以下、本発明について詳細に説明する。
(インク受容性粉体粒子)
本発明のインク受容性粉体粒子(以下、「インク受容性粒子」という場合がある。)は、インクが当該粒子と接触したとき、インク成分を受容するものである。ここで、インク受容性とは、インク成分の少なくとも一部(少なくとも液体成分)を保持することを示す。そして、本発明のインク受容性粒子は、全単量体成分に対する極性単量体の比率が10mol%以上90mol%以下の親水性有機粒子を含む粒子(以下、親水性有機粒子を含む粒子を「母粒子」と称する)と、前記母粒子の表面の少なくとも一部に付着した疎水性有機粒子であって全単量体成分に対し極性単量体の比率が0mol以上10mol%未満の疎水性有機粒子と、を有している。
本発明のインク受容性粒子は、母粒子を親水性有機粒子単独の粒子(一次粒子)で構成した形態でもよいし、母粒子を少なくとも親水性有機粒子が集合した複合体粒子で構成した形態であってもよい。
そして、インク受容性粒子を保管し、母粒子に含まれる親水性有機粒子が大気中の水分を吸液した場合や、インク受容性粒子にインクを付与し、インクの液体成分を吸液させた場合においても、母粒子の表面に疎水性有機粒子が付着していることで、インク受容性粒子表面での帯電性が確保される。
ここで、母粒子を親水性有機粒子単独の粒子(一次粒子)で構成した形態の場合、インク受容性粒子がインクを受容する際、インクがインク受容性粒子に付着すると、少なくともインクの液体成分を親水性有機粒子によってインク液体成分が吸液される。
このようにして、インク受容性粒子はインクを受容する。そして、インクを受容したインク受容性粒子を記録媒体に転写することで、記録が行われる。
他方、母粒子を少なくとも親水性有機粒子が集合した複合体粒子で構成した形態の場合、インク受容性粒子がインクを受容する際、まず、インクがインク受容性粒子に付着すると、少なくともインクの液体成分を複合体粒子を構成する粒子(少なくとも親水性有機粒子)間の間隙(以下、粒子間間隙(空隙)をトラップ構造と称する場合がある)により捕獲(トラップ)する。このとき、インクの成分のうち記録材は、インク受容性粒子表面に付着又はトラップ構造により捕獲(トラップ)される。このようにして、インク受容性粒子はインクを受容する。そして、インクを受容したインク受容性粒子を記録媒体に転写することで、記録が行われる。
このトラップ構造によるインク液体成分の捕獲(トラップ)は、粒子間の間隙(物理的な粒子壁構造)による物理的及び/又は化学的な捕獲である。
そして、母粒子を少なくとも親水性有機粒子が集合した複合体粒子で構成した形態を適用することで、当該複合体粒子を構成する粒子間の間隙(物理的な粒子壁構造)による捕獲(トラップ)に加え、親水性有機粒子によってインク液体成分が吸液・保持される。
また、親水性有機粒子によってもインク液体成分が吸収、保持される。
また、インク受容性粒子の転写後、インク受容性粒子を構成する親水性有機粒子の成分は、インクに含まれる記録材の結着樹脂や被覆樹脂としても機能する。さらに、インク受容性粒子が複合体粒子の場合、そのトラップ構造に記録材をトラップする。特に、インク受容性粒子を構成する親水性有機粒子の成分として、透明樹脂を適用することが望ましい。
なお、記録材として顔料等の不溶成分、分散粒子状物を用いたインク(例えば顔料インク)の定着性(耐擦性)を改善するためにはインクに多量の樹脂添加が必要だが、インク(その処理液含む)中に多量のポリマーを添加すると、インク吐出手段のノズル目詰り等の信頼性が悪化してしまう。これに対し、本発明では、インク受容性粒子を構成する有機樹脂成分が当該樹脂の機能を果たすことも可能である。
ここで、「前記複合体粒子を構成する粒子間の間隙」、即ち「トラップ構造」は、少なくとも液体を捕獲し得る物理的な粒子壁構造である。そして、この間隙の大きさは、最大口径で、0.1〜5μmであることが望ましく、より望ましくは0.3〜1μmである。特に、間隙の大きさは、記録材、特に例えば体積平均粒径100nmの顔料をトラップし得る大きさであることがよい。なお、最大開口径が50nm未満の微細孔が存在してもよい。また、空隙や毛細管は粒子内部で通じていることがよい。
この間隙の大きさは、次のようにして求める。粒子表面の走査型電子顕微鏡(SEM)画像を画像解析装置に読み取り、2値化処理により間隙を検出し、間隙の大きさ、及び、分布を解析することで求めることが可能である。
このように、トラップ構造は、インクの成分のうち液体成分のみならず、記録材もトラップすることがよい。インク液体成分と共に記録材、特に顔料をトラップ構造に捕獲(トラップ)させると、インク受容性粒子内部に記録材が偏在することなく保持・固定される。なお、インクの液体成分は、主にインク溶媒や分散媒(ビヒクル液体)である。
以下、本発明のインク受容性粒子についてさらに詳細に説明する。本発明のインク受容性粒子は、上述のように母粒子を親水性有機粒子単独の粒子(一次粒子)で構成した形態であってもよく、母粒子を少なくとも親水性有機粒子が集合した複合体粒子で構成した形態あってもよい。そして、複合体粒子を構成する親水性有機粒子以外の粒子としては無機粒子や多孔質粒子などが挙げられる。無論、母粒子は複数の親水性有機粒子のみが集合した複合体粒子で構成してもよい。また、母粒子表面に付着させる粒子としては、疎水性有機粒子以外にも例えば無機粒子が挙げられる。
本発明のインク受容性粒子の具体的な構成としては、例えば、図1に示すように、親水性有機粒子101A単独の粒子(一次粒子)で構成した母粒子101と、母粒子101に付着された疎水性有機粒子102A及び無機粒子102Bと、を有するインク受容性粒子100の形態が挙げられる。また、図2に示すように、親水性有機粒子101Aと無機粒子101Bとが複合化された複合体粒子の母粒子101と、母粒子101に付着された疎水性有機粒子102A及び無機粒子102Bと、を有するインク受容性粒子110の形態も挙げられる。なお、この複合体粒子の母粒子は各粒子間の間隙により空隙構造が形成される。
ここで、母粒子を複合体粒子で構成する場合、親水性有機粒子と他の粒子との質量比率(親水性有機粒子:他の粒子)は、例えば、他の粒子が無機粒子の場合、5:1〜1:10の範囲であることが挙げられる。
また、母粒子の粒径は、球換算平均粒径が0.1〜50μmであることが望ましく、より望ましくは0.5μm〜25μm、さらに望ましくは1μm〜10μmである。
また、母粒子を複合体粒子で構成する場合、そのBET比表面積(N2)が例えば1〜750m2/gの範囲であることが挙げられる。
そして、母粒子を複合体粒子で構成する場合、複合体粒子は、例えば、粒子が半焼結状態で造粒されることで得られる。半焼結状態とは、粒子形状がある程度の残っており、当該粒子間で空隙を保持している状態を示す。なお、複合体粒子は、トラップ構造にインク液体成分がトラップされたとき、粒子の少なくとも一部が解離する、即ち複合体粒子が解体され、これを構成する粒子がばらけてもよい。
次に、親水性有機粒子について説明する。親水性有機粒子は、全単量体成分に対する極性単量体の比率が10mol%以上90mol%以下であり、望ましくは15mol%以上85mol%以下であり、さらに望ましくは30mol%以上80mol%以下である。具体的には、親水性有機粒子は、上記極性単量体の比率の有機樹脂(以下、吸水性樹脂と称する)を含んで構成される。粒子内、及び粒子間間隙にインクが高速で捕獲(トラップ)されるため、高速での印字が可能になる。
なお、親水性有機粒子とは、上記極性単量体の比率が上記範囲であるものをいう。
ここで、極性単量体とは、エチレンオキサイド基、カルボン酸、スルホン酸、置換若しくは未置換のアミノ基、水酸基、及びこれらの塩を含む単量体である。例えば、正帯電性付与の場合、例えば(置換)アミノ基、(置換)ピリジン基やそのアミン塩、4級アンモニウム塩等の造塩化構造の単量体であることが望ましい。負帯電付与の場合、カルボン酸(塩)、スルホン酸(塩)等の有機酸(塩)構造の単量体であることが望ましい。
なお、極性単量体の比率は、次のようにして求める。まず質量分析、NMR,IRなどの分析手法から有機成分の構成を特定する。その後、JIS K0070又はJIS K2501に準拠して、有機成分の酸価、塩基価を測定する。有機成分の構成、及び、酸価/塩基価から極性単量体の比率を計算で求めることができる。以下同様である。
親水性有機粒子は例えば吸液性樹脂で構成される。吸液したインク液体成分(例えば水、水性溶媒)が樹脂(ポリマー)の可塑剤として作用するため、軟化して定着性に寄与することが可能である
吸液性樹脂は弱吸液性樹脂であることが好適である。この弱吸液性樹脂とは、例えば液体として水を吸収する場合、樹脂質量に対して数%(≒5%)から数百%(≒500%)、望ましくは5%〜100%程度の吸液が可能な親液性樹脂を意味する。
吸液性樹脂は、例えば、親水性単量体の単独重合体、或いは親水性単量体と疎水性単量体との両単量体から構成された共重合体で構成することができるが、弱吸水性樹脂とするためには当該共重合体が望ましい。なお、単量体だけでなく、ポリマー/オリゴマー構造などのユニットをスタートに他のユニットを共重合させるグラフト共重合体やブロック共重合体でもよい。
ここで、親水性単量体としては、−OH、−EOユニット(エチレンオキサイド基)、−COOM(Mは例えば水素、Na、Li、K等のアルカリ金属、アンモニア、有機アミン類等である。)、−SO3M(Mは例えば水素、Na、Li、K等のアルカリ金属、アンモニア、有機アミン類等)、−NR3(Rは例えば、H、アルキル、フェニル等である。)、−NR4X(Rは例えば、H、アルキル、フェニル等であり、Xは例えば、ハロゲン、硫酸根、カルボン酸等の酸アニオン類、BF4、等々である。)等を含む単量体が挙げられる。具体的には、例えば、2−ヒドロキシエチルメタクリレート、2−ヒドロキシエチルアクリレート、アクリルアミド、アクリル酸、メタクリル酸、不飽和カルボン酸、クロトン酸、マレイン酸等が挙げられる。また、親水性ユニットもしくは単量体としては、セルロース、エチルセルロース、カルボキシメチルセルロース等のセルロース誘導体、でんぷん誘導体、単糖類・多糖類誘導体、ビニルスルホン酸、スチレンスルホン酸、アクリル酸、メタクリル酸、(無水)マレイン酸、等の重合性カルボン酸類やこれらの(部分)中和塩類、ビニルアルコール類、ビニルピロリドン、ビニルピリジンやアミノ(メタ)アクリレート及びジメチルアミノ(メタ)アクリレートの如き誘導体、更にはこれらのオニウム塩類、アクリルアミドやイソプロピルアクリルアミド等のアミド類、ポリエチレンオキサイド鎖含有ビニル化合物類、水酸基含有ビニル化合物類、多官能カルボン酸と多価アルコールから構成されるポリエステル類、特にトリメリット酸の如き3官能以上の酸を構成成分として含有し末端カルボン酸や水酸基を多く含む分岐ポリエステル、ポリエチレングリコール構造を含むポリエステル、等も挙げられる。
疎水性単量体としては、疎水性基を有する単量体が挙げられ、具体的には、例えばオレフィン(エチレン、ブタジエン等)、スチレン、α−メチルスチレン、α−エチルスチレン、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、アクリロニトリル、酢酸ビニル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸ラウリル等が挙げられる。疎水性ユニットもしくは単量体としてはスチレン、α−メチルスチレン、ビニルトルエン等のスチレン誘導体、ビニルシクロヘキサン、ビニルナフタレン、ビニルナフタレン誘導体、アクリル酸アルキルエステル、アクリル酸フェニルエステル、メタクリル酸アルキルエステル、メタクリル酸フェニルエステル、メタクリル酸シクロアルキルエステル、クロトン酸アルキルエステル、イタコン酸ジアルキルエステル、マレイン酸ジアルキルエステル、ポリエチレン、エチレン/酢酸ビニルやポリプロピレン等のポリオレフィン類等、及びこれらの誘導体も挙げられる。
この親水性単量体と疎水性単量体との共重合体である吸液性樹脂として、具体的には、例えば、(メタ)アクリル酸エステル類、スチレン/(メタ)アクリル酸/(無水)マレイン酸類共重合体、エチレン/プロピレン等のオレフィン系ポリマー(又はこの変性体、又は共重合によるカルボン酸ユニット導入物)、トリメリット酸等で酸価を向上した分岐ポリエステル、ポリアミド等が好適に挙げられる。
吸液性樹脂には、例えば、中和塩構造(例えばカルボン酸など)を含むことが挙げられる。このカルボン酸などの中和塩構造は、カチオン(例えばNa,Li等の一価金属カチオン等)を含むインクを吸液したとき、当該カチオンとの相互作用で、アイオノマーを形成する。
吸液性樹脂には、置換或いは未置換アミノ基や、置換或いは未置換ピリジン基を含むことも望ましい。当該基は、殺菌効果や、アニオン基を有する記録材(例えば顔料や染料)との相互作用を及ぼす。
ここで、吸液性樹脂において、親水性ユニット(親水性単量体)と疎水性ユニット(親水性単量体)とのモル比(親水性単量体:疎水性単量体)は、例えば5:95〜70:30が挙げられる。
また、吸収性樹脂は、インクから供給されるイオンによりイオン架橋してもよい。具体的には、吸水性樹脂中が(メタ)アクリル酸やマレイン酸等のカルボン酸を含む共重合体やカルボン酸を有する(分岐)ポリエステル等、樹脂中にカルボン酸を含むユニットを存在させることができる。樹脂中のカルボン酸と水性インク等の液体から供給されるアルカリ金属カチオン、アルカリ土類金属カチオン、有機アミン・オニウムカチオン等とでイオン架橋や酸・塩基相互作用等が生じる。
以上説明した吸液性樹脂は、いずれの形態であっても極性単量体の比率を上記範囲に制御して使用される。
親水性有機粒子の粒径は、その一次粒子を母粒子とする場合、球換算平均粒径が0.1〜50μmであることが望ましく、より望ましくは0.5μm〜25μm、さらに望ましくは1μm〜10μmである。一方、複合体粒子を構成する場合、球換算平均粒径で10nm〜30μmが望ましく、より望ましくは50nm〜10μm、さらに望ましくは0.1μm〜5μmである。
親水性有機粒子のインク受容性粒子全体に対する比率は、質量比で75%以上であることが望ましく、より望ましくは85%以上であり、さらに望ましくは90〜99%である。
次に、疎水性有機粒子について説明する。疎水性有機粒子は、全単量体成分に対する極性単量体の比率が0mol以上10mol%未満であり、望ましくは0.1mol%以上8mol%以下であり、さらに望ましくは2mol%以上5mol%以下である。具体的には、疎水性有機粒子は、上記極性単量体の比率の有機樹脂(以下、非吸水性樹脂と称する)を含んで構成される。
なお、疎水性有機粒子とは、上記極性単量体の比率が上記範囲であるものをいう。
疎水性有機粒子を構成する非吸液性樹脂としては、疎水性単量体の単独若しくは複数種の共重合体が挙げられる。疎水性単量体としては、エチレン、プロピレン、ブタジエン等のオレフィン化合物、スチレン、α−メチルスチレン、α−エチルスチレン、ビニルトルエン等のスチレン誘導体、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、アクリロニトリル、酢酸ビニル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸ラウリル、ビニルシクロヘキサン、ビニルナフタレン、ビニルナフタレン誘導体、アクリル酸アルキルエステル、アクリル酸フェニルエステル、メタクリル酸アルキルエステル、メタクリル酸フェニルエステル、メタクリル酸シクロアルキルエステル、クロトン酸アルキルエステル、イタコン酸ジアルキルエステル、マレイン酸ジアルキルエステルなどが挙げられる
非吸液性樹脂として、具体的には例えば、ビニル系樹脂(例えば、スチレン−(メタ)アクリル酸共重合体、(メタ)アクリル酸アルキルエステル-(メタ)アクリル酸共重合体など)、ポリエステル樹脂(例えばポリエチレンテレフタレート、ポリブチレンテレフタレートなど)、シリコーン樹脂(例えばオルガノポリシロキサンなど)、フッ素系樹脂(例えばフッ化ビニリデン樹脂、ポリテトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニル共重合体、テトラフルオロエチレン・エチレン共重合体など)が好適に挙げられる。
非吸液性樹脂は、例えば液体として水を吸収する場合、樹脂質量に対して5%未満の吸液が可能な吸液性を持つ樹脂を意味する。
以上説明した非吸液性樹脂は、いずれの形態であっても極性単量体の比率を上記範囲に制御して使用される。
疎水性有機粒子の粒径は、球換算平均粒径で0.1μm以下であることが望ましくは、より望ましくは0.01〜0.05μmであることが望ましく、より望ましくは0.015〜0.2μmである。
疎水性有機粒子のインク受容性粒子全体に対する比率は、質量比で0.1〜5%であり、より望ましくは0.1〜2.5%であり、さらに望ましくは0.5〜2%である。
なお、疎水性有機粒子のインク受容性粒子全体に対する比率は、次のようにして求める。インク受容性粒子を乾式ふるい分け測定器(ソニックシフター L-200P/スピンエアーシーブ)、気流分級機(クラッシール N-01)に掛け、粒子径を基準に分級を行う。粒子径の小さいものを疎水性有機粒子、粒子径の大きいものを親水性粒子として、重量比率から算出する。また、インク受容性を液媒体中に分散し、ハイドロダイナミッククロマトグラフィーを用いて、粒径分布を求め、疎水性粒子と親水性粒子の比率を算出することも可能である。以下同様である。
疎水性有機粒子には、表面処理(部分疎水化処理、特定官能基導入処理等)を施されてもよい。具体的には、例えば、トリメチルクロロシラン、t−ブチルジメチルクロロシランなどのシリル化剤で処理してアルキル基を導入することも可能である。この反応は、シリル化剤によって脱塩酸が生じ、反応が進むため、アミンを添加することで塩酸を塩酸塩にして反応を促進することもできる。また、脂肪族アルコール類や高級脂肪酸及び同誘導体類での表面処理も可能である。更には、(置換)アミノ基や四級アンモニウム塩構造を有するシランカップリング剤等のカチオン性官能基を有するカップリング剤類、フルオロシランの様なフッ素系官能基を有するカップリング剤、その他カルボン酸等のアニオン性官能基を有するカップリング剤類での表面処理も可能である
次に、親水性有機粒子を構成する吸液性樹脂及び疎水性有機粒子を構成する非吸液性樹脂(以下、まとめて有機樹脂と称する)の共通の特性について説明する。
有機樹脂は、直鎖構造でもよいが、分嵯構造がよい。また、有機樹脂は、非架橋もしくは低架橋であることが望ましい。また、有機樹脂は直鎖構造のランダム共重合体やブロック共重合体でもよいが、分岐構造の重合体(分岐構造のランダム共重合体、ブロック共重合体、グラフト共重合体を含む)が更に好適に使用できる。例えば、重縮合で合成されるポリエステルの場合、分岐構造で末端基を増加させることができる。この分岐構造は、ジビニルベンゼン、ジ(メタ)アクリレート類等のいわゆる架橋剤を合成時に添加したり(例えば1%未満の添加)、架橋剤と共に開始剤を多量添加することで合成することが一般的なな手法の一つである。
有機樹脂には、更には低分子の4級アンモニウム塩類や有機ホウ酸塩類、サリチル酸誘導体の造塩化合物類等、電子写真トナー用帯電制御剤を有機樹脂に添加してもよい。導電性の制御は酸化スズや酸化チタン等の導電性(ここで、導電性とは例えば体積抵抗率が体積抵抗率が107Ω・cm未満を意味する。以下、特記がない限り同様である。)、半導電性(ここで、半導電性とは例えば体積抵抗率が107〜1013Ωcmを意味する。以下、特記がない限り同様である。)の無機物質添加が有効である。
有機樹脂は、非結晶樹脂であることがよく、そのガラス転移温度(Tg)は、例えば40℃〜90℃が挙げられる。ガラス転移温度(及び融点)は、ASTMD3418−8に準拠して測定された主体極大ピークより求めた。主体極大ピークの測定には、パーキンエルマー社製のDSC−7を用いることができる。この装置の検出部の温度補正はインジウムと亜鉛との融点を用い、熱量の補正にはインジウムの融解熱を用いる。サンプルは、アルミニウム製パンを用い、対照用に空パンをセットし、昇温速度10℃/minで測定を行った。
有機樹脂の重量平均分子量は、例えば3000〜30万が挙げられる。重量平均分子量は、以下の条件で行ったものである。例えば、GPCは「HLC−8120GPC、SC−8020(東ソー(株)社製)装置」を用い、カラムは「TSKgel、SuperHM−H(東ソー(株)社製6.0mmID×15cm)」を2本用い、溶離液としてTHF(テトラヒドロフラン)を用いた。実験条件としては、試料濃度0.5%、流速0.6ml/min.、サンプル注入量10μl、測定温度40℃、IR検出器を用いて実験を行った。また、検量線は東ソー社製「polystylene標準試料TSK standard」:「A−500」、「F−1」、「F−10」、「F−80」、「F−380」、「A−2500」、「F−4」、「F−40」、「F−128」、「F−700」の10サンプルから作製した。
有機樹脂の酸価は、例えばカルボン酸基(−COOH)換算で50〜1000mgKOH/gが挙げられる。このカルボン酸基(−COOH)換算での酸価の測定は次のように行った。
酸価は、JIS K0070に従って行い、中和滴定法を用いた測定で行った。即ち、適当量の試料を分取し、溶剤(ジエチルエーテル/エタノール混合液)100ml、及び、指示薬(フェノールフタレイン溶液)数滴を加え、水浴上で試料が溶けるまで充分に振り混ぜる。これに、0.1mol/l水酸化カリウムエタノール溶液で滴定し、指示薬の紅色が30秒間続いた時を終点とした。酸価をA、試料量をS(g)、滴定に用いた0.1mol/l水酸化カリウムエタノール溶液をB(ml)、fを0.1mol/l水酸化カリウムエタノール溶液のファクターとした時、A=(B×f×5.611)/Sとして算出した。
次に、親水性有機粒子と共に複合粒子を構成する無機粒子、及び疎水性有機粒子と共に母粒子に付着させる無機粒子について説明する。無機粒子としては、非多孔質粒子、多孔質粒子のいずれも使用することができる。無機粒子としては、無色、淡色或いは白色の粒子(例えば、コロイダル・シリカ、アルミナ、炭酸カルシウム、酸化亜鉛、酸化チタン、酸化スズ等)が挙げられる。これら無機粒子は、表面処理(部分疎水化処理、特定官能基導入処理等)を施されてもよい。例えば、シリカの場合には、シリカの水酸基をトリメチルクロロシラン、t−ブチルジメチルクロロシランなどのシリル化剤で処理してアルキル基を導入する。シリル化剤によって脱塩酸が生じ、反応が進む。この際、アミンを添加すると塩酸を塩酸塩にして反応を促進することもできる。疎水性基としてアルキル基やフェニル基を有するシランカップリング剤やチタネート系、ジルコネート系等のカップリング剤の処理量や処理条件を制御することでコントロールできる。また、脂肪族アルコール類や高級脂肪酸及び同誘導体類での表面処理も可能である。また、(置換)アミノ基や四級アンモニウム塩構造を有するシランカップリング剤等のカチオン性官能基を有するカップリング剤類、フルオロシランの様なフッ素系官能基を有するカップリング剤、その他カルボン酸等のアニオン性官能基を有するカップリング剤類での表面処理も可能である。なお、これらの無機粒子は、親水性有機粒子内部に含まれる、所謂内添されていてもよい。
また、複合体粒子を構成する無機粒子の粒径は、球換算平均粒径で10nm〜30μm、望ましくは50nm〜10μm、さらに望ましくは0.1μm〜5μmである。一方、母粒子に付着させる無機粒子の粒径は、球換算平均粒径で10nm〜1μm、望ましくは10nm〜0.1μm、さらに望ましくは10nm〜0.05μmである。
次に、本発明のインク受容性粒子のその他添加剤について説明する。まず、本発明のインク受容性粒子には、インクの成分を凝集又は増粘させる成分を含むことが望ましい。
この機能を有する成分は、上記有機樹脂粒子を構成する樹脂(樹脂吸水性樹脂)の官能基として含んでもよいし、化合物として含んでもよい。当該官能基としては、例えば、カルボン酸、多価金属カチオン、ポリアミン類等などが挙げられる。
また、当該化合物としては、無機電解質、有機酸、無機酸、有機アミンなどの凝集剤が好適に挙げられる。
無機電解質としては、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属イオン及び、アルミニウムイオン、バリウムイオン、カルシウムイオン、銅イオン、鉄イオン、マグネシウムイオン、マンガンイオン、ニッケルイオン、スズイオン、チタンイオン、亜鉛イオン等の多価金属イオンと、塩酸、臭酸、ヨウ化水素酸、硫酸、硝酸、リン酸、チオシアン酸、及び、酢酸、蓚酸、乳酸、フマル酸、フマル酸、クエン酸、サリチル酸、安息香酸等の有機カルボン酸及び、有機スルホン酸の塩等が挙げられる。
具体例としては、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化ナトリウム、臭化カリウム、ヨウ化ナトリウム、ヨウ化カリウム、硫酸ナトリウム、硝酸カリウム、酢酸ナトリウム、蓚酸カリウム、クエン酸ナトリウム、安息香酸カリウム等のアルカリ金属類の塩、及び、塩化アルミニウム、臭化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、硫酸ナトリウムアルミニウム、硫酸カリウムアルミニウム、酢酸アルミニウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、酸化バリウム、硝酸バリウム、チオシアン酸バリウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、亜硝酸カルシウム、硝酸カルシウム、リン酸二水素カルシウム、チオシアン酸カルシウム、安息香酸カルシウム、酢酸カルシウム、サリチル酸カルシウム、酒石酸カルシウム、乳酸カルシウム、フマル酸カルシウム、クエン酸カルシウム、塩化銅、臭化銅、硫酸銅、硝酸銅、酢酸銅、塩化鉄、臭化鉄、ヨウ化鉄、硫酸鉄、硝酸鉄、蓚酸鉄、乳酸鉄、フマル酸鉄、クエン酸鉄、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、酢酸マグネシウム、乳酸マグネシウム、塩化マンガン、硫酸マンガン、硝酸マンガン、リン酸二水素マンガン、酢酸マンガン、サリチル酸マンガン、安息香酸マンガン、乳酸マンガン、塩化ニッケル、臭化ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル、硫酸スズ、塩化チタン、塩化亜鉛、臭化亜鉛、硫酸亜鉛、硝酸亜鉛、チオシアン酸亜鉛、酢酸亜鉛等の多価金属類の塩等が挙げられる。
有機酸としては、具体的にはアルギニン酸、クエン酸、グリシン、グルタミン酸、コハク酸、酒石酸、システイン、シュウ酸、フマル酸、フタル酸、マレイン酸、マロン酸、リシン、リンゴ酸、及び、一般式(1)で表される化合物、これら化合物の誘導体などが挙げられる。
ここで、式中、Xは、O、CO、NH、NR1、S、又はSO2を表す。R1はアルキル基を表し、R1として望ましくは、CH3,C2H5、C2H4OHである。Rはアルキル基を表し、Rとして望ましくは、CH3,C2H5、C2H4OHである。なお、Rは式中に含んでいてもよいし、含んでいなくても構わない。Xとして望ましくは、CO、NH、NR,Oであり、より望ましくは、CO、NH、Oである。Mは、水素原子、アルカリ金属又はアミン類を表す。Mとして望ましくは、H、Li、Na、K、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等であり、より望ましくは、H、Na,Kであり、更に望ましくは、水素原子である。nは、3〜7の整数である。nとして望ましくは、複素環が6員環又は5員環となる場合であり、より望ましくは、5員環の場合である。mは、1又は2である。一般式(1)で表される化合物は、複素環であれば、飽和環であっても不飽和環であってもよい。lは、1〜5の整数である。
一般式(1)で表される化合物としては、具体的には、フラン、ピロール、ピロリン、ピロリドン、ピロン、ピロール、チオフェン、インドール、ピリジン、キノリン構造を有し、更に官能基としてカルボキシル基を有する化合物が挙げられる。具体的には、2−ピロリドン−5−カルボン酸、4−メチル−4−ペンタノリド−3−カルボン酸、フランカルボン酸、2−ベンゾフランカルボン酸、5−メチル−2−フランカルボン酸、2,5−ジメチル−3−フランカルボン酸、2,5−フランジカルボン酸、4−ブタノリド−3−カルボン酸、3−ヒドロキシ−4−ピロン−2,6−ジカルボン酸、2−ピロン−6−カルボン酸、4−ピロン−2−カルボン酸、5−ヒドロキシ−4−ピロン−5−カルボン酸、4−ピロン−2,6−ジカルボン酸、3−ヒドロキシ−4−ピロン−2,6−ジカルボン酸、チオフェンカルボン酸、2−ピロールカルボン酸、2,3−ジメチルピロール−4−カルボン酸、2,4,5−トリメチルピロール−3−プロピオン酸、3−ヒドロキシ−2−インドールカルボン酸、2,5−ジオキソ−4−メチル−3−ピロリン−3−プロピオン酸、2−ピロリジンカルボン酸、4−ヒドロキシプロリン、1−メチルピロリジン−2−カルボン酸、5−カルボキシ−1−メチルピロリジン−2−酢酸、2−ピリジンカルボン酸、3−ピリジンカルボン酸、4−ピリジンカルボン酸、ピリジンジカルボン酸、ピリジントリカルボン酸、ピリジンペンタカルボン酸、1,2,5,6−テトラヒドロ−1−メチルニコチン酸、2−キノリンカルボン酸、4−キノリンカルボン酸、2−フェニル−4−キノリンカルボン酸、4−ヒドロキシ−2−キノリンカルボン酸、6−メトキシ−4−キノリンカルボン酸等の化合物が挙げられる。
有機酸としては、望ましくは、クエン酸、グリシン、グルタミン酸、コハク酸、酒石酸、フタル酸、ピロリドンカルボン酸、ピロンカルボン酸、ピロールカルボン酸、フランカルボン酸、ビリジンカルボン酸、クマリン酸、チオフェンカルボン酸、ニコチン酸、若しくはこれらの化合物の誘導体、又はこれらの塩である。より望ましくは、ピロリドンカルボン酸、ピロンカルボン酸、ピロールカルボン酸、フランカルボン酸、ビリジンカルボン酸、クマリン酸、チオフェンカルボン酸、ニコチン酸、若しくはこれらの化合物の誘導体、又はこれらの塩である。さらに望ましくは、ピロリドンカルボン酸、ピロンカルボン酸、フランカルボン酸、クマリン酸、若しくは、これらの化合物誘導体、又は、これらの塩である。
有機アミン化合物としては、1級、2級、3級及び4級アミン及びそれらの塩のいずれであっても構わない。具体例としては、テトラアルキルアンモニウム、アルキルアミン、ベンザルコニウム、アルキルピリジウム、イミダゾリウム、ポリアミン、及び、それらの誘導体、又は、塩等が挙げられる。具体的には、アミルアミン、ブチルアミン、プロパノールアミン、プロピルアミン、エタノールアミン、エチルエタノールアミン、2−エチルヘキシルアミン、エチルメチルアミン、エチルベンジルアミン、エチレンジアミン、オクチルアミン、オレイルアミン、シクロオクチルアミン、シクロブチルアミン、シクロプロピルアミン、シクロヘキシルアミン、ジイソプロパノールアミン、ジエタノールアミン、ジエチルアミン、ジ2−エチルヘキシルアミン、ジエチレントリアミン、ジフェニルアミン、ジブチルアミン、ジプロピルアミン、ジヘキシルアミン、ジペンチルアミン、3−(ジメチルアミノ)プロピルアミン、ジメチルエチルアミン、ジメチルエチレンジアミン、ジメチルオクチルアミン、1,3−ジメチルブチルアミン、ジメチル−1,3−プロパンジアミン、ジメチルヘキシルアミン、アミノ−ブタノール、アミノ−プロパノール、アミノ−プロパンジオール、N−アセチルアミノエタノール、2−(2−アミノエチルアミノ)−エタノール、2−アミノ−2−エチル−1,3−プロパンジオール、2−(2−アミノエトキシ)エタノール、2−(3,4−ジメトキシフェニル)エチルアミン、セチルアミン、トリイソプロパノールアミン、トリイソペンチルアミン、トリエタノールアミン、トリオクチルアミン、トリチルアミン、ビス(2−アミノエチル)1,3−プロパンジアミン、ビス(3−アミノプロピル)エチレンジアミン、ビス(3−アミノプロピル)1,3−プロパンジアミン、ビス(3−アミノプロピル)メチルアミン、ビス(2−エチルヘキシル)アミン、ビス(トリメチルシリル)アミン、ブチルアミン、ブチルイソプロピルアミン、プロパンジアミン、プロピルジアミン、ヘキシルアミン、ペンチルアミン、2−メチル−シクロヘキシルアミン、メチル−プロピルアミン、メチルベンジルアミン、モノエタノールアミン、ラウリルアミン、ノニルアミン、トリメチルアミン、トリエチルアミン、ジメチルプロピルアミン、プロピレンジアミン、ヘキサメチレシジアミン、テトラエチレンペンタミン、ジエチルエタノールアミン、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、ジヒドロキシエチルステアリルアミン、2−ヘプタデセニル−ヒドロキシエチルイミダゾリン、ラウリルジメチルベンジルアンモニウムクロライド、セチルピリジニウムク口ライド、ステアラミドメチルビリジウムクロライド、ジアリルジメチルアンモニウムクロライド重合体、ジアリルアミン重合体、モノアリルアミン重合体等が挙げられる。
より望ましくは、トリエタノールアミン、トリイソプロパノールアミン、2−アミノ−2−エチル−1,3−プロパンジオール、エタノールアミン、プロパンジアミン、プロピルアミンなどが使用される。
これら凝集剤の中でも、多価金属塩(Ca(NO3)、Mg(NO3)、Al(OH3)、ポリ塩化アルミニウム等)が好適に用いられる。
凝集剤は単独で使用しても、あるいは2種類以上を混合して使用しても構わない。また、凝集剤の含有量としては、0.01質量%以上30質量%以下であることが望ましい。より望ましくは、0.1質量%以上15質量%以下であり、更に望ましくは、1質量%以上15質量%以下である。
本発明のインク受容性粒子には、離型剤が含まれていることがよい。離型剤は、上記有機樹脂に含ませてもよいし、有機樹脂粒子と共に離型剤の粒子を複合化して含ませてもよい。
この離型剤としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン等の低分子量ポリオレフィン類;加熱により軟化点を有するシリコーン類;オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等の脂肪酸アミド類;カルナウバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等の植物系ワックス;ミツロウ等の動物系ワックス;モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等の鉱物・石油系ワックス;及びそれらの変性物などが挙げられる。これらの中でも結晶性化合物を適用することがよい。
本発明の実施の形態において、
・請求項1〜5いずれかの構成に加え、母粒子の粒径は、球換算平均粒径が0.1〜50μmであることが望ましく、より望ましくは0.5μm〜25μm、さらに望ましくは1μm〜10μmである。
球換算平均粒径が上記範囲であると、この構成を有しない場合に比べ、高画質が達成される。即ち、平均粒子径が大きい場合、画像面上で粒子の存在する部分と、存在しない部分で高さ方向の段差が生じるため、画像の平滑性が劣ることがある。一方、平均粒子径が小さい場合には、粉体のハンドリング性が低下し、転写体上の所望の位置に粉体を供給することが出来なくなる傾向にある。従って、画像上において吸液粒子が存在しない箇所が生じ、高速記録、高画質が達成されなくなることがある。なお、インク受容性粒子を一次粒子で構成する場合、上記体積平均粒子径での範囲を適用することがよい。
・請求項1〜5いずれかの構成に加え、親水性有機粒子は、全単量体成分に対する極性単量体の比率が10mol%以上90mol%以下であり、望ましくは15mol%以上85mol%以下であり、さらに望ましくは30mol%以上80mol%以下である。
極性単量体の比率が上記範囲であると、この構成を有しない場合に比べ、粒子内、及び粒子間間隙にインクが高速で捕獲(トラップ)されるため、種々のインクを高速に受容可能である。また高速での印字が可能になる。
・請求項1〜5いずれかの構成に加え、親水性有機粒子は弱吸液性樹脂を含むことが好適である。この弱吸液性樹脂とは、例えば液体として水を吸収する場合、樹脂質量に対して数%(≒5%)から数百%(≒500%)、望ましくは5%〜100%程度の吸液が可能な親液性樹脂を意味する。
弱吸液樹脂の吸液性が5%を下回る場合は、インク受容性粒子のインク保持能が低下し、500%を超える場合は、インク受容性粒子が吸湿が活発になり、環境依存性が大きくなる。
・請求項1〜5いずれかの構成に加え、疎水性有機粒子は、全単量体成分に対する極性単量体の比率が0mol以上10mol%未満であり、望ましくは0.1mol%以上8mol%以下であり、さらに望ましくは2mol%以上5mol%以下である。
極性単量体の比率を上記範囲とすることで、インク受容性粒子を保管し、母粒子に含まれる親水性有機粒子が大気中の水分を吸液した場合や、インク受容性粒子がインクの液体成分を吸液した場合においても、インク受容性粒子表面での帯電性が確保される。また、インク受容性粒子を中間転写体に供給することが可能になり、中間転写体からインク受容性粒子が離脱することなく、画像乱れを抑制した画像を形成しえる。
(記録用の材料)
本発明の記録用の材料は、少なくとも記録材を含むインクと、上記本発明のインク受容性粒子と、を備える。記録用の材料は、インク受容性粒子にインクを受容させた後、当該インク受容性粒子を記録媒体に転写することで記録を行うことが可能である。
以下、インクについて詳細に説明する。インクは水性インク、油性インク共に使用することができるが、環境性の点で水性インクが使用される。水性インク(以下、単にインクと称する)は、記録材に加え、インク溶媒(例えば、水、水溶性有機溶媒)を含んでいる。また、必要に応じて、その他、添加剤を含んでいてもよい。
まず、記録材について説明する。記録材としては、主に色材が挙げられる。色材としては、染料、顔料のいずれも用いることができるが、顔料であることがよい。顔料としては有機顔料、無機顔料のいずれも使用でき、黒色顔料ではファーネスブラック、ランプブラック、アセチレンブラック、チャンネルブラック等のカーボンブラック顔料等が挙げられる。黒色とシアン、マゼンタ、イエローの3原色顔料のほか、赤、緑、青、茶、白等の特定色顔料や、金、銀色等の金属光沢顔料、無色又は淡色の体質顔料、プラスチックピグメント等を使用してもよい。また、本発明のために、新規に合成した顔料でも構わない。
また、シリカ、アルミナ、又は、ポリマービード等をコアとして、その表面に染料又は顔料を固着させた粒子、染料の不溶レーキ化物、着色エマルション、着色ラテックス等を顔料として使用することも可能である。
黒色顔料の具体例としては、Raven7000,Raven5750,Raven5250,Raven5000 ULTRAII,Raven 3500,Raven2000,Raven1500,Raven1250,Raven1200,Raven1190 ULTRAII,Raven1170,Raven1255,Raven1080,Raven1060(以上コロンビアン・カーボン社製)、Regal400R,Regal330R,Regal660R,Mogul L,Black Pearls L,Monarch 700,Monarch 800,Monarch 880,Monarch 900,Monarch 1000,Monarch 1100,Monarch 1300,Monarch 1400(以上キャボット社製)、Color Black FW1,Color Black FW2,Color Black FW2V,Color Black 18,Color Black FW200,Color Black S150,Color Black S160,Color Black S170,Printex35,Printex U,Printex V,Printex140U,Printex140V,Special Black 6,Special Black 5,Special Black 4A,Special Black4(以上デグッサ社製)、No.25,No.33,No.40,No.47,No.52,No.900,No.2300,MCF−88,MA600,MA7,MA8,MA100(以上三菱化学社製)等を挙げることができるが、これらに限定されるものではない。
シアン色顔料の具体例としては、C.I.Pigment Blue−1,−2,−3,−15,−15:1,−15:2,−15:3,−15:4,−16,−22,−60等が挙げられるが、これらに限定されるものではない。
マゼンタ色顔料の具体例としては、C.I.Pigment Red−5,−7,−12,−48,−48:1,−57,−112,−122,−123,−146,−168,−177,−184,−202, C.I.Pigment Violet −19等が挙げられるが、これらに限定されるものではない。
黄色顔料の具体例としては、C.I.Pigment Yellow−1,−2,−3,−12,−13,−14,−16,−17,−73,−74,−75,−83,−93,−95,−97,−98,−114,−128,−129,−138,−151,−154,−180等が挙げられるが、これらに限定されるものではない。
ここで、色材として顔料を使用した場合には、併せて顔料分散剤を用いることが望ましい。使用可能な顔料分散剤としては、高分子分散剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、ノニオン性界面活性剤等が挙げられる。
高分子分散剤としては、親水性構造部と疎水性構造部とを有する重合体が好適に用いられる。親水性構造部と疎水性構造部とを有する重合体としては、縮合系重合体と付加重合体とが使用できる。縮合系重合体としては、公知のポリエステル系分散剤が挙げられる。付加重合体としては、α,β−エチレン性不飽和基を有する単量体の付加重合体が挙げられる。親水基を有するα,β−エチレン性不飽和基を有する単量体と疎水基を有するα,β−エチレン性不飽和基を有する単量体を組み合わせて共重合することにより目的の高分子分散剤が得られる。また、親水基を有するα,β−エチレン性不飽和基を有する単量体の単独重合体も用いることができる。
親水基を有するα,β−エチレン性不飽和基を有する単量体としては、カルボキシル基、スルホン酸基、水酸基、りん酸基等を有する単量体、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステル、フマル酸、フマル酸モノエステル、ビニルスルホン酸、スチレンスルホン酸、スルホン化ビニルナフタレン、ビニルアルコール、アクリルアミド、メタクリロキシエチルホスフェート、ビスメタクリロキシエチルホスフェート、メタクリロオキシエチルフェニルアシドホスフェート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート等が挙げられる。
疎水基を有するα,β−エチレン性不飽和基を有する単量体としては、スチレン、α−メチルスチレン、ビニルトルエン等のスチレン誘導体、ビニルシクロヘキサン、ビニルナフタレン、ビニルナフタレン誘導体、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、メタクリル酸フェニルエステル、メタクリル酸シクロアルキルエステル、クロトン酸アルキルエステル、イタコン酸ジアルキルエステル、マレイン酸ジアルキルエステル等が挙げられる。
高分子分散剤として用いられる、望ましい共重合体の例としては、スチレン−スチレンスルホン酸共重合体、スチレン−マレイン酸共重合体、スチレン−メタクリル酸共重合体、スチレン−アクリル酸共重合体、ビニルナフタレン−マレイン酸共重合体、ビニルナフタレン−メタクリル酸共重合体、ビニルナフタレン−アクリル酸共重合体、アクリル酸アルキルエステル−アクリル酸共重合体、メタクリル酸アルキルエステル−メタクリル酸共重合体、スチレン−メタクリル酸アルキルエステル−メタクリル酸共重合体、スチレン−アクリル酸アルキルエステル−アクリル酸共重合体、スチレン−メタクリル酸フェニルエステル−メタクリル酸共重合体、スチレン−メタクリル酸シクロヘキシルエステル−メタクリル酸共重合体等が挙げられる。また、これらの重合体に、ポリオキシエチレン基、水酸基を有する単量体を共重合させてもよい。
上記高分子分散剤としては、例えば重量平均分子量で2000〜50000のものが挙げられる。
これら顔料分散剤は、単独で用いても、二種類以上を併用しても構わない。顔料分散剤の添加量は、顔料により大きく異なるため一概には言えないが、一般に顔料に対し、合計で0.1〜100質量%が挙げられる。
色材として水に自己分散可能な顔料を用いることもできる。水に自己分散可能な顔料とは、顔料表面に水に対する可溶化基を数多く有し、高分子分散剤が存在しなくとも水中で分散する顔料のことを指す。具体的には、通常のいわゆる顔料に対して酸・塩基処理、カップリング剤処理、ポリマーグラフト処理、プラズマ処理、酸化/還元処理等の表面改質処理等を施すことにより、水に自己分散可能な顔料が得られる。
また、水に自己分散可能な顔料としては、上記顔料に対して表面改質処理を施した顔料の他、キャボット社製のCab−o−jet−200、Cab−o−jet−300、IJX−157、IJX−253、IJX−266、IJX−273、IJX−444、IJX−55、Cabot260、オリエント化学社製のMicrojet Black CW−1、CW−2等の市販の自己分散顔料等も使用できる。
自己分散顔料としては、その表面に官能基として少なくともスルホン酸、スルホン酸塩、カルボン酸、又はカルボン酸塩を有する顔料であることが望ましい。より望ましくは、表面に官能基として少なくともカルボン酸、又はカルボン酸塩を有する顔料である。
更に、樹脂により被覆された顔料等を使用することもできる。これは、マイクロカプセル顔料と呼ばれ、大日本インキ化学工業社製、東洋インキ社製などの市販のマイクロカプセル顔料だけでなく、本発明のために試作されたマイクロカプセル顔料等を使用することもできる。
また、高分子物質を上記顔料に物理的に吸着又は化学的に結合させた樹脂分散型顔料を用いることもできる。
記録材としては、その他、親水性のアニオン染料、直接染料、カチオン染料、反応性染料、高分子染料等や油溶性染料等の染料類、染料で着色したワックス粉・樹脂粉類やエマルション類、蛍光染料や蛍光顔料、赤外線吸収剤、紫外線吸収剤、フェライトやマグネタイトに代表される強磁性体等の磁性体類、酸化チタン、酸化亜鉛に代表される半導体や光触媒類、その他有機、無機の電子材料粒子類などが挙げられる。
記録材の含有量(濃度)は、例えばインクに対して5〜30質量%が挙げられる。
記録材の体積平均粒径は、例えば10nm以上1000nm以下であることが挙げられる。
記録材の体積平均粒径とは、記録材そのものの粒径、又は記録材に分散剤等の添加物が付着している場合には、添加物が付着した粒径をいう。体積平均粒径の測定装置には、マイクロトラックUPA粒度分析計 9340 ( Leeds&Northrup社製 )を用いた。その測定は、インク4mlを測定セルに入れ、所定の測定法に従って行った。なお、測定時の入力値として、粘度にはインクの粘度を、分散粒子の密度は記録材の密度とした。
次に、水溶性有機溶媒について説明する。水溶性有機溶媒としては、多価アルコール類、多価アルコール類誘導体、含窒素溶媒、アルコール類、含硫黄溶媒等が使用される。
水溶性有機溶媒の具体例としては、多価アルコール類では、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、トリエチレングリコール、1、5−ペンタンジオール、1,2−へキサンジオール、1,2,6−ヘキサントリオール、グリセリン、トリメチロールプロパン、キシリトールなどの糖アルコール類、キシロース、グルコース、ガラクトースなどの糖類等が挙げられる。
多価アルコール類誘導体としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、ジグリセリンのエチレンオキサイド付加物等が挙げられる。
含窒素溶媒としては、ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、トリエタノールアミン等が、アルコール類としてはエタノール、イソプロピルアルコール、ブチルアルコール、ベンジルアルコール等のアルコール類が挙げられる。
含硫黄溶媒としては、チオジエタノール、チオジグリセロール、スルフォラン、ジメチルスルホキシド等が挙げられる。
水溶性有機溶媒としては、その他、炭酸プロピレン、炭酸エチレン等を用いることもできる。
水溶性有機溶媒は、少なくとも1種類以上使用してもよい。水溶性有機溶媒の含有量としては、例えば1質量%以上70質量%以下が挙げられる。
次に、水について説明する。水としては、特に不純物が混入することを防止するため、イオン交換水、超純水、蒸留水、限外濾過水を使用することが望ましい。
次に、その他の添加剤について説明する。インクには、界面活性剤を添加することができる。
これら界面活性剤の種類としては、各種のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等が挙げられ、望ましくは、アニオン性界面活性剤、ノニオン性界面活性剤が用いられる。
以下、界面活性剤の具体例を列挙する。
アニオン性界面活性剤としては、アルキルベンゼンスルホン酸塩、アルキルフェニルスルホン酸塩、アルキルナフタレンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルの硫酸エステル塩、高級脂肪酸エステルのスルホン酸塩、高級アルコールエーテルの硫酸エステル塩及びスルホン酸塩、高級アルキルスルホコハク酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩等が使用でき、望ましくは、ドデシルベンゼンスルホン酸塩、イソプロピルナフタレンスルホン酸塩、モノブチルフェニルフェノールモノスルホン酸塩、モノブチルビフェニルスルホン酸塩、モノブチルビフェニルスルホン酸塩、ジブチルフェニルフェノールジスルホン酸塩等が用いられる。
ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、アルキルアルカノールアミド、ポリエチレングリコールポリプロピレングリコールブロックコポリマー、アセチレングリコール、アセチレングリコールのポリオキシエチレン付加物等が挙げられ、望ましくは、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルキロールアミド、ポリエチレングリコールポリプロピレングリコールブロックコポリマー、アセチレングリコール、アセチレングリコールのポリオキシエチレン付加物が用いられる。
その他、ポリシロキサンオキシエチレン付加物等のシリコーン系界面活性剤や、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、オキシエチレンパーフルオロアルキルエーテル等のフッ素系界面活性剤、スピクリスポール酸やラムノリピド、リゾレシチン等のバイオサーファクタント等も使用できる。
これらの界面活性剤は単独で使用しても混合して使用してもよい。また界面活性剤の親水性/疎水性バランス(HLB)は、溶解性等を考慮すると3〜20の範囲であることが望ましい。
これらの界面活性剤の添加量は、0.001〜5質量%が望ましく、0.01〜3質量%が特に望ましい。
また、インクには、その他、浸透性を調整する目的で浸透剤、インク吐出性改善等の特性制御を目的でポリエチレンイミン、ポリアミン類、ポリビニルピロリドン、ポリエチレングリコール、エチルセルロース、カルボキシメチルセルロース等や、導電率、pHを調整するために水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどのアルカリ金属類の化合物等、その他必要に応じ、pH緩衝剤、酸化防止剤、防カビ剤、粘度調整剤、導電剤、紫外線吸収剤、及びキレート化剤等も添加することができる。
次に、インクの好適な特性について説明する。まず、インクの表面張力は、20〜45mN/mであることが挙げられる。
ここで、表面張力としては、ウイルヘルミー型表面張力計(協和界面科学株式会社製)を用い、23℃、55%RHの環境において測定した値を採用した。
インクの粘度は、1.5〜30mPa・sであることが挙げられる。
ここで、粘度としては、レオマット115(Contraves製)を測定装置として用いて、測定温度は23℃、せん断速度は1400s-1の条件で測定した値を採用した。
なお、インクは、上記構成に限定されるものではない。記録材以外に、例えば、液晶材料、電子材料など機能性材料を含むものであってもよい。
(インク受容性粒子収納部材)
本発明のインク受容性粒子収納部材は、記録装置に脱着可能であり、上記本発明のインク受容性粒子を収納すると共に、記録装置の粒子塗布装置(粒子供給装置)に当該インク受容性粒子を供給するための部材である。
以下、本発明のインク受容性粒子収納部材の実施形態ついて図面を参照しつつ説明する。図3は、実施形態に係るインク受容性粒子収納するカートリッジを示す斜視図である。図4は、図3のA−A断面図である。
実施形態に係るインク受容性粒子収納カートリッジ50は、図3及び図4に示すように、円筒状の粒子収納カートリッジ本体51と、この粒子収納カートリッジ本体51の両端に嵌め込まれる側壁部52、54とから構成されている。
そして、一端側の粒子収納カートリッジ本体51の周面にはインク受容性粒子を記録装置の粒子塗布装置(粒子供給装置:不図示)に向けて搬出するための搬出口60が設けられている。また、粒子収納カートリッジ本体51に対してスライド自在に帯部56が取付けられている。この帯部56には、搬出口60の外側に搬出口60を格納する格納部58が設けられている。
従って、粒子収納カートリッジ50が記録装置に装着されていない状態(或いは装着直後)は、搬出口60は格納部58に格納され、搬出口60から粒子収納カートリッジ本体51内のインク受容性粒子が外に漏れ出ない。
また、粒子収納カートリッジ本体51の他端側の側壁部54の中央部分には孔62が開けられており、カップリング部64の連結部66が、この側壁部54の孔62から粒子収納カートリッジ本体51内部に貫通している。また、これにより、カップリング部64は側壁部54に対して、回転自在となっている。
そして、アジテーター68が、粒子収納カートリッジ本体51内部に配設されている。アジテーター68は、断面円形の金属製の線状部材、例えば、ステンレス(SUS304WP)からなり、螺旋状に形成されている。また、一方のアジテーターの一端部は、回転軸(回転中心)に向かって曲げられ、カップリング部64の連結部66に連結されている。尚、他方の端部の先は、拘束されていない自由端となっている。
アジテーター68はカップリング部64の連結部66から回転力を付与されて回転し、粒子収納カートリッジ本体51内のインク受容性粒子を攪拌しながら搬出口60の方に搬送する。このように、粒子を搬出口60から排出し、インク受容性粒子を記録装置に追加補充される。
なお、本発明のインク受容性粒子収納部材は、上記構成に限られるものではない。
(記録装置)
本発明の記録装置(記録方法)は、記録材を含むインクと、上記本発明のインク受容性粒子と、を用いた記録装置(記録方法)であり、インクをインク受容性粒子に受容する工程(受容手段)と、インクを受容したインク受容性粒子を記録媒体に転写する手段(転写工程)と、を有する。また、記録媒体上に転写されたインク受容性粒子を定着する手段(定着工程)をさらに有していてもよい。
具体的には、例えば、まず、供給手段により中間体(中間転写体)にインク受容性粒子を層状に供給する。層状に供給されたインク受容性粒子(以下、インク受容性粒子層)に対して、インク吐出手段によりインクを吐出して受容させる。インクを受容したインク受容性粒子層を転写手段により中間体から記録媒体へ転写する。この転写は、インク受容性粒子層の全部或いは記録部(インク受容部)を選択的に行われる。その後、必要に応じて、記録媒体に転写されたインク受容性粒子層に対し、定着手段により加圧(或いは加熱・加圧)を施し、定着させる。このようにして、インクを受容したインク受容性粒子による記録が行われる。なお、転写と定着は実質的に同時に行ってもよし、別で行ってもよい。
ここで、インク受容性粒子はインクを受容する際、例えば、層状に形成されるが、そのインク受容性粒子層の厚さは、1μm〜100μmが望ましく、より望ましくは3μm〜60μm、さらに望ましくは5μ〜30μmである。また、インク受容性粒子層中の空隙率(即ち、インク受容性粒子間空隙率+インク受容性粒子内空隙率(トラップ構造))は、10%〜80%であることが望ましく、より望ましくは30〜70%、さらに望ましくは40%〜60%である。
また、中間体の表面には、インク受容性粒子供給前に予め、離型剤を塗布してもよい。この離型剤としては、(変性)シリコーン・オイル、フッ素系オイル、炭化水素オイル、鉱物油、植物油、ポリアルキレングリコール、アルキレングリコールエーテル、アルカンジオール、溶融ワックス類などが挙げられる。
なお、記録媒体としては、浸透媒体(例えば、普通紙や、コート紙等)、非浸透媒体(例えば、アート紙、樹脂フィルムなど)、いずれも適用することができる。また、記録媒体は、これらに限られず、その他、半導体基板など工業製品も含まれる。
以下、本発明の記録装置の実施形態ついて図面を参照しつつ説明する。図5は、実施形態に係る記録装置を示す構成図である。図6は、実施形態に係る記録装置の主要部を示す構成図である。図7は、実施形態に係るインク受容性粒子層を示す構成図である。なお、以下の実施形態では、インク受容性粒子として母粒子に複合体粒子を適用した場合を説明している。
実施形態に係る記録装置10は、図5に示すように、無端ベルト状の中間転写体12、中間転写体12表面を帯電させる帯電装置28、中間転写体12上の帯電された領域にインク受容性粒子16を付着させ粒子層を形成する粒子塗布装置18、粒子層上にインク滴を吐出し画像を形成するインクジェット記録ヘッド20、記録媒体8を中間転写体12と重ね合わせ、圧力及び熱を加える事により記録媒体8上にインク受容性粒子層を転写及び定着する転写定着装置22を含んで構成されている。そして、粒子塗布装置18には、供給管19Aを介してインク受容性粒子収納カートリッジ19が脱着可能に連結されている。
帯電装置28の上流側には、中間転写体12表面から記録媒体8へインク受容性粒子層16Aの転写効率を向上させる為、中間転写体12表面よりインク受容性粒子層16Aを離形促進させる為の離形層14Aを形成する離形剤塗布装置14が配置される。
帯電装置28により表面に電荷を形成した中間転写体12の表面は粒子塗布装置18にてインク受容性粒子16を層として形成され、粒子層上には各色ごとのインクジェット記録ヘッド20すなわち20K、20C、20M、20Yから各色のインク滴が吐出されカラー画像が形成される。
表面にカラー画像が形成された粒子層は転写定着装置(転写定着ローラ)22にて記録媒体8にカラー画像ごと転写される。転写定着装置22の下流には、中間転写体12表面に残留しているインク受容性粒子16の除去、粒子以外の異物(記録媒体8の紙粉等)の中間転写体付着物の除去を行うためのクリーニング装置24が配置されている。
カラー画像を転写された記録媒体8はそのまま搬出され、中間転写体12は再度帯電装置28で表面に電荷を形成される。このとき、記録媒体8に転写されたインク受容性粒子はインク滴20Aを吸収・保持するので速やかに搬出が可能でされる。
また、必要に応じて、クリーニング装置24と離形剤塗布装置14の間(以下、AとBとの間とは特記がない限り、いずれも含まない間を意味する)に、中間転写体12表面に残留する電荷を除去する為の除電装置29を配置してもよい。
本実施形態においては、中間転写体12は、厚さ1mmのポリイミドフィルムのベース層の上に厚さ400μmのエチレンプロピレンゴム(EPDM)の表面層が形成されている。ここでは表面抵抗値が1013Ω/□程度、体積抵抗値が1012Ω・cm程度(半導電性)であることが望ましい。
中間転写体12が周動搬送され、まず離形剤塗布装置14により中間転写体12表面に離形層14Aが形成される。離形剤塗布装置14の塗布ローラー14Cにより中間転写体12表面に離形剤14Dが塗布され、ブレード14Bで層厚を規定する。
このとき、連続的に画像形成及びプリントを行う目的で、離形剤塗布装置14を中間転写体12に連続的に接触するようにしてもよいし、中間転写体12から離間して構成としてもよい。
離形剤塗布装置14に、独立した液体供給システム(図示せず)より離形剤14Dを供給して、離形剤14Dの供給がとぎれないようにしてもよい。本実施形態においては、アミノシリコーンオイルを離形剤14Dとして使用する。
次に、帯電装置28によって正の電荷を中間転写体12表面に付与することにより、中間転写体12表面に正の電荷が帯電される。ここでは、粒子塗布装置18の供給ローラ18Aと中間転写体12表面とで形成しうる電界による静電力により、インク受容性粒子16が中間転写体12表面に供給/吸着可能な電位を形成すればよい。
本実施形態においては、帯電装置28を用いて、帯電装置28と中間転写体12を挟んで配置されている従動ロール31(グラウンドに接続)間に電圧を印加し、中間転写体12表面を帯電させる構成としている。
帯電装置28は、ステンレスを材料とする棒状の外周面に、導電性付与材を分散させた弾性層(発泡ウレタン樹脂)を形成し、体積抵抗率106〜108Ω・cm程度に調整したロール形状の部材とする。さらに、弾性層の表面を厚さ5〜100μmの撥水撥油性のスキン層(PFA)で被覆する。
帯電装置28にはDC電源が接続され、従動ロール31はフレームグランドに電気的に接続されている。帯電装置28は、従動ロール31との間で中間転写体12を挟みつつ従動し、押圧位置では、接地された従動ロール31との間に所定の電位差が生じるため、中間転写体12の表面に電荷を与えることができる。ここでは帯電装置28により中間転写体12表面に例えば電圧1kvを印加し、中間転写体12表面を帯電させる。
また、帯電装置28をコロトロンやブラシで構成してもよい。
次に粒子塗布装置18により、中間転写体12表面にインク受容性粒子16が供給され、インク受容性粒子層16Aを形成する。粒子塗布装置18は、インク受容性粒子16が収容される容器の、中間転写体12と向合う部分に供給ローラ18Aが配され、供給ローラ18Aに押圧するように帯電ブレード18Bが配される。この帯電ブレード18Bは供給ローラ18A表面に付着するインク受容性粒子16の層厚を規制する機能も併せ持つ。
供給ローラ18A(導電性ロール)にインク受容性粒子16を供給し、帯電ブレード18B(導電性ブレード)でインク受容性粒子層16Aを規制するとともに中間転写体12表面の電荷と逆極性である負に帯電する。供給ローラ18Aはアルミ製の中実ロール、帯電ブレード18Bは圧力をかけるためにウレタンゴムが獲り付けられた金属板(SUSなど)を用いることができる。帯電ブレード18Bはドクター方式で供給ローラ18Aと接する。
帯電されたインク受容性粒子16は供給ローラ18A表面に例えば1層の粒子層を形成し、中間転写体12表面と対向する部位に搬送され、これと近接すると供給ローラ18Aと中間転写体12表面との電位差により形成された電界により、帯電したインク受容性粒子16は静電力により中間転写体12表面に移動する。
この時、中間転写体12表面に1層の粒子層を形成するように中間転写体12の移動速度と供給ローラ18Aの回転速度を相対的に設定する(周速比)。この周速比は、中間転写体12の帯電量やインク受容性粒子16の帯電量、供給ローラ18Aと中間転写体12の位置関係等、他のパラメータに依存する。
上記の、1層のインク受容性粒子層16Aを形成する周速比を基準に、供給ローラ18Aの周速を相対的に早くすることにより、中間転写体12上に供給される粒子数を増加させることができる。転写される画像濃度が低い(インク打ち込み量が少ない(例えば0.1〜1.5g/m2))場合には、層厚を必要最小限の厚さ(例えば、1〜5μm)とし、また、画像濃度が高い(インク打ち込み量が多い(例えば4〜15g/m2))場合には、インク液体成分(溶媒や分散媒)を保持可能である充分な層厚(例えば10〜25μm)となるように制御することが望ましい。
例えば、インク打ち込み量が少ない文字画像等の場合、中間転写体上の1層のインク受容性粒子層に対して像形成を行った場合、インク中の画像形成材(顔料)は中間転写体上のインク受容性粒子層表面にトラップされ、深さ方向に対して分布が少なくなるように、インク受容性粒子表面や内部の粒子間隙に固定される。
例えば、最終的な画像となる画像層16Bの上に保護層となる粒子層16Cを設けたい場合は、インク受容性粒子層16Aを3層程度の厚みとし、最上層にインクで像形成を行えば((図7(a)参照)、像形成を行わない2層分の粒子層Cが転写定着後には保護層となり画像層16Bの上に形成される(図7(b)参照)。
あるいは2次色や3次色の画像等、インク打ち込み量が高い画像を形成する場合には、インク受容性粒子層を、インク液体成分(溶媒や分散媒)が保持可能で、記録材(例えば顔料)がトラップされ、最下層まで到達しない充分な粒子数となるようにインク受容性粒子16を積層させる。この場合、転写定着後の画像層表面に画像形成材(顔料)は露出せず、像形成を行わないインク受容性粒子16が画像表面に保護層として形成してもよい。
次に、インクジェット記録ヘッド20がインク受容性粒子層16Aにインク滴20Aを付与する。インクジェット記録ヘッド20は所定の画像情報に基づき、所定の位置にインク滴20Aを付与する。
最後に、転写定着装置22により記録媒体8と中間転写体12を挟み込んで、インク受容性粒子層16Aに圧力と熱を加える事で、記録媒体8上にインク受容性粒子層16Aが転写される。
転写定着装置22は加熱源を内蔵する加熱ロール22Aと、中間転写体12を挟んで対向する加圧ロール22Bとから構成され、加熱ロール22A及び加圧ロール22Bは接して接触部を形成する。加熱ロール22A及び加圧ロール22Bには、アルミコアの外表面にシリコーンゴムを被覆し、更にその上をPFAチューブにて被覆された物を使用することができる。
加熱ロール22Aと加圧ロール22Bの接触部において、ヒーターによりインク受容性粒子層16Aが加熱され、かつ圧力が加わる為、記録媒体8にインク受容性粒子層16Aが転写されると共に定着される。
このとき、非画像部におけるインク受容性粒子16を構成する有機樹脂粒子がガラス転移温度Tg)以上に加熱されることにより軟化し(あるいは溶融され)、圧力により中間転写体12表面に形成された離形層14Aからインク受容性粒子層16Aが離形され、記録媒体8上に転写定着される。そして、圧力により中間転写体12表面に形成された離形層14Aからインク受容性粒子層16Aが離形され、記録媒体8上に転写される。この時、加熱によって転写定着性が向上する。本実施形態では加熱ロール22Aの表面を160℃に制御している。この時、インク受容性粒子層16Aに保持されたインク液体成分(溶媒や分散媒)は、転写後もそのままインク受容性粒子層16A内に保持され、定着される。また転写定着装置22より前に、中間転写体12に予備加熱を行ってもよい。
以下、実施形態に係る記録装置の画像形成のプロセスをより詳細に説明する。本実施形態に係る記録装置では、図6に示すように、中間転写体12の表面には離形層塗布装置14にて離形層14Aを形成することができる。中間転写体12の素材がアルミやPETベースであれば特に離形層14Aを形成することが望ましい。あるいはフッ素樹脂・シリコーンゴム系の素材を用いて、中間転写体12の表面自体に離形性を持たせるようにしてもよい。
次に帯電装置28にて中間転写体12の表面をインク受容性粒子16と逆の極性に帯電させる。これにより、粒子塗布装置18の供給ローラ18Aにて供給されるインク受容性粒子16を静電的に吸着させ、中間転写体12の表面にインク受容性粒子16の層を形成することができる。
次いで中間転写体12の表面に粒子塗布装置18の供給ローラ18Aにてインク受容性粒子16を層として形成する。例えば、形成されたインク受容性粒子層16Aはインク受容性粒子16が3層程度重なった厚みと成るように形成する。すなわち、上記のように帯電ブレード18Bと供給ローラ18Aの空隙によってインク受容性粒子層16Aを所望の厚さに制御することで記録媒体8に転写されるインク受容性粒子層16Aの厚さを制御する。あるいは供給ローラ18Aと中間転写体12の周速比によって制御してもよい。
形成されたインク受容性粒子層16A上に、圧電式(ピエゾ)、サーマル式などにより駆動される各色のインクジェット記録ヘッド20によってインク滴20Aが吐出され、インク受容性粒子層16Aに画像層16Bが形成される。インクジェット記録ヘッド20から吐出されたインク滴20Aは、インク受容性粒子層16Aに打ち込まれ、インクの液体成分はインク受容性粒子16間の空隙及びインク受容性粒子16を構成する間隙に速やかに吸収されるともに、記録材(例えば顔料)もインク受容性粒子16(構成する粒子)表面或いはインク受容性粒子16を構成する粒子間の間隙にトラップされる。
このときインク滴20Aに含まれるインク液体成分(溶媒や分散媒)はインク受容性粒子層16Aに浸透するが、顔料等の記録材はインク受容性粒子層16Aの表面又は粒子間間隙にトラップされる。すなわち、インク液体成分(溶媒や分散媒)はインク受容性粒子層16Aの裏面まで浸透させてもよいが、顔料等の記録材はインク受容性粒子層16Aの裏面には浸透しない。これにより、記録媒体8に転写した際には顔料等の記録材が浸透していない粒子層16Cが画像層16Bの上に層を形成するため、この粒子層16Cが画像層16Bの表面を封じ込める保護層となり、表面に記録材(例えば顔料などの色材)が露出しない画像を形成することができる。
次いで画像層16Bが形成されたインク受容性粒子層16Aを中間転写体12から記録媒体8上に転写/定着することにより、記録媒体8上にカラー画像が形成される。中間転写体12上のインク受容性粒子層16Aはヒータなどの加熱手段にて加熱された転写定着装置(転写定着ローラ)22によって、加熱・加圧され記録媒体8上に転写される。
このとき後述のように加熱・加圧を調節することで画像表面の凸凹を調整し、光沢度を制御してもよい。また冷却剥離を行って光沢度を制御してもよい。
インク受容性粒子層16Aが剥離した後の中間転写体12表面に残った残留粒子16Dはクリーニング装置24にて回収され(図5参照)、中間転写体12の表面は再度帯電装置28にて帯電され、インク受容性粒子16が供給されインク受容性粒子層16Aが形成される。
ここで、図7には、本発明に係る画像形成に用いられる粒子層が示されている。図7(a)に示すように、中間転写体12の表面には離形層14Aが形成される。
次いで中間転写体12の表面に粒子塗布装置18にてインク受容性粒子16を層として形成する。前述のように形成されたインク受容性粒子層16Aはインク受容性粒子16が3層程度重なった厚みが望ましい。インク受容性粒子層16Aを所望の厚さに制御することで記録媒体8に転写されるインク受容性粒子層16Aの厚さを制御する。このときインク受容性粒子層16Aの表面はインク滴20Aの吐出による画像形成(画像層16Bの形成)に支障がない程度に均されている。
また、吐出されたインク滴20Aに含まれる顔料等の記録材は図7(a)のようにインク受容性粒子層16Aの1/3〜半分程度まで浸透し、その下には顔料等の記録材の浸透していない粒子層16Cが残存している。
転写定着装置(転写定着ローラ)22による加熱・加圧転写で記録媒体8上に形成されたインク受容性粒子層16Aは図7(b)のように画像層16B上にインクを含まない粒子層16Cが存在するので、画像層16Bが直接表面に現れず一種の保護層としての働きをする。このため少なくとも定着後のインク受容性粒子16は透明である必要がある。
粒子層16Cは転写定着装置(転写定着ローラ)22によって加熱・加圧されるので表面を平らにすることが可能であり、画像表面の光沢度を加熱・加圧によって制御することもできる。
また加熱によってインク受容性粒子16内部にトラップされていたインク液体成分(溶媒や分散媒)の乾燥を促進させるようにしてもよい。
インク受容性粒子層16Aに受容/保持されたインク液体成分(溶媒や分散媒)は、転写定着後もインク受容性粒子層16A内に保持され、自然乾燥にて除去される。
上記の工程を経て、画像形成が終了する。中間転写体12については、インク受容性粒子16を記録媒体8に転写した後、中間転写体12上に残留した残留粒子16Dや、記録媒体8から離脱した紙粉の如く異物が存在する場合には、クリーニング装置24により除去してもよい。
また、クリーニング装置24の下流に、除電装置29を配置してもよい。例えば、除電装置29として導電性ロールを使用して、従動ロール31(接地)と挟み込んで、中間転写体12表面に±3kV、500Hz程度の電圧を印加して、中間転写体12表面を除電する。
上記の帯電電圧や、粒子層厚、定着温度等、その他の各種装置的条件は、インク受容性粒子16あるいはインクの組成、インクの吐出量等によって最適条件が決定される為、それぞれにおいて最適化する。
<各構成要素>
次に、実施形態の各ステップの構成要素について詳しく説明する。
<中間転写体>
インク受容性粒子層が形成される中間転写体12は実施形態のようにベルト状でも、あるいは円筒状(ドラム状)でもよい。中間転写体表面にインク受容性粒子を静電力により供給保持する為には、中間転写体外周面が半導電性あるいは絶縁性の粒子保持特性を有する必要がある。中間転写体表面の電気的特性として、半導電性の場合は表面抵抗率が1010〜1014Ω/□、体積抵抗率が109〜1013Ω・cm、絶縁性の場合には表面抵抗率が1014Ω/□、体積抵抗率が1013Ω・cm以上の部材を用いる。
ベルト形状の場合、基材としては、装置内におけるベルト回転駆動が可能で、必要な機械強度を持ち、特に転写/定着時に熱を使用する場合には、必要な耐熱性を持つものであればよい。具体的には、ポリイミド、ポリアミドイミド、アラミド樹脂、ポリエチレンテレフタレート、ポリエステル、ポリエーテルサルフォン、ステンレス等が使用される。
ドラム形状の場合、基材としてはアルミやステンレス等が考えられる。
インク受容性粒子16の転写効率を向上させる(中間転写体12から記録媒体8への効率的な転写)ためには、中間転写体12の表面には離形層14Aが形成されている事が望ましい。離形層14Aは中間転写体12表面(材質)として形成されていても、外添することにより中間転写体12の表面にオン・プロセスで離形層14Aを形成してもよい。
すなわち中間転写体12の表面を離形層14Aとする場合、テトラフルオロエチレン-エチレン共重合体、ポリビニリデンフルオライド、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体等のフッ素樹脂や、シリコーンゴム、フルオロシリコーンゴム、フェニルシリコーンゴムなどが望ましい。
外添により離形層14Aを形成する場合、ドラム形状の場合には、アルミの表面を陽極酸化した物、ベルト形状の場合には上記ベルト基材その物を形成する場合には(ドラム形状、ベルト形状のどちらでも)、シリコーンゴム、フルオロシリコーンゴム、フェニルシリコーンゴム、フッ素ゴム、クロロプレンゴム、ニトリルゴム、エチレンプロピレンゴム、スチレンゴム、イソプレンゴム、ブタジエンゴム、エチレンプロピレンブタジエンゴム、ニトリルブタジエンゴム等が使用される。
転写定着装置(転写定着ローラ)22における定着工程において電磁誘導による加熱方式を発揮するためには、転写定着装置(転写定着ローラ)22ではなく中間転写体12に発熱層を形成してもよい。発熱層には電磁誘導作用を生じる金属が用いられる。例えばニッケル、鉄、銅、アルミニウム、クロム等が選択可能である。
<粒子供給プロセス>
中間転写体12の表面にインク受容性粒子層16Aを形成する。このときインク受容性粒子層16Aを形成する方法は一般的な電子写真のトナーを感光体に供給する方法を応用できる。すなわち、予め中間転写体12表面に一般的な電子写真の帯電方式(帯電装置28による帯電など)により、電荷を供給する。インク受容性粒子16は中間転写体12表面の電荷と逆極性に摩擦帯電(1成分摩擦帯電方式や、2成分方式)させる。
供給ローラ18Aに保持されたインク受容性粒子16は中間転写体12の表面と電界を形成し、静電力により中間転写体12上に移動/供給され、保持される。このとき、インク受容性粒子層16Aに形成される画像層16Bの厚みにより(打ち込まれるインク量に合わせて)、インク受容性粒子層16Aの厚さをコントロールしてもよい。この際、インク受容性粒子16の帯電量の絶対値としては、5μc/g〜50μc/gの範囲が望ましい。
以下、1成分供給(現像)方式相当の粒子供給プロセスについて説明する。
供給ローラ18Aにインク受容性粒子16を供給し、帯電ブレード18Bで粒子層の厚みを規制するとともに帯電する。
帯電ブレード18Bは供給ローラ18A表面におけるインク受容性粒子16の層厚を規制する働きを持ち、例えば、供給ローラ18Aへの圧力を変化させて、供給ローラ18A表面のインク受容性粒子16の層厚を変化させる。例えば、供給ローラ18A表面上のインク受容性粒子16層厚を例えば1層とし、中間転写体12の表面上に形成されるインク受容性粒子16層厚を概1層に形成する。また、帯電ブレード18Bの押圧力を低く制御し、供給ローラ18A表面上に形成されるインク受容性粒子16層厚を増加させ、中間転写体12表面上に形成されるインク受容性粒子層厚を増加させてもよい。
他の方法として、中間転写体12表面上に例えば1層の粒子層を形成する供給ローラ18Aと中間転写体12の周速を1とした場合、供給ローラ18Aの周速を速くして中間転写体12上に供給されるインク受容性粒子16の数を増加させ、中間転写体12上のインク受容性粒子層厚を増加させるよう制御することができる。また上記方法を組み合わせて制御することも可能である。上記構成では例えばインク受容性粒子16を負に帯電し、中間転写体12の表面を正に帯電させている。
このようにインク受容性粒子層の層厚を制御することにより、インク受容性粒子層の消費量を抑えつつ、表面が保護層で覆われたパターンを形成することができる。
帯電装置28における帯電ロールとしてはアルミニウム、ステンレススチール等を材料とする棒状又はパイプ状部材の外周面に導電性付与材を分散させた弾性層を形成し、体積抵抗率106〜108Ω・cm程度に調整したφ10〜25mmのロールなどが使用できる。
弾性層は、ウレタン系樹脂、熱可塑性エラストマー、エピクロルヒドリンゴム、エチレン−プロピレン−ジエン共重合体ゴム、シリコン系ゴム、アクリロニトリル−ブタジエン共重合体ゴム、ポリノルボーネンゴム等の樹脂材料が単独又は二種以上の混合物として使用され、望ましい材料としては発泡ウレタン樹脂がある。
上記発泡ウレタン樹脂としては、ウレタン系樹脂に中空ガラスビーズや熱膨張型マイクロカプセル等の中空体を混合分散して独立気泡構造を付与したものが望ましい。
さらに、弾性層の表面を厚さ5〜100μmの撥水性の被覆層で被覆してもよい。
帯電装置28にはDC電源が接続され、従動ロール31はフレームグランドに電気的に接続されている。帯電装置28は、従動ロール31との間で中間転写体12を挟みつつ従動し、押圧位置では、接地された従動ロール31との間に所定の電位差が生じる。
<マーキングプロセス>
中間転写体12の表面に形成されたインク受容性粒子16の層(インク受容性粒子層16A)に、画像信号に基づいてインクジェット記録ヘッド20からインク滴20Aが吐出され、画像が形成される。インクジェット記録ヘッド20から吐出されたインク滴20Aは、インク受容性粒子層16Aに打ち込まれ、インク滴20Aはインク受容性粒子16内に形成された粒子間間隙(空隙)により速やかに吸収され、記録材(例えば、顔料)はインク受容性粒子16表面又はインク受容性粒子16を構成する粒子間間隙に捕獲(トラップ)される。
この場合、インク受容性粒子層16Aの表面に多くの記録材(例えば顔料)を捕獲(トラップ)することが望ましい。インク受容性粒子16内の粒子間間隙(空隙)がフィルターの効果を発揮し、インク受容性粒子層16A表面に記録材(例えば顔料)をトラップすると共に、インク受容性粒子16内の粒子間間隙に捕獲(トラップ)され固定されることにより発現される。
インク受容性粒子層16Aの表面及びインク受容性粒子16内の粒子間間隙に記録材(例えば顔料)を確実にトラップさせるために、インクとインク受容性粒子16を反応させることにより、記録材(例えば顔料)を速やかに不溶化(凝集)させる方法を採用してもよい。具体的には、上記反応はインクと多価金属塩との反応や、pH反応型を応用することが可能である。
また、記録媒体の幅と同等又はそれ以上の幅を持つライン型インクジェット記録ヘッドが望ましいが、従来のスキャン型のインクジェット記録ヘッドを用いて、中間転写体上に形成された粒子層に順次画像を形成してもよい。インクジェット記録ヘッド20のインク吐出手段は、圧電素子駆動型、発熱素子駆動型等、インク吐出可能な手段であれば制限はない。インク自体も従来の染料を色材としたインクを用いることができるが、顔料インクが望ましい。
インク受容性粒子16をインクと反応させる場合は、インク受容性粒子16をインクと反応して顔料を凝集させる効果を与える凝集剤(例えば多価金属塩、有機酸)を含む水溶液にて処理を行い、乾燥させたものを使用する。
<転写プロセス>
インク滴20Aを受容し、画像が形成されたインク受容性粒子層16Aは、記録媒体8に転写及び定着される事により、記録媒体8上に画像を形成する。上記転写と定着は別のプロセスにて行われてもよいが、望ましくは転写と定着を実質的に同時に行う方式がよい。定着はインク受容性粒子層16Aを加熱あるいは加圧することのいずれかの方法、あるいは加熱と加圧の両方を用いる方法等あるが、望ましくは加熱/加圧を実質的に同時に行う方式がよい。
また、加熱/加圧を制御することで、インク受容性粒子層16Aの表面物性を制御し、グロス(光沢度)を制御することが可能である。また加熱/加圧した後、画像(インク受容性粒子層16A)が転写された記録媒体8を中間転写体12から剥離するときに、インク受容性粒子層16Aが冷却された後に剥離されてもよい。冷却方法は、自然冷却や空冷等の強制冷却などが考えられる。これらのプロセスに対しては、中間転写体12としてはベルト形状が望ましい。
インク画像は中間転写体12上に形成されたインク受容性粒子16層の表層部に形成され(記録材(顔料)がインク受容性粒子層16Aの表面にトラップされる)、記録媒体8に転写される事により、インク画像がインク受容性粒子16の粒子層16Cにより保護されるように形成されることがよい。
インク受容性粒子16層に受容/保持されたインク液体成分(溶媒や分散媒)は、転写定着後もインク受容性粒子16層内に保持され、自然乾燥にて除去される。
<離形層>
インク受容性粒子16供給前に、中間転写体12表面にシリコーンオイル等の離形層14Aを形成する工程を設けることも可能である。
離形層としてはシリコーンオイル、変性シリコーンオイル、フッ素系オイル、炭化水素系オイル、鉱物油、植物油、ポリアルキレングリコール、アルキレングリコールエーテル、アルカンジオール、溶融ワックス等が考えられる。
離形層14Aの供給方法は、オイルタンクを内蔵しオイル塗布部材にオイルを供給し、塗布部材により中間転写体12表面にオイルを供給することで離形層14Aを形成する方法や、オイルを含浸した塗布部材により中間転写体12表面に離形層14Aを形成する方法等が使用される。
<クリーニングプロセス>
中間転写体12表面をリフレッシュして繰返し使用を可能にするために表面をクリーニング装置24でクリーニングする工程が必要である。クリーニング装置24はクリーニング部と粒子搬送回収部(図示せず)から成り立っており、上記クリーニングにより、中間転写体12表面に残留しているインク受容性粒子16(残留粒子16D)の除去、粒子以外の異物(記録媒体8の紙粉等)といった中間転写体12の表面に付着した付着物の除去を行う。また、回収した残留粒子16Dは再利用してもよい。
<除電プロセス>
離形層14Aを形成する前に除電装置29を用いて中間転写体12の表面を除電するようにしてもよい。
<他の形態>
以上、実施形態においては、ブラック、イエロー、マゼンタ、シアンの各色のインクジェット記録ヘッド20から画像データに基づいて選択的にインク滴20Aが吐出されてフルカラーの画像が記録媒体8に記録されるようになっているが、本発明は記録媒体上への文字や画像の記録に限定されるものではない。すなわち、工業的に用いられる液滴吐出(噴射)装置全般に対して、本発明に係る液滴吐出装置を適用することができる。
以下、本発明を、実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本発明を制限するものではない。
−粒子Aの作製−
・スチレン:45質量部
・アクリル酸ブチル:50質量部
・アクリル酸:3質量部
・ドデシルメルカプタン:1質量部
・炭酸カルシウム(ネオライトGP−20/竹原化学工業社、球換算平均粒径0.03μm):2質量部
以上の成分を混合、撹拌した後、超音波分散機に掛け、分散液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5質量部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子を凍結乾燥機で乾燥させ、粒子a1を得た。この粒子中の極性単量体比率は4.8mol%、球換算平均粒径0.06μmであった。
・スチレン/n−ブチルメタクリレート/メタクリル酸共重合体粒子(母粒子:極性単量体比率36mol%、球換算平均粒径8μm):100質量部
・上記粒子a1(外添粒子):0.8質量部
・非晶質シリカ(外添粒子:Aerosil TT600/Degussa社、球換算平均粒径0.04μm) 2質量部
以上の成分を攪拌混合し、球換算平均粒径10μmの粒子Aを作製した。
−粒子Bの作製−
・スチレン:20質量部
・アクリル酸エチル:75質量部
・メタアクリル酸:2質量部
・ドデシルメルカプタン:1質量部
・炭酸カルシウム(ネオライトGP−20/竹原化学工業社、球換算平均粒径0.03μm):2質量部
以上の成分を混合、撹拌した後、超音波分散機に掛け、分散液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子を凍結乾燥機で乾燥させ、粒子b1を得た。この粒子中の極性単量体比率は2.4mol%、球換算平均粒径0.14μmであった。
・スチレン/2−エチルヘキシルメタクリレート/アクリル酸共重合体粒子(母粒子:極性単量体比率57mol%、球換算平均粒径6μm):100質量部
・上記粒子b1(外添粒子):0.6質量部
・炭酸カルシウム(外添粒子:ネオライトGP−20/竹原化学工業社、球換算平均粒径0.03μm):1質量部
以上の成分を攪拌混合し、球換算平均粒径8μmの粒子Bを作製した。
−粒子C−
・スチレン30:質量部
・アクリル酸エチル:65質量部
・メタアクリル酸:3質量部
・ドデシルメルカプタン:1質量部
・炭酸カルシウム(ネオライトGP−20/竹原化学工業社、球換算平均粒径0.03μm):2質量部
以上の成分を混合、撹拌した後、超音波分散機に掛け、分散液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子を凍結乾燥機で乾燥させ、粒子c1を得た。この粒子中の極性単量体比率は3.6mol%、球換算平均粒径0.04μmであった。
・スチレン/n−ブチルメタクリレート/メタアクリル酸共重合体粒子(母粒子:極性単量体比率41mol%、球換算平均粒径7μm):100質量部
・上記粒子c1(外添粒子):1.8質量部
・非晶質シリカ(外添粒子:Aerosil A−130/Degussa社、球換算平均粒径0.016μm):1質量部
以上の成分を攪拌混合し、球換算平均粒径9μmの粒子Cを作製した。
−粒子D−
・スチレン70質量部
・アクリル酸ブチル25質量部
・アクリル酸5質量部
・ドデシルメルカプタン1質量部
以上の成分を混合、分散し、分散液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子分散液を凍結乾燥機で乾燥させ、粒子d1を得た。この粒子中の極性単量体比率は7.4mol%、球換算平均粒径0.08μmであった。
更に、粒子10重量部をトルエンに加え、その溶液を超音波分散器で攪拌して分散した。この分散液にγ−アミノプロピルトリエトキシシラン1.5質量部を加え、室温(25℃)で攪拌した。続いて、トルエンを留去し、粒子を乾燥させた。更に、110℃に加熱し、アミノシラン処理を施した粒子d1を得た。
・スチレン/n−ブチルメタクリレート/アクリル酸共重合体粒子(母粒子:極性単量体比率19mol%、球換算平均粒径4μm):50質量部
・スチレン/n−ブチルメタクリレート/アクリル酸共重合体粒子(母粒子:極性単量体比率86mol%、球換算平均粒径5μm):50質量部
・上記粒子d1(外添粒子):1質量部
・炭酸カルシウム(外添粒子:ネオライトGP−20/竹原化学工業社、球換算平均粒径0.03μm):1質量部
以上の成分を攪拌混合し、球換算平均粒径7μmの粒子Dを作製した。
−粒子E−
・アクリル酸エチル:50質量部
・アクリル酸ブチル:40質量部
・メタアクリル酸:7質量部
・ドデシルメルカプタン:1質量部
以上の成分を混合、溶解させ、溶液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子分散液を凍結乾燥機で乾燥させ、粒子e1を得た。この粒子中の極性単量体比率は9.3mol%、球換算平均粒径0.18μmであった。
・スチレン/2−エチルヘキシルメタクリレート/マレイン酸共重合体粒子(母粒子構成粒子:極性単量体比率16mol%、球換算平均粒径8μm):100質量部
・非晶質シリカ(母粒子構成粒子:Aerosil OX50/Degussa社、球換算平均粒径0.04μm):5質量部
・非晶質シリカ(母粒子構成粒子:Aerosil TT600/Degussa社、球換算平均粒径0.04μm):5質量部
・ポリプロピレンワックス(ペレスタット300/三洋化成社製):1質量部
以上の成分を攪拌混合(サンプルミルで30秒)した後、少量の水酸化ナトリウム水溶液を加え、メカノフュージョンシステムにて断続的に処理し複合粒子化した。断続駆動条件毎に粒径を測定し、9μmとなった段階で取り出し、粒子e2(球換算平均粒径9μm、空隙の大きさ(最大口径)0.75μm)を得た。
・上記粒子e1(母粒子):1.5質量部
・上記粒子e2(外添粒子):100質量部
以上の成分を攪拌混合し、球換算平均粒径10μmの粒子Eを作製した。
−粒子F−
・スチレン:70質量部
・アクリル酸ブチル:25質量部
・アクリル酸:5質量部
・ドデシルメルカプタン:1質量部
以上の成分を混合、分散し、分散液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5質量部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子分散液を凍結乾燥機で乾燥させ、粒子f1を得た。この粒子中の極性単量体比率は7.3mol%、球換算平均粒径0.08μmであった。
・スチレン/n−ブチルメタクリレート/メタクリル酸共重合体(母粒子:極性単量体比率22mol%、球換算平均粒径7μm):80質量部
・上記粒子f1(外添粒子):20質量部
・非晶質シリカ(外添粒子:Aerosil TT600/Degussa社、球換算平均粒径0.04μm)5質量部
以上の成分を攪拌混合し、球換算平均粒径9μmの粒子Fを作製した。
−粒子G−
・スチレン:70質量部
・アクリル酸ブチル:25質量部
・アクリル酸:5質量部
・ドデシルメルカプタン:1質量部
以上の成分を混合、分散し、分散液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5質量部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子分散液を凍結乾燥機で乾燥させ、粒子g1を得た。この粒子中の極性単量体比率は7.3mol%、球換算平均粒径0.02μmであった。
・スチレン/n−ブチルメタクリレート/メタクリル酸共重合体(母粒子:極性単量体比率22mol%、球換算平均粒径6μm):85質量部
・上記粒子g1(外添粒子):15質量部
・非晶質シリカ(外添粒子:Aerosil TT600/Degussa社、球換算平均粒径0.04μm):5質量部
以上の成分を攪拌混合し、球換算平均粒径9μmの粒子Gを作製した。
−粒子H−
・テレフタル酸ジメチル:35質量部
・イソフタル酸ジメチル5−スルホン酸ナトリウム:8質量部
・プロピレングリコール:20質量部
・ジエチレングリコール:20質量部
・ジプロピレングリコール:10質量部
・ジブチルスズオキシド:0.015質量部
以上の成分を窒素雰囲気下で加温後、続いで縮合反応を行ない、ポリエステル樹脂を得た。ポリエステル樹脂20質量部にイオン交換水180質量部を加え、加温後、pHを9に調整した。更に、ドデシルベンゼンスルホン酸水溶液を加えながら、攪拌し、ポリエステル樹脂ラテックスを作製した。次いで、この樹脂粒子分散液を凍結乾燥機で乾燥させポリエステル粒子h1を得た。この粒子h1の極性単量体比率は7mol%、球換算平均粒径0.018μmであった。
・スチレン/n−ブチルメタクリレート/メタクリル酸共重合体(母粒子:極性単量体比率22mol%、球換算平均粒径7μm):100質量部
・上記粒子h1(外添粒子):2.5質量部
・非晶質シリカ(外添粒子:Aerosil TT600/Degussa社、球換算平均粒径0.04μm):5質量部
以上の成分を攪拌混合し、球換算平均粒径9μmの粒子Hを作製した。
−粒子I−
・スチレン:70質量部
・アクリル酸ブチル:25質量部
・アクリル酸:4.5質量部
・スチレンスルホン酸:0.5質量部
・ドデシルメルカプタン:1質量部
以上の成分を混合、分散し、分散液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5質量部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子分散液を凍結乾燥機で乾燥させ、粒子i1を得た。この粒子中の極性単量体比率は6.9mol%、球換算平均粒径0.03μmであった。
・スチレン/n−ブチルメタクリレート/メタクリル酸共重合体(母粒子:極性単量体比率22mol%、球換算平均粒径6μm):95質量部
・上記粒子i1(外添粒子):5質量部
・非晶質シリカ(外添粒子:Aerosil TT600/Degussa社、球換算平均粒径0.04μm):2質量部
以上の成分を攪拌混合し、球換算平均粒径9μmの粒子Iを作製した。
−粒子J−
・スチレン:70質量部
・アクリル酸ブチル:25質量部
・アクリル酸:4.5質量部
・4−ヒドロキシブチルアクリレート:0.5質量部
・ドデシルメルカプタン:1質量部
以上の成分を混合、溶解させ、溶液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5質量部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子Aを凍結乾燥機で乾燥させ、粒子j1を得た。この粒子中の極性単量体比率は7.0mol%、数平均粒子径0.04μmであった。
・スチレン/n−ブチルメタクリレート/メタクリル酸共重合体(母粒子:極性単量体比率22mol%、球換算平均粒径7μm):100質量部
・上記粒子j1(外添粒子):2.5質量部
・非晶質シリカ(外添粒子:Aerosil TT600/Degussa社、球換算平均粒径0.04μm):1質量部
以上の成分を攪拌混合し、球換算平均粒径9μmの粒子Jを作製した。
−粒子K−
・スチレン:70質量部
・アクリル酸ブチル:25質量部
・アクリル酸:4.5質量部
・ビニルピロリドン:0.5質量部
・ドデシルメルカプタン:1質量部
以上の成分を混合、溶解させ、溶液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5質量部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子Aを凍結乾燥機で乾燥させ、粒子k1を得た。この粒子中の極性単量体比率は7.1mol%、数平均粒子径0.025μmであった。
・スチレン/n−ブチルメタクリレート/メタクリル酸共重合体(母粒子:極性単量体比率22mol%、球換算平均粒径6μm):100質量部
・上記粒子k1(外添粒子):2.5質量部
・非晶質シリカ(外添粒子Aerosil TT600/Degussa社、球換算平均粒径0.04μm):1質量部
以上の成分を攪拌混合し、球換算平均粒径9μmの粒子Kを作製した。
−粒子L−
・スチレン:50質量部
・アクリル酸ブチル:32質量部
・アクリル酸:18質量部
・ドデシルメルカプタン:1質量部
以上の成分を混合、溶解させ、溶液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5質量部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。 この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子を凍結乾燥機で乾燥させ、粒子l1を得た。この粒子中の極性単量体比率は25.3mol%、球換算平均粒径0.35μmであった。
・スチレン/n−ブチルメタクリレート/アクリル酸共重合体粒子(母粒子:極性単量体比率22mol%、球換算平均粒径7μm):100質量部
・上記粒子l1(外添粒子):10質量部
・炭酸カルシウム(外添粒子ネオライトGP−20/竹原化学工業社、球換算平均粒径0.03μm):5質量部
以上の成分を攪拌混合し、球換算平均粒径9μmの粒子Lを作製した。
−粒子M−
・スチレン:20質量部
・アクリル酸エチル:75質量部
・メタアクリル酸:2質量部
・ドデシルメルカプタン:1質量部
・炭酸カルシウム(ネオライトGP−20/竹原化学工業社、球換算平均粒径0.03μm):2質量部
以上の成分を混合、撹拌した後、超音波分散機に掛け、分散液Aを作製した。一方、pHを12に調整した水酸化ナトリウム水溶液にアビエチン酸1.5質量部を加え、70℃に加温し、溶液Bを作製した。溶液B中に溶液Aを滴下し、分散液を作製した。この分散液中に、過硫酸アンモニウム水溶液を投入後、雰囲気を窒素置換し、加熱、撹拌を続けた。この反応液を室温(25℃)まで冷却し、樹脂粒子分散液を得た。次いで、この樹脂粒子を凍結乾燥機で乾燥させ、粒子m1を得た。この粒子中の極性単量体比率は2.9mol%、球換算平均粒径0.14μmであった。
・スチレン/n−ブチルメタクリレート/アクリル酸共重合体粒子(母粒子:極性単量体比率92mol%、球換算平均粒径6μm):100質量部
・上記粒子m1(外添粒子):0.2質量部
・炭酸カルシウム(外添粒子:ネオライトGP−20/竹原化学工業社、球換算平均粒径0.03μm):1質量部
以上の成分を攪拌混合し、球換算平均粒径9μm粒子Mを作製した。
−粒子N−
・スチレン:30質量部
・アクリル酸エチル:65質量部
・メタアクリル酸:3質量部
上記組成の共重合体をジェットミルを用いて粉砕した。これを気流分級機に掛け粗大粒子分を除去し、粒子n1を得た。この粒子n1の極性単量体比率は3.6mol%、球換算平均粒径1.2μmであった。
・スチレン/n−ブチルメタクリレート/アクリル酸共重合体粒子(母粒子:極性単量体比率8.5mol%、球換算平均粒径7μm):100質量部
・上記粒子n1(外添粒子):7.5質量部
・非晶質シリカ(外添粒子:Aerosil A−130/Degussa社、球換算平均粒径0.016μm):1質量部
以上の成分を攪拌混合し、球換算平均粒径9μmの粒子Nを作製した。
以上作製した粒子A〜Nの特徴を表1にまとめて示す。
[実施例1〜9、参考例1〜2、比較例1〜3]
上記各粒子をインク受容性粒子として利用し、下記インクAを用いて以下の評価を行った。結果を表2に示す。
−インクA−
下記インク成分を混合し、攪拌した後、ポアサイズ5μmのメンブレンフィルターを用いて濾過することによりインクを調製した。
−インク成分−
・シアン顔料(C.I.Pig.Blue 15:3): 7.5質量部
・スチレン/アクリル酸(酸価150mgKOH/g):2.5質量部
・ブチルカルビトール: 2.5質量部
・ジエチレングリコール: 10質量部
・グリセロール: 25質量部
・ノニオン界面活性剤(アセチレングリコール誘導体): 1質量部
・pH調整剤、殺菌剤(プロクセルGXL(S) アーチケミカルズジャパン製): 少量
・純水: 60部
得られたインクは、表面張力=33mN/m、粘度=7.2mPa・s、pH=8.8、体積平均粒子径92nmであった。
−画像乱れ−
画像乱れは、次のように画像を形成して評価した。ケーキプリンターを用いて中間媒体上に粒子を散布した。この時、粒子の散布量は粒子の種類によって異なっていたが、5〜12g/m2の範囲であった。この粒子を散布した中間媒体上にピエゾ型インクジェット装置を用い、1200×1200dpiの画像面積率で2pLのインクを付与し、線画像を形成した。このようにして得られた画像に対し、OK金藤(王子製紙社製)を3×105Paで圧接し、90℃×1分間記録媒体を加熱した。このようにして得られた画像を目視及び顕微鏡を用いて拡大画像として画像乱れを判断した。
評価基準は以下の通りである。
◎:拡大画像において画像乱れが全く発生していない
○:拡大画像では画像乱れが生じているが、目視で判別不能であり、許容範囲のもの
○−:拡大画像で画像乱れが生じており、一部目視で判別可能であるが、許容範囲のもの
△:目視により、全体的に画像乱れを判別可能であるが、許容範囲のもの
×:画像乱れを目視で判別可能であり、許容範囲外のもの
−長期保管後の画像−
長期保管後の画像は、温度28度、湿度85RH%の環境下に1ヶ月間保管したインク受容性粒子を用い、画像乱れの評価方法と同様にして評価を行った。
評価基準は以下の通りである。
◎:拡大画像において画像乱れが全く発生していない
○:拡大画像では画像乱れが生じているが、目視で判別不能であり、許容範囲のもの
○−:拡大画像で画像乱れが生じており、一部目視で判別可能であるが、許容範囲のもの
△:目視により、全体的に画像乱れを判別可能であるが、許容範囲のもの
×:画像乱れを目視で判別可能であり、許容範囲外のもの
−乾燥時間−
乾燥時間は、次のように画像を形成して評価を行った。ケーキプリンターを用いて中間媒体上に粒子を散布した。この時、粒子の散布量は粒子の種類によって異なっていたが、5〜12g/m2の範囲であった。この粒子を散布した中間媒体上にピエゾ型インクジェット装置を用い、インクを4.5g/m2となるように付与し、ベタ画像を形成した。形成された画像部分にローラーを2×104Paの荷重で押し当て、ローラー紙側にインクが転写されなくなる時間を乾燥時間とした。
評価基準は以下の通りである。
◎:乾燥時間が0.3秒未満
○:乾燥時間が0.3秒以上0.5秒未満
○−:乾燥時間が0.5秒以上1秒未満
△:乾燥時間が1秒以上3秒未満
×:乾燥時間が3秒以上
表2からわかるように、本実施例では、比較例に比べ、帯電性低下が抑制され画像乱れがなく画像を形成できることがわかる。また、本実施例では、比較例に比べ、種々のインクを利用しても、多様な記録媒体に対して高速で記録が可能となることもわかる。