JP4460909B2 - 電子内視鏡システム及び信号処理装置 - Google Patents

電子内視鏡システム及び信号処理装置 Download PDF

Info

Publication number
JP4460909B2
JP4460909B2 JP2004031274A JP2004031274A JP4460909B2 JP 4460909 B2 JP4460909 B2 JP 4460909B2 JP 2004031274 A JP2004031274 A JP 2004031274A JP 2004031274 A JP2004031274 A JP 2004031274A JP 4460909 B2 JP4460909 B2 JP 4460909B2
Authority
JP
Japan
Prior art keywords
solid
optical
phase modulation
transfer function
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004031274A
Other languages
English (en)
Other versions
JP2005218719A (ja
Inventor
一裕 粂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004031274A priority Critical patent/JP4460909B2/ja
Publication of JP2005218719A publication Critical patent/JP2005218719A/ja
Application granted granted Critical
Publication of JP4460909B2 publication Critical patent/JP4460909B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

本発明は、電子内視鏡システム及び電子内視鏡から出力される信号の処理を行う信号処理装置に関し、特に対物光学系の被写界深度を拡大するようにした電子内視鏡システム及び信号処理装置に関する。
内視鏡は、周知の通り、直接目視できない生体内等を観察することができ、医療分野を中心に診断、治療に広く使用されている。そして、近年、被写体像をCCD等の固体撮像素子によって電気信号に変換し、モニタにて観察可能とした電子内視鏡システムが普及している。このような電子内視鏡システムは、観察する部位に応じて種々の内視鏡が用いられており、光源装置や信号処理回路を含む信号処理装置等に接続されて使用されている。
上記内視鏡に接続される信号処理装置は、上記種々の内視鏡のうち1つを選択的に接続して、この接続した内視鏡内に設けた固体撮像素子の撮像信号を画像処理し、生成した映像信号をモニタに出力してモニタの表示画面に内視鏡画像を表示させている。
一般的な内視鏡には、光学系の簡易さ、操作性の良さから、対物光学系として固定焦点光学系が一般的に用いられ、その観察部位に応じて必要な被写界深度が得られるようになっている。
しかしながら、一般的な内視鏡は、上記固定焦点光学系により被写界深度を広くすると、光学系のFナンバー(絞り値)を大きくする必要がある。このため、一般的な内視鏡は、明るさが低下するといった問題が生じる。更に、一般的な内視鏡は、光の回折限界(レーリーの回折限界理論)等から被写界深度の拡大において限界がある。
一方、これに対し、従来の電子内視鏡システムは、例えば、特開2003−199708号公報に記載されているように光位相変調マスクを用いて対物光学系の被写界深度を拡大するようにしたシステムが提案されている。
図10は、光位相変調マスクを用いて対物光学系の被写界深度を拡大するようにした従来の電子内視鏡システムの構成を示す図である。
図10に示すように、従来の電子内視鏡システム100は、対物光学系101aによって得られた被写体像固体撮像素子101bによって撮像する、複数種の内視鏡がカメラコントローラ102に接続されモニタ103の表示画面に内視鏡画像を表示するように構成されており、少なくとも1つの内視鏡101の対物光学系101aが光位相変調マスク101cを有している。尚、符号104は、内視鏡101に照明光を供給する光源装置である。
上記光位相変調マスク101cは、物体距離に応じた光学的伝達関数の変化が、光位相変調マスク101cを持たない対物光学系よりも小さくなるように作用するよう配置されている。このため、上記光位相変調マスク101cを含む対物光学系101aは、上記光位相変調マスク101cを含まない通常の対物光学系に対し光学的伝達関数を変更し、通常の撮像光学系よりも大きな被写界深度にわたって、光の強度にはほとんど影響しないように光学的伝達関数を変更するようになっている。
従って、上記従来の電子内視鏡システム100は、内視鏡画像の全画像領域に亘って復元処理を施す復元処理手段を設けているので、上記光位相変調マスク101cを有した内視鏡101を接続しても、被写界深度を拡大した高解像の内視鏡画像を得ることが可能である。
特開2003−199708号公報
上記特開2003−199708号公報に記載の電子内視鏡システムは、上記光位相変調マスクによって光軸を軸とした回転非対称な収差(ぼけ)が発生する。この収差は、固体撮像素子のダイナミックレンジ内の光量では、モニタの表示画面上で認識できないレベルの大きさになるよう上記光位相変調マスクの変調量が調整されている。
また、上記特開2003−199708号公報に記載の電子内視鏡システムは、固体撮像素子のダイナミックレンジを越える輝点が入射された場合、この輝点が上記光位相変調マスクにて影響を受け、回転非対称な輝点として固体撮像素子の受光面上に結像する。
上記輝点は、略円形の輝点と異なり、回転非対称な異型の輝点となってモニタの表示画面に表示される。また、上述したようにモニタの表示画面上において、収差が認識できない大きさになるよう上記光位相変調マスクの変調量を調整しているため、被写界深度内と被写界深度外との収差の大きさが大きく異なる輝点となる。
上記異型の輝点を復元するために、画像全体に上記光位相変調マスクによる変調を復元する復元処理を施す手法が考えられるが、画像全体に上記光位相変調マスクによる変調を復元する復元処理を施した場合、被写界深度外の輝点を有効に軽減するような復元処理を掛けてしまうと、深度内において不必要な復元処理が施され画質が低下することになる。
本発明は、上述した点に鑑みてなされたもので、光位相変調マスクを含む対物光学系を有し、固体撮像素子のダイナミックレンジを越える輝点が入射された際でも、画像の品位が低下しない電子内視鏡システム及び信号処理装置を提供することを目的とする。
本発明による第1の電子内視鏡システムは、対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡と、前記内視鏡の前記対物光学系に設けられ、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクと、前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段を有する信号処理装置と、を備えた電子内視鏡システムであって、前記光位相変調マスクは、物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクが設けられない対物光学系よりも小さくなるように配置されると共に、前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ復元処理を行うことを特徴としている。
また、本発明による第2の電子内視鏡システムは、対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡と、前記内視鏡の前記対物光学系に設けられ、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクと、前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを有する信号処理装置と、物体距離を検出する距離検出手段と、を備えた電子内視鏡システムであって、前記光位相変調マスクは、物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクが設けられない対物光学系よりも小さくなるように配置されると共に、前記復元処理手段は、物体距離に応じた複数の復元処理手段を有し、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ物体距離に応じた復元処理を行うことを特徴としている。
また、本発明による第3の電子内視鏡システムは、前記第2の電子内視鏡システムにおいて、前記復元処理手段は、物体距離に応じた複数の復元処理を有することを特徴としている。
本発明による第1の信号処理装置は、被写体像を得るための対物光学系に、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクを備え、前記光位相変調マスクは物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクを設けない場合よりも小さくなるように配置されている、前記対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡に接続され、前記固体撮像素子からの被写体像に応じた出力信号の処理を行う信号処理装置であって、前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを備え、前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ復元処理を行うことを特徴とすしている。
また、本発明による第2の信号処理装置は、被写体像を得るための対物光学系に、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクを備え、前記光位相変調マスクは物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクを設けない場合よりも小さくなるように配置されている、前記対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡に接続され、前記固体撮像素子からの被写体像に応じた出力信号の処理を行う信号処理装置であって、前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを備え、前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ物体距離に応じた復元処理を行うことを特徴としている。
また、本発明による第3の信号処理装置は、前記第2の信号処理装置において、前記復元処理手段は、物体距離に応じた複数の復元処理を有することを特徴としている。
本発明の電子内視鏡システム及び信号処理装置は、光位相変調マスクを含む対物光学系を有し、固体撮像素子のダイナミックレンジを越える輝点が入射された際でも、画像の品位が低下しないという効果を有する。
以下、図面を参照して本発明の実施例を説明する。
図1ないし図8は本発明の第1実施例に係わり、図1は第1実施例の電子内視鏡システムを示す全体構成図、図2は図1の光位相変調マスクを含む撮像ユニットを示す構成図、図3は明るさ絞り部材を配置した瞳変調素子の構造を説明するための概略説明図であり、図3(A)は明るさ絞り部材を配置した瞳変調素子の正面図、図3(B)は明るさ絞り部材を配置した瞳変調素子を、光軸とY軸を含む平面で切断した断面図、図4は図3の明るさ絞り部材を配置した瞳変調素子の構造の変形例を示す概略説明図、図5は図1の信号処理装置の内部構成を示す回路ブロック図、図6は瞳変調素子を含む撮像ユニットの物体距離4mmの時に得られる点像のシミュレーション結果を示すグラフ、図7は輝点の位置及び大きさを示す概念図であり、図7(A)は固体撮像素子の受光面を示す概念図、図7(B)は図7(A)のA部拡大図、図8はマスク処理部にてマスク処理が施される領域を説明した概念図である。
図1に示すように、第1実施例の電子内視鏡システム1は、後述の撮像手段を備えた電子内視鏡(以下、単に内視鏡)2と、前記内視鏡2に着脱自在に接続され、この内視鏡2に照明光を供給する光源装置3と、前記内視鏡2に着脱自在に接続され、前記内視鏡2の前記撮像手段を制御すると共に、この撮像手段から得られた信号を信号処理して標準的な映像信号を出力する信号処理装置4と、前記信号処理装置4で信号処理して得られた内視鏡画像を表示するモニタ5とを有して構成されている。
前記内視鏡2は、細長な挿入部11と、この挿入部11の基端側に連設された太径な操作部12とを有して構成されている。
前記内視鏡2の挿入部先端部11aには、挿入部11に挿通配設され、前記光源装置3からの照明光を伝達するライトガイド13の先端側が配置されており、照明光学系14を介して被写体を照明するようになっている。また、前記内視鏡2の挿入部先端部11aには、前記照明光学系14に隣接して被写体の像を取り込む対物光学系15が配置されており、この対物光学系15の後方には固体撮像素子16aを有する撮像部16が配置されている。前記対物光学系15と前記撮像部16とは、後述するように撮像ユニット17を構成している。
尚、本実施例の内視鏡システム1では、複数種の内視鏡2を接続することができるようになっており、これら複数種の内視鏡2のうち、少なくとも1つの内視鏡2は、その対物光学系15内に、回転非対称な表面形状を有する光学素子である光位相変調マスク18が設けられている。
撮像ユニット17は、図2に示すように前記固体撮像素子16aの前面にカバーガラス等を配置した撮像部16と、この撮像部16の固体撮像素子16aに被写体像を結像する対物光学系15とにより構成されている。前記固体撮像素子16aは、例えば、画素ピッチが7μmである。
図3(A),(B)に示すように、入射光に垂直なXY平面に平行に明るさ絞り部材19が設けられており、光が入射する方向から見て明るさ絞り部材19の背面の位置に、光位相変調マスク18として瞳変調素子18aが配置されている。そして、明るさ絞り部材19の開口部19aを通して入射した光は、前記瞳変調素子18aに入射するようになっている。
前記瞳変調素子15は、例えば屈折率1.523の光学的に透明なガラスにより形成されており、広い被写界深度にわたって光学的伝達関数が略一定となる変換手段である。この瞳変調素子18aは、前記対物光学系15の光軸をZ軸とし、このZ軸と直交する面内をX、Y軸としたときに、Z=α(X+Y)の形状をした自由曲面部18bを有しており、本実施例では変調係数αを0.051としている。
更に、前記瞳変調素子18aは、前記明るさ絞り部材19と嵌合するために、前記自由曲面部18bの外部で、且つ明るさ絞り部材19と対向する面内に2個の突起部18cが形成されている。
一方、前記明るさ絞り部材19は、正方形の開口部19aを有し、この開口部19aの外部で、前記瞳変調素子18aに形成された突起部18cと対向する部分に位置決め穴19bが形成されている。前記開口部19aは、例えば、正方形の形状が一辺0.408mmである。
前記瞳変調素子18aの前記突起部18cと、前記明るさ絞り部材19の前記位置決め穴19bとがそれぞれ嵌合し当接することによって、瞳変調素子18aの自由曲面部18bのX軸及びY軸は、明るさ絞り部材19の開口部19aの各辺と平行で、且つ自由曲面部18bの原点と、開口部19aの中心とが一致し、前記瞳変調素子18aと前記明るさ絞り部材19とが位置決めされる。
尚、図3(A),(B)に示す前記瞳変調素子18aの突起部18cと前記明るさ絞り部材19の前記位置決め穴19bとは、それぞれ2つ設けているが、図4に示すように前記瞳変調素子18aの突起部18cと前記明るさ絞り部材19の前記位置決め穴19bとはそれぞれ4つ設けていても良い。
また、前記瞳変調素子18aは、X軸,Y軸がそれぞれ前記固体撮像素子16aの受光面の横方向(H方向)、縦方向(V方向)と一致するように撮像ユニット17内に配置されている。本実施例において、前記瞳変調素子18aは、波長587.6nmの平行光に対し、exp{i×2.414(X+Y)/0.2043}の位相変調を行うようになっている。
また、前記対物光学系15は、物体距離13.5mmの位置においての前記固体撮像素子16aの受光面上の点像強度分布関数(PSF)の面積が最も小さくなるようにピント調整を行なっている。
前記固体撮像素子16aには、撮像信号を伝達する撮像ケーブルが電気的、機械的に接続されており、図示しない内視鏡2のコネクタケーブルを介して前記信号処理装置4に接続されている。
図5に示すように前記信号処理装置4は、内視鏡2の固体撮像素子16aからの撮像信号をディジタル信号に変換するA/D変換器21と、このA/D変換器21からのディジタル信号を映像信号に変換する信号変換部22と、前記固体撮像素子16aにダイナミックレンジを越える輝点が入射したときに発生する前記映像信号における飽和信号の、映像上の位置と映像上の大きさとを検出する輝点検出部23と、前記輝点検出部23により検出した前記映像信号における飽和信号の位置付近のみに復元処理を施すために、映像信号にマスク処理を施すマスク処理部24と、前記瞳変調素子18aによって変調された光学的伝達関数を復元する復元処理を行う復元処理部25と、この復元処理部25により復元処理された映像信号に前記マスク処理部24によりマスク処理を施した映像信号を加算する加算器26と、この加算器26からの映像信号をモニタ5で表示可能なアナログ信号に変換するD/A変換器27と、前記信号変換部22からの映像信号に基づき、照明光が適切な明るさとなるよう光源装置3から供給される照明光の光量を調整する自動調光部28とを有して構成されている。
このように構成されている電子内視鏡システム1を用い、内視鏡2の挿入部11を患者の体腔内に挿入して内視鏡観察を行う。
電子内視鏡システム1は、光源装置3から照明光を内視鏡2のライトガイド13に供給される。ライトガイド13から伝達された照明光は、照明光学系14を介して挿入部先端部11aの照明光学系14から被写体を照明する。照明された被写体は、対物光学系15により被写体像を取り込まれる。そして、取り込まれた被写体像は、対物光学系15により固体撮像素子16aの受光面上に結像される。
ここで、上述したように前記撮像ユニット17は、前記瞳変調素子18aと前記明るさ絞り部材19とを含む対物光学系15を用いて、物体距離13.5mmの位置での固体撮像素子16aの受光面上での点像強度分布関数(PSF)の面積が最も小さくなるようにピント調整を行なっている。この場合、前記固体撮像素子16aの受光面上の点像の大きさは、一辺が固体撮像素子16aの画素ピッチの2画素分で、面積にして4画素分となる。
この撮像ユニット17において、ナイキスト周波数における光学的伝達関数のレスポンスが0.2以上となり解像する被写界深度は、4mmから71mmとなる。そして、被写界深度4mmの際の点像強度分布関数(PSF)の大きさは、一辺が固体撮像素子の画素ピッチの約4画素程度となる。尚、前記瞳変調素子18aの代わりに同材質の平行平板を用いた場合の被写界深度は、7.2mmから71mmである。
従って、前記瞳変調素子18aを含む撮像ユニット17は、被写界深度が拡大されている。
そして、被写体像は、前記画素ピッチ7μmの固体撮像素子16a上の受光面に結像し、前記固体撮像素子16aによって撮像信号に変換される。この撮像信号は、信号処理装置4内のA/D変換器21にてディジタル信号に変換され、信号変換部22にて映像信号に変換される。
自動調光部28は、前記映像信号から映像全体の明るさを検知し、この映像全体の平均値が固体撮像素子16aのダイナミックレンジ内の予め決められた設定値となるよう光源装置3を制御するように自動調光信号を発生する。
光源装置3は、自動調光信号に基づき、映像全体が明るすぎて白トビする場合は減光し、暗すぎて被写体が見えない場合は増光して、適切な光量に調整する。尚、光源装置3により適切に調整された光量であっても、被写体の凹凸や、被写体の表面状態により、局所的に強い反射光が固体撮像素子16aに入射され、ダイナミックレンジを越える場合がある。
すると、モニタ5の表示画面に表示される内視鏡画像上には、ダイナミックレンジを越える強い反射光が輝点となって表示される。この輝点は、対物光学系15に設けられた瞳変調素子18aによって光軸を中心に回転非対称なぼけを生じるため、輝点の形状も回転非対称な形状となる。この瞳変調素子18aによって生ずる回転非対称なぼけは、図6に示すような輝度が最も高い点を中心に主に右方向と下方向に光の強度を持つぼけとなる。
図6は、物体距離4mmのときの固体撮像素子16aの受光面上での点像のシミュレーション結果であり、XY平面は固体撮像素子16aの受光面に相当し、Z軸は光の強度(パーセント)である。ここで、X軸、Y軸の1、2、3、…は画素番号を示す。
前記輝点検出部23は、前記信号変換部22からの映像信号から、上記輝点の映像上の位置及び大きさを検出する。
図7(A),(B)に示すように、上記輝点の位置情報は、固体撮像素子16aの受光面上の左上部を原点とし、走査方向をH、走査方向に垂直な方向をVとして(PHn、PVn)のように固体撮像素子16aの受光面上の画素座標として表される(nは輝点の番号で、1、2、…)。
また、隣接する画素が固体撮像素子16aのダイナミックレンジを超える光量を受けた場合、上記輝点と同一の輝点としてその大きさが(SHn、SVn)として表される(nは輝点の番号で、1、2、…)。
飽和レベルの領域に加え、少なくとも復元処理に必要な画像処理のフィルタの大きさを、飽和レベルの領域の周囲に加算して領域を画像処理領域とすることで、飽和領域が確実に復元処理されるようになる。そして、前記輝点検出部23は、検出した上記輝点の位置及び大きさ情報を前記マスク処理部24に出力する。
前記マスク処理部24は、上記輝点の周辺部に復元処理を施すために、前記輝点検出部23から出力されるn番目の輝点の位置及び大きさ情報に基づき、輝点周辺部のみを取り出した輝点領域の映像信号と、上記輝点周辺部を除いた輝点なし領域の映像信号とに分割するマスク処理を施す。
取り出す輝点領域の大きさは、図8に示すように、前記輝点検出部23から得られる輝点の大きさ(SHn、SVn)の上下左右に、少なくとも復元処理を施すディジタルフィルタのマトリックスの大きさを加算した大きさとしている。
前記復元処理部25は、前記マスク処理部24によって取り出された輝点領域の映像信号に対し、瞳変調素子18aを含む対物光学系15の逆フィルタに相当する2次元の非対称なディジタルフィルタ処理を施す。
本実施例のディジタルフィルタは、例えば以下に示すような5×5のマトリクスを用いている。このマトリクスは、中心画素とその周囲の画素の値に対する係数を決定している。
400 −300 −40 −20 −20
−300 225 30 15 15
−40 30 4 2 2
−20 15 2 1 1
−20 15 2 1 1
前記ディジタルフィルタは、瞳変調素子18aによる非対称なぼけを復元するようなフィルタであるため、上記ディジタルフィルタ処理を施された輝点は、元の輝点の形状にほぼ復元される。
この復元された輝点領域の映像信号は、上記非対称なディジタルフィルタ処理を施さない輝点周辺部を除いた輝点無し領域の映像信号と前記加算器26により加算され、D/A変換器27によってアナログ信号に変換され、モニタ5の表示画面上に内視鏡画像が表示される。
これにより、第1実施例の電子内視鏡システム1は、固体撮像素子16aのダイナミックレンジを超える輝点の位置及び大きさを検出し、輝点領域の部分のみに瞳変調素子18aに対応した復元処理を施すことによって、瞳変調素子18aによって強調される輝点の非対称な形状が改善される。
ここで、本実施例では、固体撮像素子16aの画素ピッチを7μmのものとし、瞳変調素子18aの変調係数αを0.051とし、明るさ絞り部材19の開口部19aの寸法を0.408としているが、固体撮像素子16aの受光面上での点像の面積がもっとも小さくなるピント位置における点像の大きさが一辺を画素ピッチの2画素分、面積にして4画素分となるように、固体撮像素子16aの画素ピッチに合わせて、明るさ絞り部材19の開口部19aの寸法、及び瞳変調素子18aの自由曲面部18bの形状を調整し、本実施例のディジタルフィルタを用いることで、同様の効果が得られる。
また、本実施例では、固体撮像素子16aの受光面上の点像の面積がもっとも小さくなるピント位置における点像の大きさを、一辺が固体撮像素子16aの画素ピッチの2画素分、面積にして4画素分となるようにしているが、点像の大きさを一辺が画素ピッチの6画素分、面積にして36画素分となるようにした場合、瞳変調素子18aの変調係数αは7.243で、物体距離4mmにおける光学的伝達関数のレスポンスが0.2以上となり、且つ物体距離4mmにおける点像の大きさも一辺が8画素程度であるために、同様の被写界深度の拡大が可能となる。
この場合、瞳変調素子18aの変調係数αに対応するディジタルフィルタを用いることで同様の効果が得られる。
本実施例では瞳変調素子18aにガラス材料を用いているが、樹脂材料を用いても良い。また、本実施例では瞳変調素子18aは光学的に透明なガラスが用いられているが、特定の波長のみ透過する光学フィルタ材料を用いても良い。
また、本実施例での瞳変調素子18aの形状はX軸方向、Y軸方向の光学的伝達関数の変換量を同一としているか、X軸方向、Y軸方向で変換量が異なる構成にしても良い。例えば、明るさ絞り部材19の開口部19aの形状を長方形に設定しても良いし、瞳変調素子18aの自由曲面部18bの形状をX軸方向、Y軸方向で異なる係数を使用しても良い。この場合も、瞳変調素子18aに対応したディジタルフィルタを用いることで、同様の効果が得られる。
図9は本発明の第2実施例に係わる信号処理装置の内部構成を示す回路ブロック図である。
第2実施例は、基本的な構成は第1実施例と同じであり、復元処理の処理方法が異なる。以下、相違点に重点をおいて説明する。
図9に示すように第2実施例の電子内視鏡システムを構成している信号処理装置4Bは、上記第1実施例で説明したのと同様なA/D変換器21、信号変換部22、輝点検出部23、及びマスク処理部24の他に、前記自動調光部28の調光信号から物体までの距離を判断し、前記映像信号に復元処理を施すか否かの判断を行う距離検出部31と、この距離検出部31の判断結果に基づき、輝点領域の映像信号の切替を行なう切替器32と、この切替器32によって切り替えられた映像信号に対し、前記瞳変調素子18aにより物体距離に応じた復元処理を行なう複数の復元処理部33とを有して構成されている。
前記複数の復元処理部33は、映像信号に対しフィルタ処理を行なう回路部であり、物体距離に応じた瞳変調素子18aを含む対物光学系15によって発生する非対称な収差(ぼけ)を復元する復元処理を行うようになっている。
例えば、前記復元処理部33には、物体距離4mm〜8mm間の瞳変調素子18aによって発生する非対称な収差を復元する復元処理部33aと、物体距離8mm〜40mm間の瞳変調素子18aによって発生する非対称な収差を復元する復元処理部33bと、物体距離40mm〜71mmの瞳変調素子18aによって発生する非対称な収差を復元する復元処理部33cとを有して構成されている。
上記非対称な収差を復元するためのフィルタ処理は、前記瞳変調素子18aを含む撮像ユニット17による、各物体距離における光学的伝達関数をシミュレーションにより算出し、その結果に基づいて作成されている。
そして、先ず、最初に、物体距離のピント調整を行なったベストピントの13.5mm付近の場合について説明する。
この13.5mm付近の物体距離での点像強度分布関数(PSF)の大きさは、一辺が固体撮像素子16aの画素ピッチの2画素程度となる。
前記距離検出部31は、前記自動調光部28の調光レベルから物体距離がベストピント付近であることを検知して、切替器32により輝点映像信号を前記復元処理部33bに出力する。
輝点映像信号は、前記復元処理部33bにより物体距離8mm〜40mmに応じた復元処理が施され、非対称な輝点形状が復元される。復元された輝点映像信号は、マスク処理部24によって輝点が除かれた映像信号と加算されてD/A変換器27に入力される。
次に、物体距離が遠くなった場合について説明する。
物体距離が遠い場合の点像強度分布関数(PSF)の大きさは、一辺が固体撮像素子16aの画素ピッチの4画素程度まで大きくなる。
物体距離が遠く照明光不足により輝度信号のレベルが低下した場合に、自動調光部28は光源装置3に増光するよう自動調光信号を出力すると共に、距離検出部31に物体距離が遠くなったことを示す信号を出力する。
そして、距離検出部31は物体距離が遠くなったことを検知して、切替器32により輝点映像信号を復元処理部33cに出力する。
輝点映像信号は、復元処理部33cにより物体距離40〜71mmに応じた復元処理が施され、非対称な輝点形状が復元される。
次に、物体距離が近くなった場合について説明する。
物体距離が近い場合の点像強度分布関数(PSF)の大きさは、一辺が固体撮像素子16aの画素ピッチの4画素程度まで大きくなる。物体距離が近く、照明光が強すぎ白トビするような場合には自動調光部28は物体距離が近くなったことを示す信号を出力する。
そして、距離検出部31は、物体距離が近くなったことを検知して、切替器32により輝点映像信号を復元処理部33aに出力する。輝点映像は復元処理部33aにより物体距離4mm〜8mmに応じた復元処理が施され、非対称な形状から復元される。
これにより、第2実施例の電子内視鏡システムは、輝点の形状及び大きさが物体距離によって異なるため、この物体距離を検出して物体距離に応じた復元処理を施すことによって、輝点形状の復元性が高くなる。
尚、第2実施例の電子内視鏡システムは、物体距離の検知を自動調光信号を用いて行なったが、例えば赤外線や超音波等を照射する測距センサーや三角測量方式を用いた測距センサーを用いても良い。この場合精度の良い測距が可能となる。
また、第2実施例の電子内視鏡システムは、ベストピント位置、近点位置、遠点位置の3つの復元処理を施すように構成しているが、本発明はこれに限定されるものではなく、物体距離に応じた複数の復元処理回路を設けても良い。
尚、本発明は、以上述べた実施例のみに限定されるものではなく、発明の要旨を逸脱しない範囲で種々変形実施可能である。
また、本発明の内容は、医療用及び工業用内視鏡を含む内視鏡に適用可能である。
[付記]
(付記項1)
対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡と、
前記内視鏡の前記対物光学系に設けられ、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクと、
前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段を有する信号処理装置と、
を備えた電子内視鏡システムであって、
前記光位相変調マスクは、物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクが設けられない対物光学系よりも小さくなるように配置されると共に、
前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ復元処理を行うことを特徴とする電子内視鏡システム。
(付記項2)
対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡と、
前記内視鏡の前記対物光学系に設けられ、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクと、
前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを有する信号処理装置と、
物体距離を検出する距離検出手段と、
を備えた電子内視鏡システムであって、
前記光位相変調マスクは、物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクが設けられない対物光学系よりも小さくなるように配置されると共に、
前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ前記距離検出手段が検出した物体距離に応じて復元処理を行うことを特徴とする電子内視鏡システム。
(付記項3)
前記復元処理手段は、物体距離に応じた複数の復元処理を有することを特徴とする付記項2に記載の信号処理装置。
(付記項4)
前記復元処理手段の前記復元処理を施す飽和領域付近は、前記固体撮像素子の飽和領域に加え、少なくとも前記復元処理に必要な所定の領域を加算した領域であることを特徴とする付記項1又は2又は3記載の電子内視鏡システム。
(付記項5)
前記光位相変調マスクは、明るさ絞りの背面に設け、前記対物光学系の光軸に対して非対称な自由曲面を有する瞳変調素子であり、
前記瞳変調素子は、前記明るさ絞りの背面に嵌合するために前記対物光学系に対して光学的な有効領域外に少なくとも2つ以上の突起部を設け、
前記明るさ絞りは、前記瞳変調素子の光学的有効領域に対応する開口部を有し、この開口部の開口中心と前記瞳変調素子の光軸とが一致し、且つ前記開口部と前記瞳変調素子の光学的有効領域とが位置ずれしないように、前記瞳変調素子の前記突起部に応じた位置決め穴を形成したことを特徴とする付記項1又は2又は3に記載の電子内視鏡システム。
(付記項6)
前記明るさ絞りの開口部は、長方形の形状であり、この長方形開口部の開口中心と前記瞳変調素子の光軸とが一致し、且つ前記長方形開口部の一辺及びこの一辺と異なる他の一辺と前記瞳変調素子の前記自由曲面のX軸及びY軸とがそれぞれ平行になるように前記位置決め穴を形成していることを特徴とする付記項5に記載の電子内視鏡システム。
(付記項7)
被写体像を得るための対物光学系に、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクを備え、前記光位相変調マスクは物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクを設けない場合よりも小さくなるように配置されている、前記対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡に接続され、前記固体撮像素子からの被写体像に応じた出力信号の処理を行う信号処理装置であって、
前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを備え、
前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ復元処理を行うことを特徴とする信号処理装置。
(付記項8)
被写体像を得るための対物光学系に、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクを備え、前記光位相変調マスクは物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクを設けない場合よりも小さくなるように配置されている、前記対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡に接続され、前記固体撮像素子からの被写体像に応じた出力信号の処理を行う信号処理装置であって、
前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを備え、
前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ物体距離に応じた復元処理を行うことを特徴とする信号処理装置。
(付記項9)
前記復元処理手段は、物体距離に応じた複数の復元処理を有することを特徴とする付記項8に記載の信号処理装置。
(付記項10)
前記復元処理手段の前記復元処理を施す飽和領域付近は、前記固体撮像素子の飽和領域に加え、少なくとも前記復元処理に必要な所定の領域を加算した領域であることを特徴とする付記項7又は8又は9に記載の信号処理装置。
(付記項11)
対物光学系によって得られた被写体像を固体撮像素子により撮像する複数種の内視鏡と、前記複数種の内視鏡のうち1つを選択的に接続し、当該接続した内視鏡の前記固体撮像素子からの被写体像に応じた出力信号の処理を行う信号処理装置を備えた電子内視鏡システムであって、
前記複数種の内視鏡のうち、少なくとも1つの内視鏡は対物光学系が光位相変調マスクを有し、この光位相変調マスクは前記対物光学系に設けられ、この対物光学系の光軸を軸として非対称な光学的伝達関数を有し、且つ物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクが設けられない対物光学系よりも小さくなるように配置され、
前記信号処理装置は、前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを備え、
前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ復元処理を行うことを特徴とする電子内視鏡システム。
(付記項12)
対物光学系によって得られた被写体像を固体撮像素子により撮像する複数種の内視鏡と、前記複数種の内視鏡のうち1つを選択的に接続し、当該接続した内視鏡の前記固体撮像素子からの被写体像に応じた出力信号の処理を行う信号処理装置と、
物体距離を検出する距離検出手段と、を備えた電子内視鏡システムであって、
前記複数種の内視鏡のうち、少なくとも1つの内視鏡は対物光学系が光位相変調マスクを有し、この光位相変調マスクは前記対物光学系に設けられ、この対物光学系の光軸を軸として非対称な光学的伝達関数を有し、且つ物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクが設けられない対物光学系よりも小さくなるように配置され、
前記信号処理装置は、前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを備え、
前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ前記距離検出手段が検出した物体距離に応じて復元処理を行うことを特徴とする電子内視鏡システム。
(付記項13)
対物光学系によって得られた被写体像を固体撮像素子により撮像する複数種の内視鏡と、前記複数種の内視鏡のうち1つを選択的に接続し、当該接続した内視鏡の前記固体撮像素子からの被写体像に応じた出力信号の処理を行う複数の信号処理装置とを、組み合わせて使用される電子内視鏡システムにおいて、
前記複数種の内視鏡のうち、少なくとも1つの内視鏡は対物光学系が光位相変調マスクを有し、この光位相変調マスクは前記対物光学系に設けられ、この対物光学系の光軸を軸として非対称な光学的伝達関数を有し、且つ物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクが設けられない対物光学系よりも小さくなるように配置され、
前記複数の信号処理装置は、前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを備え、
前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ復元処理を行うことを特徴とする電子内視鏡システム。
(付記項14)
対物光学系によって得られた被写体像を固体撮像素子により撮像する複数種の内視鏡と、物体距離を検出する距離検出手段と、前記複数種の内視鏡のうち1つを選択的に接続し、当該接続した内視鏡の前記固体撮像素子からの被写体像に応じた出力信号の処理を行う複数の信号処理装置とを、組み合わせて使用される電子内視鏡システムにおいて、
前記複数種の内視鏡のうち、少なくとも1つの内視鏡は対物光学系が光位相変調マスクを有し、この光位相変調マスクは前記対物光学系に設けられ、この対物光学系の光軸を軸として非対称な光学的伝達関数を有し、且つ物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクが設けられない対物光学系よりも小さくなるように配置され、
前記複数の信号処理装置は、前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを備え、
前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ前記距離検出手段が検出した物体距離に応じて復元処理を行うことを特徴とする電子内視鏡システム。
(付記項15)
前記復元処理手段は、物体距離に応じた複数の復元処理を有することを特徴とする付記項12又は14に記載の電子内視鏡システム。
(付記項16)
前記復元処理手段を施す領域は、飽和レベルの領域に加え、少なくとも前記復元処理手段に必要な領域を加算した領域であることを特徴とする付記項11〜15に記載の電子内視鏡システム。
(付記項17)
前記光位相変調マスクは、明るさ絞りの背面に設け、前記対物光学系の光軸に対して非対称な自由曲面を有する瞳変調素子であり、
前記瞳変調素子は、前記明るさ絞りの背面に嵌合するために前記対物光学系に対して光学的な有効領域外に少なくとも2つ以上の突起部を設け、
前記明るさ絞りは、前記瞳変調素子の光学的有効領域に対応する開口部を有し、この開口部の開口中心と前記瞳変調素子の光軸とが一致し、且つ前記開口部と前記瞳変調素子の光学的有効領域とが位置ずれしないように、前記瞳変調素子の前記突起部に応じた位置決め穴を形成したことを特徴とする付記項11〜15に記載の電子内視鏡システム。
(付記項18)
前記明るさ絞りの開口部は、長方形の形状であり、この長方形開口部の開口中心と前記瞳変調素子の光軸とが一致し、且つ前記長方形開口部の一辺及びこの一辺と異なる他の一辺と前記瞳変調素子の前記自由曲面のX軸及びY軸とがそれぞれ平行になるように前記位置決め穴を形成していることを特徴とする付記項17に記載の電子内視鏡システム。
(付記項19)
前記光位相変調マスクを含む対物光学系に用いられる光軸に対して非対称な自由曲面を有する瞳変調素子には、対物光学系の光学的な有効領域外に少なくとも2つ以上の突起部が設けられ、当接する長方形の開口を持つ明るさ絞りには、瞳変調素子の光軸と、明るさ絞りの開口中心とが一致し、且つ瞳変調素子の自由曲面のX軸、及び、Y軸がそれぞれ、明るさ絞り開口の一辺、及び、他の一辺と平行になるように、瞳変調素子に設けられた突起部に対向する位置に位置決め穴が設けられていることを特徴とする付記項11〜15に記載の電子内視鏡システム。
本発明の電子内視鏡システム及び信号処理装置は、光位相変調マスクを含む対物光学系を有し、固体撮像素子のダイナミックレンジを越える輝点が入射された際でも、画像の品位が低下しないようにしたことにより、工業分野のみならず、医療分野において、特に対物光学系の被写界深度をより拡大するような場合に適している。
第1実施例の電子内視鏡システムを示す全体構成図である。 図1の光位相変調マスクを含む撮像ユニットを示す構成図である。 明るさ絞り部材を配置した瞳変調素子の構造を説明するための概略説明図である。 図3の明るさ絞り部材を配置した瞳変調素子の構造の変形例を示す概略説明図である。 図1の信号処理装置の内部構成を示す回路ブロック図である。 瞳変調素子を含む撮像ユニットの物体距離4mmの時に得られる点像のシミュレーション結果を示すグラフである。 輝点の位置及び大きさを示す概念図である。 マスク処理部にて復元処理が施される領域を説明した概念図である。 第2実施例に係わる信号処理装置の内部構成を示す回路ブロック図である。 光位相変調マスクを用いて対物光学系の被写界深度を拡大するようにした従来の電子内視鏡システムの構成を示す図である。
符号の説明
1 電子内視鏡システム
2 電子内視鏡
3 光源装置
4 信号処理装置
11 挿入部
15 対物光学系
16 撮像部
16a 固体撮像素子
17 撮像ユニット
18 光位相変調マスク
18a 瞳変調素子
19 明るさ絞り部材
21 A/D変換器
22 信号変換部
23 輝点検出部
24 マスク処理部
25 復元処理部
26 加算器
27 D/A変換器
28 自動調光部
代理人 弁理士 伊藤 進

Claims (6)

  1. 対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡と、
    前記内視鏡の前記対物光学系に設けられ、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクと、
    前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段を有する信号処理装置と、
    を備えた電子内視鏡システムであって、
    前記光位相変調マスクは、物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクが設けられない対物光学系よりも小さくなるように配置されると共に、
    前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ復元処理を行うことを特徴とする電子内視鏡システム。
  2. 対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡と、
    前記内視鏡の前記対物光学系に設けられ、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクと、
    前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを有する信号処理装置と、
    物体距離を検出する距離検出手段と、
    を備えた電子内視鏡システムであって、
    前記光位相変調マスクは、物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクが設けられない対物光学系よりも小さくなるように配置されると共に、
    前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ前記距離検出手段が検出した物体距離に応じて復元処理を行うことを特徴とする電子内視鏡システム。
  3. 前記復元処理手段は、物体距離に応じた複数の復元処理を有することを特徴とする請求項2に記載の信号処理装置。
  4. 被写体像を得るための対物光学系に、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクを備え、前記光位相変調マスクは物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクを設けない場合よりも小さくなるように配置されている、前記対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡に接続され、前記固体撮像素子からの被写体像に応じた出力信号の処理を行う信号処理装置であって、
    前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを備え、
    前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ復元処理を行うことを特徴とする信号処理装置。
  5. 被写体像を得るための対物光学系に、この対物光学系の光軸を軸として非対称な光学的伝達関数を有する光位相変調マスクを備え、前記光位相変調マスクは物体距離に応じた前記光学的伝達関数の変化が光位相変調マスクを設けない場合よりも小さくなるように配置されている、前記対物光学系によって得られた被写体像を撮像するための固体撮像素子を有する内視鏡に接続され、前記固体撮像素子からの被写体像に応じた出力信号の処理を行う信号処理装置であって、
    前記光位相変調マスクにより変更された光学的伝達関数を復元する復元処理手段と、前記固体撮像素子に飽和レベルの光量が入射した際に、この固体撮像素子における飽和領域の位置と大きさを検知するための検知手段とを備え、
    前記復元処理手段は、前記検知手段により検知した前記固体撮像素子の飽和領域付近にのみ物体距離に応じた復元処理を行うことを特徴とする信号処理装置。
  6. 前記復元処理手段は、物体距離に応じた複数の復元処理を有することを特徴とする請求項5に記載の信号処理装置。
JP2004031274A 2004-02-06 2004-02-06 電子内視鏡システム及び信号処理装置 Expired - Fee Related JP4460909B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004031274A JP4460909B2 (ja) 2004-02-06 2004-02-06 電子内視鏡システム及び信号処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004031274A JP4460909B2 (ja) 2004-02-06 2004-02-06 電子内視鏡システム及び信号処理装置

Publications (2)

Publication Number Publication Date
JP2005218719A JP2005218719A (ja) 2005-08-18
JP4460909B2 true JP4460909B2 (ja) 2010-05-12

Family

ID=34994815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004031274A Expired - Fee Related JP4460909B2 (ja) 2004-02-06 2004-02-06 電子内視鏡システム及び信号処理装置

Country Status (1)

Country Link
JP (1) JP4460909B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948967B2 (ja) * 2006-10-27 2012-06-06 京セラ株式会社 撮像装置、並びにその製造装置および製造方法
JP4948990B2 (ja) * 2006-11-29 2012-06-06 京セラ株式会社 撮像装置、並びにその製造装置および製造方法
JP2011128238A (ja) * 2009-12-16 2011-06-30 Fujitsu Ltd 撮像装置および情報端末装置
US8648918B2 (en) * 2010-02-18 2014-02-11 Sony Corporation Method and system for obtaining a point spread function using motion information
CN104236515B (zh) * 2014-09-11 2017-01-18 山东省计量科学研究院 医用电子内窥镜视场角自动测量装置

Also Published As

Publication number Publication date
JP2005218719A (ja) 2005-08-18

Similar Documents

Publication Publication Date Title
JP3958603B2 (ja) 電子内視鏡システム及び電子内視鏡システム用の信号処理装置
JP3791777B2 (ja) 電子内視鏡
US7634305B2 (en) Method and apparatus for size analysis in an in vivo imaging system
JP3271838B2 (ja) 内視鏡用画像処理装置
WO2008003788A3 (de) Ophthalmoskop
US11064144B2 (en) Imaging element, imaging apparatus, and electronic equipment
US20220038613A1 (en) Imaging device
JP2009115541A (ja) 距離測定装置および距離測定方法
US7534205B2 (en) Methods and apparatuses for selecting and displaying an image with the best focus
JPH04138127A (ja) 内視鏡網目画像軽減装置
US20090231418A1 (en) Image processor for endoscope and image processing method for endoscope
JP4460909B2 (ja) 電子内視鏡システム及び信号処理装置
JP7016681B2 (ja) 内視鏡システム
JP2007190060A (ja) 内視鏡装置
US20190281233A1 (en) Image processing device, setting method, and program
CN110461208A (zh) 控制装置、外部装置、医学观察系统、控制方法、显示方法和程序
JP6017749B1 (ja) 撮像装置、撮像装置の作動方法
US20190058819A1 (en) Endoscope apparatus
CN112334055A (zh) 医学观察系统、医学观察设备及医学观察设备的驱动方法
JP2018063309A (ja) 顕微鏡装置
JP2008229219A (ja) 電子内視鏡システム
JP3047831U (ja) デジタル式光学顕微鏡及び望遠鏡
US20200059608A1 (en) Image processing device, control method, and program
JP2004186789A (ja) 画像評価装置
JP2009223526A (ja) 画像入力装置及び個人認証装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R151 Written notification of patent or utility model registration

Ref document number: 4460909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees