JP4464307B2 - 軽量鉄骨住宅の制震構造 - Google Patents

軽量鉄骨住宅の制震構造 Download PDF

Info

Publication number
JP4464307B2
JP4464307B2 JP2005104278A JP2005104278A JP4464307B2 JP 4464307 B2 JP4464307 B2 JP 4464307B2 JP 2005104278 A JP2005104278 A JP 2005104278A JP 2005104278 A JP2005104278 A JP 2005104278A JP 4464307 B2 JP4464307 B2 JP 4464307B2
Authority
JP
Japan
Prior art keywords
frame
viscoelastic damper
viscoelastic
tan
kbs1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005104278A
Other languages
English (en)
Other versions
JP2006283377A (ja
Inventor
友和 高田
高 内山
功 夏堀
守 佐藤
重和 横山
弘臣 田中
清次 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Sekisui House Ltd
Original Assignee
Sumitomo Riko Co Ltd
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Sekisui House Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2005104278A priority Critical patent/JP4464307B2/ja
Publication of JP2006283377A publication Critical patent/JP2006283377A/ja
Application granted granted Critical
Publication of JP4464307B2 publication Critical patent/JP4464307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、地震により発生する振動の減衰を図るために軽量鉄骨住宅に採用される制震構造に関するものである。
軽量鉄骨住宅の制震構造として、柱材と横架材とから構成される枠組フレームを上下の梁の間に付設し、その枠組フレームの内外に粘弾性ダンパーやオイルダンパー等の制震装置を設けることにより、地震によるエネルギーを粘性減衰エネルギーとして吸収して制震効果を得るものが知られている。具体的には、枠組フレームと梁との間に粘弾性ダンパーを設置した制震構造(特許文献1)や、枠組フレームを上下に分けて構成し、それらの2つの枠組フレームの間に粘弾性ダンパーを設置した制震構造(特許文献2)、枠組フレームの内部を上下に二分割するように補強材を水平に架設し、その補強材の上下において、二つのオイルダンパーを互い違いの傾斜状に設置したKブレース型の制震構造(特許文献3)が知られている。
特開2001−90381号公報 特開2001−90379号公報 特開2004−218207号公報
しかしながら、上記従来の制震構造における枠組フレームでは、粘弾性ダンパーを除いた枠組フレームの取付剛性(枠組フレーム全体の取付剛性)と粘弾性ダンパーの貯蔵剛性(硬さ)とのバランスが悪いと、粘弾性ダンパーが変位する前に枠組フレーム自体や粘弾性ダンパーの取り付け部分が変形してしまい、十分な減衰性能が得られない、という事態が発生する。
本発明の目的は、上記従来の軽量鉄骨住宅の制震構造が有する問題点を解消し、粘弾性ダンパーが十分な減衰特性を発揮し、地震による振動エネルギーを効率的に熱エネルギーに変換し、建物の変形を軽減することが可能な軽量鉄骨住宅の制震構造を提供することにある。
かかる本発明の内、請求項1に記載された発明の構成は、左右の柱材と上下の横架材とから構成される枠組フレームに粘弾性ダンパーを設置してなる軽量鉄骨住宅の制震構造であって、前記枠組フレームの内部が上下に少なくとも1個以上のn個の領域に分割されており、それらの各領域においては、左右一対の支持フレームが、それぞれ、左右の柱材の内側に、柱材と横架材あるいは枠組フレーム内部を分割する中桟との仕口に連結され、かつ、同側の柱材と横架材あるいは前記中桟との仕口に連結された状態で、互いに平行となるように鉛直に設置されているとともに、前記各領域における左右一対の支持フレームの間には、枠組フレーム面に対して平行に対向させたプレート同士の間に粘弾性体を介在させてなる粘弾性ダンパーが取り付けられており、層間変位角が1/200rad以上である場合に、前記n個に分割された第一〜第nの各領域において、下式a〜cを満たすことにある。
20/nkN/cm≦Kbs1,Kbs2,・・・,Kbsn≦100/nkN/cm ・・a
1.5≦Kbs1/K’ds1,Kbs2/K’ds2,・・・,Kbsn/K’ds≦10 ・・b
tanδ1,tanδ2,・・・,tanδn≧0.6 ・・c
(但し、Kbs1,Kbs2,・・・,Kbsnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの各取付部分の取付剛性であり、K’ds1,K’ds2,・・・K’dsnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの貯蔵剛性であり、tanδ1,tanδ2,・・・tanδnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの損失係数である)
請求項2に記載された発明の構成は、左右の柱材と上下の横架材とから構成される枠組フレームに粘弾性ダンパーを設置してなる軽量鉄骨住宅の制震構造であって、前記枠組フレームの内部が中桟によって上下に二分割されており、その中桟の上下においては、左右一対の支持フレームが、それぞれ、左右の柱材の内側に、柱材と横架材との仕口に連結され、かつ、同側の柱材と中桟との仕口に連結された状態で、互いに平行となるように鉛直に設置されているとともに、前記中桟の上側に設けられた左右一対の支持フレームの間には、枠組フレーム面に対して平行に対向させたプレート同士の間に粘弾性体を介在させてなる第一粘弾性ダンパーが取り付けられており、かつ、前記中桟の下側に設けられた左右一対の支持フレームの間には、枠組フレーム面に対して平行に対向させたプレート同士の間に粘弾性体を介在させてなる第二粘弾性ダンパーが取り付けられており、層間変位角が1/200rad以上である場合に、下式1〜6を満たすことにある。
10kN/cm≦Kbs1≦50kN/cm ・・1
10kN/cm≦Kbs2≦50kN/cm ・・2
1.5≦Kbs1/K’ds1≦10 ・・3
1.5≦Kbs2/K’ds2≦10 ・・4
tanδ1≧0.6 ・・5
tanδ2≧0.6 ・・6
(但し、Kbs1,Kbs2は、それぞれ、第一粘弾性ダンパーの取付部分の取付剛性、第二粘弾性ダンパーの取付部分の取付剛性であり、K’ds1,K’ds2は、それぞれ、第一粘弾性ダンパーの貯蔵剛性、第二粘弾性ダンパーの貯蔵剛性であり、tanδ1,tanδ2は、それぞれ、第一粘弾性ダンパーの損失係数、第二粘弾性ダンパーの損失係数である)
本発明の如く、内部が上下に少なくとも1個以上n個の領域に分割されており、各領域に、それぞれ第一〜第n粘弾性ダンパーが取り付けられた枠組フレームにおいては、水平方向のみを考慮すると、枠組フレーム全体の特性を、図1(a)の如き並列水平換算バネとしてモデル化することができる。
たとえば、内部を上下二つの領域に分割して、上側の領域に第一粘弾性ダンパーを取り付け、下側の領域に第二粘弾性ダンパーを取り付けた枠組フレーム(以下、二分割タイプの枠組フレームという)においては、水平方向のみを考慮すると、枠組フレーム全体の特性を、図1(b)の如き並列水平換算バネとしてモデル化することができる。なお、図1において、M1のバネは、枠組フレームの第一粘弾性ダンパーの取付部分を弾性要素として示したものであり、M2のバネおよびダッシュポットは、第一粘弾性ダンパーを粘弾性要素として示したものである。また、M3のバネは、枠組フレームの第二粘弾性ダンパーの取付部分を弾性要素として示したものであり、M4のバネおよびダッシュポットは、第二粘弾性ダンパーを粘弾性要素として示したものである。
したがって、枠組フレームに粘弾性ダンパーの代わりに剛体(きわめて剛性の高い鋼材等)を取り付けて測定した場合の取付強度を、枠組フレーム全体の取付剛性Kbs(sは水平成分を示す)の近似値とすることができ、その取付剛性Kbsから下式8,9を利用して、各粘弾性ダンパーの取付部分の取付剛性Kbs1〜Kbsnを求めることができる。
Kbs=Kbs1/n+Kbs2/n+・・・+Kbsn/n ・・8
Kbs1=Kbs2=・・・=Kbsn ・・9
本発明の制震構造においては、層間変形量が1/200rad以上である場合に、上記の如く枠組フレームに剛体を取り付けて求められる取付剛性Kbs1〜Kbsnが、いずれも、20/nkN/cm以上100/nkN/cm以下となるように調整されることが必要である(なお、nは、枠組フレームの上下方向の分割数である)。たとえば、二分割タイプの枠組フレームにおいては、層間変形量が1/200rad以上である場合に、枠組フレームに剛体を取り付けて求められる取付剛性Kbs1および取付剛性Kbs2が、いずれも、40kN/cm以上200kN/cm以下となるように調整されることが必要である。なお、層間変形角とは、各層の層間変位をその階の高さで除した値のことである。Kbs1〜Kbsnが、20/nkN/cm未満となると、地震によって振動した場合に、枠組フレーム自体が変形してしまい、第一粘弾性ダンパー、第二粘弾性ダンパーが十分な減衰特性を発揮できなくなる。なお、Kbs1〜Kbsnを増加させる方法としては、柱材や横架材の断面剛性を高める方法等を挙げることができる、反対に、Kbs1〜Kbsnが100/nkN/cmを上回るような設計では、枠組フレームを構成する鋼材の重量が大きくなりすぎて、軽量鉄骨住宅の施工に適用することが難しくなる。
また、本発明の制震構造においては、上記の如く求められる各粘弾性ダンパーの取付剛性Kbsと貯蔵剛性K’dsとの比の値(すなわち、Kbs1/K’ds1,Kbs2/K’ds2,・・・Kbsn/K’dsn)が、いずれも、1.5以上10以下であることが必要である。Kbs1/K’ds1,Kbs2/K’ds2,・・・Kbsn/K’dsnが1.5未満であると、ある程度の耐力は発揮されるものの、減衰性能が損なわれてしまう。反対に、Kbs1/K’ds1,Kbs2/K’ds2,・・・Kbsn/K’dsnが10を上回ると、地震によって振動した場合に、各粘弾性ダンパーが十分に変形して減衰特性を発揮するものの、耐力が損なわれてしまう。
さらに、本発明の制震構造においては、各粘弾性ダンパーの損失係数tanδ1,tanδ2,・・・tanδnの値が、いずれも0.6以上であることが必要である。tanδ1〜tanδnが0.6未満となると、十分な減衰特性が得られなくなる。なお、本発明における粘弾性ダンパーの貯蔵剛性K’ds、損失係数tanδは、一般的な住宅の固有振動数(約1〜7Hz)の領域において常温下で測定されるものである。
請求項3に記載された発明の構成は、請求項1、または請求項2に記載された発明において、各支持フレームは、トラス構造を利用して柱材あるいは横架材に設置されたものであることにある。
請求項4に記載された発明の構成は、左右の柱材と上下の横架材とから構成される枠組フレームに粘弾性ダンパーを設置してなる軽量鉄骨住宅の制震構造であって、前記枠組フレームの内部が上下に少なくとも1個以上のn個の領域に分割されており、それらの各領域においては、片側の柱材の内側に、支持フレームが、反対側の柱材と横架材あるいは枠組フレーム内部を分割する中桟との2つの仕口に連結された状態で、前記片側の柱材と平行となるように鉛直に設置されているとともに、前記各領域における支持フレームと前記片側の柱材との間には、枠組フレーム面に対して平行に対向させたプレート同士の間に粘弾性体を介在させてなる粘弾性ダンパーが取り付けられており、層間変位角が1/200rad以上である場合に、前記n個に分割された第一〜第nの各領域において、下式a〜cを満たすことにある。
20/nkN/cm≦Kbs1,Kbs2,・・・,Kbsn≦100/nkN/cm ・・a
1.5≦Kbs1/K’ds1,Kbs2/K’ds2,・・・,Kbsn/K’ds≦10 ・・b
tanδ1,tanδ2,・・・,tanδn≧0.6 ・・c
(但し、Kbs1,Kbs2,・・・,Kbsnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの各取付部分の取付剛性であり、K’ds1,K’ds2,・・・K’dsnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの貯蔵剛性であり、tanδ1,tanδ2,・・・tanδnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの損失係数である)
請求項5に記載された発明の構成は、左右の柱材と上下の横架材とから構成される枠組フレームに粘弾性ダンパーを設置してなる軽量鉄骨住宅の制震構造であって、片側の柱材の内側に、支持フレームが、反対側の柱材と上下の横架材との2つの仕口に連結された状態で、前記片側の柱材と平行となるように鉛直に設置されているとともに、その支持フレームと前記片側の柱材との間には、枠組フレーム面に対して平行に対向させたプレート同士の間に粘弾性体を介在させてなる粘弾性ダンパーが取り付けられており、層間変位角が1/200rad以上である場合に、下式d〜fを満たすことにある。
20kN/cm≦Kbs1≦100kN/cm ・・d
1.5<Kbs1/K’ds1<10 ・・e
tanδ1≧0.6 ・・f
(但し、Kbs1は、粘弾性ダンパーの取付部分の取付剛性であり、K’ds1は、粘弾性ダンパーの貯蔵剛性であり、tanδ1は、粘弾性ダンパーの損失係数である)
請求項6に記載された発明の構成は、請求項1〜5のいずれかに記載された発明において、層間変位角が1/100rad以上である場合に、下式7を満たすことにある。
Fdsmax<Fs ・・7
(但し、Fdsmaxは、枠組フレームに発生する最大水平耐力であり、Fsは、枠組フレームの許容水平耐力である)
なお、Fdsmaxは、図2の各粘弾性ダンパー単体の軸方向に作用する反力(各粘弾性ダンパー単体の剪断変形試験によって測定されるもの)を、それぞれFdjとした場合に、下式10によって与えられるものであり、許容水平耐力Fsとは、構造物を弾性体と仮定して部材に応じる応力度の最大値が許容応力度(すなわち、構造物の外力に対する安全性を確保するために定められる部材に許容できる応力度の限界)に達するときに作用し得る荷重のことである。
Fdsmax=Fdj×(b/n)/a ・・10
(但し、図2の模式図に示すように、aは、枠組フレームの幅であり、bは、枠組フレームの高さである)
また、請求項6の如く構成する場合には、層間変形角が1/100radである場合にも、上式1〜6を満たすように構成するのが好ましい。
本発明に係る軽量鉄骨住宅の制震構造は、各粘弾性ダンパーが適度な粘弾性を有しており、かつ、粘弾性ダンパーを除いた枠組フレーム全体が適度な剛性を有しているため、地震によって外力が加わった場合に、各粘弾性ダンパーが適度に変形して、十分な減衰性能が発揮される。したがって、地震による振動エネルギーが効率的に熱エネルギーに変換されるため、建物の変形を大きく軽減することができる。さらに、枠組フレームの大きさや形状に合わせて、粘弾性特性を容易に調整することができる。また、請求項3の如く、トラス構造を利用して支持フレームを柱材あるいは横架材に設置した場合には、支持フレームと柱材あるいは横架材との接続強度が高くなるため、地震の際の振動エネルギーをロスなく第一粘弾性ダンパーおよび第二粘弾性ダンパーに伝えて、効率的に熱エネルギーに変換することが可能となる。さらに、請求項5の如く、枠組フレームに発生する最大水平耐力が枠組フレームの許容水平耐力を下回るように調整することにより、許容耐力内で大きな減衰を発生させることができる。また、過度な荷重の発生による躯体構造の損傷を防止することができる。すなわち、枠組フレームに発生する最大水平耐力が許容水平耐力を超えてしまうと、アンカーボルトが脱落したり、基礎が破壊されたり、躯体が損傷したりするが、請求項5の如く構成することにより、そのような事態の発生が防止される。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図3は、実施例1の枠組フレームを示す正面図である。枠組フレーム1は、軽量の形鋼を用いた鉄骨系プレハブ構造に採用されるものであり、所定の間隔をおいて配設される一対の柱材2,2と、それらの柱材2,2の上下の端同士をそれぞれ接続する横架材(上桟、下桟)3,3とによって、高さが約2700mmで幅が約1000mmの縦長の長方形状に組み付けられている。なお、各横架材3,3は、C型鋼によって形成されたものであり、各柱材2,2は、横架材3と同じC形鋼を幅方向に接合することによって形成されたものである。また、各横架材3,3と各柱材2,2とは、溶接によって接合されている。加えて、各横架材3,3は、溶接によって梁9と接合されている。なお、枠組フレーム1は、設計上、許容水平耐力Fsが30kNとなっている。
また、柱材2,2の間には、それらの柱材2 ,2を中間部位同士で接続する中桟4が架設されており、その中桟4によって上下二つの領域R1,R2に分割されている。そして、それらの各領域R1,R2においては、鉛直な棒状の2つの支持フレーム12,12が、それぞれ、長短二種類の4個の補助材11a,11b・・によって、左右の柱材2,2の内側に取り付けられている。
すなわち、各領域R1,R2においては、柱材2,2と上下の横架材3との仕口部分と支持フレーム12,12の上下の端縁際との間、および、柱材2,2と中桟4との仕口部分と支持フレーム12,12の上下の端縁際との間が、長尺な補助材11a,11a・・によって傾斜状に連結されており、柱材2,2の中央部分(横架材3と中桟4との中間部分)と支持フレーム12,12の上下の端縁際との間が、短尺な補助材11b,11b・・によって傾斜状に連結されている。そして、各支持フレーム12,12・・と柱材2,2とを連結した4つの補助材11a,11b・・が、上下対称なトラス構造を形成した状態になっている。かかるトラス構造によって、2つの支持フレーム12,12は、同じ高さに位置し、左右の柱材2,2と平行で、かつ、互いに平行となるように配置された状態になっている。なお、各柱材2,2と各補助材11a,11b・・、および、各補助材11a,11b・・と各支持フレーム12,12・・は、それぞれ、溶接によって接合されている。さらに、各領域R1,R2においては、一対の支持フレーム12,12の内側に、それぞれ、水平断面がT字状のダンパー設置部材13,13が溶接されており、それらのダンパー設置部材13,13を利用して、第一粘弾性ダンパー5a、第二粘弾性ダンパー5bが取り付けられている。なお、第一粘弾性ダンパー5aと第二粘弾性ダンパー5b5とは同一の構造を有するものである。
図4は、第一粘弾性ダンパー5a(第二粘弾性ダンパー5b)を示したものである。第一粘弾性ダンパー5a(第二粘弾性ダンパー5b)は、金属製で矩形状の芯プレート6と、その芯プレート6を挟むように配置される金属製で矩形の一対の外プレート7,7と、芯プレート6と外プレート7,7との間に介在される一対の粘弾性体8とによって構成されており、芯プレート6を中心として表裏対称な構造になっている(図4(b)参照)。そして、各粘弾性体8,8は、表裏両面が芯プレート6と外プレート7,7との対向面に接着されている。
かかる第一粘弾性ダンパー5a(第二粘弾性ダンパー5b)は、芯プレート6の外端縁際に穿設されたネジ孔(図示せず)、および、外プレート7,7の外端縁際に穿設されたネジ孔(図示せず)を利用して一対のダンパー設置部材13,13の間に螺着されている。そして、支持フレーム12,12に相対的な変位が発生した場合に(すなわち、支持フレーム12,12が近接したり、離反したり、互いに上下にずれたりした場合等に)、粘弾性体8が剪断変形することによって、減衰性能を発揮するようになっている。
枠組フレーム1においては、水平方向のみを考慮した場合、上記の如く、粘弾性特性を図1のような直列水平換算バネとしてモデル化でき、第一粘弾性ダンパー5aおよび第二粘弾性ダンパー5bの代わりに剛体を取り付けて測定した場合の取付強度を、枠組フレーム1全体の取付強度Kbsとして近似させることができる。また、枠組フレーム1においては、各領域R1,R2の構造が中桟4を軸として上下対称であるため、粘弾性ダンパー5aの取付剛性Kbs1と、粘弾性ダンパー5bの取付剛性Kbs2との間に、上式8,9が成立する。
そのため、上下の領域R1,R2における支持フレーム12,12に溶接されたダンパー設置部材13,13の間に、第一粘弾性ダンパー5a、第二粘弾性ダンパー5bの代わりに、略同一形状の剛体(金属板)を取り付け、その状態で、層間変形角が1/200radとなるように枠組フレーム1を水平変形させて(図3の矢印方向)、荷重−変形の関係から枠組フレーム1の取付剛性Kbsを算出し、上式8,9を用いて、粘弾性ダンパー5aの取付部分の取付剛性Kbs1および粘弾性ダンパー5bの取付部分の取付剛性Kbs2を算出した。算出された枠組フレーム1の取付剛性Kbsの値は、37.2kN/cmであった。取付剛性Kbs1、取付剛性Kbs2の算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平変形させた場合の取付剛性Kbs1、取付剛性Kbs2の算出結果を表2に示す。
一方、第一粘弾性ダンパー5aの貯蔵剛性K’ds1、第二粘弾性ダンパー5bの貯蔵剛性K’ds2は、それぞれ、下式11により算出される。
K’ds1,K’ds2=G×S/d ・・11
なお、上式11において、Gは剪断弾性係数であり、K’ds1,K’ds2の算出にあたっては、粘弾性体の特性から剪断弾性係数Gを0.18N/mmとした。また、Sは、第一粘弾性ダンパー5a、第二粘弾性ダンパー5bの各粘弾性体8の面積であり、dは、各粘弾性体8の厚み(粘弾性体8単体の厚み)である。
それゆえ、貯蔵剛性K’ds1,K’ds2が、それぞれ、表1に示す数値となるように、第一粘弾性ダンパー5a、第二粘弾性ダンパー5bの粘弾性体8の面積S、厚みdを調整した(すなわち、貯蔵剛性K’ds1,K’ds2が表1に示す数値となるように第一粘弾性ダンパー5a、第二粘弾性ダンパー5bを設計した)。
また、第一粘弾性ダンパー5aの損失係数tanδ1、第二粘弾性ダンパー5bの損失係数tanδ2を測定した。なお、かかる損失係数tanδ1,tanδ2の測定は、動的加振機((株)鷺宮製作所製)を用いて、20℃の雰囲気下で、2Hzの正弦波を利用して200%の剪断歪を加えた場合の変形−荷重を挙動を調べることによって行った。損失係数tanδ1,tanδ2の測定結果を表1に示す。
上記の如く、枠組フレーム1の取付剛性Kbs、取付剛性Kbs1、取付剛性Kbs2を求めた後に、上下の領域R1,R2における支持フレーム12,12に溶接されたダンパー設置部材13,13の間から剛体を取り外し、上記した第一粘弾性ダンパー5a、第二粘弾性ダンパー5bを取り付けた。第一粘弾性ダンパー5a第二粘弾性ダンパー5bを取り付けた枠組フレーム1においては、貯蔵剛性K’ds1および取付剛性Kbs1を考慮すると、Kbs1/K’ds1の値は、3.61に調整されていることになり、貯蔵剛性K’ds2および取付剛性Kbs2を考慮すると、Kbs2/K’ds2の値は、3.67に調整されていることになる(表1参照)。
そして、第一粘弾性ダンパー5a、第二粘弾性ダンパー5bを取り付けた枠組フレーム1において、大型の動的加振機を用いて、層間変形角が1/200radとなるように枠組フレーム1を水平方向に変形させ、変形−荷重の関係から、全体系の貯蔵剛性K’as、損失剛性K”as、損失係数tanδaを測定し、減衰特性の指標となる水平成分のtanδa/tanδ1およびtanδa/tanδ2を算出した。算出結果を表1に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平方向に変形させた場合のtanδa/tanδ1およびtanδa/tanδ2を表2に示す。
また、層間変形角1/200radおよび1/100radの変形時に枠組フレーム1に発生する最大水平耐力Fdsmaxを上式10に基づいて算出した。算出されたFdsmaxを表1、表2に示す。
Figure 0004464307
Figure 0004464307
表1より、枠組フレーム1は、第一粘弾性ダンパー取付部分の取付剛性Kbs1、枠組フレーム1の第二粘弾性ダンパー取付部分の取付剛性Kbs2、第一粘弾性ダンパーの貯蔵剛性K’ds1、損失係数tanδ1、第二粘弾性ダンパーの貯蔵剛性K’ds2、損失係数tanδ2が、本発明の条件を満たすように調整されているため、減衰特性の指標となる水平成分のtanδa/tanδ1,tanδa/tanδ2がいずれも50%以上となり、良好な減衰特性を発現し得ることが分かる。また、表1、表2より、枠組フレーム1に発生する最大水平耐力Fdsmaxは、枠組フレーム1の許容水平耐力Fs(30kN)に比べて十分に小さくなっていることが分かる。
図5は、実施例2の枠組フレームを示す正面図であり、図6は、実施例2の枠組フレームを並列水平換算バネとしてモデル化して示す説明図であり、図7は、実施例2の枠組フレームを示す模式図である。実施例2の枠組フレーム21は、実施例1の枠組フレーム1と同様に、所定の間隔をおいて配設される一対の柱材2,2と、それらの柱材2,2の上下の端同士をそれぞれ接続する横架材(上桟、下桟)3,3とによって、高さが約2700mmで幅が約1000mmの縦長の長方形状に組み付けられている。加えて、実施例1の枠組フレーム1と同様に、設計上、許容水平耐力Fsが30kNとなっている。
また、左側の柱材2の中央部分の内側には、粘弾性ダンパーを固定させるためのダンパー設置部材17が設けられている。また、そのダンパー設置部材17の内側には、補助材31,31および補助材32によって、鉛直な棒状の支持フレーム12が、左側の柱材2の内側のダンパー設置部材17と平行になるように設けられている。すなわち、右側の柱材2と上下の横架材3,3との2つの仕口部分と支持フレーム12の上下の端縁際との間が、補助材31,31によって傾斜状に連結されており、右側の柱材2の中央部分と支持フレーム12の中央部分との間が、補助材32によって連結されている。そして、支持フレーム12と右側の柱材2とを連結した3つの補助材31,31および補助材32が、トラス構造を形成した状態になっている。なお、右側の柱材2と補助材31,31、補助材32、および、補助材31,31、補助材32と支持フレーム12は、それぞれ、溶接によって接合されている。さらに、支持フレーム12の内側には、粘弾性ダンパーを固定させるためのダンパー設置部材18が溶接されており、その支持フレーム12の内側のダンパー設置部材18と左側の柱材2の内側のダンパー設置部材17とを利用して、粘弾性ダンパーが取り付けられている。
図8は、実施例2の粘弾性ダンパーを示したものである。粘弾性ダンパー15は、実施例1の第一粘弾性ダンパー5a,第二粘弾性ダンパー5bと同様の構造を有しているが、幅が実施例1の第一粘弾性ダンパー5a,第二粘弾性ダンパー5bの略1/2になっている。そして、かかる粘弾性ダンパー15は、芯プレート6の外端縁際に穿設されたネジ孔(図示せず)、および、外プレート7,7の外端縁際に穿設されたネジ孔(図示せず)を利用してダンパー設置部材17,18の間に螺着されている。そして、左側の柱材2と支持フレーム12との間に相対的な変位が発生した場合に(すなわち、左側の柱材2と支持フレーム12とが近接したり、離反したり、互いに上下にずれたりした場合等に)、粘弾性体8が剪断変形することによって、減衰性能を発揮するようになっている。
枠組フレーム21においては、水平方向のみを考慮した場合、粘弾性特性を図6のような並列水平換算バネとしてモデル化でき、粘弾性ダンパー15の代わりに剛体を取り付けて測定した場合の取付強度を、枠組フレーム21全体の取付強度Kbsとして近似させることができ、その取付強度Kbsを粘弾性ダンパー15の取付剛性Kbs1として近似させることができる。そのため、ダンパー設置部材17,18の間に、粘弾性ダンパー15の代わりに、略同一形状の剛体(金属板)を取り付け、その状態で、層間変形角が1/200radとなるように枠組フレーム21を水平変形させて(図5の矢印方向)、加えた応力と変形量との関係から枠組フレーム21の取付剛性Kbsを算出し、粘弾性ダンパー15の取付部分の取付剛性Kbs1として近似させた。算出された枠組フレーム21の取付剛性Kbsの値は、表1の如く、29.5kN/cmであった。また、層間変形角が1/100radとなるように枠組フレーム1を水平変形させた場合の取付剛性Kbs1の算出結果を表2に示す。
一方、上式8,9を考慮し、粘弾性ダンパー15の貯蔵剛性K’ds1が、表1に示す数値となるように、粘弾性ダンパー15の粘弾性体8の面積S、厚みdを調整した(すなわち、貯蔵剛性K’ds1が表1に示す数値となるように粘弾性ダンパー15を設計した)。また、粘弾性ダンパー15の損失係数tanδ1を実施例1と同様な方法により測定した。損失係数tanδ1の測定結果を表3に示す。
上記の如く、枠組フレーム21の取付剛性Kbs、取付剛性Kbs1を求めた後に、ダンパー設置部材17,18の間から剛体を取り外し、上記した粘弾性ダンパー15を取り付けた。粘弾性ダンパー15を取り付けた枠組フレーム21においては、貯蔵剛性K’ds1および取付剛性Kbs1を考慮すると、Kbs1/K’ds1の値は、2.34に調整されていることになる(表3参照)。
そして、粘弾性ダンパー15を取り付けた枠組フレーム21において、大型の動的加振機を用いて、層間変形角が1/200radとなるように枠組フレーム21を水平方向に変形させ、変形−荷重の関係から、全体系の貯蔵剛性K’as、損失剛性K”as、損失係数tanδaを測定し、減衰特性の指標となる水平成分のtanδa/tanδ1を算出した。算出結果を表3に示す。また、層間変形角が1/100radとなるように枠組フレーム1を水平方向に変形させた場合のtanδa/tanδ1を表4に示す。
また、層間変形角1/200radおよび1/100radの変形時に枠組フレーム1に発生する最大水平耐力Fdsmaxを上式10に基づいて算出した。算出されたFdsmaxを表3、表4に示す。
Figure 0004464307
Figure 0004464307
表3より、枠組フレーム21は、粘弾性ダンパー15の取付部分の取付剛性Kbs1、粘弾性ダンパー15の貯蔵剛性K’ds1、損失係数tanδ1が、本発明の条件を満たすように調整されているため、減衰特性の指標となる水平成分のtanδa/tanδ1が50%以上となり、良好な減衰特性を発現し得ることが分かる。また、表3、表4より、枠組フレーム21に発生する最大水平耐力Fdsmaxは、枠組フレーム21の許容水平耐力Fs(30kN)に比べて十分に小さくなっていることが分かる。
なお、本発明の軽量鉄骨住宅の制震構造の構成は、上記実施形態の態様に何ら限定されるものではなく、枠組フレームや粘弾性ダンパー等の構成を、本発明の趣旨を逸脱しない範囲で適宜変更することができる。
たとえば、本発明においては、粘弾性ダンパーの貯蔵剛性K’dの値を枠組フレームの取付剛性Kbの値に合わせて適宜調整することが可能である。それゆえ、粘弾性ダンパーの特性を、用途に合わせて適宜変更することができる。したがって、ゴム系、アスファルト系、アクリル系、スチレン系等の各種の高分子化合物を粘弾性体として好適に用いることができる。また、粘弾性ダンパーも、上記実施形態の如く芯プレートと一対の外プレートとの間に粘弾性体を介在させたものに限定されず、表裏一対のプレートの間に粘弾性体を介在させただけのもの等に変更することも可能である。
また、左右の柱材に支持フレームを取り付けるための構造は、上記実施形態の如き4本の補助材を利用したトラス構造に限定されず、外側の2本の補助材のみによって支持フレームを取り付けることも可能であるし、外側の2本の補助材の間に、支持フレームと鉛直となるように別の補助材を懸架させることも可能である。
加えて、本発明の制震構造に採用される枠組フレームは、二分割タイプのものとする場合には、上記実施形態の如く中桟の上下に同一の粘弾性ダンパーを取り付けたものに限定されず、構造や特性の異なる粘弾性ダンパーを中桟の上下に取り付けたものに変更することも可能である。かかる場合でも、取付剛性Kbs1,Kbs2,貯蔵剛性K’ds1,K’ds2,損失係数tanδ1,tanδ2が上記所定の関係を満たすように調整されていれば、枠組フレームは十分な減衰性能を発揮することができるものとなる。
本発明の枠組フレームを並列水平換算バネとしてモデル化して示す説明図である。 本発明の枠組フレームを示す模式図である。 実施例1の枠組フレームの正面図である。 (a)は第一粘弾性ダンパー(第二粘弾性ダンパー)の正面図であり、(b)は(a)におけるA−A線断面図である。 実施例2の枠組フレームの正面図である。 実施例2の枠組フレームを並列水平換算バネとしてモデル化して示す説明図である。 実施例2の枠組フレームを示す模式図である。 (a)は粘弾性ダンパーの正面図であり、(b)は(a)におけるA−A線断面図である。
符号の説明
1・・枠組フレーム、2・・柱材、3・・横架材、4・・中桟、5a・・第一粘弾性ダンパー、5b・・第一粘弾性ダンパー、6・・芯プレート、7・・外プレート、8・・粘弾性体、12・・支持フレーム、15・・粘弾性ダンパー。

Claims (6)

  1. 左右の柱材と上下の横架材とから構成される枠組フレームに粘弾性ダンパーを設置してなる軽量鉄骨住宅の制震構造であって、
    前記枠組フレームの内部が上下に少なくとも1個以上のn個の領域に分割されており、
    それらの各領域においては、左右一対の支持フレームが、それぞれ、左右の柱材の内側に、柱材と横架材あるいは枠組フレーム内部を分割する中桟との仕口に連結され、かつ、同側の柱材と横架材あるいは前記中桟との仕口に連結された状態で、互いに平行となるように鉛直に設置されているとともに、
    前記各領域における左右一対の支持フレームの間には、枠組フレーム面に対して平行に対向させたプレート同士の間に粘弾性体を介在させてなる粘弾性ダンパーが取り付けられており、
    層間変位角が1/200rad以上である場合に、前記n個に分割された第一〜第nの各領域において、下式a〜cを満たすことを特徴とする軽量鉄骨住宅の制震構造。
    20/nkN/cm≦Kbs1,Kbs2,・・・,Kbsn≦100/nkN/cm ・・a
    1.5≦Kbs1/K’ds1,Kbs2/K’ds2,・・・,Kbsn/K’ds≦10 ・・b
    tanδ1,tanδ2,・・・,tanδn≧0.6 ・・c
    (但し、Kbs1,Kbs2,・・・,Kbsnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの各取付部分の取付剛性であり、K’ds1,K’ds2,・・・K’dsnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの貯蔵剛性であり、tanδ1,tanδ2,・・・tanδnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの損失係数である)
  2. 左右の柱材と上下の横架材とから構成される枠組フレームに粘弾性ダンパーを設置してなる軽量鉄骨住宅の制震構造であって、
    前記枠組フレームの内部が中桟によって上下に二分割されており、その中桟の上下においては、左右一対の支持フレームが、それぞれ、左右の柱材の内側に、柱材と横架材との仕口に連結され、かつ、同側の柱材と中桟との仕口に連結された状態で、互いに平行となるように鉛直に設置されているとともに、
    前記中桟の上側に設けられた左右一対の支持フレームの間には、枠組フレーム面に対して平行に対向させたプレート同士の間に粘弾性体を介在させてなる第一粘弾性ダンパーが取り付けられており、かつ、
    前記中桟の下側に設けられた左右一対の支持フレームの間には、枠組フレーム面に対して平行に対向させたプレート同士の間に粘弾性体を介在させてなる第二粘弾性ダンパーが取り付けられており、
    層間変位角が1/200rad以上である場合に、下式1〜6を満たすことを特徴とする軽量鉄骨住宅の制震構造。
    10kN/cm≦Kbs1≦50kN/cm ・・1
    10kN/cm≦Kbs2≦50kN/cm ・・2
    1.5≦Kbs1/K’ds1≦10 ・・3
    1.5≦Kbs2/K’ds2≦10 ・・4
    tanδ1≧0.6 ・・5
    tanδ2≧0.6 ・・6
    (但し、Kbs1,Kbs2は、それぞれ、第一粘弾性ダンパーの取付部分の取付剛性、第二粘弾性ダンパーの取付部分の取付剛性であり、K’ds1,K’ds2は、それぞれ、第一粘弾性ダンパーの貯蔵剛性、第二粘弾性ダンパーの貯蔵剛性であり、tanδ1,tanδ2は、それぞれ、第一粘弾性ダンパーの損失係数、第二粘弾性ダンパーの損失係数である)
  3. 各支持フレームは、トラス構造を利用して柱材あるいは横架材に設置されたものであることを特徴とする請求項1、または請求項2に記載の軽量鉄骨住宅の制震構造。
  4. 左右の柱材と上下の横架材とから構成される枠組フレームに粘弾性ダンパーを設置してなる軽量鉄骨住宅の制震構造であって、
    前記枠組フレームの内部が上下に少なくとも1個以上のn個の領域に分割されており、
    それらの各領域においては、片側の柱材の内側に、支持フレームが、反対側の柱材と横架材あるいは枠組フレーム内部を分割する中桟との2つの仕口に連結された状態で、前記片側の柱材と平行となるように鉛直に設置されているとともに、
    前記各領域における支持フレームと前記片側の柱材との間には、枠組フレーム面に対して平行に対向させたプレート同士の間に粘弾性体を介在させてなる粘弾性ダンパーが取り付けられており、
    層間変位角が1/200rad以上である場合に、前記n個に分割された第一〜第nの各領域において、下式a〜cを満たすことを特徴とする軽量鉄骨住宅の制震構造。
    20/nkN/cm≦Kbs1,Kbs2,・・・,Kbsn≦100/nkN/cm ・・a
    1.5≦Kbs1/K’ds1,Kbs2/K’ds2,・・・,Kbsn/K’ds≦10 ・・b
    tanδ1,tanδ2,・・・,tanδn≧0.6 ・・c
    (但し、Kbs1,Kbs2,・・・,Kbsnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの各取付部分の取付剛性であり、K’ds1,K’ds2,・・・K’dsnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの貯蔵剛性であり、tanδ1,tanδ2,・・・tanδnは、それぞれ、第一〜第nの各領域に取り付けられた粘弾性ダンパーの損失係数である)
  5. 左右の柱材と上下の横架材とから構成される枠組フレームに粘弾性ダンパーを設置してなる軽量鉄骨住宅の制震構造であって、
    片側の柱材の内側に、支持フレームが、反対側の柱材と上下の横架材との2つの仕口に連結された状態で、前記片側の柱材と平行となるように鉛直に設置されているとともに、
    その支持フレームと前記片側の柱材との間には、枠組フレーム面に対して平行に対向させたプレート同士の間に粘弾性体を介在させてなる粘弾性ダンパーが取り付けられており、
    層間変位角が1/200rad以上である場合に、下式d〜fを満たすことを特徴とする軽量鉄骨住宅の制震構造。
    20kN/cm≦Kbs1≦100kN/cm ・・d
    1.5≦Kbs1/K’ds1≦10 ・・e
    tanδ1≧0.6 ・・f
    (但し、Kbs1は、粘弾性ダンパーの取付部分の取付剛性であり、K’ds1は、粘弾性ダンパーの貯蔵剛性であり、tanδ1は、粘弾性ダンパーの損失係数である)
  6. 層間変位角が1/100rad以上である場合に、下式7を満たすことを特徴とする請求項1〜5のいずれかに記載の軽量鉄骨住宅の制震構造。
    Fdsmax<Fs ・・7
    (但し、Fdsmaxは、枠組フレームに発生する最大水平耐力であり、Fsは、枠組フレームの許容水平耐力である)
JP2005104278A 2005-03-31 2005-03-31 軽量鉄骨住宅の制震構造 Active JP4464307B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104278A JP4464307B2 (ja) 2005-03-31 2005-03-31 軽量鉄骨住宅の制震構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104278A JP4464307B2 (ja) 2005-03-31 2005-03-31 軽量鉄骨住宅の制震構造

Publications (2)

Publication Number Publication Date
JP2006283377A JP2006283377A (ja) 2006-10-19
JP4464307B2 true JP4464307B2 (ja) 2010-05-19

Family

ID=37405574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104278A Active JP4464307B2 (ja) 2005-03-31 2005-03-31 軽量鉄骨住宅の制震構造

Country Status (1)

Country Link
JP (1) JP4464307B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655820A (zh) * 2018-02-09 2020-09-11 住友重机械过程机器株式会社 导焦车

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863855B2 (ja) * 2006-12-07 2012-01-25 新日鉄エンジニアリング株式会社 ダンパー装置および構造物
JP6242237B2 (ja) * 2014-02-24 2017-12-06 パナホーム株式会社 制振構造体の設計方法
CN113323144B (zh) * 2021-05-21 2024-06-04 华南理工大学 一种平面外可自由变形抗震支撑

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655820A (zh) * 2018-02-09 2020-09-11 住友重机械过程机器株式会社 导焦车
CN111655820B (zh) * 2018-02-09 2021-07-09 住友重机械过程机器株式会社 导焦车

Also Published As

Publication number Publication date
JP2006283377A (ja) 2006-10-19

Similar Documents

Publication Publication Date Title
US8857111B2 (en) Composite damper
JP5567094B2 (ja) 長周期化建築物
JP4464307B2 (ja) 軽量鉄骨住宅の制震構造
JP6035528B2 (ja) キャビネットの制震構造
JP5535662B2 (ja) 制振ユニット、建物及び建物補強工法
JP5752843B1 (ja) 建築物の上下変位自在な制振壁構造
JP4603918B2 (ja) 軽量鉄骨住宅の制震構造
JP3830254B2 (ja) 建物の制振構造
JP4456514B2 (ja) 軽量鉄骨住宅の制震構造
JP4913660B2 (ja) 鉄骨階段
JP4456515B2 (ja) 軽量鉄骨住宅の制震構造
JPH09221852A (ja) 建物の制振装置
JP6912102B2 (ja) エネルギー吸収機構及び木造建物
JP4414832B2 (ja) 開口部を有する波形鋼板を用いた耐震壁
JP4551258B2 (ja) 軽量鉄骨住宅の制震構造
JP4883639B2 (ja) 管状体金属平板の補強構造
JP5727690B2 (ja) 長周期化建築物
JP2002295053A (ja) 制振間柱とその構築方法
JP6037298B1 (ja) エネルギー吸収機構
JP7497762B2 (ja) 木質構造
JP2004300912A (ja) 居住性対応制振ダンパー
JP3245445U (ja) 制振構造
JP5053554B2 (ja) 制振装置
JPH04277274A (ja) 混合構造物
JP4878338B2 (ja) 建築物及び建造物の補強構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4464307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160226

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350