JP4492175B2 - ユニット式積層型圧電体素子及びこれを用いたインジェクタ - Google Patents

ユニット式積層型圧電体素子及びこれを用いたインジェクタ Download PDF

Info

Publication number
JP4492175B2
JP4492175B2 JP2004092290A JP2004092290A JP4492175B2 JP 4492175 B2 JP4492175 B2 JP 4492175B2 JP 2004092290 A JP2004092290 A JP 2004092290A JP 2004092290 A JP2004092290 A JP 2004092290A JP 4492175 B2 JP4492175 B2 JP 4492175B2
Authority
JP
Japan
Prior art keywords
piezoelectric
adhesive
unit
piezoelectric element
external electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004092290A
Other languages
English (en)
Other versions
JP2005039199A (ja
Inventor
一秀 佐藤
秀和 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004092290A priority Critical patent/JP4492175B2/ja
Priority to DE200410030868 priority patent/DE102004030868B4/de
Publication of JP2005039199A publication Critical patent/JP2005039199A/ja
Application granted granted Critical
Publication of JP4492175B2 publication Critical patent/JP4492175B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure with non-rectangular cross-section orthogonal to the stacking direction, e.g. polygonal, circular
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Connection electrodes of multilayer piezoelectric or electrostrictive devices, e.g. external electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Further insulation means against electrical, physical or chemical damage, e.g. protective coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators

Description

本発明は、内燃機関の燃料噴射用インジェクタの駆動源等として用いることができるユニット式積層型圧電体素子及びその製造方法に関する。
車両用エンジン等の燃料噴射用インジェクタの駆動源として、圧電層と内部電極層とを交互に積層した圧電ユニットを所望の個数で積層してなるユニット式の積層型圧電体素子を用いることがある。ユニット式の積層型圧電体素子は作動応力が低く、高い変位を得ることができるため、インジェクタの駆動源にふさわしい。
しかしながら、従来構成のユニット式積層型圧電体素子には大きな変位ロスが発生するという問題があった。
すなわち、ユニット式積層型圧電体素子において各圧電ユニットは接着剤を用いて積層接着するが、この接着剤が変位ロスの原因となる。
具体的に説明すると、圧電ユニットにおける積層方向の両端面はそれぞれ積層隣接する圧電ユニットと対面する。従って、圧電ユニットの積層方向の端面がそれぞれ接着面となって、他の圧電ユニットの接着面と対面する。
圧電ユニットの積層接着の際は、接着面の一方または双方に接着剤を塗布し、圧電ユニットを積層し、積層した圧電ユニットの積層方向の両端面からクランプ等を用いて荷重を加え、圧電ユニットを積層接着して一体化する。
クランプ等により積層方向からの荷重を受けることで接着剤は接着面の全面に広がっていく。仮に接着面の全面を接着剤で覆わずに圧電ユニットを積層したとしても、結果的に全面接着剤塗布とかわらない状態となることが多い。
ところで積層型圧電体素子には部分電極構成タイプと全面電極構成タイプとが知られている。いずれのタイプも接着面の中央付近は、内部電極層から圧電層に電圧を印加した際に圧電層が伸張する駆動部となる。そして上記接着剤が駆動部にかかる接着面に存在した場合、通電時に伸張しない接着剤が圧電層の伸張を吸収してしまい、変位ロスの原因となる。
なお、圧電層の形成材料、印加した電圧、圧電層の厚みと積層型圧電体素子を構成する圧電層の枚数等を考慮した結果から予測される変位量よりも実際の変位が小さい場合、両者の差を変位ロスという。
変位ロスを小さくするためには、圧電ユニット間に接着剤が存在しないことが望ましい。接着剤を使用しない圧電ユニットの積層方法としては、圧電ユニットを積み上げて、外部から固定する方法が知られている。
しかし、外部から固定する方法は圧電ユニットの位置ズレを防ぐことが非常に困難であり、圧電ユニットを速やかに積層接着する製造効率の観点からも接着剤で圧電ユニットを直接積層接着することが好ましい。
特開平05−218519号公報
本発明は、かかる従来の問題点に鑑みてなされたもので、接着剤にて圧電ユニットを積層接着すると共に変位ロスの小さいユニット式積層型圧電体素子及びその製造方法を提供しようとするものである。
第1の発明は、圧電層と内部電極層とを交互に積層してなる圧電ユニットを接着剤を用いて複数積層接着してなるユニット式積層型圧電体素子において、
上記圧電ユニット間を接着する接着剤は、上記圧電ユニットの接着面における外周領域に存在し、上記接着面の重心位置Gを含む内部領域には存在せず、
上記圧電ユニットを積層してなる積層体の側面には、上記内部電極層に電気的に接続される外部電極材が配設されていると共に、上記積層体の側面を覆うモールド材が配設されており、
上記接着剤は、上記外部電極材または/および上記モールド材よりなることを特徴とするユニット式積層型圧電体素子にある(請求項1)。
第1の発明にかかるユニット式積層型圧電体素子は、圧電ユニットを接着剤を用いて接着積層する際に、接着面の重心位置とその周囲を残して、外周領域にのみ接着剤を設けて接着した構成を有する。
ところで積層型圧電体素子には部分電極構成タイプと全面電極構成タイプとが知られている。いずれのタイプも接着面の中央付近は、内部電極層から圧電層に電圧を印加した際に圧電層が伸張する駆動部となる。そして上記接着剤が駆動部にかかる接着面に存在した場合、通電時に伸張しない接着剤が圧電層の伸張を吸収してしまい、変位ロスの原因となる。
第1の発明にかかる構成は、駆動部に存在する接着剤が従来より減っており、従って、ユニット式積層型圧電体素子の変位ロスを小さくすることができる。
また、外周領域のみとはいえ接着剤による積層接着を行っているため、圧電ユニットの位置ズレが生じ難くなる。
なお、この位置ズレは主として圧電ユニットを積層した方向と直交する方向に対して発生する。いわゆる積層ズレのような状態である。
また、第2の参考発明は、圧電層と内部電極層とを交互に積層してなる圧電ユニットを接着剤を用いて複数積層接着してなり、かつ上記圧電ユニット間を接着する接着剤は、上記圧電ユニットの接着面における外周領域に存在し、上記接着面の重心位置Gを含む内部領域には存在しないユニット式積層型圧電体素子を製造するに当たり、
上記圧電層と上記内部電極層とを交互に積層して圧電ユニットを作製し、
上記圧電ユニットを複数積層した積層体を作製し、
上記積層体の側面に露出する圧電ユニットの積層境界に対し接着剤を塗布することで、各圧電ユニットの接着面における外周領域に接着剤が存在するように上記接着剤を各圧電ユニット間に導入し、一体化することを特徴とするユニット式積層型圧電体素子の製造方法ある
第2の参考発明は、ユニット式積層型圧電体素子を製造する際、予め接着剤を接着面に塗布することなく圧電ユニットを積層して積層体を作製し、その後、該積層体の側面に露出する圧電ユニットの積層境界に対し接着剤を塗布する。そして、この接着剤を上記積層境界から圧電ユニット間に染みこませて導入し、接着面の外周領域に接着剤を塗布する方法である。
この方法によれば、接着剤を接着面の外周領域に容易に塗布することができる。
外周領域のみ接着剤を設けて圧電ユニットを接着することで、ユニット式積層型圧電体素子の変位ロスを小さくすることができる。また、外周領域のみとはいえ接着剤による積層接着を行うことで、圧電ユニットの位置ズレが生じ難くなり、また圧電ユニットの積層が容易となるため、製造効率も向上する。
なお、上記接着剤の塗布は、圧電ユニットの積層境界全周が好ましいが、全周ではなく一部分のみにすることも可能である。
以上、本発明によれば、接着剤にて圧電ユニットを積層接着すると共に変位ロスの小さいユニット式積層型圧電体素子及びその製造方法を提供することができる。
一般に積層型圧電体素子は、圧電層の断面形状と内部電極層の断面形状とが同程度に構成され、内部電極層が側面に露出した全面電極タイプと、圧電層の断面形状よりも内部電極層の断面形状が小さく、一部の内部電極層のみが側面に露出した部分電極タイプとがあるが、第1の発明、第2の参考発明はいずれのタイプに対しても適用することができる。なお、上記断面形状とは積層方向に略直交する方向で切断した際の断面形状である。
また、第1、第2の発明では、断面形状が、四角形、長方形、正方形、たる型、正方形や長方形等のコーナーを面取りしてなる形を有する圧電層を用いることができる。
内部電極層の形状も特に限定することなく、第1、第2の発明を適用することができる。
また、上記ユニット式積層型圧電体素子において、上記内部電極層から電圧を印加した際は駆動部において伸張し、
上記接着面における重心位置Gを通る直線をXとすると、該直線Xに沿った上記内部領域の長さをL、上記接着面における直線Xに沿った駆動部の長さをL0とすると、L0/4≦Lであることことが好ましい
また、直線Xに沿った上記内部領域の長さをL、上記接着面における直線Xに沿った駆動部の長さをL0とすると、L0/2≦Lであることがより好ましい
ここにおいて、接着面における重心位置Gを通る任意の直線Xを仮定する。この直線Xのいずれに対しても上記関係が成立することで、確実に本発明の効果を得て、変位ロスの小さいユニット式積層型圧電体素子を得ることができる。
仮にL0/4>Lである場合は、変位ロスが大きくなるおそれがある。
また、上記接着面において接着剤を設ける外周領域は、ユニット式積層型圧電体素子における駆動部とならない場所と一致することが好ましい。
これにより駆動部に接着剤がまったく存在しないようなユニット式積層型圧電体素子を得て、変位ロスを非常に小さくすることができる。
なお、ユニット式積層型圧電体素子が全面電極タイプである場合、駆動部の占める領域は接着面に等しくなる。
また、上記ユニット式積層型圧電体素子において、上記内部電極層から電圧を印加した際は駆動部において伸張し、
上記内部領域の面積をS、上記接着面における駆動部の面積をS0とすると、S0/16≦Sであることが好ましい
また、上記内部領域の面積をS、上記接着面における駆動部の面積をS0とすると、S0/4≦Sであることがより好ましい
これにより、確実に本発明の効果を得て、変位ロスの小さいユニット式積層型圧電体素子を得ることができる。
仮にS0/16>Sである場合は、変位ロスが大きくなるおそれがある。
また、上記L0やL、S0やSは、ユニット式積層型圧電体素子を積層方向と直交するよう切断して露出させた接着面を電子顕微鏡で観察したり、圧電ユニットを剥離して接着面を露出させ、そこを電子顕微鏡で観察する等して計測することができる。
また、上記接着剤としては、エポキシ系、ポリイミド系等を用いることもできるが、圧電素子の駆動による変位に対し、クラックが発生せずに変位に追従するために、特に低弾性率であるシリコーン系、ウレタン系の少なくとも1種からなる接着剤を用いることが好ましい(請求項4)。
更にシリコーン系の接着剤は耐熱性に優れているため、実施例1に示すような車両用エンジン(ディーゼル等)のインジェクタ用途に適したユニット式積層型圧電体素子を得ることができる。
また、第2の参考発明にかかるユニット式積層型圧電体素子の製造方法において、側面に露出する圧電ユニットの積層境界に対し接着剤を塗布して、上記積層境界から圧電ユニット間に接着剤をしみ込ませ、接着面の外周領域に接着剤を塗布するが、上記接着剤は自然にしみ込ませることができる。
すなわち、圧電ユニットの接着面は電子顕微鏡等で拡大観察すると、凹凸面となるのが一般的である(後述する図11参照)。
そのため、圧電ユニットの接着面が当接する積層境界は凹凸面がかみ合わさって形成された微少空間が存在する。従って、積層体の側面に塗布した接着剤は毛管現象を通じて自然に圧電ユニットの間にしみ込んでいく。
このしみ込みの状態は、接着剤の粘度を変更したり、圧電ユニットを積層した際に積層方向の両端面から適当な大きさの圧力を加えることで制御できるため、接着面の外周領域のみに接着剤が存在するように容易にユニット式積層型圧電体素子を製造することができる。
更に、圧電ユニットを積層し、接着剤を側面に塗布した後はこれを硬化して圧電ユニットの一体化を行うが、硬化時の加熱によって接着剤の粘度が低下することがある。この場合、硬化の最中にも圧電ユニット間に接着剤が入り込んでいく。
また、接着剤を積層体に塗布する際は、減圧環境で行うことが好ましい。
圧電ユニットの接着面が当接する積層境界には上述するように微少空間が存在するため、減圧環境で作業を行うことで、微少空間に含まれる空気が圧電ユニット外部に排出されやすくなり、接着剤の導入がスムーズに行われる。
また、上記圧電ユニットの接着面に面する角部を予め面取りしておくことで(図14参照)、積層境界に接着剤を導入しやすくすることができる。
また、上記圧電ユニットは、分極処理を施した後に積層して接着剤を積層境界に塗布することが好ましい(図12参照)。
分極処理を施すことで、駆動部が積層方向に伸張するため、圧電ユニットの断面形状が変形し、積層体における圧電ユニットの積層境界が開口する(図13参照)。従って積層境界に接着剤を導入しやすくすることができる。
また、積層体の積層境界に接着剤を塗布した後は、接着剤が圧電ユニットの間に導入されるまで待ってもいいし、導入が終わる前に加熱してもよい。加熱して接着剤が硬化するまでは接着剤も移動可能である。
また、上記第1の発明、第2の参考発明においては、上記接着剤として、圧電ユニット接着用専用の接着剤を用いることも勿論可能であるが、この接着剤として、外部電極材又はモールド材を適用することが好ましい。これによって製造工程を合理化することができる。
すなわち、上記第1の発明において、上記圧電ユニットを積層してなる積層体の側面には、上記内部電極層に電気的に接続される外部電極材が配設されていると共に、上記積層体の側面を覆うモールド材が配設されており、上記接着剤は、上記外部電極材または/および上記モールド材よりなる
なお、後述する実施例に示すように、各圧電ユニットの側面に予め焼付銀等からなる側面電極材を設けておき、その後、圧電ユニットを積層した後に、複数の側面電極材の上からこれらを繋ぐように上記外部電極材を塗布することができる。
そして、上記外部電極材は、導電材料と熱硬化性樹脂を含有する粘度0.1〜200Pa・Sの外部電極材を塗布した後に加熱硬化させて形成してあることが好ましい(請求項2)。
また、上記モールド材は、熱硬化性樹脂を含有する粘度0.1〜100Pa・Sのモールド材を塗布した後に加熱硬化させて形成してあることが好ましい(請求項3)。
また、第2の参考発明においても、上記接着剤として、上記内部電極層に電気的に接続される外部電極材または/および上記積層体の側面を覆うモールド材を用い、上記積層体を作製した後に、該積層体の側面に上記外部電極材および上記モールド材を塗布して、上記外部電極材または/および上記モールド材を各圧電ユニット間に染みこませ、その後、上記外部電極材および上記モールド材を加熱硬化させることが好ましい
そして、上記外部電極材は、導電材料と熱硬化性樹脂を含有する粘度0.1〜200Pa・Sの外部電極材を塗布した後に加熱硬化させることが好ましい
また、上記モールド材は、熱硬化性樹脂を含有する粘度0.1〜100Pa・Sのモールド材を塗布した後に加熱硬化させることが好ましい
ここで、上記外部電極材を接着剤として用いる場合には、塗布する状態での外部電極材の粘度が、上記のごとく、0.1〜200Pa・Sであることが好ましい。ここで、上記外部電極材の粘度が0.1Pa・S未満の場合には、粘度が低すぎて塗布時に液だれ等の不具合が生じ、製造作業性が低下するという問題がある。そのため、10Pa・S以上がより好ましい。一方、200Pa・Sを超える場合には、圧電ユニット間への染み込み程度が低くなるという問題がある。そのため、より好ましくは、100Pa・S以下がよい。
なお、塗布する上記外部電極材に含有させる上記導電材料としては、例えば銀フィラーを用いることができる。
また、上記外部電極材に含有させる上記熱硬化性樹脂としては、加熱して硬化による増粘の始まるまでの時間(ゲル化時間)が10秒〜20分である樹脂を用いることが好ましい。上記ゲル化時間が短すぎると圧電ユニット間への染み込みが充分に行われないという問題がある。そのため、より好ましくは20秒以上がよい。一方、20分を超えると硬化状態が安定しにくくなるという問題がある。
また、塗布する上記外部電極材には、低分子ポリマー又は溶剤を1〜10wt%の範囲で添加することが好ましい。
ここで、熱硬化性樹脂がエポキシの場合、上記低分子ポリマーとは、反応性希釈剤をいい、具体的には、例えば、n−ブチルグリシジルエーテル、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、エチレングリコールジグリシジルエーテル等がある。
熱硬化性樹脂がシリコーンの場合、上記低分子ポリマーとは、低分子シロキサンをいい、具体的には、例えば、ジオルガノシロキサンがある。また、上記溶剤とは、エチレングリコール、プロピレングリコール、ベンシルアルコール、ジエチレングリコール等のアルコール系、もしくはアニソール、メチルカルビトール、エチルカルビトール等のエーテル系、その他ブチルセロソルブ、ブチルカルビトールアセテート、ブチルカルビトール等がある。
これらは、いずれも極性が高いので、圧電ユニット間への染み込みを容易にすることができる。ここで、上記の添加量が1wt%未満の場合には、添加による硬化があまり発言されないという問題がある。一方、10wt%を超える場合には加熱時にボイド発生の原因となるおそれがあるという問題がある。
また、上記モールド材を接着剤として用いる場合には、塗布する状態でのモールド材の粘度が、0.1〜100Pa・Sであることが好ましい。ここで、上記モールド材の粘度が0.1Pa・S未満の場合には、粘度が低すぎて塗布時に液だれ等の不具合が生じ、製造作業性が低下するという問題がある。そのため、5Pa・S以上がより好ましい。一方、100Pa・Sを超える場合には、圧電ユニット間への染み込み程度が低くなるという問題がある。そのため、より好ましくは、30Pa・S以下がよい。
また、上記モールド材に含有させる上記熱硬化性樹脂としては、加熱して硬化による増粘の始まるまでの時間(ゲル化時間)が10秒〜20分である樹脂を用いることが好ましい。上記ゲル化時間が短すぎると圧電ユニット間への染み込みが充分に行われないという問題がある。そのため、より好ましくは20秒以上がよい。一方、20分を超えると硬化状態が安定しにくくなるという問題がある。
また、塗布する上記モールド材には、低分子ポリマー又は溶剤を1〜10wt%の範囲で添加することが好ましい。この場合の上記低分子ポリマー又は溶剤としても、上記と同様のものを適用可能である。
また、上記積層境界に対し上記接着剤を塗布する際には、上記積層体に対し、その積層方向から圧縮荷重を付与しておくことが好ましいこれにより、上記圧電ユニット同士を十分に密着させた状態で上記接着剤を染みこませることができるので、接着面の重心位置への接着剤の染み込みを比較的容易に防止することができる。
また、上記積層境界に対し上記接着剤を塗布してから、該接着剤が硬化するまで継続して上記圧縮荷重を付与することが好ましいこれにより、接着剤による接着効果を高めることができる。
次に、圧電アクチュエータの変位を利用して弁体を開閉させ、燃料の噴射制御を行うよう構成されたインジェクタにおいて、上記圧電アクチュエータは、上記第1の発明のユニット式積層型圧電体素子よりなることを特徴とするインジェクタがある(請求項5)。
上記インジェクタは、上記の優れたユニット式積層型圧電体素子よりなる圧電アクチュエータを用いている。この圧電アクチュエータは、上記のごとく、変位ロスが少ない優れた駆動特性を有している。そのため、この圧電アクチュエータを備えたインジェクタにおいても、非常に優れた駆動特性を発揮することができる。
以下に、図面を用いて本発明の実施例について説明する。
(実施例1)
本例にかかるユニット式積層型圧電体素子1は、図1〜図3に示すごとく、圧電層21と内部電極層211、212とを交互に積層してなる圧電ユニット2を接着剤11を用いて複数積層接着してなる。
上記圧電ユニット2間を接着する接着剤11は、上記圧電ユニット2の接着面25における外周領域251に存在し、上記接着面25の重心位置Gを含む内部領域252には存在しない。
以下、詳細に説明する。
本例にかかるユニット式積層型圧電体素子1は、ディーゼルエンジンにおける燃料噴射用のインジェクタ駆動源として使用するものである。燃料の噴射圧は200MPaと高圧である。
図1に示すごとく、本例にかかるユニット式積層型圧電体素子1は、圧電ユニット2を積層した積層体の側面291、292において、ガラスと銀の混合物よりなる側面電極材151を介してエポキシ樹脂と銀フィラーの混合物よりなる外部電極材152を内部電極層211、212と電気的導通がとれるように接合し、さらに圧電ユニット2を積層した積層体の外周面の全体を覆うようにモールド材153が設けてある。
本例の圧電ユニット2を構成する正方形の圧電層21は、図1、図2に示すごとく、図面右側に電極非形成部210が位置するように内部電極層212を設けたものと、図面左側に電極非形成部210が位置するように内部電極層211を設けたものとがあり、これらを交互に積層して構成する。
従って、本例の圧電ユニット2において、内部電極層211、212が異なる電位となるように電圧を印加することで、図2(c)に示すように、二つの内部電極層211、212にて挟まれた駆動部221が伸張する。電極非形成部210にて挟まれた非駆動部220は通電しても伸張しない。
そして、図1に示すごとく、圧電ユニット2は接着面25を互いに対面させて積層されるが、図3に示すごとく、接着面25の外周領域251には接着剤11があり、重心Gを含む内周領域252は接着剤11がない。
また、本例にかかる図1において、接着剤の入り込み具合をはっきり記載するため圧電ユニット2の接着面25が当接しないような記載をしたが、実際は、後述する図12のように接着面25が凹凸面からなるため、凹部に突部が嵌入したり、突部同士が接触しあうことがある。また、微少空間も一部で形成されることがある。
そして、図4に示すごとく、接着面25における重心位置Gを通る直線Xを考える。直線Xに沿った内部領域252の長さをL、直線Xに沿った駆動部221の長さをL0とする。いずれの直線Xについても、本例にかかるユニット式積層型圧電体素子1ではL0/4≦Lが成立する。
なお、図5に示すように、独立した内部領域252を複数個備える場合もある。
本例にかかるユニット式積層型圧電体素子1は、圧電ユニット2を接着剤11を用いて接着積層する際に、接着面25の重心位置Gとその周囲を残して、外周領域251にのみ接着剤11を設けて接着した構成を有する。
本例にかかる構成は駆動部221に存在する接着剤が従来より減っており、従って、ユニット式積層型圧電体素子1の変位ロスを小さくすることができる。
また、外周領域251のみとはいえ接着剤11による積層接着を行っているため、圧電ユニット2の位置ズレが生じ難くなる。
以上、本例によれば、接着剤にて圧電ユニットを積層接着すると共に変位ロスの小さいユニット式積層型圧電体素子を得ることができる。
また、本例にて説明したユニット式積層型圧電体素子1は正方形の圧電層2を有するが、図6(a)、(b)に示すようにたる型の、あるいは図7(a)、(b)に示すような正方形の角部をカットした略八角形型の、圧電層21から構成することもできる。また、本例はいずれも部分電極構成の圧電ユニットについて説明したが、全面電極構成とすることもできる。
(実施例2)
本例は、実施例1にかかる構成のユニット式積層型圧電体素子の性能について比較試料と共に評価した。
即ち、試料1〜3にかかるユニット式積層型圧電体素子を準備する。
図8に示すごとく、本例にかかる接着面25において、接着剤は外周領域251に設けてあり、重心位置Gを含む内周領域252は接着剤が存在しない。また、本例の外周領域251の形状はロ字状である。
そして、接着面25における重心位置Gを通る直線Xに沿った内部領域の長さをL、接着面25における直線Xに沿った駆動部の長さをL0とする。ここで直線Xは正方形の圧電層の対向する辺の中央を通るように引く。
試料1は接着剤がエポキシ系で、駆動部の長さL0で、重心位置Gから図面右側にかかる圧電層の端部に向かう内部領域の長さLが0.3L0、重心位置Gから図面左側にかかる圧電層の端部に向かう内部領域の長さLが0.35L0である。
試料2は接着剤がエポキシ系で、重心位置Gから図面右側にかかる圧電層の端部に向かう内部領域の長さLが0.15L0、重心位置Gから図面左側にかかる圧電層の端部に向かう内部領域の長さLが0.2L0である。
試料3は試料2と異なり、接着剤としてシリコーン系を使用し、内部領域の長さが試料2と同様である。
そして、基準試料として、接着剤を使用せずに圧電層、内部電極層を積層して構成した積層型圧電体素子を準備した。この基準試料に積層方向500Nの予荷重を与えた状態で150Vの電圧を印加した際の変位量を測定した。
この基準試料にかかる変位量と試料1〜3を同条件で変位させた場合の変位量の差を「変位ロス」とした。
また、絶縁信頼性は、試料1〜3にかかるユニット型積層型圧電体素子に電圧を印加して伸縮を繰り返すという耐久試験にて評価した。
その結果、変位ロスは試料1で0.1μm以下、実施例2、3は0.2μmとなった。また、絶縁信頼性は、試料1は1000時間、試料2は1500時間、試料3は2000時間であった。
このように、L0/4≦Lを満たす外周領域に接着剤を設けることで、変位ロスがより小さいユニット式積層型圧電体素子が得られることが判った。
また、絶縁信頼性の測定から、接着剤が低応力になることで、即ち試料2のエポキシ系から試料3のシリコーン系とすることで、絶縁信頼性が向上し、ユニット式積層型圧電体素子の寿命が長くなることが分かった。
また、試料1にかかる構成のユニット式積層型圧電体素子について、内部領域の長さLを適宜変更し、それぞれの素子について変位ロスを測定し、その結果を図9にかかる線図に記載した。
これにより、L0/2≦Lとするのが変位ロスを小さくする点で有効であることが判った。
また、試料1にかかる構成のユニット式積層型圧電体素子について、内部領域の面積Sを適宜変更し、それぞれの素子について変位ロスを測定し、その結果を図10にかかる線図に記載した。
これにより、S0/4≦Sとするのが変位ロスを小さくする点で有効であることが判った。
(実施例3)
実施例1にかかるユニット式積層型圧電体素子の製造方法について、図11、図12を用いて説明する。
PZT(ジルコン酸チタン酸鉛)の粉末を準備する。この粉末を破砕して、他の添加剤やバインダーを加えて、スラリー化する。ドクターブレード成形等を利用してスラリーからグリーンシートを作製する。
また、AgとPd粉末に添加剤やバインダーを加えて、ペースト化し、内部電極層用の導電ペーストを作製する。
次いで、所定の大きさにシートを打ち抜いて、切片を得る。この切片に上記導電ペーストを印刷する。印刷済みの切片を20枚積層し、その後積層方向の両側の端面の少なくとも一方から加圧して、切片を圧着し、その後、所定の大きさで切断することで、圧電ユニットと同様に内部電極層となる印刷部が一層おきに片方の側面に露出するような圧着体を製造し、焼成した。その後、圧着体の側面にガラス材と銀を含む導電性ペーストを塗布して焼成した。
これにより、内部電極層211、212が側面291、292において一層おきにガラスと銀の混合物よりなる側面電極材151にて導通可能となった圧電ユニット2を得た。
その後、上記圧電ユニット2を図11(a)に示すごとく、所望の個数積層する。なお、図12(a)、(b)は、見やすくするため2個の圧電ユニット2を積層した状態を記載した。実際の実施例1では圧電ユニット2を23個積層したユニット式積層型圧電体素子1であり、本例にかかる方法によれば、2個から40個程度に圧電ユニット2を積層したユニット式積層型圧電体素子1を製造することができる。
次に、圧電ユニット2を積層した積層体200において、図11(b)、図12(a)に示すごとく、上記積層体200の側面に露出する圧電ユニット2の積層境界250に対し接着剤11を塗布する。
これにより、図12(b)に示すごとく、圧電ユニット2の接着面25の外周領域に上記接着剤11が自然に導入され、入り込む。
これは、図12に示すように、圧電ユニット2の接着面25が完全平面でなくて、微少な突部と凹部が多数形成された凹凸面となっていることから、圧電ユニット2間に微少空間259が存在し、この微少空間259に対する毛管現象から、接着剤11が自然と浸透していくためである。
その後、上記積層体200を積層方向の両端から荷重を加え加熱硬化して、圧電ユニット2を一体化し、最後に側面電極材151に対して、エポキシ樹脂と銀フィラーからなる外部電極材152を、側面電極材151上にスクリーン印刷し、外部電極板154を組付け後に外部電極材151を加熱硬化する。最後にモールド材153をディスペンス法で塗布して、加熱硬化して、ユニット式積層型圧電体素子1を得た。
本例にかかる方法で製造したユニット式積層型圧電体素子1は、接着剤11を接着面25の外周領域251に容易に塗布することができる。
外周領域251のみ接着剤11を設けて圧電ユニット2を接着することで、ユニット式積層型圧電体素子の変位ロスを小さくすることができる。また、外周領域251のみとはいえ接着剤11による積層接着を行うことで、圧電ユニット2の位置ズレが生じ難くなり、また圧電ユニット2の積層が容易となるため、製造効率も向上する。
以上、本例によれば、接着剤にて圧電ユニットを積層接着すると共に変位ロスの小さいユニット式積層型圧電体素子の製造方法を提供することができる。
(実施例4)
本例は、実施例3にかかる製造方法の途中で、圧電ユニット2に対し分極処理を施す点について説明する。
すなわち、上記圧電ユニット2における一対の側面電極材151に負極と正極とを接触させ、直流電流を流して、圧電層21に積層方向から異なる電位を付与する。直流電流を流す前は、図13(a)に示すごとく、積層方向の両端面(積層する際に接着面となる)が略平行で平面状であったが、直流電流を流した後は図13(b)に示すごとく、駆動部221が積層方向に突出して、断面が太鼓型となった。
従って、分極処理を施した圧電ユニット2を積層した際は、図14(b)に示すように、積層境界250に断面楔形の開口部261が形成され、この開口部261に対し上記接着剤を塗布することで、より容易に圧電ユニット間に接着剤が浸透するのである。なお、参考に分極処理を施す前の圧電ユニット2を積層した状態を図14(a)に示す。
その他詳細は実施例3と同様であり、同様の作用効果を有する。
(実施例5)
本例は、実施例3にかかる製造方法の途中で、圧電ユニット2の角部を丸めてなる点について説明する。
図15に示すごとく、上記圧電ユニット2の接着面25に面する角部を予め面取りしておくことで、積層境界に接着剤を導入しやすくすることができる。
すなわち、図15に示すごとく、積層境界250に断面楔形の開口部266が形成され、この開口部266に対し上記接着剤11を塗布することで、より容易に圧電ユニット2間に接着剤11が浸透するのである。
その他詳細は実施例3と同様であり、同様の作用効果を有する。
(実施例6)
本例は、図16〜図22を用いて、上記接着剤として外部電極材およびモールド材を用いてユニット式積層型圧電体素子を作製する例を示す。
まず、実施例3と同様に、PZT(ジルコン酸チタン酸鉛)の粉末を準備する。この粉末を破砕して、他の添加剤やバインダーを加えて、スラリー化する。ドクターブレード成形等を利用してスラリーからグリーンシートを作製する。
また、AgとPd粉末に添加剤やバインダーを加えて、ペースト化し、内部電極層用の導電ペーストを作製する。
次いで、所定の大きさにシートを打ち抜いて、切片を得る。この切片に上記導電ペーストを印刷する。印刷済みの切片を20枚積層し、その後積層方向の両側の端面の少なくとも一方から加圧して、切片を圧着し、その後、所定の大きさで切断することで、圧電ユニットと同様に内部電極層となる印刷部が一層おきに片方の側面に露出するような圧着体を製造し、焼成した。その後、圧着体の側面にガラス材と銀を含む導電性ペーストを塗布して焼成した。
これにより、図16(a)に示すごとく、圧電層21と内部電極層211、212とが交互に積層され、上記内部電極層211、212が側面291、292において一層おきにガラスと銀の混合物よりなる側面電極材151にて導通可能となった圧電ユニット2を得た。
その後、上記圧電ユニット2を図16(a)に示すごとく、所望の個数積層して、所定の圧力Fでクランプする。なお、図16(a)〜(c)および図17(a)(b)は、見やすくするため2個の圧電ユニット2の接着面25同士の間を誇張して示してあり、実際には密着部分が存在する。
次に、圧電ユニット2を積層した積層体200において、図16(b)に示すごとく、上記積層体200の側面に露出する圧電ユニット2の直線状に並んだ複数の側面電極材151に沿って、これらを覆うように外部電極材152を塗布する。
本例では、外部電極材152として、導電材料としての銀フィラーと熱硬化性樹脂としてのエポキシ樹脂と、反応性希釈材としてのエチレングリコールジグリシジルエーテルとを含有し、粘度が30Pa・S、ゲル化時間が10分の外部電極材を採用した。
この外部電極材152は、図16(c)に示すごとく、圧電ユニット2の接着面25の外周領域に自然に導入され、入り込み、上記接着剤としても機能する。この状態で外部電極材152を加熱硬化することによって、複数の圧電ユニット2が一体化される。
なお、本例では、上記側面電極材151の配設は、圧電ユニット2の側面において、その積層方向の両端に到達しないように余裕代を設けておいた。そのため、圧電ユニット2の接着面の直近には、側面電極材151が存在しないので、外部電極材152の接合面への染み込みが良好に行われる。
次に、本例では、図17(a)に示すごとく、積層体200の側面のほぼ全体を覆うように、モールド材153をディスペンス法で塗布した。本例のモールド材153としては、熱硬化性樹脂としてのポリオルガノシロキサンと、ジオルガノシロキサンとを含有し、粘度が15Pa・S、ゲル化時間が5分のモールド材を採用した。
このモールド材153は、図17(b)に示すごとく、圧電ユニット2の接着面25の外周領域に自然に導入され、入り込み、上記接着剤としても機能する。この状態でモールド材153を加熱硬化することによって、より強固に複数の圧電ユニット2が一体化される。
なお、本例では、外部電極材152とモールド材153の両方を上記接着剤として機能させたが、いずれか一方のみを接着剤として用いることも可能である。また、本例では、各圧電ユニット2の側面に予め上記側面電極材151を設けておいたが、上記外部電極材152と内部電極層211、212との電気的接合が十分に行える場合には、側面電極材151の配設を省略することも可能である。
接着成分は、外部電極材組成もしくはモールド材組成の一部のみでいい。たとえば、外部電極材の導電材料は接着部分になくてもいいし、樹脂成分中の低分子ポリマーの硬化成分のみが接着部に存在していてもいい。
ここで、図18〜図20を用いて、外部電極材152を接着剤として用いた場合の接着面への染み込み形態について説明する。
図18に示す例は、外部電極材152の幅方向中央部が最も中心寄りに染みこんだ例である。図19に示す例は、外部電極材152の存在に対応してほぼ均一に染みこんだ例である。図20は、外部電極材152が塗布された側面側だけでなく、外周部分全体に染みこんだ例である。
これらの形態の違いは、外部電極材152の粘度やゲル化時間の調整、および各圧電ユニット2の接合面の形状あるいは面性状等によって制御することができる。
次に、上記図18および図20の場合に、さらにモールド材153を接着剤として用いた場合の接着面への染み込み形態について説明する。
図21には、上記図18に示すごとく外部電極材152による部分的な接着が行われ、さらに、その外部電極材152の存在しない部分を中心にモールド材153が染みこんだ例を示す。
図22には、上記図20に示すごとく外部電極材152による外周全体の接着が行われたうえに、さらに、外部電極材152の存在を乗り越えてほぼ全周にモールド材153が染みこんだ例を示す。
図23、図24には、外部電極材152の接着面への染み込みがなく、ほぼ全周にモールド材153のみが染みこんで、モールド材1のみを接着剤として利用した例を示す。
なお、上記の接着面への染み込み形態については、さらに様々な形態がある。
(実施例7)
本例は、実施例1のユニット式積層型圧電体素子1をインジェクタ6の圧電アクチュエータとして用いた例である。
本例のインジェクタ6は、図25に示すごとく、ディーゼルエンジンのコモンレール噴射システムに適用したものである。
このインジェクタ6は、同図に示すごとく、駆動部としての上記ユニット式積層型圧電体素子1が収容される上部ハウジング62と、その下端に固定され、内部に噴射ノズル部64が形成される下部ハウジング63を有している。
上部ハウジング62は略円柱状で、中心軸に対し偏心する縦穴621内に、ユニット式積層型圧電体素子1が挿通固定されている。
縦穴621の側方には、高圧燃料通路622が平行に設けられ、その上端部は、上部ハウジング62上側部に突出する燃料導入管623内を経て外部のコモンレール(図略)に連通している。
上部ハウジング62上側部には、また、ドレーン通路624に連通する燃料導出管625が突設し、燃料導出管625から流出する燃料は、燃料タンク(図略)へ戻される。
ドレーン通路624は、縦穴621と駆動部(圧電体素子)1との間の隙間60を経由し、さらに、この隙間60から上下ハウジング62、63内を下方に延びる図示しない通路によって後述する3方弁651に連通してしる。
噴射ノズル部64は、ピストンボデー631内を上下方向に摺動するノズルニードル641と、ノズルニードル641によって開閉されて燃料溜まり642から供給される高圧燃料をエンジンの各気筒に噴射する噴孔643を備えている。燃料溜まり642は、ノズルニードル641の中間部周りに設けられ、上記高圧燃料通路622の下端部がここに開口している。ノズルニードル641は、燃料溜まり642から開弁方向の燃料圧を受けるとともに、上端面に面して設けた背圧室644から閉弁方向の燃料圧を受けており、背圧室644の圧力が降下すると、ノズルニードル641がリフトして、噴孔643が開放され、燃料噴射がなされる。
背圧室644の圧力は3方弁651によって増減される。3方弁651は、背圧室644と高圧燃料通路622、またはドレーン通路624と選択的に連通させる構成である。ここでは、高圧燃料通路622またはドレーン通路624へ連通するポートを開閉するボール状の弁体を有している。この弁体は、上記駆動部1により、その下方に配設される大径ピストン652、油圧室653、小径ピストン654を介して、駆動される。
そして、本例においては、上記構成のインジェクタ6における駆動源として、実施例1で示した上記ユニット式積層型圧電体素子1を用いている。このユニット式積層型圧電体素子1は、上記のごとく、変位ロスが少なく、非常に動作性能に優れたものである。そのため、インジェクタ6全体の性能向上及び信頼性向上を図ることができる。
実施例1における、ユニット式積層型圧電体素子の全体構成を示す説明図。 実施例1における、圧電層と内部電極層、駆動部を示す説明図。 実施例1における、接着面における外周領域と内周領域を示す説明図。 実施例1における、接着面における駆動部の長さと内部領域の長さとの説明図。 実施例1における、接着面における外周領域と2つの内周領域を示す説明図。 実施例1における、たる型の圧電層と内部電極層との説明図。 実施例1における、八角形の圧電層と内部電極層との説明図。 実施例2における、接着面における駆動部の長さと内部領域の長さとの説明図。 実施例2における、内部領域の長さと変位ロスとの関係を示す線図。 実施例2における、内部領域の面積と変位ロスとの関係を示す線図。 実施例3における、圧電ユニットを積層して、接着剤を塗布することを示す説明図。 実施例3における、圧電ユニットを積層して、接着剤を塗布することを示す断面説明図。 実施例4における、分極処理前後における圧電ユニットの説明図。 実施例4における、分極処理前後における圧電ユニットをそれぞれ積層した状態についての説明図。 実施例5における、角部を丸めた圧電ユニットの説明図。 実施例6における、(a)圧電ユニットを積層した状態を示す説明図、(b)積層体の側面に外部電極材を塗布した直後の状態を示す説明図、(c)外部電極材が圧電ユニットの接合面間に染みこんだ状態を示す説明図。 実施例6における、(a)積層体の側面にモールド材を塗布した直後の状態を示す説明図、(b)モールド材が圧電ユニットの接合面間に染みこんだ状態を示す説明図。 実施例6における、外部電極材の染み込み形態の一例を示す説明図。 実施例6における、外部電極材の染み込み形態の一例を示す説明図。 実施例6における、外部電極材の染み込み形態の一例を示す説明図。 実施例6における、外部電極材およびモールド材の染み込み形態の一例を示す説明図。 実施例6における、外部電極材およびモールド材の染み込み形態の一例を示す説明図。 実施例6における、外部電極材の染み込み形態の一例を示す説明図。 実施例6における、外部電極材の染み込み形態の一例を示す説明図。 実施例7における、インジェクタの構造を示す説明図。
符号の説明
1 ユニット式積層型圧電体素子
11 接着剤
2 圧電ユニット
21 圧電層
211 内部電極層
152 外部電極材
153 モールド材
6 インジェクタ

Claims (5)

  1. 圧電層と内部電極層とを交互に積層してなる圧電ユニットを接着剤を用いて複数積層接着してなるユニット式積層型圧電体素子において、
    上記圧電ユニット間を接着する接着剤は、上記圧電ユニットの接着面における外周領域に存在し、上記接着面の重心位置Gを含む内部領域には存在せず、
    上記圧電ユニットを積層してなる積層体の側面には、上記内部電極層に電気的に接続される外部電極材が配設されていると共に、上記積層体の側面を覆うモールド材が配設されており、
    上記接着剤は、上記外部電極材または/および上記モールド材よりなることを特徴とするユニット式積層型圧電体素子。
  2. 請求項1において、上記外部電極材は、導電材料と熱硬化性樹脂を含有する粘度0.1〜200Pa・Sの外部電極材を塗布した後に加熱硬化させて形成してあることを特徴とするユニット式積層型圧電体素子。
  3. 請求項1又は2において、上記モールド材は、熱硬化性樹脂を含有する粘度0.1〜100Pa・Sのモールド材を塗布した後に加熱硬化させて形成してあることを特徴とするユニット式積層型圧電体素子。
  4. 請求項1〜3のいずれか1項において、上記接着剤は、シリコーン系、ウレタン系の少なくとも1種からなることを特徴とするユニット式積層型圧電体素子。
  5. 圧電アクチュエータの変位を利用して弁体を開閉させ、燃料の噴射制御を行うよう構成されたインジェクタにおいて、
    上記圧電アクチュエータは、請求項1〜4のいずれか1項に記載のユニット式積層型圧電体素子よりなることを特徴とするインジェクタ。
JP2004092290A 2003-06-27 2004-03-26 ユニット式積層型圧電体素子及びこれを用いたインジェクタ Expired - Fee Related JP4492175B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004092290A JP4492175B2 (ja) 2003-06-27 2004-03-26 ユニット式積層型圧電体素子及びこれを用いたインジェクタ
DE200410030868 DE102004030868B4 (de) 2003-06-27 2004-06-25 In Form einer Einheit vorliegendes piezoelektrisches Schichtelement und Herstellungsverfahren dafür sowie Einspritzdüse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003185348 2003-06-27
JP2004092290A JP4492175B2 (ja) 2003-06-27 2004-03-26 ユニット式積層型圧電体素子及びこれを用いたインジェクタ

Publications (2)

Publication Number Publication Date
JP2005039199A JP2005039199A (ja) 2005-02-10
JP4492175B2 true JP4492175B2 (ja) 2010-06-30

Family

ID=34067316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092290A Expired - Fee Related JP4492175B2 (ja) 2003-06-27 2004-03-26 ユニット式積層型圧電体素子及びこれを用いたインジェクタ

Country Status (2)

Country Link
JP (1) JP4492175B2 (ja)
DE (1) DE102004030868B4 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930962B1 (en) 2005-08-29 2013-03-20 Kyocera Corporation Layered piezoelectric element and injection device using the same
DE102006046217B3 (de) * 2006-09-29 2008-04-03 Siemens Ag Verfahren und Vorrichtung zur Herstellung von Keramikstapeln mit vieleckigem Querschnitt
JP2009076760A (ja) * 2007-09-21 2009-04-09 Denso Corp 積層型圧電素子及びその製造方法
DE102008004227A1 (de) 2008-01-14 2009-07-16 Robert Bosch Gmbh Piezoaktormodul mit mehreren Piezoaktoren und ein Verfahren zu dessen Herstellung
DE102010050266A1 (de) 2010-11-02 2012-05-03 Epcos Ag Aktoreinheit, Verfahren zur Fertigung einer Aktoreinheit und Hülse zur Aufnahme eines Piezoaktors
JP2015015343A (ja) * 2013-07-04 2015-01-22 Tdk株式会社 圧電素子及び圧電素子の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206281A (ja) * 1985-03-08 1986-09-12 Toshiba Corp 圧電変位素子
JPH0936450A (ja) * 1995-07-24 1997-02-07 Denso Corp 積層圧電体およびその製造方法
JP2000150977A (ja) * 1998-11-05 2000-05-30 Hitachi Ltd 圧電素子およびその製造方法
JP2001210886A (ja) * 2000-01-28 2001-08-03 Kyocera Corp 積層型圧電アクチュエータ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742688C1 (de) * 1997-09-26 1999-03-18 Siemens Ag Verfahren zur Herstellung eines Stapelaktors und Stapelaktor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206281A (ja) * 1985-03-08 1986-09-12 Toshiba Corp 圧電変位素子
JPH0936450A (ja) * 1995-07-24 1997-02-07 Denso Corp 積層圧電体およびその製造方法
JP2000150977A (ja) * 1998-11-05 2000-05-30 Hitachi Ltd 圧電素子およびその製造方法
JP2001210886A (ja) * 2000-01-28 2001-08-03 Kyocera Corp 積層型圧電アクチュエータ

Also Published As

Publication number Publication date
JP2005039199A (ja) 2005-02-10
DE102004030868A1 (de) 2005-02-10
DE102004030868B4 (de) 2013-07-18

Similar Documents

Publication Publication Date Title
US7554250B2 (en) Laminate-type piezoelectric element and method of producing the same
JP4876467B2 (ja) 積層型圧電素子
US6731048B2 (en) Piezoelectric actuator with insulating member separate from piezoelectric device
US20070124903A1 (en) Method of producing laminate-type piezoelectric element
EP2073283B1 (en) Laminated piezoelectric element, injection apparatus and fuel injection system using the laminated piezoelectric element, and method for manufacturing laminated piezoelectric element
WO2009082006A1 (ja) 積層型圧電素子、これを用いた噴射装置及び燃料噴射システム
JP4934988B2 (ja) 積層型圧電体素子及び、これを用いたインジェクタ
WO2005029602A1 (ja) 積層型圧電素子
JP4492175B2 (ja) ユニット式積層型圧電体素子及びこれを用いたインジェクタ
JP4808915B2 (ja) 積層型圧電素子及び噴射装置
JP2007281256A (ja) 圧電アクチュエータ及びその製造方法
US20110168806A1 (en) Multi-Layer Piezoelectric Element, and Injection Device and Fuel Injection System Using the Same
JP4325161B2 (ja) 積層型圧電体素子及びその製造方法,並びにインジェクタ
CN1717816A (zh) 压电执行元件及其制造方法
JP2006041279A (ja) 積層型圧電体素子及びその製造方法
JP2003101092A (ja) 積層型圧電素子及びその製法並びに噴射装置
JP3667289B2 (ja) 積層型圧電素子及びその製法並びに噴射装置
JP2006210423A (ja) 積層型圧電素子及びその製造方法
JP2007067346A (ja) 積層型圧電素子及びその製造方法
JP2008300466A (ja) 圧電アクチュエータ及びその製造方法
JP4345699B2 (ja) 積層型圧電体素子及びそれを用いたインジェクタ
EP1981097B1 (de) Verfahren zur Herstellung eines piezoelektrischen Aktors
JP4631342B2 (ja) 積層型圧電体素子の製造方法
DE102005008362B4 (de) Piezoelektrischer Stapelaktor mit einer verbesserten Wärmeableitung, insbesondere über die inaktiven Deckpakete
JP2008277855A (ja) 積層型圧電体素子及びその製造方法,並びにインジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R151 Written notification of patent or utility model registration

Ref document number: 4492175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees