JP4449202B2 - グロープラグの異常検出装置 - Google Patents

グロープラグの異常検出装置 Download PDF

Info

Publication number
JP4449202B2
JP4449202B2 JP2000311861A JP2000311861A JP4449202B2 JP 4449202 B2 JP4449202 B2 JP 4449202B2 JP 2000311861 A JP2000311861 A JP 2000311861A JP 2000311861 A JP2000311861 A JP 2000311861A JP 4449202 B2 JP4449202 B2 JP 4449202B2
Authority
JP
Japan
Prior art keywords
glow
glow plug
diesel engine
power supply
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000311861A
Other languages
English (en)
Other versions
JP2002115641A (ja
Inventor
淳 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000311861A priority Critical patent/JP4449202B2/ja
Publication of JP2002115641A publication Critical patent/JP2002115641A/ja
Application granted granted Critical
Publication of JP4449202B2 publication Critical patent/JP4449202B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/027Safety devices, e.g. for diagnosing the glow plugs or the related circuits

Description

【0001】
【発明の属する技術分野】
本発明はディーゼルエンジンに設けられたグロープラグの異常を検出する装置に関する。
【0002】
【従来の技術】
従来、ディーゼルエンジンには、冷間時の始動性を向上させるためにグロープラグが設けられている。すなわち冷間時のディーゼルエンジンの始動に際しては、予めグロープラグに給電することによりディーゼルエンジンを予熱した後、スタータにて始動するようにされている。
【0003】
このようなグロープラグには通電発熱体が設けられているが、この通電発熱体自体の断線あるいはこの通電発熱体への電力供給ラインに断線が生じた場合には、冷間時の始動性に問題を生じる。このためグロープラグの断線検出装置を設けることにより、グロープラグの異常を検出する装置が提案されている(特開平11−182400号公報、特開昭57−26275号公報、特開昭58−113581号公報)。
【0004】
【発明が解決しようとする課題】
しかし、上記従来技術では、グロープラグの断線を検出するための電圧検出回路等の特別な回路や素子を設けていたため、製造コストが悪化するばかりか部品点数増加により信頼性・搭載性も悪化するおそれがある。本発明は、異常検出のための特別な回路や素子を設けることなく、グロープラグの断線等の異常を検出する装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
以下、上記目的を達成するための手段およびその作用効果について記載する。
請求項1記載のグロープラグの異常検出装置は、ディーゼルエンジンに設けられたグロープラグの異常を検出する異常検出装置であって、グロープラグへの給電状態を変化させる給電制御手段と、ディーゼルエンジンの運転中に前記給電制御手段にて給電状態を変化させた場合に、ディーゼルエンジンの運転中であって該変化前におけるディーゼルエンジンの運転状態と、ディーゼルエンジンの運転中であって該変化におけるディーゼルエンジンの運転状態の差に基づいてグロープラグの異常有無判定を行う異常判定手段とを備えたことを特徴とする。
【0006】
異常判定手段は、特別な回路や素子にて直接グロープラグの異常を検出するのではなく、給電制御手段にてディーゼルエンジンの運転中に給電状態を変化させた場合に、ディーゼルエンジンの運転中であって該変化前におけるディーゼルエンジンの運転状態と、ディーゼルエンジンの運転中であって該化後のディーゼルエンジンの運転状態の差に基づいてグロープラグの異常有無判定を行っている。グロープラグは発熱するためのエネルギーを直接的あるいは間接的にディーゼルエンジンから得ている。このため、グロープラグでのエネルギーの消費に現れたグロープラグの異常は、エネルギー供給源であるディーゼルエンジンの運転状態に現れることとなる。
【0007】
したがって、グロープラグへの給電状態変化前後において、ディーゼルエンジンの運転状態の差に基づいてグロープラグの断線等の異常有無判定を行うことができる。このため、直接グロープラグの断線等の異常を検出するための特別な回路や素子を設ける必要が無くなるので、製造コストの増加を防止し、信頼性や搭載性の悪化のおそれをなくすことができる。
【0008】
請求項2記載のグロープラグの異常検出装置では、請求項1記載の構成において、前記給電制御手段は、グロープラグへの給電オンと給電オフとを切り替えるものであることを特徴とする。
【0009】
給電制御手段がグロープラグへの給電オンと給電オフとを切り替えるように構成されていることにより、異常判定手段では、給電オン−オフ切り替え前後のディーゼルエンジンの運転状態の差に基づいてグロープラグの異常有無判定を行うことができる。
【0010】
請求項3記載のグロープラグの異常検出装置では、請求項1または2記載の構成において、前記給電制御手段は、電力消費の増減が高感度にディーゼルエンジンの運転状態に影響する状態にある場合に、グロープラグへの給電オンと給電オフとを強制的に切り替えるものであることを特徴とする。
【0011】
例えば、暖機後のエンジン運転状態、バッテリ電圧が基準電圧以上の状態、あるいはディーゼルエンジンにより駆動されるエアコンがオフの状態などでは、ディーゼルエンジンは低負荷状態で駆動しているため、電力消費の増減が高感度にディーゼルエンジンの運転状態に影響する。このような電力消費の増減が高感度にディーゼルエンジンの運転状態に影響する状態にある場合に、給電制御手段がグロープラグへの給電状態を変化させると、グロープラグの異常有無が変化前後のディーゼルエンジンの運転状態の差に大きく影響する。
【0012】
したがって、このように高感度に反応する運転状態の差に基づいて正確にグロープラグの異常有無の判定を行うことができる。
請求項4記載のグロープラグの異常検出装置では、請求項1〜3のいずれか記載の構成において、前記異常判定手段は、前記給電制御手段にて給電状態が変化された場合に、該変化前後のディーゼルエンジンの運転状態の差が基準値よりも小さい場合にグロープラグが断線していると判定することを特徴とする。
【0013】
グロープラグが断線している場合は、給電制御手段にて給電状態を変化させても、変化前後で給電状態では差がない。このため異常判定手段は、変化前後のディーゼルエンジンの運転状態の差が基準値よりも小さい場合にグロープラグが断線していると判定することができる。このように、直接グロープラグの断線異常を検出するための特別な回路や素子を設けなくてもグロープラグの断線等が検出でき、製造コストの増加を防止し、信頼性や搭載性の悪化のおそれをなくすことができる。
【0014】
請求項5記載のグロープラグの異常検出装置では、請求項1〜4のいずれか記載の構成に対して、ディーゼルエンジンのアイドル時にエンジン回転数がアイドル目標回転数となるようにディーゼルエンジンの燃料噴射量を調整するアイドル回転数制御手段を備えると共に、前記異常判定手段は、アイドル時において前記給電制御手段にて給電状態を変化させた場合に該変化前後のディーゼルエンジンの燃料噴射量の差に基づいてグロープラグの異常有無判定を行うことを特徴とする。
【0015】
このようにディーゼルエンジンの運転状態の差を求めるために利用する制御としてアイドル回転数制御を挙げることができる。グロープラグに正常に電流が流れる場合には、給電制御手段により電力を供給した場合あるいは電力を遮断した場合には、ディーゼルエンジンの電気負荷が変化する。このため、給電制御手段の処理はアイドル目標回転数を維持するための燃料噴射量には影響する。しかし、グロープラグに異常があり、例えば断線異常があり、グロープラグに全く電流が流れない場合は、給電制御手段により電力を供給してもあるいは電力を遮断してもディーゼルエンジンの電気負荷は変化しない。このため、給電制御手段の処理は、アイドル目標回転数を維持するための燃料噴射量には影響しなくなる。
【0016】
したがって、ディーゼルエンジンの燃料噴射量の差に基づいてグロープラグの異常有無判定を行うことができる。このように、直接グロープラグの断線異常を検出するための特別な回路や素子を設けなくてもグロープラグの断線等が検出でき、製造コストの増加を防止し、信頼性や搭載性の悪化のおそれをなくすことができる。
【0017】
請求項6記載のグロープラグの異常検出装置では、請求項1〜4のいずれか記載の構成に対して、バッテリ電圧に応じて出力を調整する発電手段を備えると共に、前記異常判定手段は、前記給電制御手段にて給電状態を変化させた場合に該変化前後の前記発電手段の出力の差に基づいてグロープラグの異常有無判定を行うことを特徴とする。
【0018】
このようにディーゼルエンジンの運転状態の差を求めるために利用する制御装置として、バッテリ電圧に応じて出力を調整する発電手段を挙げることができる。グロープラグに正常に電流が流れる場合には、給電制御手段により電力を供給したり遮断したりするとバッテリの電力消費量に変化を生じる。このため発電手段は出力を変更することになる。しかし、グロープラグに異常があり、例えば断線異常があり、グロープラグに全く電流が流れない場合は、給電制御手段により電流量を供給しても遮断してもバッテリの電力消費量に変化はない。このため発電手段は出力を変更しない。
【0019】
したがって、発電手段の出力の差に基づいてグロープラグの異常有無判定を行うことができる。このように直接グロープラグの断線異常を検出するための特別な回路や素子を設けなくてもグロープラグの断線等が検出でき、製造コストの増加を防止し、信頼性や搭載性の悪化のおそれをなくすことができる。
【0020】
請求項7記載のグロープラグの異常検出装置では、請求項1〜4のいずれか記載の構成において、前記ディーゼルエンジンの運転状態の差は、ディーゼルエンジンの燃料噴射量が一定である場合のエンジン回転数の差であることを特徴とする。
【0021】
なお、ディーゼルエンジンの燃料噴射量が一定である場合にはエンジン回転数の差をディーゼルエンジンの運転状態の差として用いても良い。ディーゼルエンジンの燃料噴射量が一定であると、グロープラグが正常であれば、給電制御手段により電力を供給した場合には、その電気エネルギー負荷が発生するのでエンジン回転数は低下し、電力を遮断した場合はエンジン回転数は上昇する。一方、グロープラグに異常があり、例えば断線異常があり、グロープラグに全く電流が流れない場合は、給電制御手段により電力を供給しても電気エネルギー負荷が発生せずエンジン回転数は低下しないし、電力を遮断した場合もエンジン回転数は上昇しない。したがって、ディーゼルエンジンの燃料噴射量が一定である場合にはエンジン回転数の差に基づいてグロープラグの異常有無判定を行うことができる。このように直接グロープラグの断線等の異常を検出するための特別な回路や素子を設けなくてもグロープラグの断線等の異常が検出でき、製造コストの増加を防止し、信頼性や搭載性の悪化のおそれをなくすことができる。
【0022】
【発明の実施の形態】
[実施の形態1]
図1は、実施の形態1としての蓄圧式ディーゼルエンジン(コモンレール型ディーゼルエンジン)2とその制御系統を示す概略構成図である。本蓄圧式ディーゼルエンジン2は自動車用エンジンとして車両に搭載されているものである。
【0023】
ディーゼルエンジン2には、複数の気筒(本実施の形態では4気筒であるが、1気筒のみ図示している)♯1,#2,#3,♯4が設けられており、各気筒♯1〜♯4の燃焼室に対してインジェクタ4がそれぞれ設けられている。インジェクタ4からディーゼルエンジン2の各気筒♯1〜♯4への燃料噴射は、噴射制御用の電磁弁4aのオン・オフにより制御される。
【0024】
インジェクタ4は、各気筒共通の蓄圧配管としてのコモンレール6に接続されており、前記噴射制御用の電磁弁4aが開いている間、コモンレール6内の燃料がインジェクタ4より各気筒♯1〜♯4に噴射されるようになっている。前記コモンレール6には、燃料噴射圧に相当する比較的高い圧力が蓄積されている。この蓄圧を実現するために、コモンレール6は供給配管8を介してサプライポンプ10の吐出ポート10aに接続されている。また、供給配管8の途中には、逆止弁8aが設けられている。この逆止弁8aの存在により、サプライポンプ10からコモンレール6への燃料の供給が許容され、かつ、コモンレール6からサプライポンプ10への燃料の逆流が阻止されている。
【0025】
サプライポンプ10は、吸入ポート10bを介して燃料タンク12に接続されており、その途中にはフィルタ14が設けられている。サプライポンプ10は、燃料タンク12からフィルタ14を介して燃料を吸入する。また、これとともに、サプライポンプ10は、ディーゼルエンジン2の回転に同期する図示しないカムによってプランジャを往復運動させて、燃料圧力を要求される所定圧にまで高めて、高圧燃料をコモンレール6に供給している。
【0026】
さらに、サプライポンプ10の吐出ポート10a近傍には、圧力制御弁10cが設けられている。この圧力制御弁10cは、吐出ポート10aからコモンレール6の方へ吐出される燃料圧力を制御するためのものである。この圧力制御弁10cが開かれることにより、吐出ポート10aから吐出されない分の余剰燃料が、サプライポンプ10に設けられたリターンポート10dからリターン配管16を経て燃料タンク12へと戻されるようになっている。
【0027】
ディーゼルエンジン2の燃焼室には、吸気通路18および排気通路20がそれぞれ接続されている。吸気通路18には図示しないスロットルバルブが設けられており、このスロットルバルブをディーゼルエンジン2の運転状態により開度調整することにより、燃焼室内に導入される吸入空気の流量が調整される。
【0028】
また、ディーゼルエンジン2の燃焼室内には、グロープラグ22が配設されている。このグロープラグ22は、ディーゼルエンジン2の始動直前にグローリレー22aにて電流が流されることにより赤熱し、これに燃料噴霧の一部が吹きつけられることで着火・燃焼が促進される始動補助装置である。このグロープラグ22は後述するごとくの処理により断線等の異常検出がなされる。
【0029】
ディーゼルエンジン2には、以下の各種センサ等が設けられており、これらは、本実施の形態1において、ディーゼルエンジン2の運転状態を検出する。すなわち、図1に示すように、アクセルペダル24の近傍には、アクセル開度ACCPFを検出するためのアクセルセンサ26が設けられ、更にアクセルセンサ26の近傍には、アクセルペダル24の踏込量がゼロの場合に全閉信号(オン)を出力する全閉スイッチ28が設けられている。また、ディーゼルエンジン2には、ディーゼルエンジン2を始動させるためのスタータ30が設けられている。このスタータ30には、その作動状態を検知するスタータスイッチ30aが設けられている。ディーゼルエンジン2のシリンダブロックには、その冷却水の温度(冷却水温THW)を検出するための水温センサ32が設けられている。更にオイルパン(図示略)にはエンジンオイルの温度THOを検出する油温センサ34が設けられている。また前記リターン配管16には、燃料温度THFを検出するための燃温センサ36が設けられている。また、前記コモンレール6にはコモンレール6内の燃料の圧力を検出するために燃圧センサ38が設けられている。ディーゼルエンジン2のクランクシャフト(図示略)に設けられたパルサ(図示略)の近傍には、NEセンサ40が設けられている。更にクランクシャフトの回転は、吸気弁18aおよび排気弁20aを開閉動作させるためのカムシャフト(図示略)にタイミングベルト等を介して伝達される。このカムシャフトは、クランクシャフトの1/2回転の回転速度で回転するよう設定されている。このカムシャフトに設けられたパルサ(図示略)の近傍には、気筒判別センサ42が設けられている。そして、本実施の形態1ではこれら両センサ40,42から出力されるパルス信号により、エンジン回転数NE、クランク角CA、第1気筒♯1の吸気上死点(TDC)が算出されている。トランスミッション44には、シフトポジションセンサ46が設けられて、トランスミッション44のシフト状態を検出している。またトランスミッション44の出力軸側には、出力軸の回転数から車速SPDを検出する車速センサ48が設けられている。またディーゼルエンジン2の出力により駆動するエアコン装置(図示略)が設けられると共に、このエアコン装置の駆動を指示するためのエアコンスイッチ50が設けられている。
【0030】
本実施の形態1においては、ディーゼルエンジン2の各種制御を司るための電子制御装置(ECU)52が設けられており、このECU52により、後述する燃料噴射量制御やグロー制御等のディーゼルエンジン2を制御するための処理が行われる。ECU52は、中央処理制御装置(CPU)、各種プログラムやマップ等を予め記憶した読出専用メモリ(ROM)、CPUの演算結果等を一時記憶するランダムアクセスメモリ(RAM)、演算結果や予め記憶されたデータ等を保存するバックアップRAM、タイマカウンタ、入力インターフェース、出力インターフェース等を備えたマイクロコンピュータを中心として構成されている。前述したアクセルセンサ26、水温センサ32、油温センサ34、燃温センサ36、燃圧センサ38等は、それぞれバッファ、マルチプレクサ、A/D変換器(いずれも図示せず)を介してECU52の入力インターフェースに接続されている。また、NEセンサ40、気筒判別センサ42、車速センサ48等は、波形整形回路(図示せず)を介してECU52の入力インターフェースに接続されている。さらに、全閉スイッチ28、スタータスイッチ30a、シフトポジションセンサ46、エアコンスイッチ50等はECU52の入力インターフェースに直接接続されている。これ以外にバッテリ電圧Vbおよびオルタネータの制御デューティDF等がECU52に入力されて、その値が読み込まれている。CPUは、上記各センサやスイッチ類の信号を入力インターフェースを介して読み込む。また電磁弁4a、圧力制御弁10c、グローリレー22a等は、それぞれ駆動回路を介してECU52の出力インターフェースに接続されている。CPUは、入力インターフェースを介して読み込んだ入力値に基づき制御演算を行い、出力インターフェースを介して前記電磁弁4a、圧力制御弁10c、グローリレー22a等を好適に制御する。
【0031】
ここで、図2の電力供給系統図に示すごとく、オルタネータ54およびエアコン用コンプレッサ56は、ディーゼルエンジン2のクランクシャフト2aからベルト2bを介して回転駆動される。オルタネータ54内部には電圧レギュレータ54aが備えられている。この電圧レギュレータ54aはオルタネータ用コントローラ58からのデューティ信号に応じた電圧がオルタネータ54から出力されるようにしている。コントローラ58はバッテリ60の電圧Vbを検出し、バッテリ60の充電状態を適切な状態に維持するように、電圧レギュレータ54aに対してデューティ制御を実行している。グロープラグ22は、ECU52によりグローリレー22aがオンされている場合に、オルタネータ54およびバッテリ60から電力を供給されることにより発熱することができる。
【0032】
次に、本実施の形態において、ECU52により実行される制御のうち、燃料噴射量制御処理およびグロー制御処理について説明する。
図3および図4は燃料噴射量制御処理を示している。本処理は一定クランク角毎(爆発行程毎)の割り込みで実行される。なお個々の処理に対応するフローチャート中のステップを「S〜」で表す。
【0033】
燃料噴射量制御処理が開始されると、まず、NEセンサ40の信号により検出されているエンジン回転数NE、アクセルセンサ26の信号により検出されているアクセル開度ACCPF、シフトポジションセンサ46の信号により検出されているシフトポジションSFTおよび車速センサ48の信号により検出されている車速SPD等の制御に必要なデータがECU52のRAM内の作業領域に読み込まれる(S110)。
【0034】
次に、エンジン回転数NEおよびアクセル開度ACCPFに基づいて、エンジン回転数NEおよびアクセル開度ACCPFをパラメータとするアイドル時ガバナ噴射量指令値マップからアイドル時ガバナ噴射量指令値QGOV1を算出する(S120)。このマップは、予めアイドル時用に実験的に定められてECU52のROM内に記憶されているものである。なお、このマップでは離散的に数値が配置されているので、パラメータとして一致する値が存在しない場合には、補間計算により求めることになる。このようなマップの設定および補間による算出は、他のマップにおいても同様である。
【0035】
次に、エンジン回転数NEおよびアクセル開度ACCPFに基づいて、エンジン回転数NEおよびアクセル開度ACCPFをパラメータとするアイドル以外用ガバナ噴射量指令値マップからアイドル以外用ガバナ噴射量指令値QGOV2を算出する(S130)。更にアイドル以外用ガバナ噴射量指令値QGOV2に対する補助的な特性を与える補助ガバナ噴射量指令値QGOV3を、エンジン回転数NEおよびアクセル開度ACCPFに基づいて、エンジン回転数NEおよびアクセル開度ACCPFをパラメータとする補助ガバナ噴射量指令値マップから算出する(S140)。
【0036】
次に、アイドル以外か否かが判定される(S150)。例えば、暖機完了後において、車速SPDがほぼ0km/hであり、全閉スイッチ28が「ON」である場合には、アイドル状態にあるものと判定される。アイドル状態であれば(S150で「NO」)、次に、次式1に示すごとく、アイドル時の目標回転数NTRGと実際の回転数NEとの回転数偏差NEDLが算出される(S160)。
【0037】
【数1】
NEDL ← NTRG − NE … [式1]
次に回転数偏差NEDLに応じた噴射量補正値QIIDLを、回転数偏差NEDLをパラメータとするマップから求める。このマップの代わりに、回転数偏差NEDLをパラメータとする関数から噴射量補正値QIIDLを求めても良い。
【0038】
次に、次式2のごとく、噴射量補正値QIIDLの値に基づいて、アイドル噴射量補正値QIIを算出する(S180)。
【0039】
【数2】
QII ← QII ± QIIDL … [式2]
ここで、右辺のQIIは前回の制御周期時に求められたアイドル噴射量補正値QIIである。また「± QIIDL」は、NTRG≧NEの場合は「+ QIIDL」を意味し、NTRG<NEの場合は「− QIIDL」を意味する。
【0040】
ステップS180の次に次式3により、ガバナ噴射量指令値QGOVが算出される(S190)。なお、ステップS150にてアイドル以外であると判定された場合(S150で「YES」)は、直接、ガバナ噴射量指令値QGOVの算出処理(S190)に移る。
【0041】
【数3】
Figure 0004449202
ここで、QIPはアイドル時にエアコンなどの負荷が生じている場合のオフセット値であり、QIPBはアイドル以外の場合にエアコンなどの負荷が生じている場合のオフセット値である。また、MAX()は、括弧内の値の内の最大値を抽出する演算子である。
【0042】
次に、加減速時か否かが判定される(S200)。この判定は、例えば、ガバナ噴射量指令値QGOVが、前回の制御周期時に算出されている基本噴射量指令値QBASEOLに比較して大きくあるいは小さくなっているか否かにより判定される。
【0043】
加減速時であれば(S200で「YES」)、次にガバナ噴射量指令値QGOVの増減抑制処理がなされる。これはガバナ噴射量指令値QGOVが急速に変化する場合に生じるショックを防止するために行われるものである。したがって基本噴射量指令値QBASEOLに比較して大きく変化したガバナ噴射量指令値QGOVがステップS190にて算出された場合には、ガバナ噴射量指令値QGOVの値はショックが生じないように補正される。
【0044】
次に基本噴射量指令値QBASEとしてガバナ噴射量指令値QGOVの値が設定される(S220)。なおステップS200にて加減速時でないと判定された場合(S200で「NO」)は、直接、ステップS220の処理に移る。
【0045】
そして、この基本噴射量指令値QBASEを、次式4に表すごとく最大噴射量指令値QFULLにてガード処理して最終基本噴射量指令値QFINCを算出する(S230)。
【0046】
【数4】
QFINC ← MIN(QBASE,QFULL) … [式4]
ここで、MIN()は、括弧内の値の内の最小値を抽出する演算子である。
【0047】
次に、次式5に示すごとく、最終基本噴射量指令値QFINCからパイロット噴射量指令値QPLが減算されて、メイン噴射量指令値QFPLが算出される(S240)。
【0048】
【数5】
QFPL ← QFINC − QPL … [式5]
次に、メイン噴射量指令値QFPLの値に基づいて、マップあるいは関数fqによりメイン噴射期間TQFPLが算出される(S250)。更に、パイロット噴射量指令値QPLの値に基づいて、マップあるいは関数fpによりパイロット噴射期間TQPLが算出される(S260)。そして、前回基本噴射量指令値QBASEOLに、今回算出された基本噴射量指令値QBASEを設定する(S270)。こうして燃料噴射量制御処理を一旦終了する。
【0049】
次に図5および図6に示すグロー制御処理について説明する。本処理は時間周期で繰り返し実行される処理である。本処理が開始されると、まず、コントローラ58による制御デューティDF、バッテリ60の電圧Vb、各センサの検出結果などのディーゼルエンジン2の運転状態が読み込まれる(S300)。
【0050】
次にフリクションの影響が小さい状態を判定するために、ステップS310とステップS320との判定が行われる。これはフリクションが大きい状態よりも小さい状態の方が電気負荷変化が高感度にディーゼルエンジン2の運転状態に現れるのでグローリレー22aの異常を検出しやすいためである。ここでは冷却水温THWが暖機判定温度Athwより高いか否かの判定(S310)とエンジン油温THOが暖機判定温度Bthoより高いか否かの判定(S320)とが行われる。THW>AthwとTHO>Bthoとの両方が満足されていなければ(S310で「NO」またはS320で「NO」)、通常のグロー制御が実行される(S360)。すなわち、ディーゼルエンジン2の運転状態に応じて、グローリレー22aをオンとしてグロープラグ22を加熱して着火・燃焼を促進する始動補助処理が実行される。
【0051】
THW>AthwとTHO>Bthoとの両方が満足されていれば(S310で「YES」およびS320で「YES」)、暖機後でありフリクションが小さい状態であると判定できるので、次に現在、通常のグロー制御においてグローリレー22aのオフ条件が成立しているか否かが判定される(S330)。グローリレー22aのオン条件が成立している場合(S330で「NO」)では、通常のグロー制御によりグロープラグ22に給電されているのでグロープラグ22異常判定ができない。したがって通常のグロー制御が実行される(S360)。
【0052】
通常のグロー制御においてグローリレー22aのオフ条件が成立していれば(S330で「YES」)、エアコンがオフか否かがエアコンスイッチ50の状態により判定される(S340)。これはエアコンがオン状態よりもオフ状態の方が電気負荷変化が高感度にディーゼルエンジン2の運転状態に現れるのでグローリレー22aの異常を検出し易いためである。したがってエアコンがオン状態の場合は(S340で「NO」)、通常のグロー制御が実行される(S360)。
【0053】
エアコンがオフ状態の場合は(S340で「YES」)、次にバッテリ60の電圧Vbが、ある程度充電されている状態を示す基準電圧Cvbより大きいか否かが判定される(S350)。充電不足でバッテリ60の電圧が低すぎるとコントローラ58による制御デューティDFの値に、電気負荷変化が高感度に現れ難くなる。このためVb≦Cvbでは(S350で「NO」)、通常のグロー制御が実行される(S360)。
【0054】
Vb>Cvbでは(S350で「YES」)、次にアイドル安定状態にあるか否かが判定される(S370)。例えば、アクセルセンサ26の全閉スイッチ28がオンであり、かつエンジン回転数NEの変動が安定性を示す基準値よりも小さい場合にアイドル安定状態にあるものとする。アイドル安定状態にない場合には(S370で「NO」)、グローリレー22aの異常を正確に判定できないので、次にグローリレー22aをオフ状態に維持し、異常検出中フラグFinを「OFF」に設定し、ONカウンタConをクリアする(S380)。なお、異常検出中フラグFinはECU52の電源オン時においてもFin=「OFF」に初期化されている。
【0055】
アイドルが安定状態にある場合には(S370で「YES」)、次に検出完了フラグFendが「OFF」か否かが判定される(S390)。検出完了フラグFendはECU52の電源オン時に「OFF」に初期化されているが、後述するグローオン時異常検出処理にて検出が完了していればFend=「ON」であるので(S390で「NO」)、グローリレー22aをオフ状態に維持し、異常検出中フラグFinを「OFF」に設定し、ONカウンタConをクリアする(S380)。
【0056】
Fend=「OFF」であれば(S390で「YES」)、次にグローオン時異常検出処理が実行される(S400)。このグローオン時異常検出処理では、図6のフローチャートに示す処理が実行される。まず、異常検出中フラグFin=「OFF」か否かが判定される(S410)。本処理が最初に行われる時には、Fin=「OFF」であることから(S410で「YES」)、次に異常検出中フラグFinに「ON」が設定され(S420)、ONカウンタConに「0」が設定される(S430)。次にコントローラ58における現在の制御デューティDFが制御デューティ保持値DFxに設定され(S440)、前述した燃料噴射量制御処理にて算出されている最終基本噴射量指令値QFINCが最終基本噴射量保持値Qxに設定される(S450)。
【0057】
次にグローオンが実行される(S460)。すなわち、通常のグロー制御ではグローオフ条件であるが強制的にグローリレー22aをオンすることにより、グロープラグ22に給電する。そしてONカウンタConをインクリメントし(S470)、このONカウンタConの値が経過基準値Dconを越えているか否かが判定される(S480)。Con≦Dconであれば(S480で「NO」)、このままグローオン時異常検出処理を出てグロー制御処理を一旦終了する。
【0058】
以後、ステップS310〜S350,S370,S390で「YES」と判定される状態が継続すると、グローオン時異常検出処理(図6)ではステップS410にて「NO」と判定されて、ステップS460,S470の処理が繰り返される。
【0059】
ステップS470のインクリメントが繰り返された結果、Con>Dconとなると(S480で「YES」)、次に現在の制御デューティDFが、前述のごとく設定された制御デューティ保持値DFxに対して次式6に示す関係にあるか否かが判定される(S490)。
【0060】
【数6】
DF > DFx + Edf … [式6]
ここでDF増加判定値Edfは、グローオフからグローオンに切り替えた時に正常にグロープラグ22に給電がなされた場合に、コントローラ58により調整される制御デューティDFの増加があったことを判定する値である。このDF増加判定値Edfは、固定値であっても良く、また予め実験にて設定した冷却水温THWとエンジン油温THOとの2次元マップから求めても良い。
【0061】
前記式6が満足されれば(S490で「YES」)、グロープラグ22には正常に給電がなされており、この給電によりバッテリ60の電圧低下が生じ、この電圧低下に基づいてコントローラ58により制御デューティDFが必要量増加されたことが判る。したがってグローオン時正常フラグFnrに「ON」が設定される(S510)。そして検出完了フラグFendに「ON」が設定される(S530)。こうしてグローオン時異常検出処理を出てグロー制御処理を一旦終了する。なお、グローオン時正常フラグFnrはECU52の電源オン時に「OFF」に初期化されている。
【0062】
前記式6が満足されていない場合には(S490で「NO」)、現在の最終基本噴射量指令値QFINCが、前述のごとく設定された最終基本噴射量保持値Qxに対して次式7に示す関係にあるか否かが判定される(S500)。
【0063】
【数7】
QFINC > Qx + Fqfinc … [式7]
ここで燃料増加判定値Fqfincは、グローオフからグローオンに切り替えた時に正常にグロープラグ22に給電がなされた場合に、エンジン回転数NEをアイドル目標回転数NTRGに維持するために前述した燃料噴射量制御処理(図3,4)にて算出される最終基本噴射量指令値QFINCの増加があったことを判定する値である。この燃料増加判定値Fqfincは、固定値であっても良く、また予め実験にて設定した冷却水温THWとエンジン油温THOとの2次元マップから求めても良い。
【0064】
前記式7が満足されれば(S500で「YES」)、グロープラグ22には正常に給電がなされており、この給電による電気負荷増加によりエンジン回転数が低下しようとするのをアイドル目標回転数制御(S160〜S190)により燃料噴射量の増加にて対処していることが判る。したがってグローオン時正常フラグFnrに「ON」が設定される(S510)。そして検出完了フラグFendに「ON」が設定される(S530)。こうしてグローオン時異常検出処理を出てグロー制御処理を一旦終了する。
【0065】
前記式7が満足されていない場合には(S500で「NO」)、グローオン時異常フラグFabに「ON」が設定される(S520)。そして検出完了フラグFendに「ON」が設定される(S530)。こうしてグローオン時異常検出処理を出てグロー制御処理を一旦終了する。なおグローオン時異常フラグFabはECU52の電源オン時に「OFF」に初期化されている。
【0066】
本実施の形態における制御の一例を図7および図8のタイミングチャートに示す。図7は正常なグロープラグ22の例を示している。ここでは時刻t1でステップS310〜S350,S370,S390にて「YES」と判定されて、グローオン時異常検出処理(図6)が開始された場合を示している。時刻t1以後、制御デューティDFおよび最終基本噴射量指令値QFINCが上昇する。そしてONカウンタConが経過基準値Dconを越えた場合に(時刻t2:S480で「YES」)、前記式6または前記式7が満足されており(図7では両式6,7が満足されている)を満足することから(S490またはS500で「YES」)、グローオン時正常フラグFnrに「ON」が設定される(S510)。更にこの時に検出完了フラグFendが「ON」に設定され(S530)、このため次の制御周期ではグロー制御処理(図5)のステップS390では「NO」と判定されてグローオフされる(S380)。以後、グロー制御処理(図5)のステップS390では「NO」と判定され続け、グローオン時異常検出処理(図6)は、今回のディーゼルエンジン2の運転が継続する限り、再度実行されることはない。
【0067】
図8の例では断線やグローリレー22aの異常により、ECU52が給電処理を行っても、グロープラグ22に電流が流れなかったり電力が供給されないグロープラグ22の例を示している。ステップS310〜S350,S370,S390にて「YES」と判定された時刻t11以後、グローリレー22aに対してオン制御を行っても、制御デューティDFおよび最終基本噴射量指令値QFINCの上昇はない。そしてONカウンタConが経過基準値Dconを越えた場合に(時刻t12:S480で「YES」)、前記式6および前記式7のいずれも満足されていないことから(S490およびS500で「NO」)、グローオン時異常フラグFabに「ON」が設定される(S520)。更にこの時に検出完了フラグFendが「ON」に設定され(S530)、次の制御周期ではグロー制御処理(図5)のステップS390では「NO」と判定されて、グローオフされる(S380)。
【0068】
上述した構成において、ステップS310,S320,S340,S350,S460が給電制御手段としての処理に、ステップS430〜S450,S470〜S520が異常判定手段としての処理に、ステップS150〜S190がアイドル回転数制御手段としての処理に相当する。またオルタネータ54およびコントローラ58が発電手段に相当する。
【0069】
以上説明した本実施の形態1によれば、以下の効果が得られる。
(イ).グローオン時異常検出処理(図6)では、直接、グロープラグ22の異常を検出するのではなく、給電状態の変化、ここではグローオフからグローオンに切り替えた場合に、この変化前後のディーゼルエンジン2の運転状態(コントローラ58の制御デューティDFおよび最終基本噴射量指令値QFINC)の差に基づいてグロープラグ22の異常有無判定を行っている。グロープラグ22は発熱エネルギーを、ディーゼルエンジン2の出力から電気エネルギーとして得ている。このためグロープラグ22の異常は、グロープラグ22でのエネルギーの消費に現れることになり、この結果、グロープラグ22の異常はエネルギー供給源であるディーゼルエンジン2の運転状態に現れることとなる。
【0070】
したがって、グロープラグ22への給電前後におけるディーゼルエンジン2の運転状態の差に基づいてグロープラグ22の断線やグローリレー22aの給電異常等の異常有無判定を行うことができる。このため、直接グロープラグ22の断線等の異常を検出するための特別な回路や素子を設ける必要が無くなる。したがって製造コストの増加を防止し、信頼性や搭載性の悪化のおそれをなくすことができる。
【0071】
(ロ).本実施の形態では、ステップS310およびS320により暖機後のエンジン運転状態、ステップS340によりディーゼルエンジン2により駆動されるエアコンがオフの状態、およびステップS350によりバッテリ電圧Vbが基準電圧Cvbより高い状態をすべて満足している場合には、ディーゼルエンジン2は低負荷状態で駆動している。そして、このような場合にグロープラグ22への給電状態を変化させている。このためグロープラグの異常有無に対するディーゼルエンジン2の運転状態の差が高感度になる。したがって正確にグロープラグ22の異常有無の判定を行うことができる。
【0072】
[実施の形態2]
本実施の形態2では、前記実施の形態1のグロー制御処理の代わりに図9に示すグロー制御処理が実行される点が異なる。これ以外の構成は特に説明しない限り前記実施の形態1と同じである。
【0073】
グロー制御処理(図9)においては、ステップS1300〜S1400の処理は前記実施の形態1のグロー制御処理(図5)およびこの一部であるグローオン時異常検出処理(図6)と同じ処理である。異なる点は、検出完了フラグFend=「ON」となった場合(S1390にて「NO」)である。この場合には、まず、グローオフが実行されて(S1410)、グローリレー22aに対してグロープラグ22への給電の停止信号が出力される。そして次にグローオフ時異常検出処理が実行される(S1420)。
【0074】
このグローオフ時異常検出処理の詳細を図10に示す。本処理が開始されると、まず、グローオフ時検出完了フラグKendに「OFF」が設定されているか否かが判定される(S1510)。Kend=「ON」であれば(S1510で「NO」)、このままグローオフ時異常検出処理を出てグロー制御処理(図9)を一旦終了する。ただしグローオフ時検出完了フラグKendはECU52の電源オン時に「OFF」に初期設定されている。したがって、最初はKend=「OFF」であり(S1510で「YES」)、次に検出完了フラグFendが「OFF」から「ON」に設定された直後であるか否かが判定される(S1520)。直前の制御周期のグローオン時異常検出処理(S1400:図6と同じ処理)において、Fend=「ON」(S530)が実行されていれば(S1520で「YES」)、次にOFFカウンタCoffに「0」が設定される(S1530)。次にコントローラ58における現在の制御デューティDFが制御デューティ保持値DFyに設定され(S1540)、前述した燃料噴射量制御処理(図3,4)にて算出されている最終基本噴射量指令値QFINCが最終基本噴射量保持値Qyに設定される(S1550)。
【0075】
次にOFFカウンタCoffをインクリメントし(S1560)、このOFFカウンタCoffの値が経過基準値Dcoffを越えているか否かを判定する(S1570)。Coff≦Dcoffであれば(S1570で「NO」)、このままグローオフ時異常検出処理を出てグロー制御処理を一旦終了する。
【0076】
以後、グロー制御処理のステップS1310〜S1350,S1370で「YES」およびS1390で「NO」と判定される状態が継続すると、グローオフ時異常検出処理(図10)ではステップS1510にて「YES」、ステップS1520で「NO」と判定されて、ステップS1560の処理が繰り返される。このOFFカウンタCoffのインクリメントの結果、Coff>Dcoffとなると(S1570で「YES」)、次に現在の制御デューティDFが、前述のごとく設定された制御デューティ保持値DFyに対して次式8に示す関係にあるか否かが判定される(S1580)。
【0077】
【数8】
DF < DFy − Gdf … [式8]
ここでDF減少判定値Gdfは、グローオンからグローオフに切り替えた時に正常にグロープラグ22への給電が停止された場合に、コントローラ58により調整される制御デューティDFの減少があったことを判定する値である。このDF減少判定値Gdfは固定値であっても良く、また予め実験にて設定した冷却水温THWとエンジン油温THOとの2次元マップから求めても良い。
【0078】
前記式8が満足されれば(S1580で「YES」)、グロープラグ22に対して正常に給電停止がなされており、この給電停止によりバッテリ60の電圧上昇が生じ、この電圧上昇に基づいてコントローラ58により制御デューティDFが必要量減少されたことが判る。したがってグローオフ時正常フラグKnrに「ON」が設定される(S1600)。そしてグローオフ時検出完了フラグKendに「ON」が設定される(S1620)。こうしてグローオフ時異常検出処理を出てグロー制御処理(図9)を一旦終了する。なお、グローオフ時正常フラグKnrはECU52の電源オン時に「OFF」に初期化されている。
【0079】
前記式8が満足されていない場合には(S1580で「NO」)、現在の最終基本噴射量指令値QFINCが、前述したごとく設定された最終基本噴射量保持値Qyに対して次式9に示す関係にあるかが判定される(S1590)。
【0080】
【数9】
QFINC < Qy − Hqfinc … [式9]
ここで燃料減少判定値Hqfincは、グローオンからグローオフに切り替えた時に正常にグロープラグ22への給電が停止された場合に、エンジン回転数NEをアイドル目標回転数NTRGに維持するために前述した燃料噴射量制御処理(図3,4)にて算出される最終基本噴射量指令値QFINCの減少があったことを判定する値である。この燃料減少判定値Hqfincは固定値であっても良く、また予め実験にて設定した冷却水温THWとエンジン油温THOとの2次元マップから求めても良い。
【0081】
前記式9が満足されれば(S1590で「YES」)、グロープラグ22には正常に給電停止がなされており、この給電停止による電気負荷減少によりエンジン回転数NEが上昇しようとするのを、アイドル目標回転数制御(S160〜S190)により燃料噴射量の減少にて対処していることが判る。したがってグローオフ時正常フラグKnrに「ON」が設定される(S1600)。そしてグローオフ時検出完了フラグKendに「ON」が設定される(S1620)。こうしてグローオフ時異常検出処理を出てグロー制御処理(図9)を一旦終了する。
【0082】
前記式9が満足されていない場合には(S1590で「NO」)、グローオフ時異常フラグKabに「ON」が設定される(S1610)。そしてグローオフ時検出完了フラグKendに「ON」が設定される(S1620)。こうしてグローオフ時異常検出処理を出てグロー制御処理(図9)を一旦終了する。なおグローオフ時異常フラグKabはECU52の電源オン時に「OFF」に初期化されている。
【0083】
本実施の形態2では、上述したごとく強制的にグローオンを実行した場合には、グローオフとグローオンとの間で生じる運転状態の差からグローオン時の異常を検出すると共に、この後、グローオフに戻す際にもグローオンとグローオフとの間で生じる運転状態の差からグローオフ時の異常を検出している。
【0084】
このようにして得られたグローオン時正常フラグFnr、グローオン時異常フラグFab、グローオフ時正常フラグKnrおよびグローオフ時異常フラグKabにもとづいてグロープラグ22やグローリレー22aの異常状態を検出することになる。例えば、図11のタイミングチャートに示したごとく、グローオン時正常フラグFnrとグローオフ時正常フラグKnrとが共に「ON」に設定された(時刻t22,t23)場合には、正常であることが確実であると判断できる。また図12のタイミングチャートに示したごとくグローオン時正常フラグFnrは「ON」であったが(時刻t32)、グローオフ時異常フラグKabが「ON」であった場合(時刻t33)には、グローリレー22aのオフ駆動に何らかの障害が生じていることが推定できる。また、グローオン時異常フラグFabとグローオフ時異常フラグKabとが共に「ON」であればグロープラグ22の断線あるいはグローリレー22aのオン駆動異常であることが確実であると判断できる。
【0085】
上述した構成において、ステップS1310,S1320,S1340,S1350,S460,S1410が給電制御手段としての処理に、ステップS430〜S450,S470〜S520,S1530〜S1610が異常判定手段としての処理に、ステップS150〜S190がアイドル回転数制御手段としての処理に相当する。またオルタネータ54およびコントローラ58が発電手段に相当する。
【0086】
以上説明した本実施の形態2によれば、以下の効果が得られる。
(イ).前記実施の形態1の(イ)および(ロ)の効果を生じる。
(ロ).グローオフからグローオン時の異常のみでなく、グローオンからグローオフ時の異常も検出していることから、グロープラグ22およびグローリレー22aの詳細な状態が一層確実に判明する。
【0087】
[その他の実施の形態]
・前記実施の形態1では、グローオフからグローオンにした場合において、その前後におけるコントローラ58の制御デューティDFの低下および最終基本噴射量指令値QFINCの低下により異常を判定したが、この代わりに、グローオンからグローオフに戻した場合のみにおいて、その前後におけるコントローラ58の制御デューティDFの低下および最終基本噴射量指令値QFINCの低下により異常を判定しても良い。
【0088】
・前記実施の形態1,2において、最終基本噴射量指令値QFINCの変動を検出する代わりに、燃料噴射量制御処理(図3)のステップS180で求めているアイドル噴射量補正値QIIの変動を検出しても良い。
【0089】
・前記実施の形態1,2においては、アイドル時に異常判定を実行していたことから最終基本噴射量指令値QFINC(あるいはアイドル噴射量補正値QII)の変動を判定したが、これに代えて次のようにしても良い。すなわち、グローオン時異常検出処理(S400,S1400)およびグローオフ時異常検出処理(S1420)を実行する際に、アイドル目標回転数制御(S160〜S180)を停止してアイドル噴射量補正値QIIを固定する。そして、グローオン時異常検出処理(S400,S1400)およびグローオフ時異常検出処理(S1420)では最終基本噴射量指令値QFINCの変動の代わりに、エンジン回転数NEの変動により異常判定を行う。グロープラグ22へ正常に給電がなされる場合にはディーゼルエンジン2の電気負荷が増加することから、固定された燃料噴射量ではエンジン回転数NEが低下し、逆にグロープラグ22への給電が停止されればディーゼルエンジン2の電気負荷が減少することから、固定された燃料噴射量ではエンジン回転数NEが上昇する。そしてグロープラグ22への給電が正常にできない場合には、グローオンとグローオフとを切り替えても、正常時のようにエンジン回転数NEが変動することはない。このことからエンジン回転数NEの変動に基づいて異常判定を実行することができる。
【0090】
・前記各実施の形態において、DF増加判定値Edf、燃料増加判定値Fqfinc、DF減少判定値Gdfおよび燃料減少判定値Hqfincは、固定値あるいは予め実験にて設定した冷却水温THWとエンジン油温THOとの2次元マップから求めたものであったが、エンジン油温THOの代用として、始動時の冷却水温THWと積算噴射量(始動時からの積算した燃料噴射量)との2次元マップからエンジン温度を求めて用いても良い。
【0091】
・前記各実施の形態では暖機後に異常判定を実行したが、冷間時においてもSN比が十分に高ければ異常判定を実行しても良い。この場合はフリクションが次第に小さくなることを考慮して、例えば、DF増加判定値Edf、燃料増加判定値Fqfinc、DF減少判定値Gdfおよび燃料減少判定値Hqfincの値を経過時間、冷却水温THWあるいはエンジン油温THO等に応じて補正する。
【0092】
以上、本発明の実施の形態について説明したが、本発明の実施の形態には、次のような形態を含むものであることを付記しておく。
(1).請求項3記載の構成において、電力消費の増減が高感度にディーゼルエンジンの運転状態に影響する状態とは、暖機後のエンジン運転状態、バッテリ電圧が基準電圧以上の状態およびディーゼルエンジンにより駆動されるエアコンがオフの状態の内の1つまたは複数の状態であることを特徴とするグロープラグの異常検出装置。
【図面の簡単な説明】
【図1】実施の形態1の蓄圧式ディーゼルエンジンとその制御系統を示す概略構成図。
【図2】実施の形態1のグロープラグへの電力供給系統図。
【図3】実施の形態1にてECUが実行する燃料噴射量制御処理のフローチャート。
【図4】同じく燃料噴射量制御処理のフローチャート。
【図5】同じくグロー制御処理のフローチャート。
【図6】同じくグローオン時異常検出処理のフローチャート。
【図7】実施の形態1の正常時における一例を示すタイミングチャート。
【図8】実施の形態1の異常時における一例を示すタイミングチャート。
【図9】実施の形態2にてECUが実行するグロー制御処理のフローチャート。
【図10】同じくグローオフ時異常検出処理のフローチャート。
【図11】実施の形態2の正常時における一例を示すタイミングチャート。
【図12】実施の形態2の異常時における一例を示すタイミングチャート。
【符号の説明】
2…ディーゼルエンジン、2a…クランクシャフト、2b…ベルト、4…インジェクタ、4a…電磁弁、6…コモンレール、8…供給配管、8a…逆止弁、10…サプライポンプ、10a…吐出ポート、10b…吸入ポート、10c…圧力制御弁、10d…リターンポート、12…燃料タンク、14…フィルタ、16…リターン配管、18…吸気通路、18a…吸気弁、20…排気通路、20a…排気弁、22… グロープラグ、22a…グローリレー、24…アクセルペダル、26…アクセルセンサ、28…全閉スイッチ、30…スタータ、30a…スタータスイッチ、32…水温センサ、34… 油温センサ、36…燃温センサ、38…燃圧センサ、40… NEセンサ、42…気筒判別センサ、44…トランスミッション、46…シフトポジションセンサ、48…車速センサ、50…エアコンスイッチ、52…電子制御装置(ECU)、54…オルタネータ、54a…電圧レギュレータ、56…エアコン用コンプレッサ、58…コントローラ、60…バッテリ。

Claims (7)

  1. ディーゼルエンジンに設けられたグロープラグの異常を検出する異常検出装置であって、
    グロープラグへの給電状態を変化させる給電制御手段と、
    ディーゼルエンジンの運転中に前記給電制御手段にて給電状態を変化させた場合に、ディーゼルエンジンの運転中であって該変化前におけるディーゼルエンジンの運転状態と、ディーゼルエンジンの運転中であって該変化におけるディーゼルエンジンの運転状態の差に基づいてグロープラグの異常有無判定を行う異常判定手段と、
    を備えたことを特徴とするグロープラグの異常検出装置。
  2. 請求項1記載の構成において、前記給電制御手段は、グロープラグへの給電オンと給電オフとを切り替えるものであることを特徴とするグロープラグの異常検出装置。
  3. 請求項1または2記載の構成において、前記給電制御手段は、電力消費の増減が高感度にディーゼルエンジンの運転状態に影響する状態にある場合に、グロープラグへの給電オンと給電オフとを強制的に切り替えるものであることを特徴とするグロープラグの異常検出装置。
  4. 請求項1〜3のいずれか記載の構成において、前記異常判定手段は、前記給電制御手段にて給電状態が変化された場合に、該変化前後のディーゼルエンジンの運転状態の差が基準値よりも小さい場合にグロープラグが断線していると判定することを特徴とするグロープラグの異常検出装置。
  5. 請求項1〜4のいずれか記載の構成に対して、ディーゼルエンジンのアイドル時にエンジン回転数がアイドル目標回転数となるようにディーゼルエンジンの燃料噴射量を調整するアイドル回転数制御手段を備えると共に、
    前記異常判定手段は、アイドル時において前記給電制御手段にて給電状態を変化させた場合に該変化前後のディーゼルエンジンの燃料噴射量の差に基づいてグロープラグの異常有無判定を行うことを特徴とするグロープラグの異常検出装置。
  6. 請求項1〜4のいずれか記載の構成に対して、バッテリ電圧に応じて出力を調整する発電手段を備えると共に、
    前記異常判定手段は、前記給電制御手段にて給電状態を変化させた場合に該変化前後の前記発電手段の出力の差に基づいてグロープラグの異常有無判定を行うことを特徴とするグロープラグの異常検出装置。
  7. 請求項1〜4のいずれか記載の構成において、前記ディーゼルエンジンの運転状態の差は、ディーゼルエンジンの燃料噴射量が一定である場合のエンジン回転数の差であることを特徴とするグロープラグの異常検出装置。
JP2000311861A 2000-10-12 2000-10-12 グロープラグの異常検出装置 Expired - Fee Related JP4449202B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311861A JP4449202B2 (ja) 2000-10-12 2000-10-12 グロープラグの異常検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311861A JP4449202B2 (ja) 2000-10-12 2000-10-12 グロープラグの異常検出装置

Publications (2)

Publication Number Publication Date
JP2002115641A JP2002115641A (ja) 2002-04-19
JP4449202B2 true JP4449202B2 (ja) 2010-04-14

Family

ID=18791559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311861A Expired - Fee Related JP4449202B2 (ja) 2000-10-12 2000-10-12 グロープラグの異常検出装置

Country Status (1)

Country Link
JP (1) JP4449202B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137983A (ja) * 2002-10-18 2004-05-13 Toyota Motor Corp 内燃機関の電気負荷装置通電異常検出方法及び装置
JP4559383B2 (ja) * 2006-05-26 2010-10-06 株式会社オートネットワーク技術研究所 グロープラグ制御装置
JP4442614B2 (ja) 2007-02-08 2010-03-31 トヨタ自動車株式会社 グロープラグの異常診断装置
DE102007038131B3 (de) * 2007-07-06 2008-12-24 Beru Ag Verfahren zum Aufheizen einer keramischen Glühkerze und Glühkerzensteuergerät
JP5212420B2 (ja) * 2010-04-27 2013-06-19 トヨタ自動車株式会社 空燃比センサの結線検査方法
JP5375800B2 (ja) * 2010-11-22 2013-12-25 三菱自動車工業株式会社 内燃機関の加熱制御装置

Also Published As

Publication number Publication date
JP2002115641A (ja) 2002-04-19

Similar Documents

Publication Publication Date Title
US7861683B2 (en) Diagnosis device for vehicle
JP5903812B2 (ja) 内燃機関の制御装置
JP5811574B2 (ja) 可変圧縮比エンジンの始動制御装置
JP2010265878A (ja) 内燃機関の制御装置
JP4449202B2 (ja) グロープラグの異常検出装置
EP1321668B1 (en) Apparatus for detecting abnormality of glow plugs
JP5075145B2 (ja) 内燃機関の制御装置
JP4107611B2 (ja) 内燃機関制御装置
JP4051981B2 (ja) グロープラグの異常検出方法及び装置
JP2016183583A (ja) 内燃機関の制御装置
JP4497314B2 (ja) エンジンの始動装置
CN111720226B (zh) 发动机控制装置及其控制方法
JP2013194637A (ja) エンジン制御装置
US7948240B2 (en) Abnormality diagnosing apparatus for a glow plug
JP2013213417A (ja) 燃料噴射制御装置及びこれを備える自動車
JP5222122B2 (ja) エンジンの始動制御装置
JP3854426B2 (ja) 産業車両用エンジンシステムの制御装置
JP2006342706A (ja) エンジンのアイドル回転数制御装置及びアイドル回転数制御方法
JP4661747B2 (ja) エンジンの停止制御装置
JP4260821B2 (ja) 内燃機関制御装置
CN111734540B (zh) 发动机控制装置及其控制方法
JP2012036803A (ja) エンジンのスロットル制御装置
WO2015159876A1 (ja) 車両用制御装置
JP3740913B2 (ja) 内燃機関の始動補助装置
JP2005139961A (ja) 内燃機関の始動準備システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees