JP4493075B2 - 内燃機関のガス濃度検出装置 - Google Patents

内燃機関のガス濃度検出装置 Download PDF

Info

Publication number
JP4493075B2
JP4493075B2 JP2004040564A JP2004040564A JP4493075B2 JP 4493075 B2 JP4493075 B2 JP 4493075B2 JP 2004040564 A JP2004040564 A JP 2004040564A JP 2004040564 A JP2004040564 A JP 2004040564A JP 4493075 B2 JP4493075 B2 JP 4493075B2
Authority
JP
Japan
Prior art keywords
light
gas concentration
holder
internal combustion
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004040564A
Other languages
English (en)
Other versions
JP2005233694A (ja
Inventor
慶一 長島
直宏 石川
一浩 亀井
徳明 藤井
栄二 冨田
伸幸 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004040564A priority Critical patent/JP4493075B2/ja
Publication of JP2005233694A publication Critical patent/JP2005233694A/ja
Application granted granted Critical
Publication of JP4493075B2 publication Critical patent/JP4493075B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、内燃機関の燃焼室の点火プラグ付近における燃料ガス中の所定成分の濃度を検出する内燃機関のガス濃度検出装置に関する。
従来、内燃機関の燃焼室の点火プラグ付近における混合気中のガソリン濃度を検出する内燃機関のガス濃度検出装置として、例えば特許文献1に記載されたものが知られている。このガス濃度検出装置は、レーザ発光器、発光側および受光側の一対の光学素子、レーザ受光器およびコントローラなどを備えている。発光側および受光側の光学素子はいずれも、サファイアで構成され、点火プラグに一体に設けられている。また、これらの発光側および受光側の光学素子は、互いに対向しかつ間隔を存する状態で、点火プラグの下端面から外方に突出しているとともに、斜めにかつ面対称に配置された反射面をそれぞれ有している。
このガス濃度検出装置では、以下のように、点火プラグ付近の混合気中のガソリン濃度が検出される。すなわち、コントローラからの駆動信号によりレーザ発光器が駆動されると、レーザ発光器より、所定波長の赤外線レーザビームが放射される。この赤外線レーザビームは、点火プラグ内の光路を下向きに透過し、発光側の光学素子に入射した後、発光側の光学素子の反射面により、光路が受光側の光学素子に向かって直角に変更される。そして、赤外線レーザビームは、発光側の光学素子から燃焼室内に放射され、燃焼室内の混合気を透過した後、受光側の光学素子に入射する。その後、赤外線レーザビームは、発光側の光学素子の反射面により、光路が上向きに直角に変更され、点火プラグ内の光路を上向きに透過した後、レーザ受光器に入射し、これにより電気信号に変換され、コントローラに入力される。
その後、コントローラにより、レーザ発光器から放射された赤外線レーザビームの強度と、レーザ受光器に入射した赤外線レーザビームの強度との関係に基づいて、混合気ガス中のガソリン濃度が演算される。すなわち、ガソリン濃度は、ガソリンによる赤外線レーザビームの吸収度合い(透過率)に基づいて演算される。これは、ガソリンによる赤外線レーザビームの吸収度合いは、混合気中のガソリン濃度の高さにほぼ比例することに起因する。
特許第2921325号公報(1〜2頁、図2,3)
上記従来のガス濃度検出装置のような検出手法では、混合気中のガソリン濃度が、ガソリンによる赤外線レーザビームの吸収度合いに基づいて演算されるので、混合気中のガソリン濃度を検出するのに最適な、発光側および受光側の光学素子間の距離、すなわち赤外線レーザビームの透過距離の最適値は、燃焼室内のガソリン濃度によって異なる値を示す。例えば、リーンバーン運転される内燃機関と、理論空燃比に近い空燃比で運転される内燃機関では、赤外線レーザビームの透過距離の最適値は、互いに異なる値を示す。しかしながら、上記従来のガス濃度検出装置によれば、発光側および受光側の光学素子がいずれも、点火プラグの下面から突出するように、これに一体に設けられているため、2つの光学素子間の距離は、点火プラグの径方向のサイズにより制限されてしまう。その結果、赤外線レーザビームの透過距離の最適値を確保できないことで、検出精度の低下を招くおそれがある。同じ理由により、2つの光学素子間の距離を変更する場合、点火プラグ自体を設計変更する必要があるため、製造コストの上昇を招いてしまう。
