素子15は、PWMパルスがオンデューティ(OnDuty)のときに電源からモータコイル100を通って接地側に流れる電流(あるいはその逆方向の電流)を検出することができるようになっている。一方、PWMパルスがオフデューティ(OffDuty)のときの電流は、抵抗素子15を通らずモータコイル100とスイッチング素子部14で回生するので、抵抗素子15では検出されない。   The resistance element 15 is for generating a potential difference signal Isns proportional to the current flowing through the motor coil 100. The resistance element 15 is inserted between a ground point of the switching elements 14b and 14d on the ground side of the motor coil 100 and the ground. For this reason, the resistance element 15 can detect the current (or the current in the opposite direction) flowing from the power source to the ground side through the motor coil 100 when the PWM pulse is on-duty. Yes. On the other hand, the current when the PWM pulse is off duty (OffDuty) is not detected by the resistance element 15 because it is regenerated by the motor coil 100 and the switching element section 14 without passing through the resistance element 15.

ADC16は、電位差信号Isnsをサンプリングしてデジタル値に変換するようになっている。なお、サンプリングタイミングについては後述する。   The ADC 16 samples the potential difference signal Isns and converts it into a digital value. The sampling timing will be described later.

極性切替部17は、サンプリングされた電位差信号Isnsの値を極性指示信号invに応じて極性反転し、その信号を比較器11に出力するようになっている。   The polarity switching unit 17 inverts the polarity of the sampled potential difference signal Isns in accordance with the polarity instruction signal inv and outputs the signal to the comparator 11.

なお、抵抗素子15、ADC16及び極性切替部17は、本発明に係る電流検出手段を構成する。   The resistive element 15, the ADC 16, and the polarity switching unit 17 constitute a current detection unit according to the present invention.

次に、本実施の形態におけるPWM駆動について図2を用いて説明する。   Next, PWM driving in the present embodiment will be described with reference to FIG.

図2に示すように、PWM駆動部13は、一定周期TpwmごとにPWM指令信号PWMinの絶対値に比例したパルス幅オンデューティでオン、オフするパルスを出力する。   As shown in FIG. 2, the PWM drive unit 13 outputs a pulse that turns on and off with a pulse width on-duty that is proportional to the absolute value of the PWM command signal PWMin for each fixed period Tpwm.

PWM指令信号PWMinが正符号のときは、UHとULが相補的に(ULがUHの反転となる論理で)PWM出力され、VHはローレベル固定、VLはハイレベル固定である。すなわちスイッチング素子14cが常にオフ、スイッチング素子14dが常にオンであり、PWMがオンのときスイッチング素子14aがオンでスイッチング素子14bがオフである。したがって、スイッチング素子14aから14dに向かってモータコイル100に電圧が印加され、電源から接地側に電流が流れる。PWMがオフのときスイッチング素子14aがオフ、スイッチング素子14b及び14dがオンで、モータコイル100には回生電流が流れ、接地側には流れない。   When the PWM command signal PWMin is a positive sign, UH and UL are complementarily outputted (with logic that UL is inverted from UH), VH is fixed at a low level, and VL is fixed at a high level. That is, the switching element 14c is always off, the switching element 14d is always on, and when the PWM is on, the switching element 14a is on and the switching element 14b is off. Therefore, a voltage is applied to the motor coil 100 from the switching elements 14a to 14d, and a current flows from the power source to the ground side. When the PWM is off, the switching element 14a is off, the switching elements 14b and 14d are on, a regenerative current flows through the motor coil 100, and does not flow to the ground side.

一方、PWM指令信号PWMinが負符号のときは、VHとVLとが相補的に(VLがVHの反転となる論理で)PWM出力され、UHはローレベル固定、ULはハイレベル固定である。すなわちスイッチング素子14bが常にオンであり、PWMがオンのときスイッチング素子14cがオンでスイッチング素子14dがオフである。したがって、スイッチング素子14cから14bに向かってモータコイル100に上記とは反対の電圧が印加され、電源から接地側に電流が流れる。PWMがオフのときスイッチング素子14cがオフ、スイッチング素子14a及び14bがオンで、モータコイル100には回生電流が流れ、接地側には流れない。   On the other hand, when the PWM command signal PWMin has a negative sign, VH and VL are complementarily outputted (with logic that VL is inverted from VH), UH is fixed at a low level, and UL is fixed at a high level. That is, the switching element 14b is always on, and when the PWM is on, the switching element 14c is on and the switching element 14d is off. Therefore, a voltage opposite to the above is applied to the motor coil 100 from the switching elements 14c to 14b, and a current flows from the power supply to the ground side. When the PWM is off, the switching element 14c is off, the switching elements 14a and 14b are on, a regenerative current flows through the motor coil 100, and does not flow to the ground side.

なお、図2では、PWM指令信号PWMinの絶対値が小さくパルス幅が細い場合も記載しているが、所定幅より短いパルスは以降説明するように除外されるので、PWM駆動部13は、実際は細いパルス指令信号を入力しないようになっている。   FIG. 2 also shows a case where the absolute value of the PWM command signal PWMin is small and the pulse width is narrow, but pulses shorter than the predetermined width are excluded as described below, so the PWM drive unit 13 is actually A thin pulse command signal is not input.

また、PWM駆動部13は、PWM指令信号PWMinが正符号のとき極性指示信号inv=0を、負符号のとき極性指示信号inv=1を出力するようになっている。   The PWM drive unit 13 outputs a polarity instruction signal inv = 0 when the PWM command signal PWMin has a positive sign, and outputs a polarity instruction signal inv = 1 when the PWM instruction signal PWMin has a negative sign.

PWM指令信号PWMinが正符号のときは、モータコイル100に印加される電圧方向は図1に示した接続点aからbに向かう方向であるが、PWM指令信号PWMinが負符号のときは、前述したようにモータコイル100に印加される電圧方向が逆(図1では接続点b点からa点に向かう方向)になる。しかしながら、抵抗素子15に流れる電流方向はどちらも同じ(図1において電源から接地に向かう方向)なので、PWM指令信号PWMinが負のときは、抵抗素子15に流れる電流の極性を反転すると正しい電流検出極性が得られる。   When the PWM command signal PWMin has a positive sign, the direction of the voltage applied to the motor coil 100 is the direction from the connection point a to b shown in FIG. 1, but when the PWM command signal PWMin has a negative sign, it is described above. As described above, the direction of the voltage applied to the motor coil 100 is reversed (the direction from the connection point b to the point a in FIG. 1). However, the direction of the current flowing through the resistance element 15 is the same (the direction from the power supply to the ground in FIG. 1). Therefore, when the PWM command signal PWMin is negative, the current detection is performed correctly by inverting the polarity of the current flowing through the resistance element 15. Polarity is obtained.

前述のように、PWM指令信号PWMinが負のときは電位差信号IsnsをADC16においてサンプリングした結果を極性切替部17で反転させ、極性切替部17が検出電流値Idetを出力する。   As described above, when the PWM command signal PWMin is negative, the polarity switching unit 17 inverts the result of sampling the potential difference signal Isns in the ADC 16, and the polarity switching unit 17 outputs the detected current value Idet.

また、ADC16のサンプリングタイミングとしては、コイル電流が抵抗素子15に流れている期間であって、例えば図2に示した波形例の電位差信号Isns波形において白丸で示した点とするのが好ましい。これはPWMパルスのオンデューティの最終部に相当する。このタイミングでPWM駆動部13からサンプリング信号smplをADC16に出力すればよい。   The sampling timing of the ADC 16 is preferably a point indicated by a white circle in the potential difference signal Isns waveform of the waveform example shown in FIG. This corresponds to the final part of the on-duty of the PWM pulse. The sampling signal smpl may be output from the PWM drive unit 13 to the ADC 16 at this timing.

また、前述のように、電位差信号IsnsはPWM指令信号PWMinが負のときでも正方向に現れるが、極性指示信号inv=1として反転して検出電流値Idetとすることで正しい極性になる。なお、図2では短いPWMパルスを除外していないが、後述するように、実際は非直線変換部22により所定範囲内のパルスを発生させないようにする。これにより電位差信号Isnsのサンプリングが容易になり、安定した電流検出ができる。   As described above, the potential difference signal Isns appears in the positive direction even when the PWM command signal PWMin is negative. However, the potential difference signal Isns has the correct polarity by inverting the polarity instruction signal inv = 1 to obtain the detected current value Idet. Although the short PWM pulse is not excluded in FIG. 2, as will be described later, in practice, the non-linear converter 22 does not generate a pulse within a predetermined range. This facilitates sampling of the potential difference signal Isns, and enables stable current detection.

次に、非直線変換部22について詳細に説明する。   Next, the non-linear conversion unit 22 will be described in detail.

まず、図3に非直線変換部22の入出力の関係の一例を示す。この例における非直線変換部22の内部処理のプログラム例をステップs101〜s104として以下に示す。   First, FIG. 3 shows an example of the input / output relationship of the non-linear converter 22. A program example of internal processing of the non-linear conversion unit 22 in this example is shown below as steps s101 to s104.

s101: if (input < mt) then output = input;
s102: else if (input < h) then output = mt;
s103: else if (input < pt) then output = pt;
s104: else output = input;
s101: if (input <mt) then output = input;
s102: else if (input <h) then output = mt;
s103: else if (input <pt) then output = pt;
s104: else output = input;

この例では、非直線変換部22の入力値(input)が、予め定めたパラメータmtより小さい(すなわち負の方向に大きい)、又は予め定めたパラメータptより大きい(すなわち正の方向に大きい)ときは、非直線変換部22は入力値をそのまま出力(output=input)し、入力値がmtからptまでの範囲内のときは予め定めたパラメータhを境にmt又はptを出力する。すなわち、非直線変換部22は、mtからptまでの範囲の入力値をmt及びptの2つのレベルに量子化していることになる。なお、前述のs101〜s104、図3においては各パラメータを、mt=−20、pt=+20、h=0としている。   In this example, when the input value (input) of the non-linear converter 22 is smaller than the predetermined parameter mt (that is, larger in the negative direction) or larger than the predetermined parameter pt (that is, larger in the positive direction). The non-linear conversion unit 22 outputs the input value as it is (output = input), and outputs mt or pt with a predetermined parameter h as a boundary when the input value is in the range from mt to pt. That is, the non-linear conversion unit 22 quantizes the input value in the range from mt to pt into two levels of mt and pt. In the above-described s101 to s104 and FIG. 3, the parameters are mt = −20, pt = + 20, and h = 0.

次に、電圧指令信号VcmdをPWM指令信号PWMinに変換する処理を、サンプリング周期ごとに動作するプログラムの形で書くと、例えば以下のようになる。ただし、非直線変換部22の処理(前述のs101〜s104)において関数NLが、output = NL(input)と定義されているとする。また、メモリ21d及び21bの出力値を、それぞれ、z1及びz2とする。   Next, the process of converting the voltage command signal Vcmd into the PWM command signal PWMin is written in the form of a program that operates every sampling period, for example, as follows. However, it is assumed that the function NL is defined as output = NL (input) in the processing of the non-linear conversion unit 22 (s101 to s104 described above). The output values of the memories 21d and 21b are z1 and z2, respectively.

電圧指令信号VcmdをPWM指令信号PWMinに変換する処理:
Vint = (Vcmd - z2) + z1
PWMin = NL(Vint)
z1 = Vint
z2 = PWMin
Processing for converting the voltage command signal Vcmd into the PWM command signal PWMin:
Vint = (Vcmd-z2) + z1
PWMin = NL (Vint)
z1 = Vint
z2 = PWMin

次に、図3に示した入出力の関係で電圧指令信号Vcmdを正弦波で入力したときのPWM指令信号PWMin、及びモータコイル100のコイル電流Currentの波形例を図4に示す。また、図4の横軸「80」から「120」までの部分を拡大したものを図5に示す。図4及び図5において、横軸の単位はPWM周期の番号である。例えば「80」は80番目のPWMサイクルを意味する。また、縦軸の単位は振幅が同じになるように任意にしてあるが、実際は適宜係数が加味されて物理量(電圧や電流、あるいはデジタル値やPWMのデューティ比など)になる。   Next, FIG. 4 shows a waveform example of the PWM command signal PWMin and the coil current Current of the motor coil 100 when the voltage command signal Vcmd is input as a sine wave due to the input / output relationship shown in FIG. FIG. 5 shows an enlarged view of the portion from the horizontal axis “80” to “120” in FIG. 4 and 5, the unit of the horizontal axis is the PWM cycle number. For example, “80” means the 80th PWM cycle. The unit of the vertical axis is arbitrarily set so that the amplitudes are the same, but in actuality, a physical quantity (voltage, current, digital value, PWM duty ratio, or the like) is appropriately added with a coefficient.

次に、図5のグラフの元となった実データを図6に示す。図6において、nは横軸のPWM周期番号を示す。n番目のPWMサイクルにおけるVint[n]は下式で求まる。   Next, the actual data that is the basis of the graph of FIG. 5 is shown in FIG. In FIG. 6, n represents the PWM cycle number on the horizontal axis. Vint [n] in the nth PWM cycle is obtained by the following equation.

Vint[n] = (Vcmd[n] - PWMin[n-1]) + Vint[n-1]
例えばn=93のタイミングでは、以下のように計算される。
Vint [n] = (Vcmd [n]-PWMin [n-1]) + Vint [n-1]
For example, at the timing of n = 93, the calculation is performed as follows.

Vint[93] = (Vcmd[93] - PWMin[92]) + Vint[92]
= (10 - (-20)) + (-7)
= 23
PWMin = NL(23) = 23
Vint [93] = (Vcmd [93]-PWMin [92]) + Vint [92]
= (10-(-20)) + (-7)
= 23
PWMin = NL (23) = 23

図5に示したように、電圧指令信号Vcmdに対してPWM指令信号PWMinはmt(=−20)からpt(=+20)までの範囲が除外されるように変換され、その外側の値が適宜出力されることがわかる。このためPWMパルス幅が所定値以上になり、電流検出が容易になる。また、図示のように、コイル電流Currentは、インダクタンスによる平滑が行われるためなめらかになり、入力電圧指令信号Vcmdの正弦波波形をほぼ維持できている。したがって、この構成における非直線変換部22により、モータをなめらかに歪みなく動作させることができる。   As shown in FIG. 5, with respect to the voltage command signal Vcmd, the PWM command signal PWMin is converted so as to exclude the range from mt (= −20) to pt (= + 20), and the value outside thereof is appropriately set. You can see that it is output. For this reason, the PWM pulse width becomes a predetermined value or more, and current detection becomes easy. Further, as shown in the figure, the coil current Current is smooth because smoothing is performed by inductance, and the sine wave waveform of the input voltage command signal Vcmd can be substantially maintained. Therefore, the motor can be operated smoothly and without distortion by the non-linear converter 22 in this configuration.

前述した処理は従来例に比べて条件分岐や信号選択が少なくシンプルであり、回路規模やプログラム規模を小さく抑えられる。また、正負の電圧指令信号Vcmdに対して適切にPWM指令信号PWMinに変換でき、正常な正負電流を流すことができる。   The processing described above is simple with fewer conditional branches and signal selection than the conventional example, and the circuit scale and program scale can be kept small. Further, the positive / negative voltage command signal Vcmd can be appropriately converted into the PWM command signal PWMin, and a normal positive / negative current can be passed.

なお、前述の説明では非直線変換部22の量子化レベルを2つにしたが、本発明はこれに限定されるものではなく、例えば図7に示すように、量子化レベルを1つにしてもよい。   In the above description, the quantization level of the non-linear conversion unit 22 is two, but the present invention is not limited to this. For example, as shown in FIG. Also good.

図7は、入力範囲の−20から+20までに対して量子化レベルを−20のみにした例を示す図である。また、量子化レベルを2つにした場合と同様に、電圧指令信号Vcmdを正弦波で入力したときのPWM指令信号PWMin及びコイル電流Currentの応答を図8に示す。図8に示すように、量子化レベルが1つの場合において変換されたPWM指令信号PWMinは、量子化レベルが2つの場合(図5参照)よりも大きく変化しているものの、コイル電流Currentは、ほぼなめらかに歪みもないものとなっている。したがって、この構成における非直線変換部22により、モータをなめらかに歪みなく動作させることができる。また、非直線変換部22の量子化レベルを1つにすることにより、より回路を簡素化することができる。   FIG. 7 is a diagram illustrating an example in which the quantization level is set to only −20 with respect to −20 to +20 in the input range. Similarly to the case where the number of quantization levels is two, the response of the PWM command signal PWMin and the coil current Current when the voltage command signal Vcmd is input as a sine wave is shown in FIG. As shown in FIG. 8, although the PWM command signal PWMin converted in the case of one quantization level changes more greatly than in the case of two quantization levels (see FIG. 5), the coil current Current is There is almost no distortion. Therefore, the motor can be operated smoothly and without distortion by the non-linear converter 22 in this configuration. Further, by making the quantization level of the nonlinear conversion unit 22 one, the circuit can be further simplified.

次に、本実施の形態におけるモータ駆動装置10の動作について図1及び図9を用いて説明する。図9は、本実施の形態におけるモータ駆動装置10の動作を示すフローチャートである。   Next, the operation of the motor drive device 10 in the present embodiment will be described with reference to FIGS. FIG. 9 is a flowchart showing the operation of the motor drive device 10 in the present embodiment.

まず、PWM変換手段20は、電圧指令値Vcmdを入力する(ステップS11)。この電圧指令値Vcmdは、誤差増幅器12が比較器11からの差分出力を増幅した信号である。   First, the PWM conversion means 20 inputs the voltage command value Vcmd (step S11). This voltage command value Vcmd is a signal obtained by amplifying the differential output from the comparator 11 by the error amplifier 12.

続いて、積算部21は、入力した電圧指令値Vcmdに基づいて誤差積算値Vintを生成する(ステップS12)。具体的には、積算部21において、減算器21aが、メモリ21bから1サンプル前のPWM指令信号PWMinを例えば1サンプルごとに入力し、入力したPWM指令信号PWMinを電圧指令信号Vcmdから減算し、加算器21cに出力する。加算器21c及びメモリ21dは、例えば1サンプルごとに減算器21aの結果を積算して誤差積算値Vintを非直線変換部22に出力する。   Subsequently, the integrating unit 21 generates an error integrated value Vint based on the input voltage command value Vcmd (step S12). Specifically, in the integrating unit 21, the subtractor 21a inputs the PWM command signal PWMin one sample before from the memory 21b, for example, for each sample, and subtracts the input PWM command signal PWMin from the voltage command signal Vcmd, The result is output to the adder 21c. The adder 21c and the memory 21d, for example, integrate the results of the subtractor 21a for each sample and output the error integrated value Vint to the non-linear conversion unit 22.

引き続き、非直線変換部22は、入力した誤差積算値Vintから予め定められた範囲の出力を除外して、PWM指令信号PWMinをPWM駆動部13に出力する(ステップS13)。例えば、前述したステップs101〜s104により、非直線変換部22の入力が、パラメータmtより小さい、又はパラメータptより大きいときはそのまま出力し、入力がmtからptまでの範囲内のときはパラメータhを境にmt又はptを出力する。   Subsequently, the non-linear conversion unit 22 excludes an output in a predetermined range from the input error integrated value Vint, and outputs a PWM command signal PWMin to the PWM drive unit 13 (step S13). For example, when the input of the non-linear conversion unit 22 is smaller than the parameter mt or larger than the parameter pt by the above-described steps s101 to s104, it is output as it is, and when the input is in the range from mt to pt, the parameter h is set. Output mt or pt to the boundary.

そして、PWM駆動部13は、入力したPWM指令信号PWMinに応じたスイッチング信号UH、UL、VH、VLをスイッチング素子部14に出力し、モータをPWM駆動する(ステップS14)。   Then, the PWM drive unit 13 outputs switching signals UH, UL, VH, and VL corresponding to the input PWM command signal PWMin to the switching element unit 14 to drive the motor in PWM (step S14).

ここで、抵抗素子15は、モータコイル100に流れる電流に比例した電位差信号Isnsを発生してADC16に出力する。ADC16は、電位差信号Isnsと、PWM駆動部13からのサンプリング信号smplとを入力し、サンプリング信号smplに基づいて電位差信号Isnsをデジタル信号に変換して極性切替部17に出力する。極性切替部17は、PWM駆動部13からの極性指示信号inv値に応じて、ADC16の出力信号の極性を切り替え、検出電流値Idetとして比較器11に出力する。   Here, the resistance element 15 generates a potential difference signal Isns proportional to the current flowing through the motor coil 100 and outputs it to the ADC 16. The ADC 16 receives the potential difference signal Isns and the sampling signal smpl from the PWM drive unit 13, converts the potential difference signal Isns into a digital signal based on the sampling signal smpl, and outputs the digital signal to the polarity switching unit 17. The polarity switching unit 17 switches the polarity of the output signal of the ADC 16 according to the polarity instruction signal inv value from the PWM driving unit 13 and outputs the polarity to the comparator 11 as the detected current value Idet.

以上のように、本実施の形態におけるモータ駆動装置10によれば、積算部21は、電圧指令信号VcmndとPWM指令信号PWMinとの差を積算して誤差積算値Vintを出力し、非直線変換部22は、予め定められた範囲の出力を誤差積算値Vintから除外し、除外した信号をPWM指令信号PWMinとしてPWM駆動部13に出力する構成としたので、予め定められた範囲の出力を誤差積算値Vintから除外することにより、一定幅以下のパルスを制限することができ、PWMがオンデューティのときの電流検出を容易にかつ正確に行うことができる。   As described above, according to the motor drive device 10 in the present embodiment, the integrating unit 21 integrates the difference between the voltage command signal Vcmnd and the PWM command signal PWMin to output the error integrated value Vint, and performs nonlinear conversion Since the unit 22 excludes the output in the predetermined range from the error integrated value Vint and outputs the excluded signal to the PWM drive unit 13 as the PWM command signal PWMin, the output in the predetermined range is the error. By excluding from the integrated value Vint, pulses having a certain width or less can be limited, and current detection when the PWM is on-duty can be easily and accurately performed.

したがって、本実施の形態におけるモータ駆動装置10は、正負の電圧指令信号に対応させるための別個の回路を必要とせず、正負の電圧指令信号に対して適切なPWM指令信号PWMinをモータコイル100に出力することができるので、従来よりも小さい回路規模で正負の電圧指令信号に対応させることができる。   Therefore, the motor drive device 10 in the present embodiment does not require a separate circuit for corresponding to the positive and negative voltage command signals, and the motor coil 100 is supplied with an appropriate PWM command signal PWMin for the positive and negative voltage command signals. Since it can output, it can respond to a positive / negative voltage command signal with a circuit scale smaller than before.

また、本実施の形態におけるモータ駆動装置10は、誤差積算により短パルス除外による電圧誤差が補償されるので、モータコイル100に流れる電流の歪みを小さくすることができる。   In addition, since the motor drive device 10 in the present embodiment compensates for the voltage error due to the short pulse exclusion by error integration, the distortion of the current flowing through the motor coil 100 can be reduced.

また、本実施の形態におけるモータ駆動装置10は、誤差積算結果をそのまま非直線変換することにより条件判断を少なくできるので、従来より簡単な構成で電圧誤差補償を行うことができる。   In addition, since the motor driving apparatus 10 according to the present embodiment can reduce the condition judgment by directly converting the error integration result as it is, voltage error compensation can be performed with a simpler configuration than the conventional one.

また、本実施の形態におけるモータ駆動装置10は、電圧指令信号Vcmndの正負符号に応じて構成を変更することなく、電圧誤差補償を行うことができる。   In addition, the motor driving device 10 in the present embodiment can perform voltage error compensation without changing the configuration according to the sign of the voltage command signal Vcmnd.

また、本実施の形態におけるモータ駆動装置10は、非直線変換部22が、所定範囲の入力に対して一定の出力値に変換するよう量子化する構成としたので、より単純な構成で短パルス除外による電圧誤差補償を行うことができる。   Further, in the motor drive device 10 according to the present embodiment, the non-linear converter 22 is configured to perform quantization so as to convert the input within a predetermined range into a constant output value. Voltage error compensation by exclusion can be performed.

また、本実施の形態におけるモータ駆動装置10は、量子化レベル数や境界値の設定もパラメータとして非直線変換部22に設定できるので、設定を変えるだけで電圧誤差の補償特性を調整でき、低コストで柔軟な電圧誤差補償が可能である。   In addition, since the motor drive device 10 according to the present embodiment can set the quantization level number and the boundary value as parameters in the non-linear converter 22, the voltage error compensation characteristics can be adjusted by simply changing the setting. Flexible voltage error compensation is possible at low cost.

また、本実施の形態におけるモータ駆動装置10は、非直線変換部22が、PWM駆動パルスのうち短パルスを除外して駆動する構成としたので、電流のサンプリング検出が容易で、精密な電流制御が実現できる。   In addition, the motor driving device 10 according to the present embodiment is configured such that the non-linear converter 22 is driven by excluding short pulses among PWM driving pulses, so that current sampling detection is easy and precise current control is performed. Can be realized.

また、本実施の形態におけるモータ駆動装置10は、駆動パルスがオン状態のときにモータコイル100に流れる電流を検出する電流検出手段としてPWM駆動部13と、抵抗素子15と、ADC16と、極性切替部17とを備え、検出した検出電流値Idetと目標電流指令信号Icmndとの差に応じて電圧指令信号Vcmndを出力し、モータコイル電流を目標電流指令信号Icmndに応じた値に制御する電流制御手段として比較器11及び誤差増幅器12を備える構成としたので、電流フィードバックにより、電源電圧変動やスイッチ素子の抵抗のばらつき、あるいはコイル抵抗などの変動があってもモータ電流が変動することなく、目標電流指令信号に応じた電流でモータを駆動することができる。したがって、モータ駆動装置10は、安定でかつ精密なモータ駆動制御を行うことができる。   In addition, the motor drive device 10 according to the present embodiment has a PWM drive unit 13, a resistance element 15, an ADC 16, and polarity switching as current detection means for detecting a current flowing through the motor coil 100 when the drive pulse is in an on state. Current control for providing a voltage command signal Vcmnd according to the difference between the detected current value Idet detected and the target current command signal Icmnd and controlling the motor coil current to a value according to the target current command signal Icmnd. Since the comparator 11 and the error amplifier 12 are provided as means, the motor current does not fluctuate even if there are fluctuations in power supply voltage, switch element resistance, or coil resistance due to current feedback. The motor can be driven with a current corresponding to the current command signal. Therefore, the motor drive device 10 can perform stable and precise motor drive control.

(第2の実施の形態)
本発明に係るモータ駆動装置の第2の実施の形態における構成は、第1の実施の形態におけるモータ駆動装置10に対し、非直線変換部22の機能が異なるものである。したがって、第1の実施の形態におけるモータ駆動装置10と同一の符号を付して非直線変換部22について説明し、重複する説明は省略する。
(Second Embodiment)
The configuration of the motor drive device according to the second embodiment of the present invention is different from the motor drive device 10 according to the first embodiment in the function of the non-linear converter 22. Accordingly, the non-linear conversion unit 22 will be described with the same reference numerals as those of the motor drive device 10 in the first embodiment, and redundant description will be omitted.

本実施の形態における非直線変換部22は、所定範囲の出力を誤差積算値Vintから除外するため、オフセットの切り替えを行うようになっており、図10を用いて説明する。   The non-linear conversion unit 22 in the present embodiment switches the offset in order to exclude an output within a predetermined range from the error integrated value Vint, and will be described with reference to FIG.

図10は、非直線変換部22が、入力0を境にオフセットを−20及び+20のいずれかに切り替える場合の入出力特性例を示す図である。図10に示した例における非直線変換部22の処理をプログラムで記述すると以下のようになる。   FIG. 10 is a diagram illustrating an example of input / output characteristics when the non-linear conversion unit 22 switches the offset to either −20 or +20 with the input 0 as a boundary. The processing of the non-linear conversion unit 22 in the example shown in FIG. 10 is described as a program as follows.

s301: if (input < h) then output = input+c1;
s302: else output = input + c2;
s301: if (input <h) then output = input + c1;
s302: else output = input + c2;

すなわち、非直線変換部22は、入力所定値hを境にオフセットc1又はc2を入力値に加算する。なお、図10に示した例では、h=0、c1=−20、c2=+20としている。   That is, the non-linear conversion unit 22 adds the offset c1 or c2 to the input value with the input predetermined value h as a boundary. In the example shown in FIG. 10, h = 0, c1 = −20, and c2 = + 20.

これにより、非直線変換部22は、出力となるPWM指令信号PWMinにc1からc2までの値を含まないようにでき、短パルスが生じないようにすることができる。オフセットがc1やc2に変化しても、PWM指令信号PWMinと電圧指令信号Vcmdとの差を積算して非直線変換してPWM指令信号PWMinとするフィードバックにより、PWM指令信号PWMinは電圧指令信号Vcmdとほぼ等しくなりオフセットはキャンセルされる。   As a result, the non-linear converter 22 can prevent the output PWM command signal PWMin from including values from c1 to c2, and can prevent short pulses from occurring. Even if the offset changes to c1 or c2, the PWM command signal PWMin is converted into the voltage command signal Vcmd by feedback that integrates the difference between the PWM command signal PWMin and the voltage command signal Vcmd to make a non-linear conversion to the PWM command signal PWMin. And the offset is cancelled.

次に、図6、図9で説明したのと同じ電圧指令信号Vcmdを正弦波で入力したときの、PWM指令信号PWMinとコイル電流の応答例を図11に示す。PWM指令信号PWMinが−20から+20までの範囲を回避するための変化は、図6及び図9に示したものより大きいが、コイル電流は、ほぼなめらかで歪みないものとなっている。したがって、この構成における非直線変換部22により、モータをなめらかに歪みなく動作させることができる。また、この例では非直線変換部22の処理を非常に単純化することができるので、さらに回路やプログラムを簡素化できる。   Next, FIG. 11 shows a response example of the PWM command signal PWMin and the coil current when the same voltage command signal Vcmd as described in FIGS. 6 and 9 is input as a sine wave. The change for avoiding the range of the PWM command signal PWMin from −20 to +20 is larger than that shown in FIGS. 6 and 9, but the coil current is almost smooth and undistorted. Therefore, the motor can be operated smoothly and without distortion by the non-linear converter 22 in this configuration. In this example, the processing of the non-linear conversion unit 22 can be greatly simplified, so that the circuit and program can be further simplified.

次に、本実施の形態における非直線変換部22の他の態様について図12及び図13を用いて説明する。図12は、他の態様における非直線変換部22の入出力特性例を示す。   Next, another aspect of the non-linear conversion unit 22 in the present embodiment will be described with reference to FIGS. FIG. 12 shows an example of input / output characteristics of the non-linear conversion unit 22 in another aspect.

この例では入力0を境にオフセットが切り替わるとともに、最大入力値及び最小入力値(ここでは+100及び−100)では出力と入力が一致するように、傾きを変えている。これにより、所定範囲(ここでは−20から+20まで)を出力から除外しつつ、電圧指示が大きくなるに従って入力値と出力値との差が小さくなってくるので、コイル電流の歪みを小さくできる。また、大きな電圧指示に対して出力飽和やオーバフローを避けることができる。   In this example, the offset is changed with the input 0 as a boundary, and the slope is changed so that the output and the input coincide with each other at the maximum input value and the minimum input value (here, +100 and −100). As a result, the difference between the input value and the output value becomes smaller as the voltage instruction becomes larger while excluding the predetermined range (from -20 to +20 in this case) from the output, so that the distortion of the coil current can be reduced. Also, output saturation and overflow can be avoided for large voltage instructions.

次に、図13は、第1の実施の形態で説明したのと同じ電圧指令信号Vcmdを正弦波で入力したときの、PWM指令信号PWMinとコイル電流Currentとの応答例を示すものである。PWM指令信号PWMinが−20から+20を回避するための変化は、第1の実施の形態(図4や図8に示した特性の場合)よりは大きいが、図10に示した単純オフセット加算の場合よりは小さい。また、コイル電流Currentは、ほぼなめらかで歪みのないものとなっている。したがって、この構成における非直線変換部22により、モータをなめらかに歪みなく動作させることができる。   Next, FIG. 13 shows a response example of the PWM command signal PWMin and the coil current Current when the same voltage command signal Vcmd as described in the first embodiment is inputted as a sine wave. The change for avoiding the PWM command signal PWMin from −20 to +20 is larger than that in the first embodiment (in the case of the characteristics shown in FIGS. 4 and 8), but the simple offset addition shown in FIG. Smaller than the case. The coil current Current is almost smooth and has no distortion. Therefore, the motor can be operated smoothly and without distortion by the non-linear converter 22 in this configuration.

次に、図12に示した入出力特性が得られる非直線変換部22の処理例をプログラムの形で示すと次のようになる。   Next, a processing example of the non-linear converter 22 that can obtain the input / output characteristics shown in FIG. 12 is shown in the form of a program as follows.

s201: if (input < h) then output = a1 * input + b1;
s202: else output = a2 * input + b2;
s201: if (input <h) then output = a1 * input + b1;
s202: else output = a2 * input + b2;

この例では、入力所定値hを境に、傾きと切片(オフセット)を(a1、b1)と(a2、b2)とで切り換えている。図12の特性例では、h=0、a1=a2=80/100、b1=−20、b2=+20としている。   In this example, the inclination and the intercept (offset) are switched between (a1, b1) and (a2, b2) with the input predetermined value h as a boundary. In the characteristic example of FIG. 12, h = 0, a1 = a2 = 80/100, b1 = −20, and b2 = + 20.

以上のように、本実施の形態におけるモータ駆動装置によれば、非直線変換部22が、所定入力値を境にオフセットを変化させる構成としたので、非直線変換部22の処理を非常に単純化することができ、さらに回路やプログラムを簡素化することができる。   As described above, according to the motor drive device of the present embodiment, the non-linear conversion unit 22 is configured to change the offset with a predetermined input value as a boundary. Therefore, the processing of the non-linear conversion unit 22 is very simple. In addition, the circuit and the program can be simplified.

以上のように、本発明に係るモータ駆動装置は、従来よりも小さい回路規模で正負の電圧指令信号に対応させることができるという効果を有し、モータをPWM駆動するモータ駆動装置等として有用である。   As described above, the motor drive device according to the present invention has an effect of being able to deal with positive and negative voltage command signals with a circuit scale smaller than the conventional one, and is useful as a motor drive device for PWM driving a motor. is there.

本発明に係るモータ駆動装置の第1の実施の形態における構成を示すブロック図The block diagram which shows the structure in 1st Embodiment of the motor drive device which concerns on this invention. 本発明に係るモータ駆動装置の第1の実施の形態におけるPWM駆動の説明図Explanatory drawing of the PWM drive in 1st Embodiment of the motor drive device which concerns on this invention 本発明に係るモータ駆動装置の第1の実施の形態において、非直線変換部の入出力の関係の一例を示す図The figure which shows an example of the input / output relationship of a non-linear conversion part in 1st Embodiment of the motor drive device which concerns on this invention. 本発明に係るモータ駆動装置の第1の実施の形態において、電圧指令信号Vcmd、PWM指令信号PWMin、コイル電流Currentの波形例を示す図The figure which shows the waveform example of voltage command signal Vcmd, PWM command signal PWMin, and coil current Current in 1st Embodiment of the motor drive device which concerns on this invention. 本発明に係るモータ駆動装置の第1の実施の形態において、図4の横軸「80」から「120」までの部分を拡大した図FIG. 4 is an enlarged view of the portion from the horizontal axis “80” to “120” in FIG. 4 in the first embodiment of the motor drive device according to the present invention. 本発明に係るモータ駆動装置の第1の実施の形態において、図5の実データを示す図FIG. 5 is a diagram showing actual data of FIG. 5 in the first embodiment of the motor drive device according to the present invention. 本発明に係るモータ駆動装置の第1の実施の形態において、非直線変換部の量子化レベルを1つにした例を示す図The figure which shows the example which made the quantization level of the non-linear transformation part one in 1st Embodiment of the motor drive device which concerns on this invention. 本発明に係るモータ駆動装置の第1の実施の形態において、非直線変換部の量子化レベルを1つにした場合の、電圧指令信号Vcmd、PWM指令信号PWMin、コイル電流Currentの波形例を示す図In the first embodiment of the motor driving device according to the present invention, waveform examples of the voltage command signal Vcmd, the PWM command signal PWMin, and the coil current Current when the quantization level of the non-linear conversion unit is one are shown. Figure 本発明に係るモータ駆動装置の第1の実施の形態の動作を示すフローチャートThe flowchart which shows operation | movement of 1st Embodiment of the motor drive device which concerns on this invention. 本発明に係るモータ駆動装置の第2の実施の形態において、非直線変換部がオフセットを切り替える場合の入出力特性例を示す図The figure which shows the input-output characteristic example in case the nonlinear conversion part switches offset in 2nd Embodiment of the motor drive device which concerns on this invention. 本発明に係るモータ駆動装置の第2の実施の形態において、電圧指令信号Vcmd、PWM指令信号PWMin、コイル電流Currentの波形例を示す図The figure which shows the waveform example of voltage command signal Vcmd, PWM command signal PWMin, and coil current Current in 2nd Embodiment of the motor drive device which concerns on this invention. 本発明に係るモータ駆動装置の第2の実施の形態の他の態様における非直線変換部の入出力特性例を示す図The figure which shows the input-output characteristic example of the non-linear transformation part in the other aspect of 2nd Embodiment of the motor drive device which concerns on this invention. 本発明に係るモータ駆動装置の第2の実施の形態の他の態様において、電圧指令信号Vcmd、PWM指令信号PWMin、コイル電流Currentの波形例を示す図The figure which shows the waveform example of voltage command signal Vcmd, PWM command signal PWMin, and coil current Current in the other aspect of 2nd Embodiment of the motor drive device which concerns on this invention.

符号の説明Explanation of symbols

10 モータ駆動装置
11 比較器(電流制御手段)
12 誤差増幅器(電流制御手段)
13 PWM駆動部(駆動パルス出力手段、電流検出手段)
14 スイッチング素子部
14a〜14d スイッチング素子
15 抵抗素子(電流検出手段)
16 ADC(電流検出手段)
17 極性切替部(電流検出手段)
20 PWM変換手段(信号変換手段)
21 積算部
21a 減算器
21b メモリ
21c 加算器
21d メモリ
22 非直線変換部(出力除外部)
100 モータコイル
10 motor drive device 11 comparator (current control means)
12 Error amplifier (current control means)
13 PWM drive section (drive pulse output means, current detection means)
14 switching element part 14a-14d switching element 15 resistance element (current detection means)
16 ADC (current detection means)
17 Polarity switching part (current detection means)
20 PWM conversion means (signal conversion means)
21 accumulator 21a subtractor 21b memory 21c adder 21d memory 22 non-linear converter (output exclusion unit)
100 motor coil

Claims (5)

モータコイルに駆動パルスを与えて電圧を印加するモータ駆動装置であって、
電圧指令信号をパルス幅指令信号に変換する信号変換手段と、前記パルス幅指令信号に応じた駆動パルスを前記モータコイルに出力する駆動パルス出力手段とを備え、
前記信号変換手段は、前記電圧指令信号と前記パルス幅指令信号との差を積算して誤差積算値を出力する積算部と、前記誤差積算値から予め定められた範囲の出力を除外して出力する出力除外部とを備え、前記出力除外部の出力に応じたパルス幅指令信号を出力するものであることを特徴とするモータ駆動装置。
A motor driving device for applying a voltage by applying a driving pulse to a motor coil,
A signal conversion means for converting a voltage command signal into a pulse width command signal, and a drive pulse output means for outputting a drive pulse corresponding to the pulse width command signal to the motor coil,
The signal conversion means integrates a difference between the voltage command signal and the pulse width command signal and outputs an error integrated value, and outputs the error integrated value by excluding an output in a predetermined range. And a motor drive device that outputs a pulse width command signal corresponding to the output of the output exclusion unit.
前記出力除外部は、予め定められた範囲の入力値に対して一定の出力値に変換するための量子化を行うものであることを特徴とする請求項1に記載のモータ駆動装置。 The motor drive apparatus according to claim 1, wherein the output excluding unit performs quantization for converting an input value in a predetermined range into a constant output value. 前記出力除外部は、予め定められた基準入力値及び基準出力値に基づき、前記出力除外部の入力値と出力値との関係を示す入出力特性に対し、前記基準入力値を境に前記入出力特性を予め定められたオフセット量だけ前記基準出力値の正負方向にオフセットさせるものであることを特徴とする請求項1又は2に記載のモータ駆動装置。 The output excluding unit is configured to input / output characteristics indicating a relationship between the input value and the output value of the output excluding unit based on a predetermined reference input value and a reference output value. 3. The motor driving apparatus according to claim 1, wherein the output characteristic is offset in a positive / negative direction of the reference output value by a predetermined offset amount. 前記出力除外部は、前記入力値と前記基準入力値との差が大きくなるに従って前記オフセット量を小さくするものであることを特徴とする請求項3に記載のモータ駆動装置。 The motor drive device according to claim 3, wherein the output exclusion unit is configured to reduce the offset amount as a difference between the input value and the reference input value increases. 前記駆動パルスがオン状態のときに前記モータコイルに流れる電流を検出する電流検出手段と、前記電流検出手段が検出した検出電流値と予め定められた電流指令信号値との差に応じて前記電圧指令信号を出力し、前記モータコイルに流れる電流を前記電流指令信号に応じた値に制御する電流制御手段とを備えたことを特徴とする請求項1から4までのいずれか1項に記載のモータ駆動装置。 Current detection means for detecting a current flowing through the motor coil when the drive pulse is on, and the voltage according to a difference between a detected current value detected by the current detection means and a predetermined current command signal value 5. The apparatus according to claim 1, further comprising a current control unit that outputs a command signal and controls a current flowing through the motor coil to a value corresponding to the current command signal. 6. Motor drive device.
JP2008061772A 2008-03-11 2008-03-11 Motor drive device Expired - Fee Related JP5277671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061772A JP5277671B2 (en) 2008-03-11 2008-03-11 Motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061772A JP5277671B2 (en) 2008-03-11 2008-03-11 Motor drive device

Publications (2)

Publication Number Publication Date
JP2009219288A true JP2009219288A (en) 2009-09-24
JP5277671B2 JP5277671B2 (en) 2013-08-28

Family

ID=41190601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061772A Expired - Fee Related JP5277671B2 (en) 2008-03-11 2008-03-11 Motor drive device

Country Status (1)

Country Link
JP (1) JP5277671B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427089B2 (en) 2010-09-16 2013-04-23 Ricoh Company, Ltd. Motor driving device
US10873283B2 (en) 2019-01-23 2020-12-22 Panasonic Intellectual Property Management Co., Ltd. Actuator driving device
CN112492892A (en) * 2019-06-20 2021-03-12 东芝三菱电机产业系统株式会社 Power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515165A (en) * 1991-06-28 1993-01-22 Toshiba Corp Control method for three-phase three-wire neutral clamping inverter
JPH0691570A (en) * 1990-11-15 1994-04-05 Samsung Electronics Co Ltd Device and method for controlling robot position
JP2007097394A (en) * 2006-11-13 2007-04-12 Hitachi Ltd Electric power transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691570A (en) * 1990-11-15 1994-04-05 Samsung Electronics Co Ltd Device and method for controlling robot position
JPH0515165A (en) * 1991-06-28 1993-01-22 Toshiba Corp Control method for three-phase three-wire neutral clamping inverter
JP2007097394A (en) * 2006-11-13 2007-04-12 Hitachi Ltd Electric power transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427089B2 (en) 2010-09-16 2013-04-23 Ricoh Company, Ltd. Motor driving device
US10873283B2 (en) 2019-01-23 2020-12-22 Panasonic Intellectual Property Management Co., Ltd. Actuator driving device
CN112492892A (en) * 2019-06-20 2021-03-12 东芝三菱电机产业系统株式会社 Power conversion device
CN112492892B (en) * 2019-06-20 2023-08-04 东芝三菱电机产业系统株式会社 Power conversion device

Also Published As

Publication number Publication date
JP5277671B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5093037B2 (en) Load drive circuit
US9294057B2 (en) Efficient low noise high speed amplifier
US7817399B2 (en) PWM drive apparatus and method for correcting output offset thereof
JP5791582B2 (en) Switching power supply device and power supply system using the same
KR101232528B1 (en) Motor drive apparatus
JP2008141376A5 (en)
JP2012143070A (en) Actuator drive device
JP2010193703A (en) Motor drive circuit and motor driving method
JP5277671B2 (en) Motor drive device
CN103026618A (en) Amplifier
TWI425350B (en) Method for powering a graphics porcessing unit with a power supply subsystem
US7777562B2 (en) Distortion suppression circuit for digital class-D audio amplifier
CN101636912A (en) Be used for signal is carried out low distortion conversion, the especially device of amplification
JP5247369B2 (en) Analog output device
US7923979B2 (en) Control system for dynamically adjusting output voltage of voltage converter
KR20160015075A (en) Multi output power supplying apparatus, and output circuit thereof
JP5548383B2 (en) Converter control device
KR20160086666A (en) Analog-to-digital converter, apparatus and method for motor drive control using the same
JP4652757B2 (en) Load drive circuit and motor drive circuit
JP5055932B2 (en) Synchronous motor controller
JP5523821B2 (en) Motor drive circuit
JP2019133537A (en) Actuator controller and actuator control method
JP2001352764A (en) Inverter controller
JP2006082579A (en) Power steering controlling device, and method
JP6471649B2 (en) Electronic control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R151 Written notification of patent or utility model registration

Ref document number: 5277671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees