JP4486811B2 - F−18フッ化物の製造方法および装置 - Google Patents

F−18フッ化物の製造方法および装置 Download PDF

Info

Publication number
JP4486811B2
JP4486811B2 JP2003504417A JP2003504417A JP4486811B2 JP 4486811 B2 JP4486811 B2 JP 4486811B2 JP 2003504417 A JP2003504417 A JP 2003504417A JP 2003504417 A JP2003504417 A JP 2003504417A JP 4486811 B2 JP4486811 B2 JP 4486811B2
Authority
JP
Japan
Prior art keywords
water
target
loop
cavity
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003504417A
Other languages
English (en)
Other versions
JP2005505751A (ja
Inventor
キゼレヴ,マキシム,ワイ.
ライ,ダク
Original Assignee
イヨン ベアム アプリカスィヨン エッス.アー.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イヨン ベアム アプリカスィヨン エッス.アー. filed Critical イヨン ベアム アプリカスィヨン エッス.アー.
Publication of JP2005505751A publication Critical patent/JP2005505751A/ja
Application granted granted Critical
Publication of JP4486811B2 publication Critical patent/JP4486811B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Particle Accelerators (AREA)

Description

本発明は、18O濃縮水の陽子線照射を用いた18F放射性同位元素の製造に関する。
18F同位元素(以下、F−18同位元素またはF−18)は核医学において、ポジトロン放射断層撮影(Positron Emission Tomography(PET))身体撮影技術を用いた診断学的研究用に幅広く利用されている。F−18は、注入可能なグルコース滲導体の標識に典型的に用いられる。この同位元素は半減期が短いため(109分)、製造後できるだけ早く使用しなければならない。このため、後々の使用のために十分な量を蓄積することができない。それゆえ、通常まず(車両運搬による)遠方の病院のための製造作業シフトが真夜中近くに始まり、続いて明け方早くに近隣の病院のためのシフトが始まる。いかなる製造量の不足も、ユーザに即時且つ直接の影響を及ぼす。結果として、製造の信頼性および予測は、この同位元素のサプライヤと同様、ユーザにとっても極めて重要である。
F−18を製造する主な2つの方法は、サイクロトロン内での18O(p,n)18F反応を用いる。18O(以下、O−18)を濃縮した気体酸素および液体水は、双方ともターゲット材料として用いられてきた。しかし、F−18は非常に反応性が高く、また気体媒体から回収することが困難であるため、気体を用いた方法は実際には困難を極める。圧倒的多数の製造施設が、O−18濃縮水(H18O]、以下O−18水)を使用している。
O−18水の使用も、全く問題がないわけではない。製造効率のためには、極力濃縮度の高い水を使用することが望ましい。しかしながら、95%のO−18濃縮水はml当たりの値段がおよそ150ドルである。また、PETが益々広く受け入れられるようになったため、新たなO−18水の製造施設の建設が需要に追いついていない。この費用という圧力が、O−18水ターゲット材料の保存および再利用をなおさら重要なものとしている。
F−18の製造用の典型的なシステムにおいて、ターゲットに、典型的には、シリンジまたはポンプを用いて予め決められた量のO−18水を負荷する。ターゲット内の水の量は約0.8mlであるが、ターゲットに達するラインを充満するためにはさらに1〜2mlの水が必要である。次に、バルブを用いて水の送達システムをターゲットから分離させ、ターゲットを照射する。これは「静的」ターゲットと称することができるが、それはターゲット材料が、照射の間中ターゲット中に残留することを意味する。
次に、典型的には不活性ガス圧を利用して、照射された水をターゲットから取り出し、ターゲットから約8m(25フィート)のところに位置する回収バイアルまで、サイクロトロン・シールドの外側へと達する配送ラインを通して移動させる。次にF−18同位元素を水から分離し、放射性医薬剤の製造のために加工する。
典型的には25〜30%という、大量のO−18が各ランの後に失われる。O−18同位元素は、3通りの方法で消失する。第一に、非常に少量であるナノリットル程度が実際にF−18に変換される。二番目に重要なO−18の消失は、ターゲット、移送ライン、および保存容器中での、漏出と酸化16Oによる同位体交換との組み合わせによるものである。1〜2時間にわたる1回のランの後、濃縮係数は95%から、85〜90%へと減少する。これはサイクロトロンを稼動するのに経済的にまだ十分に高いが、以下に説明するとおり、汚染物の量が多過ぎる。(濃縮係数が減少すると、照射時間は増加する。現在の経済的な状況の下では80%が最小値である。)
第3の消失は、加圧されたターゲットおよび付設されたチューブからのターゲット材料の漏出によるものであり、これはターゲット中の水量レベルの減少をもたらす可能性があり、さらに深刻な場合には、破滅的な故障につながる。ターゲットの冷却は、ターゲット内に存在し熱伝導体として機能する液状水材料に依存している。典型的な1mlのターゲットは、2〜3時間にわたって500W以上の熱を放散しなければならない。ターゲットの熱安定性を改善するため、多くのターゲットシステムは3.4MPa(500psig)またはそれ以上の強さで加圧される。これらの条件下で、水の含有量が少ないのは重大な技術的問題となる。非常に少量のターゲット材料の消失も、ターゲットホイルの破裂、ターゲット本体の劣化、およびターゲット収率の損失等の深刻な結果をもたらす可能性がある。
初期O−18水の70〜75%が残留するが、最も影響の大きい消失は汚染によるものである。液状水中のいかなる汚染も、過熱蒸気の発生を増加させ、漏出の増加および冷却の損失をもたらす。このような結果は非常に不都合であるため、たった1回の静的ターゲットシステムのランの後に回収した水は、汚染物質を除去するための再処理を行うため、サプライヤに返送しなければならない。
既存の静的ターゲットシステムは、照射の間の、ターゲット材料の重大な消失を適時に検知するいかなる機構も提供しない。さらに、静的ターゲットにおいて、製造される放射性F−18の量を、いくらかの確実性を伴ってモニターすることは不可能である。製造ランの結果はそれが完了するまで、製造開始後から最大数時間にわたって、知ることができない。F−18の半減期が極めて短いために製造および配送スケジュールの高い自由度が許されないという事実を考えれば、この不確実性は製品の信頼性および入手可能性の低下をもたらす。
従って、本発明の目的は、サイクロトロンにより作り出される高エネルギーの陽子線を照射したO−18濃縮水からのF−18製造の信頼性を高めることである。他の目的は、サイクロトロンが中断することなくO−18を照射することができるように効率を高めることである。さらに他の目的は、O−18水を連続的に再利用し、該O−18水からF−18を定期的に抽出することである。他の目的は、O−18水がシステムの漏出等のために失われることから、新たなO−18水のさらなる追加を可能にし、これによりシステムが中断することなく、より長時間にわたって稼動できるようにすることである。
これら、およびさらなる目的は、ターゲットキャビティを陽子線で照射してO−18の一部をF−18へと変換させるサイクロトロン用のターゲットキャビティを含むターゲットループを通して、O−18濃縮水を連続的に再循環させる方法で実現される。
失敗のない、より長時間の照射は、以下の方法の一部またはそれ以上の組み合わせを用いることにより達成される:ターゲットキャビティ内の圧力を少なくとも約1.7MPa(250psig)に維持する;O−18水を少なくとも2分毎に1回ターゲットキャビティを通して再循環させる;ターゲットループ内のO−18水の容積を、ターゲットキャビティ自体の容積の少なくとも約10倍となるよう維持する。ターゲットキャビティから排出後および再導入の前にO−18水を十分に冷却することにより、さらなる利点が得られる。
照射を中断することなくターゲットループに定期的に追加のO−18水を再投入し、且つ、ターゲットキャビティに約16Mevのエネルギーおよび少なくとも約40μAの強度を有する陽子線を用いることによって、効率の増加が得られる。
照射を止めたり、サイクロトロンの時間を緩めるのではなく、むしろ、ターゲットキャビティの照射を中断することなく、例えば1時間または2時間毎など、定期的にF−18抽出装置を通してターゲットループを手短かに迂回させることにより、ターゲットループ内の照射されたO−18水からF−18を抽出することができる。
F−18に変換されるO−18の量が非常に少量、例えば変換されるO−18の0.1%未満であるため、F−18を抽出したのち、残りのO−18水を固相精製装置により精製し、ターゲットループ内に再導入することができる。
前述のターゲットループは、順番に、O−18水リザーバ;ポンプ;ターゲットキャビティ;および背圧レギュレータを用いて実行することができる。ポンプは最低所望の1.7MPa(250psig)の圧力、および、典型的なターゲットループの容積10ml当たり2ml/分の流速を生むことが可能でなければならない。O−18水の冷却は、ターゲットキャビティの出口側に接続しているチューブのコイルにより達成することができる。
F−18を、なんらかのF−18抽出装置、例えば陰イオン交換型抽出装置から、F−18の溶出液を送出バイアルへと送るために溶離剤およびガス供給源を用いて、回収してもよい。
O−18水精製装置は、バルブを通してF−18抽出装置の出口に接続していることが好ましく、且つ、簡易逆止弁によってターゲットループへとO−18水を再導入してもよい。
O−18水が漏出等によって消失するにつれて、新しいO−18水を備える供給源バイアルを、照射を止めることなく、定期的にターゲットループに再導入するようにすることにより、製造効率をさらに向上させることが可能である。
バルブおよびチューブが、本発明を実施するための種々の機能を果たす種々の要素を制御可能に接続するように設けられている。
図1は、装置の概略図であり、その構成部分を以下に説明する。これらのすべては、非常に一般的である、高圧液体クロマトグラフィー(HPLC)の分野で用いられている。部品間の接続は、機械的な都合に合わせて、外径1/16インチ(1.6mm)316型ステンレス鋼チューブ、または外径1/16インチ(1.6mm)、内径0.030インチ(0.8mm)ポリエーテルエーテルケトン(PEEK)チューブのいずれかを用いてなされる。チューブの選択は、重要だと思われてはいない。双方のチューブタイプにPEEK圧縮フィッティングを用いる。
ターゲットキャビティ(11)は、ゼネラルエレクトリック社(米国)PETシステムズAB(ウプサラ、スウェーデン)が供給する標準「高収率」サイクロトロンターゲットである。このターゲットは、直径1cmの円形開口部の後方に0.8mlターゲット容積を有する、コバルト合金Havar(商品名)(Co42.5%、Cr20%、Ni13%、Fe/W/Mo/Mn)ホイルで被覆され、粉砕銀製オーリングで封止された、銀製の本体を有する。標準的な部品(図示せず)を用いて、ターゲット本体を20°Cの水で冷却し、装置のホイルを340kPa(50psig)の室温のヘリウムガスで冷却する。PEEKフィッティングの使用は、ターゲットが装置の残部から電気的に絶縁されることを意味する。従って、ターゲット材料により吸収されるビーム電流は、ターゲットキャビティ(11)とサイクロトロングラウンドとの間に接続された電流計(図示せず)で計測することができる。
使用するサイクロトロンはターゲットのサプライヤから得られる標準のものであり、図示していない。モデルPETtrace(商品名)2000陰イオン型であり、個々に負に帯電した水素イオンを加速させるものである。サイクロトロンは、最大75uAの総ビーム電流を有する16.5MeV陽子線のガウスビームに近いビームを生じさせる。通常、直径1cmのターゲット開口部により均一なビーム分配を集中させるため、タングステンコリメータが用いられる。サイクロトロンビーム中のカーボンホイルは、負に帯電した水素イオンから電子を揮散させ、陽子線(正に帯電した水素イオン)を生じさせる。
約5mlの容量を有するリザーババイアル(15)に接続されるポンプ(13)によりターゲットキャビティへのO−18水の注入が供給される。ポンプはCole Palmer(Vernon Hills、イリノイ州)U−07143−86型シングルピストンタイプである。このポンプはサファイアピストン、ルビー弁座、金メッキステンレス鋼バネ、および317型ステンレス鋼ハウジングおよびフィッティングを有する。他の接液部はPEEK等の非反応性材料で作られる。流速は約5ml/分に設定する。
リザーババイアルの放射線センサー(17)は、バイアル(15)中の放射線量をモニターするのに用いられる。このセンサーは、フォトダイオードにエポキシ接着された5mmのNaIシンチレーション結晶で構成される。(PMTは不要である。)このアセンブリはバイアル(15)の1.25cm(1/2インチ)以内であるが、光電流増幅器(図示せず)を3m(10フィート)離して配置し、照射されたターゲットにより生じる中性子束の影響を低減する。
バイアル(15)への注入は、Upchurch(オークハーバー、ワシントン州)CV−3302型液体逆止弁(19)と並行してバルブ(V1)から行われる。このラインは、白金電極が埋め込まれた内径1.6mm(1/16インチ)のガラス管からなるマイクロフローセルを有するCole Palmerデジタル導電率計(21)にも接続している。
バルブ(V1)は、6ポートを、それぞれ実線および点線で図示されたAおよびBの2箇所に空気的に作動させる、Rheodyne(ローナートパーク、カリフォルニア州)7000型である。位置Aにおいて、隣接する3対のポートは接続しており、一方位置Bにおいて、さらに隣接する3対のポートが接続している。図示のとおり、ポートの1つは封止されている。空気圧作動装置のガスラインは図示していない。
ターゲットキャビティ(11)から排出されたものは、外径1.6mm(1/16インチ)のステンレス製チューブからなる直径5cm(2インチ)の粗巻きコイル3m(10フィート)で構成される冷却コイル(23)の中を通る。冷却コイルは、本質的には大気中にぶら下がっており、ターゲットキャビティ(11)から排出される水のための冷却を提供する。コイルは、ターゲット内で捕らえられる例えば銀粒子を濾過する、Alltech社(ディアフィールド、イリノイ州)製10ミクロンステンレス鋼フィルタ(25)に接続している。フィルタは、1.7〜3.4MPa(250〜500psig)の範囲内で調節可能なUpchurch U−469型背圧レギュレータ(27)に接続している。ポンプ(13)の後の容積中の圧力は、Omega Engineering社(スタンフォード、コネチカット州)製PX176−500型0〜3.4MPa(0〜500psig)圧力変換器(29)によりモニターされる。ターゲット容積中の圧力がより高いと沸点が上昇し、より高い強度の照射を可能にすることは公知である。しかし、この装置は3.4MPa(500psig)で漏出し、最大圧力を用いることができなかった。
バルブ(V1)がA位置にあるとき、ポンプ(13)はターゲットループ(L1)を通して水を循環させる。循環は約5ml/分の速度である。ループ容積の推定約5mlに対して、リザーババイアル(15)に5mlの容積が加えられ10mlとなり、これは1回往復に2分間が必要であることを意味する。
O−18水の初期供給源は、バルブ(V1)のポートの一つに接続している供給源バイアル(31)である。このバイアルは50mlの容量を有する。O−18同位元素の濃度は必ずしも100%である必要はない。任意の濃度を用いることができるが、通常の製造においては、少なくとも80%であり、照射時間およびサイクロトロンにかかる費用を少なくするためには、それ以上の濃度を用いるべきである。
四次構造アンモニアにより誘導されたシリカを含む、Waters社(フランクリン、マサチューセッツ州)製SepPak(商品名)QMA型カートリッジ(C1)は、バルブ(V1)と第2のバルブ(V2)との間に接続している。このカートリッジは、水からのF−18イオンを吸収することができ、F−18抽出装置として機能する。次いでF−18を、例えば水または水/アセトニトリル混合液中20〜40mMのナトリウムまたは炭酸カリウム等の溶離剤を用いて抽出することができる。カートリッジ(C1)中のF−18の量は、カートリッジに隣接するフォトダイオードを用いた放射線センサー(33)によってモニターされる。
バルブ(V2)もまた、6ポートを、それぞれ実線および点線で図示されたAおよびBの2箇所に空気的に作動させる、Rheodyne(ローナートパーク、カリフォルニア州)7000型である。このバルブの半分のみが使用される。バルブ(V2)の一方の側は、サイクロトロンターゲット領域からF−18配送バイアル(37)まで約8m(25フィート)に及ぶ、外径1.6mm(1/16インチ)PEEKチュービングから構成されているF−18配送ライン(35)に接続している。
バルブ(V2)の他方の側は、逆止弁(19)に接続している直列の対の脱イオンカートリッジ(C2)および(C3)に接続している。これらは、特に製造ランの後半において、O−18水から不純物を除去するために用いられ、O−18精製装置として機能する。カートリッジ(C2)は、スルホン酸で誘導されるポリスチレン樹脂を600mg含む、Alltech社(ディアフィールド、イリノイ州)、MaxiClean(商品名)SCX(Strong Cation Exchange)型カートリッジである。カートリッジ(C3)は、テトラアルキルアンモニウム化合物で誘導される、同様の型SAX(Strong Anion Exchange)カートリッジである。逆止弁(19)はこれらカートリッジへの逆流を防止する。
第3のバルブ(V3)はバルブ(V1)に接続している。これは、Alltech社より提供されるHVP−E86779型4ポートである。これらのポートのひとつは、空気圧により作動するプランジャを有する、(Alltech社より提供される)Hamilton Gastight(商品名)1002型2.5mlシリンジポンプ(39)に接続している。プランジャがテフロン(登録商標)であるポリテトラフルオロエチレンから作られている一方、ポンプ本体はガラスである。図示したとおり、プランジャは内側深くに示されたA、および外側深くに示されたBという、2個の端位置を有する。
バルブ(V3)の他方のポートは、ヘリウムライン(45)を通して遠隔のヘリウムタンク(43)に接続しているガス逆止弁(41)に接続している。タンクはMatheson UHPグレード5.5(すなわち99.9995%純粋な)ヘリウムで満たされている。バルブ(V3)の他方のポートは、水中に炭酸ナトリウム溶液等の適当な溶離剤溶液を含む、溶離剤バイアル(47)に接続している。
図1の大きな囲みの中に示したすべての構成部分は、15cm(6インチ)離隔した、2枚の幅20cm(8インチ)高さ36cm(14インチ)厚さ6mm(1/4インチ)のアルミニウム板の間に取り付けられている。サイクロトロンメーカーにより供給される標準の液体ターゲットフィラー装置によって用いるのとほぼ同じ容積である。このアセンブリは、ターゲットキャビティ(11)から60〜90cm(2〜3フィート)以内のところに設置される。F−18配送ライン(35)およびヘリウムライン(45)に加え、他の全ての空気圧作動装置および電気ラインはサイクロトロンの放射線シールドの外側に取り出される。ターゲットループ(L1)を除くすべての構成部分をシールド外に取り出すことで長いラインの数を減少させる一方、これはO−18供給源バイアル(31)への長いラインを必要とし、これによりO−18水を汚染する可能性が増加する。
装置は、アナログおよびデジタル入力およびデジタル出力ポートを有するOmega Engineering社(スタンフォード、コネチカット州)CIO DAS型08I/Oボードを基盤とし、IBM PC互換コンピュータおよび制御システム(図示せず)の制御下で操作する。出力ポートはローカルソレノイドを制御し、一方このローカルソレノイドは、装置と共に配置されている空気圧作動装置を制御する。操作をモニターするために、コンピュータは圧力、放射線、および導電率計から読み取られたメモリも記憶する。
操作:
上述のとおり、医療用途のためのF−18の製造は、病院が営業を開始する直前の作業シフトにて行われる。図1に示す装置の操作は、通常1時間またはそれ以上かかる一連のランで実行される。ランの開始前に、ターゲットループ(L1)がO−18水で満たされているかを確認する必要がある。次に、第2の製造シリーズのステップでは、F−18を生成し、生成されたF−18を抽出し、および、それを続く処理のために外部のバイアル(37)に送出する。
システムを最初に組み立てる際、第1の必要事項は、ターゲットキャビティ(11)およびリザーババイアル(15)をO−18水で満たすことである。これは、O−18水のバイアル(31)をバルブ(V1)に接続させることによって達成される。システム中の3個のバルブおよびシリンジポンプ(39)は、以下の表1に従って配列される。
Figure 0004486811
シリンジ充満ステップにおいて、O−18バイアル(31)をバルブ(V1)および(V2)を通してシリンジ(39)に接続する。次いで、シリンジプランジャを取り出す際、O−18水をバイアルから排出しシリンジへ送る。
バルブ切替ステップにおいて、シリンジをバルブ(V1)を経てカートリッジ(C1)に、且つ、バルブ(V2)を経てカートリッジ(C2)および(C3)に接続させる。水追加ステップにおいて、シリンジ(39)のプランジャをカートリッジ(C1)、(C2)、および(C3)内に押し込み、且つカートリッジ(C1)、(C2)、および(C3)、逆止弁(19)を通し、リザーババイアル(15)へとO−18水を流す。シリンジ(39)の容積およびストロークを調整し、注入量を約0.75mlとした。カートリッジおよび接続ラインの容積は約1〜2mlである。
この特殊な配置は、リザーババイアル(15)に最初に充填されたO−18水が、後に充填されたO−18水と同様に、イオン交換カートリッジ(C2)および(C3)により精製されることを意味する。カートリッジのパージステップにおいて、バルブ(V3)は、バルブ(V1)を経てカートリッジ(C1)に、且つ、バルブ(V2)を経てカートリッジ(C2)および(C3)に340kPa(50psig)のヘリウム供給(43)を接続させる。これはカートリッジをパージし、いかなる残留水もリザーババイアル(15)へと流す。バルブリセットのステップにおいて、ターゲット充満過程または製造過程の繰返しに備えるため、バルブ(V2)をA位置へと戻し、カートリッジ(C1)をカートリッジ(C2)および(C3)から切り離す。
システムを最初に組み立てる際、ターゲット充満過程を約15回繰り返して、ターゲットキャビティ(11)およびリザーババイアル(15)を含むループ(L1)に計10mlの水を充満する。作業シフトの最初に、リザーババイアル(15)が約5mlの水を含むまで、ターゲット充満過程を必要な回数繰り返す。作業シフトの最初にターゲット充満過程を完了したのち、ポンプ(13)およびサイクロトロンを作動させ、残るシフトの終了まで作動中のまま放置する。次は表2に示すとおりの製造過程ステップである。
Figure 0004486811
照射ステップの間、サイクロトロンを作動させ、ターゲットキャビティ(11)を照射する。バルブ(V1)をA位置にするとポンプ(13)が動いてターゲットループ(L1)を通して水を循環させる。逆止弁(19)はカートリッジ(C2)および(C3)に戻る循環を阻止する。背圧レギュレータ(27)は1.7〜3.4MPa(250〜500psig)の間の、あるレベルに圧力を維持する。10ミクロンフィルタ(25)の上流にある、圧力モニター(29)は、過剰圧力または圧力不足が起こった場合に、制御システムに信号を送る。導電率計(21)は、導電率が高過ぎた場合に、制御システムに信号を送るが、これは過剰な汚染を示差する。照射の間、作られるF−18の量はリザーババイアルの放射線センサー(17)および関連する回路によりモニターされる。
バルブ(V3)をB位置にすると、ヘリウム供給が溶離剤バイアル(47)を加圧するが、他の影響はない。バルブ(V2)およびシリンジ(39)をA位置にすると、カートリッジ(C1)内の流れはない。
ターゲット内に所望の量のF−18が累積したのち、それを抽出する。バルブ(V1)および(V2)をB位置へと切り換え、バルブ(V1)でループ((L1))を遮断し、カートリッジ(C1)、(C2)、および(C3)を通してループを形成する。脱イオンカートリッジ(C2)および(C3)が水から不純物を除去する一方、QMAカートリッジ(C1)はF−18を保持する。360秒後、F−18の約85〜90%がカートリッジ上に吸収されている。
QMAカートリッジ(C1)におけるF−18レベルは、放射線センサー(33)によりモニターされ、水の導電率は放射線センサー(17)によりモニターされる。
パージステップにおいて、可能な限り多くのO−18水がQMAカートリッジ(C1)から除去される。バルブ(V1)をA位置に切り換え、カートリッジをバルブ(V3)を通してヘリウム供給源(43)へと接続し、ターゲットループ(L1)を再構築する。ヘリウムガスは、QMAカートリッジから脱イオンカートリッジ(C2)および(C3)を通し、逆止弁(19)を通過してバイアル(15)へと水を押し流す。
次の4個のステップにより、F−18を送達バイアル(37)に送る。バルブ(V3)をA位置にすると、シリンジ(39)が溶離剤バイアル(47)に接続する。プランジャを取り出し約0.75mlの溶離剤をシリンジに充満する。これには約10秒かかる。次いで、バルブ(V2)をA位置に切り換え、バルブ(V3)をB位置に切り換える。これによりシリンジ(39)がQMAカートリッジ(C1)に接続し、ここから送達バイアル(37)へと接続する。溶離ステップにおいて、シリンジ(39)のプランジャを約15秒の間にわたって押し入れる。これにより、溶離剤溶液がQMAカートリッジ(C1)の内部に押し込まれる。
次いで、送達ステップにおいて、バルブ(V3)をA位置に切り換え、これによりヘリウム供給源(43)がQMAカートリッジ(C1)に接続する。ヘリウムガス圧は溶離液を含むF−18を送達チューブ(35)および送達バイアル(37)中に送る。これには約240秒かかる。
次いで、シリンジ(39)の充満から始まり送達で終わる回復ステップを繰返し、カートリッジ(C1)からのF−18の完全除去を達成する。ターゲットキャビティ(11)内で生成されたF−18の約85%が2回の抽出の後QMAカートリッジ(C1)から除去される。この推定値は、受容バイアル(37)中に送達されるF−18の量と比較した、公知のターゲット生成能力に基づく。
F−18の残る15%の一部は、109分のF−18の半減期と比較した次のランの長さに応じて、続く製造過程において回収されるであろう。
最後に、バルブ(V3)を位置Bに戻し、新たな製造過程を開始するか、または、ターゲット充満過程を用いてターゲットループ(L1)に再び水の補充が必要な場合は位置Aのまま放置する。
4つの作業例:
連続する4つの試行ランをシステムを停止することなく、同一のカートリッジセットを用いて行った。2組のビーム電流量および照射時間を用いた。初期水中のO−18の濃度は(より高い濃度にかかる費用を考慮し)80%のみとした。溶離剤は、水中の40mMの炭酸ナトリウムであった。各運転後に回収されたF−18の量を計測するのに、Capintec(ラムジー、ニュージャージー州)7BT線量キャリブレータを用いた。結果を表3に示す。
Figure 0004486811
ラン1および2は、有用な量のF−18を製造するには短か過ぎたが、システム操作をチェックするために省略された。理論上、多くの短期ランから得られるF−18を組み合わせることができるが、これは非常に希薄なF−18溶液を生む。従って、2〜4Ciを送達する連続したランが好ましい。
ラン4において、より短い照射時間にもかかわらず、送達されたF−18の量がより多いのは、ラン3の後の、ターゲットキャビティ(11)およびリザーババイアル(15)を含む、ターゲットループ(L1)内に残る活動によるものである。より完全な同位元素の抽出をもたらす、ラン3における1回の抽出ステップと比較して、ラン4でもまた2回の抽出ステップが行われた。さらに、それ以外は同一のランどうしの間で回収率が5〜10%異なることは、先行技術の静止系において珍しいことではない。
ラン3および4において、それぞれ時間および分で表される時間Tの関数として放射線センサー(17)および(33)により決定される、リザーババイアル(15)およびQMAカートリッジ(C1)内の放射線量を図2に示す。これら2個のセンサーの出力は、回収されるF−18を予測するために計測された。この時間および分の規模で把握するのに十分に長いステップは照射、抽出、および送達のみである。
ラン3の始めに、固相抽出により示される、リザーババイアル15内の放射線量は、照射時間がF−18の1時間49分という半減期に匹敵するため、ほぼ急激に増加する。およそ2:28に抽出を開始し、リザーババイアル(15)内のF−18の量は、点線で示したQMAカートリッジ(C1)における増加に対応して、急速に減少する。抽出ステップの間照射を続け、これにより抽出ステップが開始するおよそ2:38にF−18の量は未だ増大している。これによって、照射ラン4の始めにリザーババイアル(15)中に、若干のF−18が残るが、このうちのいくらかはラン3の抽出の際に生じたものである。
ターゲットループ充満過程が30秒未満しかかからないためにグラフに示されないが、ラン3の終わりに、ターゲットループ(L1)を約1.5mlのO−18水で再充填した。通常の静的ターゲットおよび製造ランで使用するには漏出が激し過ぎたため、この特殊なターゲットは、これらの実験用に用いた。追加した1.5mlは事前の照射なしでの漏れ試験に基づく推定である。基本的必要条件は、ターゲットキャビティ(11)を乾かさずに作動させることである。リザーババイアル(15)のアウトテイク・チューブが常に没水している場合、この条件は満たされる。ターゲットループの水の消失の予測を行うことができ、且つ、ターゲットループ充満過程は必要であればいつでも行うことができることから、これは、経験上、難しいことではない。
ラン4の終わりに、ほぼ4:19でF−18が抽出されるが、ラン3後よりもさらに明らかな効率の向上が見られた。続いて短時間の送達ステップを行い、次にグラフの直前で終了する、第2の抽出ステップを行う。実験に割り当てられたサイクロトロンの時間が尽きたため、ラン5となり得たものは終了した。供給源バイアル(31)中のO−18水が尽きるまでランを継続できたと思われる。
図3は、図2と同じ時間にわたる、ターゲットループ(L1)の水伝導率を示す。これは、主にターゲットの腐食によって生じる種々のイオン種の蓄積のため時間と共に増加し、且つ抽出ステップの間のSAXおよびSCXカートリッジ(C2)および(C3)のため減少する。(F−18は、化学的に大量には存在しないため、伝導率の変化の原因とはならないことに留意されたい。)同位元素抽出の後に伝導率が低いレベルへと戻るという事実は、ループ(L1)およびリザーバ(15)に含まれるターゲット材料の永久的再利用の可能性を示している。
図4は、図2と同じ時間にわたる、ターゲットキャビティ(11)内の圧力を示す。抽出ステップの間にターゲットループをカートリッジ内で迂回させる際に上昇しているが、圧力レギュレータによって比較的一定に保持されている。
代替的アプローチ:
前記の操作およびシステム概要の例は、再循環および抽出を達成する多くの方法のうちの一方法を説明するために提供した。様々な同様の構成を同等に首尾よく用いても良い。例えば、HPLCまたは同様の用途のために構成され、且つ不活性ピストンを備えた任意の高圧ピストンポンプおよび逆止弁を用いて液体を抽出することができる。同様に、不活性材料を用い、且つ必要な圧力を置換することができ、および、水と適合するならば、HamiltonおよびRheodyneのバルブを置換して用いることができる種々のバルブ設計が利用可能である。
システムの配管を、あらゆるステンレス鋼またはプラスチック材料と置換することができる。PEEKまたは316型ステンレス鋼に代わる、適当な材料を用いることが可能である。熱交換によりターゲットから除去された水のさらなる冷却は有益であろう。圧力、放射線量、および温度センサーの追加は、より良いフィードバック且つモニタリングを提供するであろう。
さらに高い水の流速を用いることは、ターゲット内部でよりよい溶解を提供し、より良い放熱を達成するのに有益であるかもしれない。水の流速を高め、さらなる冷却を行うことで、ターゲット内に溶着したビーム電流を著しく増加することが可能となり、従って同位元素の製造速度を増すことができるであろう。このように、ターゲット構成の再循環は、同位元素の製造を著しく増加する可能性を有する。
シングルシリンジは、O−18水および溶離剤を移送するのに好都合な装置であった。しかし、異なるバルブ配置では、2個のシリンジの利用、または、置換される異なる流体移送装置の置換が可能であろう。例えば、容器の外に流体を送り出すためにガス圧を用いることが可能であろう。
固相抽出およびイオン交換用に設計された種々様々な市販のカートリッジを用いて、QMA、SAX、またはSCXカートリッジに置換することができる。例えば有機物質を除去するためのC−18型カートリッジ等、他の潜在的に有害な不純物を除去するために必要なだけ追加のカートリッジおよびフィルタを取り付けることができる。さらに、必要に応じて、微生物汚染を除去するため精製ループ内に滅菌フィルタを組み込むことができる。
種々の解決策を用いて、これらの解決策がQMAカートリッジとイオンを平衡化するのに十分なイオン強度を有する限りは、同位元素製造に従う化学処理の要件を提供するQMAカートリッジから抽出されたF−18同位元素を除去することができる。例えば、テトラブチル炭酸アンモニウムまたはテトラブチル炭酸カリウム等のテトラアルキルアンモニウム塩基または塩と等モルの4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8,8,8]ヘキサコサン等の多環アミノポリエーテルとを混合した溶液を用いて、後の求核置換反応時のF−18フッ化物の反応性を高めることができる。このような溶液を、[F18]2−デオキシ−2−フルオロ−D−グルコース等の有用な放射性薬剤の合成に直接用いて、合成工程を一段階省略し、収量を増やし、合成時間を減らすことができる。
最後に、本発明は特定のターゲット、および試験的ランに用いたサイクロトロンを使用することに限定されるものではない。他の製造業者からの同等品は、装置にわずかな変更を必要とするに違いない。
したがって、実施態様の詳細な説明は、特許請求の範囲に記載された本発明の範囲に入る他の均等な実施態様を包含することを妨げるものではないことは明白である。
本発明を実施するための装置の概略図である。 2個の実験ラン用のリザーババイアルおよび交換カートリッジ放射線量のグラフである。 図1と同様のランのターゲット水の導電率グラフである。 図2と同様のランのターゲット水の圧力グラフである。

Claims (10)

  1. F−18同位元素を作る方法であって、
    a)ターゲットキャビティを含むターゲットループ(L1)を通してO−18水を循環させる間に、前記ターゲットキャビティに陽子線を照射して、O−18の一部をF−18に変換させるステップ;
    b)前記生成されたF−18の量を放射線センサーによってモニターするステップ;および
    c)定期的に、
    i)前記生成されたF−18を含む前記O−18水を、前記ターゲットループから、前記ターゲットキャビティとF−18抽出装置とO−18精製装置とを通る経路へ迂回させることにより、前記F−18を抽出し、かつ前記O−18水を前記ターゲットループ内での再利用のために精製し;
    ii)前記O−18水を前記経路から再び前記ターゲットループへ迂回させ;
    iii)前記F−18抽出装置内および前記O−18精製装置内に残留している前記O−18水を前記ターゲットループへ排出することにより、前記F−18抽出装置および前記O−18精製装置をパージし;
    iv)前記F−18抽出装置内に蓄積された前記F−18を溶出するステップ
    を含み、前記方法は、精製された前記O−18水が前記ターゲットキャビティを通して連続的に再循環されることを特徴とする、方法。
  2. 前記F−18抽出装置が陰イオン交換型フィルタである、請求項1に記載の方法。
  3. 前記循環するO−18水の、前記ターゲットキャビティ内における圧力を1.7MPa以上に維持する、請求項1に記載の方法。
  4. 前記O−18精製装置により、前記O−18水がイオン交換樹脂によって精製される、請求項1に記載の方法。
  5. 前記ステップ(c)において、陽子線照射を中断することなく、定期的に追加のO−18水を前記ターゲットループに再導入するステップをさらに含む、請求項1に記載の方法。
  6. 前記ステップ(c)において、陽子線照射を中断することなく、定期的にF−18の抽出を行う、請求項2、3、4、または5に記載の方法。
  7. O−18の一部をF−18に変換させるために陽子線によって照射されるターゲットキャビティと、F−18抽出装置と、O−18精製装置とを通る経路、および前記ターゲットキャビティを通るターゲットループ(L1)を備えた、O−18水を循環させてF−18同位元素を作るための装置であって、
    前記装置は、生成されたF−18の量をモニターするための放射線センサー、前記経路から前記ターゲットループへまたは前記ターゲットループから前記経路へ前記O−18水を迂回させる手段、および前記O−18水を前記ターゲットキャビティを通して連続的に再循環させる手段をさらに備えていることを特徴とする、装置。
  8. 前記F−18抽出装置が陰イオン交換型フィルタである、請求項7に記載の装置。
  9. 前記O−18水の圧力を維持するために背圧レギュレータを用いる、請求項7に記載の装置。
  10. 前記O−18精製装置が、イオン交換樹脂によって前記O−18水を精製する装置である、請求項7に記載の装置。
JP2003504417A 2001-06-11 2002-05-21 F−18フッ化物の製造方法および装置 Expired - Lifetime JP4486811B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/878,770 US6567492B2 (en) 2001-06-11 2001-06-11 Process and apparatus for production of F-18 fluoride
PCT/US2002/016017 WO2002101758A1 (en) 2001-06-11 2002-05-21 Process and apparatus for production of f-18 fluoride

Publications (2)

Publication Number Publication Date
JP2005505751A JP2005505751A (ja) 2005-02-24
JP4486811B2 true JP4486811B2 (ja) 2010-06-23

Family

ID=25372803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003504417A Expired - Lifetime JP4486811B2 (ja) 2001-06-11 2002-05-21 F−18フッ化物の製造方法および装置

Country Status (6)

Country Link
US (2) US6567492B2 (ja)
EP (1) EP1397812B1 (ja)
JP (1) JP4486811B2 (ja)
AT (1) ATE344966T1 (ja)
DE (1) DE60215939T2 (ja)
WO (1) WO2002101758A1 (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599484B1 (en) * 2000-05-12 2003-07-29 Cti, Inc. Apparatus for processing radionuclides
US6567492B2 (en) * 2001-06-11 2003-05-20 Eastern Isotopes, Inc. Process and apparatus for production of F-18 fluoride
CA2486722A1 (en) * 2002-05-21 2003-12-04 Duke University Batch target and method for producing radionuclide
US7018614B2 (en) * 2002-11-05 2006-03-28 Eastern Isotopes, Inc. Stabilization of radiopharmaceuticals labeled with 18-F
EP1429345A1 (fr) * 2002-12-10 2004-06-16 Ion Beam Applications S.A. Dispositif et procédé de production de radio-isotopes
JP2006527367A (ja) * 2003-04-22 2006-11-30 モレキュラー テクノロジーズ インコーポレイテッド Fdg等の分子画像化プローブを合成するためのシステム及び方法
US7776309B2 (en) * 2003-07-24 2010-08-17 The Queen's Medical Center Preparation and use of alkylating agents
EP1670519B1 (en) * 2003-09-11 2016-07-13 Mayo Foundation For Medical Education And Research Radiolabeled thymidine solid-phase extraction purification method
US7831009B2 (en) * 2003-09-25 2010-11-09 Siemens Medical Solutions Usa, Inc. Tantalum water target body for production of radioisotopes
EP1569243A1 (en) * 2004-02-20 2005-08-31 Ion Beam Applications S.A. Target device for producing a radioisotope
US9627097B2 (en) * 2004-03-02 2017-04-18 General Electric Company Systems, methods and apparatus for infusion of radiopharmaceuticals
US20050232861A1 (en) * 2004-04-20 2005-10-20 Buchanan Charles R Microfluidic apparatus and method for synthesis of molecular imaging probes including FDG
US20050232387A1 (en) * 2004-04-20 2005-10-20 Padgett Henry C Microfluidic apparatus and method for synthesis of molecular imaging probes
US20050279130A1 (en) * 2004-06-18 2005-12-22 General Electric Company 18O[O2] oxygen refilling technique for the production of 18[F2] fluorine
CA2572022C (en) * 2004-06-29 2012-09-04 Triumf, Operating As A Joint Venture By The Governors Of The University Of Alberta, The University Of British Columbia, Carleton University, Sim Forced convection target assembly
EP1820047B1 (en) 2004-08-12 2014-05-21 Gradel S.à.r.L. Process for neutron interrogation of objects in relative motion or of large extent
WO2006015864A1 (en) * 2004-08-12 2006-02-16 John Sved Proton generator apparatus for isotope production
US20060039522A1 (en) * 2004-08-18 2006-02-23 Research Foundation Of The State University Of New York Cyclotron target, apparatus for handling fluids with respect thereto and for recovering irradiated fluids, and methods of operating same
US20060062342A1 (en) * 2004-09-17 2006-03-23 Cyclotron Partners, L.P. Method and apparatus for the production of radioisotopes
US7235216B2 (en) * 2005-05-01 2007-06-26 Iba Molecular North America, Inc. Apparatus and method for producing radiopharmaceuticals
US7556780B1 (en) * 2006-09-11 2009-07-07 Atomic Energy Council-Institute Of Nuclear Energy Research Device for 123I-ADAM and automatic manufacturing device thereof
KR100855106B1 (ko) * 2007-02-02 2008-08-29 한국원자력연구원 0-18 농축표적의 유기불순물 정제 방법 및 장치
ATE529866T1 (de) 2007-10-29 2011-11-15 Atomic Energy Council Freisetzungssystem für flüssigisotope
US8340058B2 (en) * 2007-10-29 2012-12-25 Nvidia Corporation Headphone with enhanced voice communication
US20100243082A1 (en) * 2007-10-31 2010-09-30 Atomic Energy Council - Institute Of Nuclear Energy Research Liquid isotope delivery system
EP2063039A1 (en) * 2007-11-26 2009-05-27 Technical University of Denmark Light-weight load-bearing structure
KR20160072846A (ko) 2008-05-02 2016-06-23 샤인 메디컬 테크놀로지스, 인크. 의료용 동위원소를 생산하는 디바이스 및 방법
US8825015B2 (en) * 2008-09-18 2014-09-02 Nvidia Corporation Accessing web pages on communication paths with low bandwidth
US9464319B2 (en) 2009-03-24 2016-10-11 California Institute Of Technology Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes
US9447461B2 (en) 2009-03-24 2016-09-20 California Institute Of Technology Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes
CN102439717B (zh) 2009-03-24 2015-01-21 芝加哥大学 滑动式芯片装置和方法
US10196700B2 (en) 2009-03-24 2019-02-05 University Of Chicago Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes
US8670513B2 (en) * 2009-05-01 2014-03-11 Bti Targetry, Llc Particle beam target with improved heat transfer and related apparatus and methods
US8273300B2 (en) * 2009-07-09 2012-09-25 Siemens Medical Solutions Usa, Inc. Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure
US8435454B2 (en) * 2009-07-09 2013-05-07 Siemens Medical Solutions Usa, Inc. Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure
WO2012003009A2 (en) 2010-01-28 2012-01-05 Shine Medical Technologies, Inc. Segmented reaction chamber for radioisotope production
US9336916B2 (en) * 2010-05-14 2016-05-10 Tcnet, Llc Tc-99m produced by proton irradiation of a fluid target system
BE1019556A3 (fr) 2010-10-27 2012-08-07 Ion Beam Applic Sa Dispositif destine a la production de radioisotopes.
US9139316B2 (en) 2010-12-29 2015-09-22 Cardinal Health 414, Llc Closed vial fill system for aseptic dispensing
US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
US9269467B2 (en) 2011-06-02 2016-02-23 Nigel Raymond Stevenson General radioisotope production method employing PET-style target systems
US20130020727A1 (en) 2011-07-15 2013-01-24 Cardinal Health 414, Llc. Modular cassette synthesis unit
WO2013012822A1 (en) * 2011-07-15 2013-01-24 Cardinal Health 414, Llc Systems, methods, and devices for producing, manufacturing, and control of radiopharmaceuticals
US9417332B2 (en) 2011-07-15 2016-08-16 Cardinal Health 414, Llc Radiopharmaceutical CZT sensor and apparatus
EP2581914B1 (fr) * 2011-10-10 2014-12-31 Ion Beam Applications S.A. Procédé et installation pour la production d'un radioisotope
RU2649662C2 (ru) 2012-04-05 2018-04-05 Шайн Медикал Текнолоджиз, Инк. Водная сборка и способ управления
KR101443512B1 (ko) * 2013-03-27 2014-09-22 조선대학교산학협력단 O-18 농축수의 자동 공급 및 회수 기능을 갖는 방사성 동위원소 생산용 표적장치
US10473668B2 (en) * 2014-06-06 2019-11-12 The Regents Of The University Of California Self-shielded, benchtop radio chemistry system with a plurality shielded carriers containing a disposable chip cassette
NL2014828B1 (en) 2015-05-20 2017-01-31 Out And Out Chemistry S P R L Method of performing a plurality of synthesis processes of preparing a radiopharmaceutical in series, a device and cassette for performing this method.
KR102233112B1 (ko) * 2019-07-25 2021-03-29 한국원자력의학원 액체 타겟을 이용한 핵종 생산 장치
RU2724108C1 (ru) * 2019-08-20 2020-06-22 Акционерное общество "Государственный научный центр-Научно-исследовательский институт атомных реакторов" Мишень для наработки радиоактивных изотопов и способ ее изготовления
CN113828259A (zh) * 2021-09-24 2021-12-24 上海安迪科正电子技术有限公司 一种氟-18离子的生产方法及应用
CN117062296B (zh) * 2023-08-14 2024-02-02 北京恒益德科技有限公司 一种18f氟化钠半自动制备装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981769A (en) 1972-04-26 1976-09-21 Medi-Physics, Inc. Process for preparing fluorine-18
US3993538A (en) * 1976-01-27 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Production of high purity radiothallium
US4818468A (en) 1977-08-03 1989-04-04 The Regents Of The University Of California Continuous flow radioactive production
US4252668A (en) * 1979-02-22 1981-02-24 The United States Of America As Represented By The United States Department Of Energy Process for preparation of potassium-38
JPS57142600A (en) * 1981-02-28 1982-09-03 Japan Steel Works Ltd Target device
US4436717A (en) 1981-05-29 1984-03-13 The United States Of America As Represented By The United States Department Of Energy 18 F-4-Fluoroantipyrine
JPS603600A (ja) * 1983-06-21 1985-01-09 住友重機械工業株式会社 強制循環式の放射性同位体連続合成方法とそれに用いる装置
JPH0640160B2 (ja) * 1985-04-25 1994-05-25 住友重機械工業株式会社 放射性同位元素18f製造用ターゲット装置
US5037602A (en) 1989-03-14 1991-08-06 Science Applications International Corporation Radioisotope production facility for use with positron emission tomography
US5082980A (en) 1990-06-13 1992-01-21 Case Western Reserve University Process and apparatus for synthesizing oxygen-15 labelled butanol for positron emission tomography
MC2260A1 (fr) 1990-06-18 1993-04-26 Dow Chemical Co Formulations de produits radiopharmaceutiques,leur methode d'administration et leur procede de preparation
JPH0778558B2 (ja) * 1990-07-20 1995-08-23 日本鋼管株式会社 ▲上13▼nh▲上+▼▲下4▼,▲上18▼f−同時製造用ターゲット箱
CA2055297C (en) 1990-11-13 1996-10-08 Iwao Kanno Apparatus and method for producing and automatically injecting h--o
US5280505A (en) 1991-05-03 1994-01-18 Science Research Laboratory, Inc. Method and apparatus for generating isotopes
DK0600992T3 (da) 1991-08-29 2000-10-09 Mallinckrodt Medical Inc Anvendelse af gentissyre eller gentisylalkohol til stabilisering af radiomærkede peptider og proteiner
WO1994021653A1 (en) 1993-03-22 1994-09-29 General Electric Company Method for making 2-fluoro-2-deoxyglucose
US5425063A (en) 1993-04-05 1995-06-13 Associated Universities, Inc. Method for selective recovery of PET-usable quantities of [18 F] fluoride and [13 N] nitrate/nitrite from a single irradiation of low-enriched [18 O] water
US5468355A (en) 1993-06-04 1995-11-21 Science Research Laboratory Method for producing radioisotopes
WO1995018668A1 (de) 1994-01-11 1995-07-13 Forschungszentrum Jülich GmbH Verfahren zur abtrennung von trägerfreien radionukliden aus targetflüssigkeit, dessen anwendung und dafür geeignete anordnung
US5482865A (en) 1994-06-10 1996-01-09 Associated Universities, Inc. Apparatus and method for preparing oxygen-15 labeled water H2 [15 O] in an injectable form for use in positron emission tomography
JP3008329B2 (ja) 1995-01-26 2000-02-14 信彦 中澤 ラジオアイソトープ標識試薬調整用プレフィルドキット
US5573747A (en) 1995-05-19 1996-11-12 Lacy; Jeffrey L. Method for preparing a physiological isotonic pet radiopharmaceutical of 62 Cu
US5586153A (en) 1995-08-14 1996-12-17 Cti, Inc. Process for producing radionuclides using porous carbon
JPH0954196A (ja) 1995-08-17 1997-02-25 Nihon Medi Physics Co Ltd 18−f製造ターゲット部材及びターゲットシステム
US6066309A (en) 1996-02-02 2000-05-23 Rhomed Incorporated Post-labeling stabilization of radiolabeled proteins and peptides
US5932178A (en) 1996-03-29 1999-08-03 Nkk Plant Engineering Corporation FDG synthesizer using columns
BE1010280A3 (fr) 1996-05-02 1998-05-05 Coincidence S A Procede et dispositif de synthese de 2-[18f] fluoro-2-deoxy-d-glucose.
US6027710A (en) 1996-09-18 2000-02-22 Nihon Medi-Physiscs Co., Ltd. Radiation-protecting agent
JPH10206597A (ja) * 1997-01-23 1998-08-07 Rikagaku Kenkyusho 低速陽電子ビーム発生方法及び装置
US5917874A (en) 1998-01-20 1999-06-29 Brookhaven Science Associates Accelerator target
JPH11295494A (ja) * 1998-04-08 1999-10-29 Nippon Meji Physics Kk [f−18]−フッ化物イオンの製造方法
JP2001074891A (ja) * 1999-09-03 2001-03-23 Hitachi Ltd 放射線同位体製造装置および方法
DE60138526D1 (de) * 2000-02-23 2009-06-10 Univ Alberta The University Of Verfahren und vorrichtung zur erzeugung von 18f-fluorid
US6567492B2 (en) * 2001-06-11 2003-05-20 Eastern Isotopes, Inc. Process and apparatus for production of F-18 fluoride

Also Published As

Publication number Publication date
ATE344966T1 (de) 2006-11-15
DE60215939T2 (de) 2007-09-13
US6567492B2 (en) 2003-05-20
WO2002101758A1 (en) 2002-12-19
DE60215939D1 (de) 2006-12-21
US20030007588A1 (en) 2003-01-09
US20030194039A1 (en) 2003-10-16
EP1397812A1 (en) 2004-03-17
EP1397812B1 (en) 2006-11-08
JP2005505751A (ja) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4486811B2 (ja) F−18フッ化物の製造方法および装置
Guillaume et al. Recommendations for fluorine-18 production
EP1509925B1 (en) Batch target and method for producing radionuclide
US8437443B2 (en) Apparatuses and methods for production of radioisotopes in nuclear reactor instrumentation tubes
US9269467B2 (en) General radioisotope production method employing PET-style target systems
RU2630475C2 (ru) Генератор радионуклидов, имеющий первый и второй атомы первого элемента
AU2009284211A1 (en) Strontium-82/rubidium-82 generator, method for producing a rubidium-82 comprising diagnostic agent, said diagnostic agent and its use in medicine
JP6274689B1 (ja) Ri標識化合物製造装置及びri標識化合物製造方法
EP3413318B1 (en) Method for preparing radioactive substance through muon irradiation, and substance prepared using said method
Lepera et al. Production of [18F] fluoride with a high-pressure disposable [18O] water target
JP4898152B2 (ja) 18o[o2]酸素から18f[f2]フッ素の高収量製造
KR101638358B1 (ko) 방사성 동위원소 분리 장치 및 이를 이용한 방사성 동위원소 분리방법
Abel Isotope Harvesting of Aqueous Phase Ions from Heavy-Ion Fragmentation Facilities for the Production of a 47 Ca/47 Sc Generator
Youker et al. Compendium of Phase-I Mini-SHINE Experiments
Oberdorfer et al. Advanced high current target technology for large scale 123I and 18F production
Roberts et al. Isotope production for medical applications
US20240177880A1 (en) Terminally sterilized alpha-emitting isotope generator and method for producing terminally sterilized alpha-emitting isotope
Dahl et al. Production of radio-isotopes at North Shore University Hospital
Mausner et al. The production of spallation radionuclides for medical applications at BLIP
JPH04318497A (ja) インターゲットでの13n−アンモニア合成方法
Solin Medical isotope production experience at the VG Khlopin Radium Institute cyclotron
Bechtold Isotope production with cyclotrons
Chun Current status of the 124 Xe target system development for the high purity 123 I production in KCCH
Bjroenstad et al. The production of* sp81m* Kr generators at the Oslo cyclotron
JP2006194630A (ja) ラジオアイソトープ含有材料、その製造方法及び装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080806

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090803

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R150 Certificate of patent or registration of utility model

Ref document number: 4486811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term