本発明は、上記課題を解決するためになされたもので、検出精度を向上させることができ、製造コストを削減することができる内燃機関のガス濃度検出装置を提供することを目的とする。
上記目的を達成するために、請求項1に係る発明は、内燃機関3の燃焼室3dの点火プラグ10付近における燃料ガス中の所定成分(例えば実施形態におけるガソリン)の濃度を検出する内燃機関3のガス濃度検出装置1,1Aであって、所定の波長(3.39μm)の光(赤外線レーザビーム)を発光する光源(発光器31)と、光源からの光を燃焼室3d内に向かって所定の向きに放射する放射部(発光側の光ファイバ24の発光端部24a)と、放射部と所定間隔を存して燃焼室3d内の点火プラグ10付近に配置され、放射部から放射された光を所定の角度で反射する反射部(反射鏡28)と、放射部と互いに隣接するように配置され、反射部により反射された光を受光する受光部(受光側の光ファイバ25の受光端部25a)と、点火プラグ10に着脱自在に取り付けられたホルダ26と、放射部および受光部と反射部との間に位置するように、ホルダ26に保持されたサファイア材(サファイア27)と、光源が発光した光の強度(発光器が発光した赤外線レーザビームの強度I0)と、受光部により受光された光の強度(受光器により受光された赤外線レーザビームの強度I)とに基づき、所定成分の濃度(ガソリン濃度C)を演算するガス濃度演算手段(ECU2)と、を備え、放射部および受光部は、ホルダおよびサファイア材によって画成された気密状態の空間内に臨むように配置されていることを特徴とする。
この内燃機関のガス濃度検出装置によれば、光源が発光した所定の波長の光は、放射部により内燃機関の燃焼室に向かって所定の向きに放射され、反射部により所定角度で反射された後、受光部に受光される。この反射部は、放射部と所定間隔を存して燃焼室内の点火プラグ付近に配置されているので、放射部から放射された光は、放射部から反射部までの間、および反射部から受光部までの間にわたって、燃焼室内の点火プラグ付近の燃料ガス中を透過する。したがって、例えば、この光の所定の波長を、燃料ガス中の所定成分により吸収されるような適切な値に予め設定することによって、光源が発光した光の強度と、受光部により受光された光の強度とに基づき、燃焼室内の燃料ガス中の所定成分の濃度を適切に演算することができる。また、光が燃焼室内の燃料ガス内を透過する透過距離は、放射部と反射部との間の距離、および反射部と受光部との間の距離の和になるので、従来の2つの光学素子間のみの場合と比べて、光の透過距離をより長く確保することができる。それにより、燃料ガス中の所定成分の濃度を検出するのに最適な光の透過距離が比較的、長い場合でも、それを適切に確保することができ、ガス濃度の検出精度を向上させることができる。また、放射部および受光部が、互いに隣接するように配置されているので、ガス濃度検出装置を小型化できる。さらに、反射部および受光部が、ホルダおよびサファイア材によって画成された気密状態の空間内に臨むように配置されているので、反射部および受光部が燃焼室内の燃料ガスに直接さらされることがない。
請求項2に係る発明は、請求項1に記載の内燃機関3のガス濃度検出装置1,1Aにおいて、放射部(発光側の光ファイバ24の発光端部24a)よび受光部(受光側の光ファイバ25の受光端部25a)は、点火プラグ10に設けられており、反射部(反射鏡28)は、ホルダ26に保持されていることを特徴とする。
この内燃機関のガス濃度検出装置によれば、放射部よび受光部が、点火プラグに設けられており、反射部は、点火プラグに着脱自在に取り付けられたホルダに保持されているので、点火プラグを内燃機関に取り付けることによって、ガス濃度検出装置を内燃機関に容易に取り付けることができ、それにより、メンテナンス性を向上させることができる。また、反射部を保持するホルダが点火プラグに着脱自在に取り付けられているので、このホルダのサイズを変更し、付け替えるだけで、燃料ガス中の所定成分の濃度を検出するのに最適な光の透過距離を、容易に確保することができる。これにより、点火プラグ自体を設計変更する従来の場合と比べて、製造コストを削減することができる。さらに、前述したように、放射部および受光部が、互いに隣接するように配置されているので、ガス濃度検出装置の燃焼室内に占める部分のサイズ、特に点火プラグの径方向におけるサイズを小さくすることができる。それにより、より小径の点火プラグにも適用可能になることで、商品性を向上させることができる。
請求項に係る発明は、請求項1または2に記載の内燃機関3のガス濃度検出装置1Aにおいて、反射部(反射鏡28)と放射部(発光側の光ファイバ24の発光端部24a)との間の所定間隔を変更する間隔変更機構(無頭ねじ41、ナット42、長孔51)をさらに備えることを特徴とする。
この内燃機関のガス濃度検出装置によれば、間隔変更機構により反射部と放射部との所定間隔を自在に変更することができるので、燃料ガス中の所定成分の濃度を検出するのに最適な光の透過距離を、容易に確保することができる。それにより、1種類のガス濃度検出装置を、運転中の混合気濃度が異なる様々なタイプの内燃機関に適用することができるので、点火プラグ自体を設計変更する従来の場合と比べて、製造コストを削減することができる。
以下、図面を参照しながら、本発明の第1実施形態に係る内燃機関のガス濃度検出装置について説明する。このガス濃度検出装置は、以下に述べるように、赤外線レーザビームを用いることにより、内燃機関の吸気行程における点火プラグ付近の混合気中のガソリン濃度(すなわち炭化水素の濃度、所定成分の濃度)を検出するものである。図1に示すように、ガス濃度検出装置1は、ECU2およびガス濃度センサ20(図2,3参照)を備えている。
このECU2(ガス濃度演算手段)は、I/Oインターフェース、CPU、RAMおよびROM(いずれも図示せず)などからなるマイクロコンピュータで構成されている。ECU2は、後述するように、ガス濃度センサ20における発光時および受光時の赤外線レーザビームの強度に基づき、内燃機関(以下「エンジン」という)3の燃焼室3d内の点火プラグ10付近における混合気中のガソリン濃度を演算するとともに、点火制御および燃料噴射制御などの各種の制御処理を実行する。
エンジン3は、直列多気筒タイプのガソリンエンジンであり、シリンダ3aおよびピストン3b(ともに1つのみ図示)を備えている。シリンダ3aのシリンダヘッド3c内には、燃焼室3dが形成されている。
また、シリンダヘッド3cには、吸気弁4および排気弁6が設けられている。この吸気弁4は、図示しないカムシャフトの回転に伴って吸気通路5の吸気ポートを開閉するものであり、この吸気弁4の開弁により、空気が吸気通路5を介して燃焼室3d内に吸入される。また、排気弁6は、図示しないカムシャフトの回転に伴って排気通路7の排気ポートを開閉するものであり、この排気弁6の開弁により、燃焼室3d内の燃焼ガスが排気通路7側に排出される。
さらに、シリンダヘッド3cには、燃焼室3dに臨むように燃料噴射弁8が取り付けられている。エンジン3の運転中、ECU2からの駆動信号が燃料噴射弁8に供給され、それにより、燃料(ガソリン)が燃料噴射弁8を介して燃焼室3d内に直接噴射されるとともに、燃料噴射弁8の燃料噴射量すなわち開弁時期が制御される。このように、エンジン3は、いわゆる直噴式エンジンとして構成されている。
また、シリンダヘッド3cには、点火プラグ10が着脱自在に取り付けられている。この点火プラグ10は、点火コイル9を介してECU2に接続されており、図2に示すように、その下端部に中心電極11および接地電極12を備えている。これらの中心電極11および接地電極12は、互いの間に所定の間隙を存する状態で設けられている。エンジン3の運転中、点火プラグ10の中心電極11は、ECU2により点火コイル9を介して高電圧が加えられることで放電し、接地電極12との間に火花を発生させ、それにより、燃焼室3d内の混合気を燃焼させる。
さらに、点火プラグ10には、前述したガス濃度センサ20が設けられている。図2および図3(a)(b)に示すように、ガス濃度センサ20は、中空の円筒状のケーブルケース21と、このケーブルケース21内に収容された光ファイバケーブル22と、ケーブルケース21の下端部に着脱自在に取り付けられたホルダ26などを備えている。なお、図2および図3(a)では、理解の容易化のために、断面部分のハッチングは適宜、省略されており、この点は、以下の説明で引用する図においても同様である。
ケーブルケース21は、耐熱性を有する金属(例えばステンレス)で構成され、点火プラグ10に気密状態で内蔵され、点火プラグ10内を上下方向に貫通して延びるとともに、その上下端が点火プラグ10の外方に臨んで開口している。ケーブルケース21は、一定径の主部21aと、その下端から下方に延びる取付部21bとを備えている。この取付部21bの内径および外径は、主部21aと比べて小径に形成されている。
光ファイバケーブル22は、ケーブルケース21の主部21aに気密状態で収容され、主部21aの全体にわたって延びているとともに、点火プラグ10より外方に延びる部分は、2本の光ファイバケーブル22a,22bに分岐している。これらの光ファイバケーブル22a,22bの先端部は、後述する発光器31および受光器32にそれぞれ接続されている。
また、光ファイバケーブル22は、保護層23と、その中心部に内蔵された発光側および受光側の光ファイバ24,25とを備えている。保護層23は、発光側および受光側の光ファイバ24,25を保護するためのものであり、耐熱性を有する材質(例えば、ステンレスまたはジルコニアセラミックスなど)で構成されている。また、発光側および受光側の光ファイバ24,25は、耐熱性を有する石英系ファイバで構成されている。
発光側の光ファイバ24は、光ファイバケーブル22,22a内を延びており、その燃焼室3d側の端部(以下「発光端部」という)24aが、ケーブルケース21の取付部21bの内孔に臨んでいるとともに、発光端部24aと反対側の端部が、発光器31に接続されている。また、受光側の光ファイバ25は、光ファイバケーブル22,22b内を延びているとともに、光ファイバケーブル22内では、発光側の光ファイバ24と隣接するように配置されている。さらに、受光側の光ファイバ25は、その燃焼室3d側の端部(以下「受光端部」という)25aが、発光側の光ファイバ24の発光端部24aと隣接する状態で、取付部21bの内孔に臨んでいるとともに、受光端部25aと反対側の端部が、受光器32に接続されている。
一方、ホルダ26は、中空の円筒状に形成された有底のものであり、その上半部は、サファイア27を内部に保持するサファイアホルダ26aになっているとともに、その下半部は、サファイアホルダ26aと一体の、反射鏡28(反射部)を内部に保持する反射鏡ホルダ26bになっている。
このサファイアホルダ26aの内孔には、ケーブルケース21の取付部21bが嵌合しており、この取付部21bの嵌合部分には、2つの雌ねじ穴が形成されている。これらの雌ねじ穴には、ねじ29,29がサファイアホルダ26aを貫通した状態でねじ込まれ、締め付けられている。これにより、サファイアホルダ26aは、ねじ29,29を介して取付部21bに着脱自在に取り付けられており、メンテナンス時などには、ねじ29,29を外すことにより、ホルダ26がケーブルケース21から取り外される。また、サファイアホルダ26aの内壁の下端部には、内側に突出するように、円環状の段部26cが形成されている。
また、サファイア27は、2本の光ファイバ24,25の発光端部24a(放射部)および受光端部25a(受光部)を保護するためのものであり、円柱状に形成されている。このサファイア27の上端面と取付部21bの下端面との間、およびサファイア27の下端面と段部26cの上面との間には、ワッシャ30,30が上下方向に圧縮された状態でそれぞれ収容されている。これらのワッシャ30,30は、耐熱性を有する材質(例えば銅)で構成されており、これらのワッシャ30,30のシール性により、光ファイバケーブル22、サファイア27およびサファイアホルダ26aにより形成される内部空間は、燃焼室3dに対して気密な状態に保持されている。すなわち、2本の光ファイバ24,25の発光端部24aおよび受光端部25aは、燃焼室3d内の混合気に直接さらされないように構成されている。
一方、反射鏡ホルダ26bは、電極11,12側に向かって開口する検出穴26dを有している。この検出穴26dは、ほぼ半円筒形に形成されており、燃焼室3d内の電極11,12付近の混合気は、この検出穴26dを介して反射鏡ホルダ26b内に導入される。また、反射鏡28は、円盤状で、反射鏡ホルダ26bの下半部に収容されており、光ファイバ24,25の発光端部24aおよび受光端部25aに対向する位置に、これらとの間に所定間隔を存して配置されている。反射鏡28は、その上面が下方に向かって凹のほぼ球面状の反射面28aになっており、この反射面28aにより、発光端部24aから放射された赤外線レーザビームは、受光端部25aに向かって、極めて小さい所定の反射角(≒0゜)で反射される。
また、前述した発光器31(光源)は、He−Neレーザで構成され、ECU2に電気的に接続されており、ECU2からの駆動信号で駆動されることにより、波長3.39μmの赤外線レーザビームを所定強度I0で発光側の光ファイバ24に放射する。
さらに、受光器32は、光電変換回路およびバンドパスフィルタ(いずれも図示せず)などで構成され、ECU2に電気的に接続されているとともに、受光側の光ファイバ25からの赤外線レーザビームを受光し、受光した赤外線レーザビームの強度Iを表す検出信号をECU2に出力する。
次に、以上のようなガス濃度検出装置1の検出動作およびその検出原理について、説明する。エンジン3の運転中、吸気行程で、吸気弁4および燃料噴射弁8の開弁により、混合気が燃焼室3d内に生成されると、ECU2により発光器31が駆動され、波長3.39μmで所定強度I0の赤外線レーザビームが、発光器31から発光側の光ファイバ24側に放射される。
この赤外線レーザビームは、発光側の光ファイバ24を透過し、その発光端部24aから燃焼室3d内の反射鏡28に向かって放射され、サファイア27を透過し、反射鏡28の反射面28aに到達する。その際、サファイア27と反射鏡28との間には、燃焼室3d内の混合気が検出穴26dから入り込んだ状態になっているので、赤外線レーザビームは混合気内を透過する。
次いで、赤外線レーザビームは、反射面28aにより受光側の光ファイバ25側に向かって反射され、混合気内を再度、透過する。さらに、赤外線レーザビームは、サファイア27を透過し、受光側の光ファイバ25の受光端部25aから光ファイバ25内に入射した後、これを介して受光器32に到達する。そして、受光器32は、受光した赤外線レーザビームの強度Iを表す検出信号を、ECU2に出力する。
ECU2は、発光器31が発光したときの赤外線レーザビームの所定強度I0に対する、受光した赤外線レーザビームの強度Iの比(すなわち透過率)I/I0に基づき、下式により、点火プラグ10付近の混合気中のガソリン濃度を演算する。
log(I/I0)=−ε・L・C
ここで、εはモル吸光係数を、Lは赤外線レーザビームの混合気の透過距離を、Cは混合気中のガソリン濃度をそれぞれ表している。なお、本実施形態のガス濃度検出装置1の場合、透過距離Lは、図3(a)に示す、サファイア27の下端面と反射面28aの中心部との間の距離Lcのほぼ2倍の値(2・Lc≒L)に相当する。
図4は、エンジン3が所定の運転状態(回転数が1500rpm、吸気管内圧が−400hPa)にある場合において、以上のようなガス濃度検出装置1により、点火プラグ10付近の混合気中のガソリン濃度を検出するとともに、その検出結果に基づいて演算された混合気の空燃比(図4では「混合気A/F」と表記)と、排気ガス分析計により検出された排気ガスの空燃比(図4では「排気ガスA/F」と表記)との関係を表したものである。同図を参照すると明らかなように、混合気の空燃比は、排気ガスの空燃比とほぼ同じ値を示しており、本実施形態のガス濃度検出装置1により、燃焼室3d内の実際の混合気中のガソリン濃度が精度よく検出されていることが判る。すなわち、ガス濃度検出装置1が高い検出精度を備えていることが実証された。
以上のように、本実施形態のガス濃度検出装置1によれば、赤外線レーザビームが燃焼室3d内の混合気を透過する透過距離Lは、サファイア27と反射鏡28との間の距離のほぼ2倍の値(2・Lc≒L)になるので、従来の2つの光学素子間のみの場合と比べて、透過距離Lをより長く確保することができる。それにより、混合気中のガソリン濃度を検出するのに最適な赤外線レーザビームの透過距離が比較的、長い場合でも、それを適切に確保することができ、検出精度を向上させることができる。
また、発光側の光ファイバ24、受光側の光ファイバ25および反射鏡28がいずれも、点火プラグ10に取り付けられているので、点火プラグ10をエンジン3に取り付けるだけで、ガス濃度検出装置1をエンジン3に容易に取り付けることができ、それにより、メンテナンス性を向上させることができる。
さらに、発光側の光ファイバ24および受光側の光ファイバ25が、互いに隣接するように点火プラグ10内に配置されているとともに、これらに対向する位置に反射鏡28が配置されているので、ガス濃度検出装置1の燃焼室3d内に占める部分のサイズ、特に点火プラグ10の径方向におけるサイズを小さくすることができる。それにより、より小径の点火プラグ10にも適用可能になることで、商品性を向上させることができる。
また、ねじ29,29の取り外し・取り付けにより、ホルダ26を点火プラグ10から着脱できるので、検出すべきエンジン3の混合気中のガソリン濃度に応じて、ホルダ26を適切な長さのものに付け替えるだけで、反射鏡28とサファイア27との間の距離、すなわち透過距離Lを、ガソリン濃度の検出に最適な値に容易に変更することができる。これにより、点火プラグ自体を設計変更する従来の場合と比べて、製造コストを削減することができる。
次に、本願発明の第2実施形態に係るガス濃度検出装置について説明する。図5および図6に示すように、本実施形態のガス濃度検出装置1Aは、第1実施形態のガス濃度検出装置1と比べて、ガス濃度センサ20の一部が若干、異なっており、それ以外は、第1実施形態のガス濃度検出装置1と同様に構成されているので、以下、ガス濃度センサ20の異なる部分を中心に説明する。なお、第1実施形態のガス濃度検出装置1と同様の構成については、同じ符号を付すとともに、その説明は省略する。
このガス濃度センサ20は、サファイアホルダ40と、これと別体の反射鏡ホルダ50とを備えている。サファイアホルダ40は、前述したサファイアホルダ26aと同様に、中空の円筒状に形成され、その内部にサファイア27を保持している。このサファイアホルダ40の下端部には、無頭ねじ41が一体に設けられており、この無頭ねじ41は、サファイアホルダ40の外周面から所定長さ分、横方向に突出している。
また、反射鏡ホルダ50は、中空の円筒状に形成された有底のものであり、前述した反射鏡ホルダ26bと同様に、その下半部の内部に反射鏡28を保持している。この反射鏡ホルダ50は、上下方向に延びる長孔51と、混合気を反射鏡28側に導入するための検出穴52とを備えている。
反射鏡ホルダ50の内孔には、サファイアホルダ40が嵌合している。さらに、反射鏡ホルダ50の長孔51には、サファイアホルダ40の無頭ねじ41が係合しており、この無頭ねじ41は、反射鏡ホルダ50の長孔51から外方に突出しているとともに、その突出部分に、ナット42が締め付け状態で取り付けられている。これにより、反射鏡ホルダ50は、サファイアホルダ40に固定されている。なお、本実施形態では、無頭ねじ41、ナット42および長孔51により、間隔変更機構が構成されている。
以上の構成により、本実施形態のガス濃度検出装置1Aによれば、ナット42の締め付けを緩めることによって、反射鏡ホルダ50を、サファイアホルダ40に対して、無頭ねじ41が長孔51の上縁部に当接する最下位置(図6(a)に示す位置)と、長孔51の下縁部に当接する最上位置(図6(b)に示す位置)との間で、上下方向にスライドさせることができる。また、これらの最下位置と最上位置との間の任意の位置で、ナット42を再度、締め付けることによって、反射鏡ホルダ50をサファイアホルダ40に位置決めし、固定することができる。その結果、赤外線レーザビームの透過距離Lを、図6(a)に示す、サファイア27と反射鏡28との間の距離Lmaxのほぼ2倍の値(2・Lmax)と、図6(b)に示す距離Lminのほぼ2倍の値(2・Lmin)との間で、無段階に自在に変更することができる。これにより、混合気中のガソリン濃度を検出するのに最適な透過距離Lを容易に確保できるとともに、1種類のガス濃度検出装置1Aを、混合気中のガソリン濃度が異なる様々なタイプの内燃機関3に適用することができる。その結果、第1実施形態のガス濃度検出装置1よりも、製造コストを削減することができる。
なお、第2実施形態は、間隔変更機構を、無頭ねじ41、ナット42および長孔51により構成した例であるが、間隔変更機構はこれに限らず、反射鏡28とサファイア27との間の間隔、すなわち透過距離を変更可能なものであればよい。例えば、間隔変更機構として、ECU2により制御されるアクチュエータ(油圧式または電気式のもの)を備え、このアクチュエータにより、サファイアホルダ40に対する、反射鏡ホルダ50の上下方向の位置関係を変更するタイプのものを用いてもよい。このようにすれば、エンジン運転中、燃焼室3d内の混合気中のガソリン濃度が変化した場合でも、その変化したガソリン濃度を検出するのに最適な赤外線レーザビームの透過距離を適切に確保することができる。
また、以上の各実施形態は、発光器31としてHe−Neレーザを用いた例であるが、発光器31はこれに限らず、赤外線レーザビームを放射するものであればよい。例えば、発光器31として、He−Neレーザ以外の気体レーザ(例えばCO2レーザ)、半導体レーザ(例えばPbSnTe)およびYAGレーザなどを用いてもよい。
さらに、発光器31から放射される赤外線レーザビームの波長は、実施形態の3.39μmに限らず、赤外線レーザビームが燃焼室3d内を透過する際、ガソリンにより吸収されるような波長域のものであればよい。例えば、赤外線レーザビームとして、1.6μm付近、2.3μm付近および7.6μm付近の波長のものを用いてもよい。さらに、燃焼室3d内の混合気中のガソリン濃度の検出に用いる光は、赤外線レーザビームに限らず、燃焼室3d内の混合気中のガソリン濃度を検出できるものであればよい。例えば、260nm付近の波長の紫外線を用いてもよい。
また、各実施形態は、ガス濃度検出装置1をガソリンエンジンにおける混合気中のガソリン濃度の検出に適用した例であるが、本発明のガス濃度検出装置1はこれに限らず、点火プラグにより燃料ガスを燃焼させる内燃機関における、燃料ガス内の所定成分の検出に適用可能である。例えば、LPGおよびアルコール系燃料を燃料とする内燃機関における、燃料ガス内の炭化水素の濃度の検出に用いてもよい。
さらに、発光側の光ファイバ24の発光端部24a、受光側の光ファイバ25の受光端部25aおよび反射鏡28の配置は、実施形態の例に限らないことは言うまでもない。例えば、図7に示すように、発光側の光ファイバ24の発光端部24aおよび受光側の光ファイバ25の受光端部25aを、点火プラグ10の下端部の左右両端部に配置するとともに、反射鏡28を、発光側の光ファイバ24の発光端部24aからの赤外線レーザビームが受光側の光ファイバ25の受光端部25a側に反射されるように配置してもよい。また、図8に示すように、発光側の光ファイバ24の発光端部24a、受光側の光ファイバ25の受光端部25aおよび反射鏡28を、平面的に見て三角形を描くように配置してもよい。この場合には、発光側の光ファイバ24の発光端部24aおよび受光側の光ファイバ25の受光端部25aに、光路を変更するための反射鏡を設ければよい。
また、実施形態は、ガス濃度センサ20を点火プラグ10に取り付けた例であるが、ガス濃度センサ20の取付位置はこれに限らず、点火プラグ10付近の混合気中のガソリン濃度を検出可能な位置であればよい。例えば、ガス濃度センサ20を、点火プラグ10と別体に構成し、シリンダヘッド3cに取り付けるようにしてもよい。
本発明の第1実施形態に係るガス濃度検出装置およびこれを適用した内燃機関の概略構成を示す図である。 ガス濃度センサおよび点火プラグの概略構成を示す断面図である。 ガス濃度センサの先端部付近の概略構成を示す(a)断面図と(b)正面図である。 ガス濃度検出装置の検出結果に基づいて算出された混合気の空燃比と、排気ガス分析計により検出された排気ガスの空燃比との関係の一例を示す図である。 第2実施形態に係るガス濃度検出装置におけるガス濃度センサの先端部付近の概略構成を示す(a)正面図と(b)側面図である。 (a)第2実施形態のガス濃度センサにおける赤外線レーザビームの透過距離を最大値に設定した状態を示す断面図と(b)透過距離を最小値に設定した状態を示す断面図である。 ガス濃度検出装置における、発光側の光ファイバの発光端部、受光側の光ファイバの受光端部および反射鏡の配置の変形例を示す図である。 ガス濃度検出装置における、発光側の光ファイバの発光端部、受光側の光ファイバの受光端部および反射鏡の配置の他の変形例を示す図である。
符号の説明
1 ガス濃度検出装置
1A ガス濃度検出装置
2 ECU(ガス濃度演算手段)
3 内燃機関
3d 燃焼室
10 点火プラグ
24a 発光側の光ファイバの発光端部(放射部)
25a 受光側の光ファイバの受光端部(受光部)
26 ホルダ
27 サファイア(サファイア材)
28 反射鏡(反射部)
31 発光器(光源)
41 無頭ねじ(間隔変更機構)
42 ナット(間隔変更機構)
51 長孔(間隔変更機構)
C ガソリン濃度(所定成分の濃度)
0 発光器が発光した赤外線レーザビームの強度(光源が発光した光の強度)
I 受光器により受光された赤外線レーザビームの強度(受光部により受光された 光の強度)

Claims (3)

  1. 内燃機関の燃焼室の点火プラグ付近における燃料ガス中の所定成分の濃度を検出する内燃機関のガス濃度検出装置であって、
    所定の波長の光を発光する光源と、
    前記光源からの光を前記燃焼室内に向かって所定の向きに放射する放射部と、
    前記放射部と所定間隔を存して前記燃焼室内の前記点火プラグ付近に配置され、前記放射部から放射された光を所定の角度で反射する反射部と、
    前記放射部と互いに隣接するように配置され、前記反射部により反射された光を受光する受光部と、
    前記点火プラグに着脱自在に取り付けられたホルダと、
    前記放射部および前記受光部と前記反射部との間に位置するように、前記ホルダに保持されたサファイア材と、
    前記光源が発光した光の強度と、前記受光部により受光された光の強度とに基づき、前記所定成分の濃度を演算するガス濃度演算手段と、
    を備え
    前記放射部および前記受光部は、前記ホルダおよび前記サファイア材によって画成された気密状態の空間内に臨むように配置されていることを特徴とする内燃機関のガス濃度検出装置。
  2. 前記放射部よび前記受光部は、前記点火プラグに設けられており、前記反射部は、前記ホルダに保持されていることを特徴とする請求項1に記載の内燃機関のガス濃度検出装置。
  3. 前記反射部と前記放射部との間の前記所定間隔を変更する間隔変更機構をさらに備えることを特徴とする請求項1または2に記載の内燃機関のガス濃度検出装置。
JP2004040564A 2004-02-17 2004-02-17 内燃機関のガス濃度検出装置 Expired - Fee Related JP4493075B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040564A JP4493075B2 (ja) 2004-02-17 2004-02-17 内燃機関のガス濃度検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040564A JP4493075B2 (ja) 2004-02-17 2004-02-17 内燃機関のガス濃度検出装置

Publications (2)

Publication Number Publication Date
JP2005233694A JP2005233694A (ja) 2005-09-02
JP4493075B2 true JP4493075B2 (ja) 2010-06-30

Family

ID=35016824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040564A Expired - Fee Related JP4493075B2 (ja) 2004-02-17 2004-02-17 内燃機関のガス濃度検出装置

Country Status (1)

Country Link
JP (1) JP4493075B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006029989A1 (de) * 2006-06-29 2008-01-03 Robert Bosch Gmbh Zündkerze für eine Brennkraftmaschine und Betriebsverfahren hierfür
DE102015205163B4 (de) * 2015-03-23 2017-04-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Optisches System für eine Laserbearbeitungsmaschine, mit einem optischen Element in einem Stecker eines Lichtleitkabels
JP2017083321A (ja) * 2015-10-29 2017-05-18 株式会社日本自動車部品総合研究所 ガス濃度計測装置
CN110159428B (zh) * 2019-06-05 2024-03-12 西华大学 发动机缸内积碳诊断装置及诊断方法

Also Published As

Publication number Publication date
JP2005233694A (ja) 2005-09-02

Similar Documents

Publication Publication Date Title
US8322320B2 (en) Laser ignition device for combustion engine
JP4797972B2 (ja) 燃料性状検出装置
JP4493075B2 (ja) 内燃機関のガス濃度検出装置
JP2009103630A (ja) 液膜厚さ計測装置及び内燃機関の制御装置
JP2009042192A (ja) ガス濃度検出装置
JP2006220091A (ja) レーザ着火式エンジン
FR2533316A1 (fr) Methode et dispositifs a reponse rapide permettant de deceler une mauvaise combustion
JP2008045496A (ja) 光センサ内蔵レーザ着火装置
CN110121637B (zh) 内燃机的发动机部件中的燃烧压力传感器及其组件
JP4294603B2 (ja) 内燃機関用レーザ点火装置
JP6216935B2 (ja) ボア変形量測定装置
JP2017133856A (ja) ガス濃度検出装置
JP3784768B2 (ja) ガス濃度センサ
JP3250491B2 (ja) 内燃機関の空燃比検出装置
JPH0874651A (ja) 内燃機関の筒内状態検出装置
JP4354301B2 (ja) 二種のターゲット部材を備えたレーザ着火式エンジン
JP4354302B2 (ja) 着火時期変更時のレーザ焦点調整装置を備えたレーザ着火式エンジン
JP2016080661A (ja) 燃焼室内のガス濃度検出装置
JP6317277B2 (ja) 内燃機関の燃料ガス濃度測定装置
JP2932887B2 (ja) 内燃機関の空燃比検出装置
JP4419788B2 (ja) 内燃機関のレーザ点火装置
JP2921325B2 (ja) 内燃機関の燃料噴射制御装置
JPH06288282A (ja) 直噴式火花点火機関
JP4274966B2 (ja) 内燃機関の制御装置
JP2005256764A (ja) 光スペクトラムアナライザ装置を備えた内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees