JP4470186B2 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP4470186B2
JP4470186B2 JP2006335159A JP2006335159A JP4470186B2 JP 4470186 B2 JP4470186 B2 JP 4470186B2 JP 2006335159 A JP2006335159 A JP 2006335159A JP 2006335159 A JP2006335159 A JP 2006335159A JP 4470186 B2 JP4470186 B2 JP 4470186B2
Authority
JP
Japan
Prior art keywords
refresh
banks
bits
word line
row address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006335159A
Other languages
English (en)
Other versions
JP2008146781A (ja
Inventor
透 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2006335159A priority Critical patent/JP4470186B2/ja
Priority to US11/952,633 priority patent/US7663956B2/en
Publication of JP2008146781A publication Critical patent/JP2008146781A/ja
Application granted granted Critical
Publication of JP4470186B2 publication Critical patent/JP4470186B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40618Refresh operations over multiple banks or interleaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Description

本発明は、通常動作時にメモリセルアレイに対するリフレッシュを制御する半導体記憶装置に関し、特に、メモリセルアレイが複数のバンクに区分されて構成され、各々のバンクに対して複数のワード線を選択してリフレッシュを実行可能に構成されたDRAM(Dynamic Random Access Memory)等の半導体記憶装置に関するものである。
一般に、DRAMのメモリセルアレイのデータを保持するために所定のリフレッシュ周期でリフレッシュを実行する必要がある。DRAMの通常動作時には、仕様で定められたリフレッシュインターバル毎にリフレッシュカウンタによって行アドレスがカウントアップされ、カウント値により示される行アドレスを対象に順次リフレッシュが実行される。一般にDRAMは複数のバンクに区分され、各バンクに対し同時にワード線のリフレッシュが実行される。例えば、バンクごとにmビットの行アドレスに対応付けられた2本のワード線をリフレッシュインターバルの度に1本ずつリフレッシュする場合を考えると、各メモリセルのリフレッシュ周期は2・t(t:リフレッシュインターバル)となる。しかし、近年のDRAMの大容量化に伴い、リフレッシュ周期2・tではメモリセルのデータ保持特性が厳しくなる場合も多い。そのため、リフレッシュの頻度を増加させて、メモリセルのデータ保持時間の実力値に適合するリフレッシュ周期を確保することが望ましい。
そのための方策として、各バンクにおいてリフレッシュインターバル毎に複数のワード線を同時にリフレッシュする構成が採用されている(例えば、特許文献1参照)。例えば、行アドレスの1ビットをドントケアとすることにより、その1ビットが縮退し(0、1を問わず)、対応する2本のワード線をリフレッシュ対象として選択し、同時にリフレッシュ可能となる。リフレッシュカウンタのカウント値は、縮退された1ビットを除くm−1ビットの行アドレスを構成する各ビットに割り当てられ、順次カウントアップを行って各バンクに供給される。これにより、mビットの行アドレスで指定可能な2本のワード線のリフレッシュを全て完了するのに、2m−1回のリフレッシュを実行すればよいので、この場合のリフレッシュ周期は半分になる。
特開2003−187578号公報
上記従来のDRAMの構成では、毎回のリフレッシュインターバルにバンクごとのリフレッシュ対象のワード線を1本から2本に増加させることで、リフレッシュ周期を半減することが可能である。しかし、リフレッシュ周期を半減する場合、メモリセルのデータ保持時間の実力値に対して必要以上に短くなり過ぎ、実際にはリフレッシュ周期を若干低下させれば十分である状況も想定される。すなわち、毎回のリフレッシュインターバルにおいて、1本のワード線をリフレッシュする構成ではメモリセルのデータ保持特性の面から不足であるが、2本のワード線をリフレッシュするとリフレッシュの頻度が多くなり過ぎ、余分な電流を消費することになる。仮にメモリセルのデータ保持時間が毎回のリフレッシュインターバルに1.5本程度のリフレッシュに対応する実力があったとしても、これに適合するようにリフレッシュ周期を調整することは難しく、DRAMのリフレッシュ時に必要以上に電流が消費されることが問題となる。
また、リフレッシュ周期を適切に調整するための方策として、特定の時間帯で各バンクに対し1本ずつのワード線をリフレッシュ対象とし、それ以外の時間帯で各バンクに対し2本ずつのワード線をリフレッシュ対象とすることも考えられる。しかし、このような方策では、リフレッシュ周期に応じて、DRAMのリフレッシュ時の平均電流を低減することはできるが、ピーク電流は抑えることができない。すなわち、DRAMのピーク電流は、バンクごとに2本ずつのワード線を同時にリフレッシュするタイミングで流れる電流により規定される。よって、ピーク電流に起因するノイズによりDRAMのリフレッシュ動作の信頼性が低下することが問題となる。また、ワード線を駆動するための昇圧回路等は、ピーク電流に応じて回路規模を大きくする必要がある点も問題となる。
そこで、本発明はこれらの問題を解決するためになされたものであり、リフレッシュの仕様に制約されることなく、メモリセルのデータ保持時間の実力値に適合するリフレッシュ周期をきめ細かく制御し、リフレッシュの際の平均電流とピーク電流の双方を低減して小さい回路規模で高い信頼性を確保し得る半導体記憶装置を提供することを目的とする。
上記課題を解決するために、本発明の半導体記憶装置は、通常動作時に所定の間隔でリフレッシュ要求を受けたとき、行アドレスに基づき選択されるワード線を対象として順次リフレッシュを実行する半導体記憶装置であって、M個のバンクに区分されたメモリセルアレイと、前記リフレッシュ要求に応じて、リフレッシュ対象のワード線に対応するカウント値を順次出力するリフレッシュアドレスカウンタと、前記カウント値を変換して、前記M個のバンクのうち少なくとも2個以上のバンクで互いに異なる行アドレスを供給する行アドレス変換手段とを備え、複数のリフレッシュサイクルの少なくとも一つのリフレッシュサイクルにおいて、前記リフレッシュアドレスカウンタ及び前記行アドレス変換手段により、前記M個のバンクのそれぞれにおける所定のワード線を対象としてリフレッシュするとともに、前記M個よりも少ないバンクにおける別のワード線を対象としてリフレッシュを行い、リフレッシュされる選択ワード線の総数Pが、M<P<2Mの関係となり、前記リフレッシュアドレスカウンタの下位KビットがN進カウンタ(2<N<2のK乗)で構成され、前記N進カウンタの出力を前記カウント値とし、前記行アドレス変換手段は、少なくとも前記K個のシフトレジスタで構成され、前記K個のシフトレジスタの各々は、前記Kビットのうちの1ビットを順次シフトするM−1段のシフトレジスタであり、前記K個のシフトレジスタにおける同位置のKビットを各々の前記バンクに送出し、前記M個のバンクに対して1ずつ異なる前記行アドレスが供給される、ことを特徴とする。
このような本発明の構成によれば、リフレッシュ要求時にリフレッシュカウンタから出力されるカウント値は、行アドレス変換手段によりM個のバンクごとに異なる行アドレスに変換され、変換された行アドレスが各バンクに供給され所定数の選択ワード線をリフレッシュ対象としてリフレッシュが実行される。そして、バンクごとの選択ワード線の数は互いに異なるパターンに従い、全バンクで同時にリフレッシュ対象とされる選択ワード線の総数が変化し、その最大値が2Mに満たないように制御される。これにより、例えばM個のバンクに対して2本ずつ選択ワード線をリフレッシュ対象とする場合に比べ、リフレッシュ時の平均電流とピーク電流をともに小さくすることができる。従って、半導体記憶装置のリフレッシュの際にデータ保持時間の実力値に適合するリフレッシュ周期を確保しつつ、リフレッシュ時の消費電流の低減とピーク電流に起因するノイズの影響の軽減が可能となる。
本発明において、前記M個のバンクのうち少なくとも2個以上のバンクで互いに異なるパターンに従って1本の選択ワード線又は2本の選択ワード線を同時にリフレッシュ対象としてもよい。
本発明において、前記リフレッシュカウンタの下位KビットがN進カウンタを構成してもよい。
本発明において、前記行アドレスの所定のビットを縮退可能に構成し、前記行アドレス変換手段は、前記所定のビットの0と1いずれか一方の行アドレスに対応する1本のワード線を対象とするリフレッシュと、前記所定のビットが縮退されて0と1双方の行アドレスに対応する2本のワード線を対象とするリフレッシュとを切り替え可能に構成してもよい。
本発明において、前記行アドレス変換手段は、前記リフレッシュカウンタの下位Kビットがそれぞれ入力されるK個のシフトレジスタが並列配置されたシフトレジスタ部と、各々の前記M個のバンクに付随し、前記シフトレジスタ部のK個のシフトレジスタの所定位置から出力されるKビットのアドレス信号に基づき、前記M個のバンクのうち少なくとも2個以上のバンクで異なるパターンに従って前記1本の選択ワード線又は前記2本の選択ワード線に対応する行アドレスを前記バンクに供給するM個のマルチ選択部と、を含む構成としてもよい。
本発明において、前記K個のシフトレジスタの各々は、前記Kビットのうちの1ビットを順次シフトするM−1段のシフトレジスタで構成し、前記K個のシフトレジスタにおける同位置のKビットを各々の前記バンクに送出し、前記M個のバンクに対して1ずつ異なる行アドレスが供給される構成としてもよい。
本発明において、前記アドレス変換手段は、前記リフレッシュカウンタの下位Kビットに基づいて、前記M個のバンクにおいて前記所定のビットが同時に縮退されず少なくとも2個以上のバンクで互いに異なるパターンに従う行アドレスを生成する論理回路群から構成してもよい。
本発明によれば、M個のバンクに対し、互いに異なるパターンに従う行アドレスを供給して所定数の選択ワード線を同時にリフレッシュ対象とし、全てのバンクでリフレッシュ対象となる選択ワード線の総数が2Mに満たないような制御を行うので、半導体記憶装置の全体で毎回のリフレッシュ時の対象となるワード線の総数を適切に調整し、リフレッシュ時の平均電流とピーク電流をともに低減することができる。従って、データ保持特性に対して最適なリフレッシュ周期を確保しつつ、リフレッシュ時の消費電流の低減と、ピーク電流に起因するノイズの影響を軽減し得る半導体記憶装置を小さい回路規模で実現することができる。
以下、本発明の実施形態について図面を参照しながら説明する。ここでは、半導体記憶装置の一例として、4バンク構成のDRAMに対して本発明を適用することを想定し、構成が異なる2つの実施形態をそれぞれ説明する。
(第1実施形態)
まず、第1実施形態のDRAMの構成及び動作について説明する。図1は、第1実施形態のDRAMの要部構成を示すブロック図である。図1に示すDRAMでは、多数のメモリセルからなるメモリセルアレイ10が4つのバンクに区分されて配置されている。それぞれバンクA、B、C、Dと表記されるメモリセルアレイ10は、各バンクが同一の記憶容量と同一の構成を有している。メモリセルアレイ10には、マトリクス状に配置された複数のワード線と複数のビット線の交差部に形成された多数のメモリセルが含まれる。4つのバンクA、B、C、Dに対しては、リード動作又はライト動作を独立に制御することができる。なお、通常動作時において4つのバンクを選択するためのバンク選択信号が外部から入力される。
4つのバンクに対応する各メモリセルアレイ10の周囲には、行デコーダ11と列デコーダ12が配置されている。行デコーダ11は、指定された行アドレスに対応するワード線を選択し、列デコーダ12は、指定された列アドレスに対応するビット線を選択する。通常動作時には、選択されたバンクの行デコーダ11及び列デコーダ12により、任意のメモリセルを選択することができる
図1には、第1実施形態のリフレッシュ動作に関わる構成として、リフレッシュカウンタ13と、リフレッシュカウンタ13に付随するシフトレジスタ部14と、各バンクの行デコーダ11に付随する4つのマルチ選択部15と、制御部16を示している。このうち、制御部16がリフレッシュ動作の全体を制御し、外部からのリフレッシュコマンドに応じて各部に制御信号(不図示)を送出する。なお、実際のDRAMには、通常動作に用いる多くの構成要素が含まれるが、図1では省略されている。
リフレッシュカウンタ13は、リフレッシュコマンドを受けると、リフレッシュ対象として選択すべきワード線の行アドレスに対応するカウント値を順次出力する。リフレッシュカウンタ13のカウント値の上位11ビットは、行アドレスの下位11ビット(A0〜A10)として各バンクに供給される。また、リフレッシュカウンタ13のカウント値の下位3ビットは、シフトレジスタ部14に入力される。シフトレジスタ部14は、並列配置された3つの3ビットシフトレジスタを含み、バンクA、B、C、Dに対して、それぞれ3ビットずつのアドレス信号SA0〜SA2、SB0〜SB2、SC0〜SC2、SD0〜SD2を送出する。なお、アドレス信号は、各バンクの並び順に1ずつシフトされた値を有するが、具体的な動作については後述する。
各バンクに付随するマルチ選択部15は、シフトレジスタ部14から出力されるアドレス信号を用いて、行アドレスの上位3ビットA11〜A13を出力する。ここで、行アドレスの最上位ビットA13がリフレッシュ時に縮退可能に構成され、A13=0又はA13=1のいずれかの行アドレスに対応する1本のワード線が選択される場合と、A13が0か1かを問わず(縮退され)双方の行アドレスに対応する2本のワード線がマルチ選択される場合がある。各バンクのリフレッシュ対象のワード線は、リフレッシュ動作のタイミングに応じて1本又は2本のいずれかになる。
なお、シフトレジスタ部14と4つのマルチ選択部15は一体的に本発明の行アドレス変換手段として機能し、後述するように、各バンクに対して異なるパターンに従って1本又は2本の選択ワード線に対応する行アドレスを供給する役割を担う。
また、DRAMの構成において1つの行アドレスに対応する1本のワード線が、実際のレイアウト上、複数の領域に分割配置された複数の配線として構成される場合があるが、ここでは、配線レイアウト上分割配置されていたとしても、1つの行アドレスに対応する1本のワード線として説明を行うものとする。
次に、第1実施形態におけるリフレッシュカウンタ13とシフトレジスタ部14の構成及び動作について、図2を参照して説明する。図2に示すように、リフレッシュカウンタ13は、14段に接続されたカウンタ(C0〜C13)であり、14ビットのカウント値が順にカウントアップされる。リフレッシュカウンタ13のカウント値の上位11ビットC3〜C13は、行アドレスの下位11ビットA0〜A10に割り当てられている。一方、リフレッシュカウンタ13の下位3ビットC0〜C2は、シフトレジスタ部14の入力側に接続されている。なお、リフレッシュカウンタ13には、制御部16からリフレッシュの実行タイミングを示すリフレッシュ要求信号Rが供給される。
図2において、リフレッシュカウンタ13の下位3ビットC0〜C2は、N進カウンタ13aを構成する。例えば、N=5、6、7等の値を設定することができる。これにより、N進カウンタ13aの3ビットが0からN−1までの範囲でカウントアップされた後、その次のNでリセットされて再び0に戻り、これ以降、同様の動作が繰り返される。
シフトレジスタ部14は、リフレッシュカウンタ13の下位3ビットのうち、ビットC0をシフトする3段のシフトレジスタ(C00、C01、C02)と、ビットC1をシフトする3段のシフトレジスタ(C10、C11、C12)と、ビットC2をシフトする3段のシフトレジスタ(C20、C21、C22)を含んでいる。図2に示すように、シフトレジスタ部14の各初段C00、C10、C20の入力側は、3ビットのアドレス信号SA0、SA1、SA2としてバンクAに供給される。シフトレジスタ部14の各初段C00、C10、C20の出力側は、3ビットのアドレス信号SB0、SB1、SB2としてバンクBに供給される。シフトレジスタ部14の各2段目C01、C11、C21の出力側は、3ビットのアドレス信号SC0、SC1、SC2としてバンクCに供給される。シフトレジスタ部14の各3段目C02、C12、C22の出力側は、3ビットのアドレス信号SD0、SD1、SD2としてバンクDに供給される。
上記のように、シフトレジスタ部14の接続関係を定めたことにより、バンクA、B、C、Dに対し、異なるタイミングのアドレス信号を供給することができる。つまり、リフレッシュ動作の際、リフレッシュカウンタ13の最新のカウント値の下位3ビットをバンクAに供給し、1つ前のカウント値の下位3ビットをバンクBに供給し、2つ前のカウント値の下位3ビットをバンクCに供給し、4つ前のカウント値の下位3ビットをバンクDに供給することができる。
次に、第1実施形態においてN進カウンタ13aを6進カウンタとした場合(N=6の設定)の構成及び動作を説明する。図3は、N=6の設定に対応するマルチ選択部15の構成を示す図である。マルチ選択部15は、4つのバンクについて同様の構成を備えているので、代表してバンクAのマルチ選択部15の構成を説明する。図3に示すように、マルチ選択部15は、2つのNAND回路101、102と、2つのインバータ103、104を含んで構成される。
まず、アドレス信号SA0は、そのまま行アドレスのビットA11となり、アドレス信号SA1は、そのまま行アドレスのビットA12となる。一方、NAND回路101には、インバータ103を経由したアドレス信号SA1の反転信号と、アドレス信号SA2が入力され、その出力が行アドレスのビットA13のノット側のビットA13Nとなる。また、NAND回路102には、インバータ103を経由したアドレス信号SA1の反転信号と、インバータ104を経由したアドレス信号SA2の反転信号が入力され、その出力が行アドレスのビットA13のトゥルー側のビットA13Tとなる。
図3において2つのビットA13T、A13Nに着目すると、A13T=0、A13N=1のときは、最上位ビットA13=0の行アドレスに対応する1本のワード線が選択される。また、A13T=1、A13N=0のときは、最上位ビットA13=1の行アドレスに対応する1本のワード線が選択される。これに対し、A13T=1、A13N=1のときは、最上位ビットA13が0と1(ドントケア)双方の行アドレスに対応する2本のワード線が選択される。図3の場合、A13TとA13Nがともに1となるのは、アドレス信号SA1が1のときである。
図4は、N=6の設定に対応して実行されるリフレッシュ動作の推移を示す図である。図4では、リフレッシュカウンタ13のカウント値が0から始まり、所定のリフレッシュインターバルで順次カウントアップされる場合に、行アドレスの上位3ビットA11、A12、A13の変化をバンクごとに示している。なお、リフレッシュインターバルは仕様に応じて、例えば7.8μsに設定される。また、図4では、各リフレッシュインターバルにおける全バンクの選択ワード線の総数(合計値)を示している。N進カウンタ13aはN=6に設定されているので、カウント値の下位3ビットは101(2進)の次のタイミングで000(2進)に戻り、各バンクの行アドレスは6通りのパターンで順次変化する。
1回目と3回目のリフレッシュインターバルでは、3つのバンクで1本ずつのワード線が選択されるが、1つのバンクでマルチ選択部15により最上位ビットA13がドントケアとなり、2本のワード線が選択され、合計4本のワード線が選択される。また、4回目から6回目までのリフレッシュインターバルでは、2つのバンクで1本ずつのワード線が選択され、他の2つのバンクで2本ずつのワード線が選択され、合計6本のワード線が選択される。一方、2回目のリフレッシュインターバルでは、4バンクとも1本ずつのワード線が選択されるので、全バンクでは合計4本のワード線が選択されることになる。このようにして、選択ワード線の総数は、順に5、4、5、6、6、6と変化していく。
6回目のリフレッシュインターバルに続いてN進カウンタ13aがリセットされるので、7回目以降のリフレッシュインターバルでは、1〜6回目のリフレッシュインターバルと同様のパターンを繰り返して変化する。従って、選択ワード線の総数の最大値は、図4に示すように6回となる。仮に、4バンク全てについて2本ずつのワード線が選択される場合、選択ワード線の総数が8回であるので、2本分だけ少なくなっている。これにより、リフレッシュ動作に伴うピーク電流を、概ね3/4に低減することができる。なお、図4において、1回のリフレッシュ当たりの選択ワード線の総数の平均値は約5.33回となるので、4バンク全てについて毎回2本ずつのワード線が選択される場合に比べ、リフレッシュ周期を約1.5倍に伸ばすことができる。
図5は、N=7の設定(7進カウンタ)に対応するマルチ選択部15の構成を示す図である。マルチ選択部15は、4つのバンクについて同様の構成を備えているので、代表してバンクAのマルチ選択部15の構成を説明する。図5に示すように、マルチ選択部15は、3つのNAND回路111、112、113と、インバータ114を含んで構成される。図5を図3と比べると、NAND回路113が相違し、それ以外の点は共通する。NAND回路113には、アドレス信号SA0、SA1が入力され、その出力が2つのNAND回路111、112に入力される。
既に述べたように、A13T=0、A13N=1のときは、最上位ビットA13=0の行アドレスに対応する1本のワード線が選択され、A13T=1、A13N=0のときは、最上位ビットA13=1の行アドレスに対応する1本のワード線が選択される。一方、A13T=1、A13N=1のときは、最上位ビットA13が0と1(ドントケア)の行アドレスに対応する2本のワード線が選択される。図5の場合、A13TとA13Nがともに1となるのは、アドレス信号SA0、SA1がともに1のときである。
図6は、N=7の設定に対応して実行されるリフレッシュ動作の推移を示す図である。図6の各表記の意味は、図4の場合と同様である。この場合、N進カウンタ13aはN=7に設定されているので、カウント値の下位3ビットは110(2進)の次のタイミングで000(2進)に戻り、各バンクの行アドレスは7通りのパターンで順次変化する。1回目から3回目までのリフレッシュインターバルでは、4バンクとも1本ずつのワード線が選択されるので、全バンクでは合計4本のワード線が選択される。4回目から7回目のリフレッシュインターバルでは、3つのバンクで1本ずつのワード線が選択され、1つのバンクで2本のワード線が選択され、全バンクでは合計5本のワード線が選択される。このようにして、選択ワード線の総数は、順に4、4、4、5、5、5、5と変化していく。
7回目のリフレッシュインターバルに続いてN進カウンタ13aがリセットされるので、8回目以降のリフレッシュインターバルでは、1〜7回目のリフレッシュインターバルと同様のパターンを繰り返して変化する。従って、選択ワード線の総数の最大値は、図6に示すように5本となり、上述した8回に比べて3本分だけ少なくなっている。これにより、リフレッシュ動作に伴うピーク電流を、概ね5/8に低減することができる。なお、図6において、1回のリフレッシュ当たりの選択ワード線の総数の平均値は約4.57回となるので、4バンク全てについて毎回2本ずつのワード線が選択される場合に比べ、リフレッシュ周期を約1.75倍に伸ばすことができる。
図7は、N=5の設定(5進カウンタ)に対応するマルチ選択部15の構成を示す図である。マルチ選択部15は、4つのバンクについて同様の構成を備えているので、代表してバンクAのマルチ選択部15の構成を説明する。図7に示すように、マルチ選択部15は、2つのNAND回路121、122と、OR回路123と、インバータ124を含んで構成される。図7を図5と比べると、NAND回路113をOR回路123で置き換えた点が相違し、それ以外の点は共通する。OR回路123には、アドレス信号SA0、SA1が入力され、その出力が2つのNAND回路121、122に入力される。
既に述べたように、A13T=0、A13N=1のときは、最上位ビットA13=0の行アドレスに対応する1本のワード線が選択され、A13T=1、A13N=0のときは、最上位ビットA13=1の行アドレスに対応する1本のワード線が選択される。一方、A13T=1、A13N=1のときは、最上位ビットA13が0と1(ドントケア)の行アドレスに対応する2本のワード線が選択される。図7の場合、A13TとA13Nがともに1となるのは、アドレス信号SA0、SA1の一方又は両方が1のときである。
図8は、N=5の設定に対応して実行されるリフレッシュ動作の推移を示す図である。図8の各表記の意味は、図4及び図6の場合と同様である。この場合、N進カウンタ13aはN=5に設定されているので、カウント値の下位3ビットは100(2進)の次のタイミングで000(2進)に戻り、各バンクの行アドレスは5通りのパターンで順次変化する。1回目から3回目のリフレッシュインターバルでは、2バンクで1本ずつのワード線が選択され、他の2バンクで2本ずつのワード線が選択され、全バンクでは合計6本のワード線が選択される。4、5回目のリフレッシュインターバルでは、1バンクで1本ずつのワード線が選択され、他の3バンクで2本ずつのワード線が選択され、全バンクでは合計7本のワード線が選択される。このようにして、選択ワード線の総数は、順に6、6、6、7、7と変化していく。
5回目のリフレッシュインターバルに続いてN進カウンタ13aがリセットされるので、6回目以降のリフレッシュインターバルでは、1〜5回目のリフレッシュインターバルと同様のパターンを繰り返して変化する。従って、選択ワード線の総数の最大値は、図8に示すように7本となり、上述した8回に比べて1本分だけ少なくなっている。これにより、リフレッシュ動作に伴うピーク電流を、概ね7/8に低減することができる。なお、図8において、1回のリフレッシュ当たりの選択ワード線の総数の平均値は約6.4回となるので、4バンク全てについて毎回2本ずつのワード線が選択される場合に比べ、リフレッシュ周期を約1.25倍に伸ばすことができる。
(第2実施形態)
次に、第2実施形態のDRAMの構成及び動作について説明する。図9は、第2実施形態のDRAMの要部構成を示すブロック図である。図9に構成においては、4つのバンクA、B、C、Dに区分されたメモリセルアレイ10と、行デコーダ11と、列デコーダ12と、制御部16については、第1実施形態の図1と同様である。一方、図1におけるリフレッシュカウンタ13、シフトレジスタ部14、マルチ選択部15に対応する構成要素として、図9ではリフレッシュカウンタ20及びアドレス変換部21を備えている。
リフレッシュカウンタ20は、図1と同様、リフレッシュ対象として選択すべきワード線の行アドレスに対応するカウント値を順次出力するが、図1とは異なりカウント値の上位12ビットが、行アドレスの下位12ビット(A0〜A11)として各バンクに供給される。また、リフレッシュカウンタ20のカウント値の下位2ビットが、リフレッシュカウンタ20に付随するアドレス変換部21に入力される。アドレス変換部21は、リフレッシュカウンタ20のカウント値の下位2ビットを用いて、2つのバンクA、Bに対して共通に供給される行アドレスの上位2ビットA12、A13を送出するとともに、他の2つのバンクC、Dに対して共通に供給される行アドレスの上位2ビットA12、A13を送出するための論理回路群からなる。なお、アドレス変換部21から送出される最上位ビットA13は、上述したようにリフレッシュ時に縮退可能に構成されるため、トゥルー側のビットA13Tとノット側のビットA13Nを含んでいる。
次に、第2実施形態におけるリフレッシュカウンタ20とアドレス変換部21の構成及び動作について、図10を参照して説明する。図10に示すように、リフレッシュカウンタ20は、図2と同様の14段に接続されたカウンタ(C0〜C13)であり、14ビットのカウント値が順にカウントアップされる。リフレッシュカウンタ20のカウント値の上位12ビットC2〜C13は、行アドレスの下位12ビットA0〜A11に割り当てられている。一方、リフレッシュカウンタ20の下位2ビットC0、C1は、アドレス変換部21の入力側に接続されている。なお、リフレッシュカウンタ20には、制御部16からリフレッシュの実行タイミングを示すリフレッシュ要求信号Rが供給される。
図10において、リフレッシュカウンタ20の下位2ビットC0、C1は、N進カウンタ20aを構成し、例えば、N=2、3等の値を設定することができる。N進カウンタ20aの3ビットが0からN−1までの範囲でカウントアップされた後、その次のNでリセットされて再び0に戻り、これ以降、同様の動作が繰り返される。
アドレス変換部21は、2つのバンクA、Bに対応する回路部と、2つのバンクC、Dに対応する回路部が同様の構成を備え、それぞれ2つのNAND回路201、202と2つのインバータ203、204から構成されている。ここで、図10においては、N進カウンタ20aを3進カウンタとした場合(N=3の設定)に対応するアドレス変換部21の回路構成を示している。
図10に示すように、リフレッシュカウンタ20のビットC0は、そのままバンクA、Bの側の行アドレスのビットA12となり、リフレッシュカウンタ20のビットC1は、そのままバンクC、Dの側の行アドレスのビットA12となる。一方のNAND回路201には、インバータ203を経由したビットC0(C1)の反転信号と、ビットC1(C0)が入力され、その出力が行アドレスのビットA13のノット側のビットA13Nとなる。他方のNAND回路202には、インバータ203を経由したビットC0(C1)の反転信号と、インバータ204を経由したビットC1(C0)の反転信号が入力され、その出力が行アドレスのビットA13のトゥルー側のビットA13Tとなる。
図11は、N=3の設定に対応して実行されるリフレッシュ動作の推移を示す図である。図11では、リフレッシュカウンタ20のカウント値が0から始まり、所定のリフレッシュインターバルで順次カウントアップされる場合に、行アドレスの上位2ビットA12、A13(A13T及びA13N)の変化をバンクごとに示している。また、各リフレッシュインターバルにおける全バンクの選択ワード線の総数を示している。N進カウンタ20aはN=3に設定されているので、カウント値の下位2ビットは10(2進)の次のタイミングで00(2進)に戻り、各バンクの行アドレスは3通りのパターンで順次変化する。
図10のアドレス変換部21の構成に基づき、バンクAとバンクBの行アドレスが同一のパターンで変化するとともに、バンクCとバンクDの行アドレスが同一のパターンで変化する。1回目のリフレッシュインターバルでは、全てのバンクで1本ずつのワード線が選択される。一方、2回目のリフレッシュインターバルでは、バンクAとバンクBで2本のワード線が選択され、3回目のリフレッシュインターバルでは、バンクCとバンクDで2本のワード線が選択される。このようにして、選択ワード線の総数は、順に4、6、6、4と変化していく。
3回目のリフレッシュインターバルに続いてN進カウンタ20aがリセットされるので、4回目以降のリフレッシュインターバルでは、1〜3回目のリフレッシュインターバルと同様のパターンを繰り返して変化する。従って、選択ワード線の総数の最大値は、図11に示すように6本となり、上述した8回に比べて2本分だけ少なくなっている。これにより、リフレッシュ動作に伴うピーク電流を、概ね3/4に低減することができる。なお、図11において、1回のリフレッシュ当たりの選択ワード線の総数の平均値は5回となるので、4バンク全てについて毎回2本ずつのワード線が選択される場合に比べ、リフレッシュ周期を1.25倍に伸ばすことができる。
以上説明したように、第1実施形態又は第2実施形態を採用することにより、リフレッシュ対象の選択ワード線の総数を適切に設定し、リフレッシュ動作に伴う平均電流及びピーク電流をともに低減することができる。従って、DRAMのリフレッシュ時に流れる電流を小さくし、かつピーク電流に起因するノイズの影響を抑えて信頼性を高め、ワード線用の昇圧回路等の回路規模を小さくすることができる。この場合、リフレッシュ周期をメモリセルの実力値に適合するように設定する一方で、リフレッシュインターバルごとの選択ワード線の総数が最適になるように変換される行アドレスのパターンを自在に設定することができる。
なお、上記各実施形態では、メモリセルアレイ10が4つのバンクA、B、C、Dに区分される場合を説明したが、4つに限られることなくメモリセルアレイ10がM個のバンクの区分される場合であっても広く本発明を適用することができる。また、リフレッシュカウンタ13、20の段数の設定や、そのうちのKビットを含むN進カウンタの設定(K、Nの選択)は自在に変更することができる。
第1実施形態のDRAMの要部構成を示すブロック図である。 第1実施形態におけるリフレッシュカウンタとシフトレジスタ部の構成を示す図である。 第1実施形態において、N=6の設定に対応するマルチ選択部の構成を示す図である。 第1実施形態において、N=6の設定に対応して実行されるリフレッシュ動作の推移を示す図である。 第1実施形態において、N=7の設定に対応するマルチ選択部の構成を示す図である。 第1実施形態において、N=7の設定に対応して実行されるリフレッシュ動作の推移を示す図である。 第1実施形態において、N=5の設定に対応するマルチ選択部の構成を示す図である。 第1実施形態において、N=5の設定に対応して実行されるリフレッシュ動作の推移を示す図である。 第2実施形態のDRAMの要部構成を示すブロック図である。 第2実施形態において、N=3の設定に対応するリフレッシュカウンタとアドレス変換部の構成を示す図である。 第2実施形態において、N=3の設定に対応して実行されるリフレッシュ動作の推移を示す図である。
符号の説明
10…メモリセルアレイ(バンクA、B、C、D)
11…行デコーダ
12…列デコーダ
13、20…リフレッシュカウンタ
15a、20a…N進カウンタ
14…シフトレジスタ部
15…マルチ選択部
16…制御部
21…アドレス変換部
101、102、111、112、113、121、122、201、202…NAND回路
103、104、114、113、124、203、204…インバータ
123、203…OR回路
A0〜A13…行アドレス
SA0、SA1、SA2、SB0、SB1、SB2、SC0、SC1、SC2、…アドレス信号

Claims (6)

  1. 通常動作時に所定の間隔でリフレッシュ要求を受けたとき、行アドレスに基づき選択されるワード線を対象として順次リフレッシュを実行する半導体記憶装置であって、
    M個のバンクに区分されたメモリセルアレイと、
    前記リフレッシュ要求に応じて、リフレッシュ対象のワード線に対応するカウント値を順次出力するリフレッシュアドレスカウンタと、
    前記カウント値を変換して、前記M個のバンクのうち少なくとも2個以上のバンクで互いに異なる行アドレスを供給する行アドレス変換手段と、
    を備え
    複数のリフレッシュサイクルの少なくとも一つのリフレッシュサイクルにおいて、
    前記リフレッシュアドレスカウンタ及び前記行アドレス変換手段により、前記M個のバンクのそれぞれにおける所定のワード線を対象としてリフレッシュするとともに、前記M個よりも少ないバンクにおける別のワード線を対象としてリフレッシュを行い、リフレッシュされる選択ワード線の総数Pが、M<P<2Mの関係となり、
    前記リフレッシュアドレスカウンタの下位KビットがN進カウンタ(2<N<2のK乗)で構成され、前記N進カウンタの出力を前記カウント値とし、
    前記行アドレス変換手段は、少なくとも前記K個のシフトレジスタで構成され、
    前記K個のシフトレジスタの各々は、前記Kビットのうちの1ビットを順次シフトするM−1段のシフトレジスタであり、前記K個のシフトレジスタにおける同位置のKビットを各々の前記バンクに送出し、前記M個のバンクに対して1ずつ異なる前記行アドレスが供給される、ことを特徴とする半導体記憶装置。
  2. 前記M個のバンクは、各々が前記異なるアドレスでそれぞれN回繰り返されるNパターンによって前記順次リフレッシュを行なう、ことを特徴とする請求項に記載の半導体記憶装置。
  3. 前記M個のバンクのうち少なくとも2個以上のバンクで互いに異なる前記Nパターンに従って1本の選択ワード線又は2本の選択ワード線が同時にリフレッシュ対象とされることを特徴とする請求項に記載の半導体記憶装置。
  4. 通常動作時に所定の間隔でリフレッシュ要求を受けたとき、行アドレスに基づき選択されるワード線を対象として順次リフレッシュを実行する半導体記憶装置であって、
    M個のバンクに区分されたメモリセルアレイと、
    前記リフレッシュ要求に応じて、リフレッシュ対象のワード線に対応するカウント値を順次出力するリフレッシュアドレスカウンタと、
    前記カウント値を変換して、前記M個のバンクのうち少なくとも2個以上のバンクで互いに異なる行アドレスを供給する行アドレス変換手段と、を備え、
    複数のリフレッシュサイクルの少なくとも一つのリフレッシュサイクルにおいて、前記リフレッシュアドレスカウンタ及び前記行アドレス変換手段により、前記M個のバンクのそれぞれにおける所定のワード線を対象としてリフレッシュするとともに、前記M個よりも少ないバンクにおける別のワード線を対象としてリフレッシュを行い、リフレッシュされる選択ワード線の総数Pが、M<P<2Mの関係となり、
    前記リフレッシュアドレスカウンタの下位KビットがN進カウンタ(2<N<2のK乗)で構成され、前記N進カウンタの出力を前記カウント値とし、
    前記下位Kビットに対応する前記行アドレスの所定のビットが縮退可能に構成され、
    前記行アドレス変換手段は、前記所定のビットの0と1いずれか一方の行アドレスに対応する1本のワード線を対象とするリフレッシュと、前記所定のビットが縮退されて0と1双方の行アドレスに対応する2本のワード線を対象とするリフレッシュと、を切り替え可能であり、
    前記行アドレス変換手段は、
    前記リフレッシュアドレスカウンタの下位Kビットがそれぞれ入力されるK個のシフトレジスタが並列配置されたシフトレジスタ部と、
    各々の前記M個のバンクに付随し、前記シフトレジスタ部のK個のシフトレジスタの所定位置から出力されるKビットのアドレス信号に基づき、前記M個のバンクのうち少なくとも2個以上のバンクで異なるNパターンに従って前記1本の選択ワード線又は前記2本の選択ワード線に対応する行アドレスを前記バンクに供給するM個のマルチ選択部と、
    を含み、
    前記K個のシフトレジスタの各々は、前記Kビットのうちの1ビットを順次シフトするM−1段のシフトレジスタであり、前記K個のシフトレジスタにおける同位置のKビットを各々の前記バンクに送出し、前記M個のバンクに対して1ずつ異なる行アドレスが供給されることを特徴とする半導体記憶装置。
  5. 前記アドレス変換手段は、
    前記リフレッシュアドレスカウンタの下位Kビットに基づいて、前記M個のバンクにおいて前記所定のビットが同時に縮退されず少なくとも2個以上のバンクで互いに異なるNパターンに従う行アドレスを生成する論理回路群から構成されることを特徴とする請求項に記載の半導体記憶装置。
  6. 通常動作時に所定の間隔でリフレッシュ要求を受けたとき、行アドレスに基づき選択されるワード線を対象として順次リフレッシュを実行する半導体記憶装置であって、
    M個のバンクに区分されたメモリセルアレイと、
    前記リフレッシュ要求に応じて、リフレッシュ対象のワード線に対応するカウント値を順次出力するリフレッシュアドレスカウンタと、
    前記カウント値を変換して、前記M個のバンクのうち少なくとも2個以上のバンクで互いに異なる行アドレスを供給する行アドレス変換手段と
    備え、
    前記所定の間隔で実行されるリフレッシュ動作の際、前記M個のバンクのうち少なくとも2個以上のバンクで互いに異なるパターンに従う所定数の選択ワード線が同時にリフレッシュ対象とされ、前記M個のバンクの全てに対して同時にリフレッシュ対象とされる前記選択ワード線の総数の最大値が2Mに満たないように制御され、
    前記M個のバンクのうち少なくとも2個以上のバンクで互いに異なるパターンに従って1本の選択ワード線又は2本の選択ワード線が同時にリフレッシュ対象とされ、
    前記リフレッシュアドレスカウンタの下位KビットがN進カウンタを構成し、
    前記行アドレスの所定のビットが縮退可能に構成され、
    前記行アドレス変換手段は、前記所定のビットの0と1いずれか一方の行アドレスに対応する1本のワード線を対象とするリフレッシュと、前記所定のビットが縮退されて0と1双方の行アドレスに対応する2本のワード線を対象とするリフレッシュと、を切り替え可能であり、
    前記行アドレス変換手段は、
    前記リフレッシュアドレスカウンタの下位Kビットがそれぞれ入力されるK個のシフトレジスタが並列配置されたシフトレジスタ部と、
    各々の前記M個のバンクに付随し、前記シフトレジスタ部のK個のシフトレジスタの所定位置から出力されるKビットのアドレス信号に基づき、前記M個のバンクのうち少なくとも2個以上のバンクで異なるパターンに従って前記1本の選択ワード線又は前記2本の選択ワード線に対応する行アドレスを前記バンクに供給するM個のマルチ選択部とを含み、
    前記K個のシフトレジスタの各々は、前記Kビットのうちの1ビットを順次シフトするM−1段のシフトレジスタであり、前記K個のシフトレジスタにおける同位置のKビットを各々の前記バンクに送出し、前記M個のバンクに対して1ずつ異なる行アドレスが供給されることを特徴とする半導体記憶装置。
JP2006335159A 2006-12-12 2006-12-12 半導体記憶装置 Expired - Fee Related JP4470186B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006335159A JP4470186B2 (ja) 2006-12-12 2006-12-12 半導体記憶装置
US11/952,633 US7663956B2 (en) 2006-12-12 2007-12-07 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335159A JP4470186B2 (ja) 2006-12-12 2006-12-12 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2008146781A JP2008146781A (ja) 2008-06-26
JP4470186B2 true JP4470186B2 (ja) 2010-06-02

Family

ID=39497832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335159A Expired - Fee Related JP4470186B2 (ja) 2006-12-12 2006-12-12 半導体記憶装置

Country Status (2)

Country Link
US (1) US7663956B2 (ja)
JP (1) JP4470186B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599559B2 (ja) * 2008-11-27 2014-10-01 ピーエスフォー ルクスコ エスエイアールエル 半導体装置及びそのリフレッシュ方法
KR20110030779A (ko) * 2009-09-18 2011-03-24 삼성전자주식회사 메모리 장치, 이를 구비하는 메모리 시스템 및 이의 제어 방법
JP2011065732A (ja) 2009-09-18 2011-03-31 Elpida Memory Inc 半導体記憶装置
JP5538958B2 (ja) * 2010-03-05 2014-07-02 ピーエスフォー ルクスコ エスエイアールエル 半導体装置
JP5533696B2 (ja) * 2011-01-26 2014-06-25 富士通セミコンダクター株式会社 半導体メモリおよび半導体メモリの動作方法
KR20130084369A (ko) 2012-01-17 2013-07-25 삼성전자주식회사 메모리 장치, 이의 동작 방법, 및 상기 메모리 장치를 포함하는 장치
KR101975029B1 (ko) 2012-05-17 2019-08-23 삼성전자주식회사 리프레쉬 주기를 조절하는 반도체 메모리 장치, 메모리 시스템 및 그 동작방법
US9292451B2 (en) 2013-02-19 2016-03-22 Qualcomm Incorporated Methods and apparatus for intra-set wear-leveling for memories with limited write endurance
US9348743B2 (en) * 2013-02-21 2016-05-24 Qualcomm Incorporated Inter-set wear-leveling for caches with limited write endurance
US8879349B2 (en) * 2013-02-26 2014-11-04 Kabushiki Kaisha Toshiba Storage device
US11120860B1 (en) * 2020-08-06 2021-09-14 Micron Technology, Inc. Staggering refresh address counters of a number of memory devices, and related methods, devices, and systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122065A (ja) 1993-10-20 1995-05-12 Kokusai Electric Co Ltd メモリ制御回路
JPH1139861A (ja) 1997-07-16 1999-02-12 Toshiba Corp ダイナミック型半導体記憶装置
US6888776B2 (en) * 2000-09-06 2005-05-03 Renesas Technology Corp. Semiconductor memory device
JP2003187578A (ja) * 2001-12-19 2003-07-04 Elpida Memory Inc 半導体記憶装置およびリフレッシュ制御方法
US7266032B2 (en) * 2005-09-30 2007-09-04 Infineon Technologies Ag Memory device having low Vpp current consumption

Also Published As

Publication number Publication date
JP2008146781A (ja) 2008-06-26
US20080137463A1 (en) 2008-06-12
US7663956B2 (en) 2010-02-16

Similar Documents

Publication Publication Date Title
JP4470186B2 (ja) 半導体記憶装置
US11935576B2 (en) Semiconductor device performing row hammer refresh operation
US7773447B2 (en) Memory circuit, semiconductor device and read control method of memory circuit
US5343438A (en) Semiconductor memory device having a plurality of row address strobe signals
US6928028B2 (en) Synchronous dynamic random access memory for burst read/write operations
US6603701B2 (en) Semiconductor memory apparatus having cell blocks and column drivers with a column address decoding module and a column drive enable signal generation module arranged to effectively reduce chip size
US20110058438A1 (en) Semiconductor memory device and refresh control method of memory system
JP2002216473A (ja) 半導体メモリ装置
US6335889B1 (en) Semiconductor memory device
US20110103121A1 (en) Stacked semiconductor device and automatic chip recognition selection circuit
JP4117323B2 (ja) 半導体記憶装置
JP2000156079A (ja) マルチバンク構造を有する半導体メモリ装置
US6448602B1 (en) Semiconductor memory device with improved arrangement of memory blocks and peripheral circuits
US11356081B2 (en) Average interval generator
US7907473B2 (en) Semiconductor memory device and data storage method including address conversion circuit to convert coordinate information of data into one-dimensional information to amplifier
US20080298153A1 (en) Semiconductor memory device
KR100414956B1 (ko) 반도체 메모리 장치
JP4215795B2 (ja) ルックアップテーブルカスケード回路、ルックアップテーブルカスケードアレイ回路及びそのパイプライン制御方法
KR100914329B1 (ko) 반도체 메모리 장치 및 그 테스트 방법
JP4819325B2 (ja) 集積回路装置及びその動作方法
JP2004362756A5 (ja)
US8976617B2 (en) Semiconductor device having plural selection lines selected based on address signal
US11354066B2 (en) Command filter filtering command having predetermined pulse width
KR100650716B1 (ko) 디램의 리프레쉬 주기 조절장치
KR20060088968A (ko) 셀프 리프레시 펄스 생성 장치 및 이를 구비하는 반도체메모리 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees