JP4439796B2 - 半導体デバイスの製造方法および基板処理装置 - Google Patents

半導体デバイスの製造方法および基板処理装置 Download PDF

Info

Publication number
JP4439796B2
JP4439796B2 JP2002291517A JP2002291517A JP4439796B2 JP 4439796 B2 JP4439796 B2 JP 4439796B2 JP 2002291517 A JP2002291517 A JP 2002291517A JP 2002291517 A JP2002291517 A JP 2002291517A JP 4439796 B2 JP4439796 B2 JP 4439796B2
Authority
JP
Japan
Prior art keywords
arrangement region
bcl
substrate
boron
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002291517A
Other languages
English (en)
Other versions
JP2003178992A (ja
Inventor
孝暁 野田
明 諸橋
順司 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002291517A priority Critical patent/JP4439796B2/ja
Publication of JP2003178992A publication Critical patent/JP2003178992A/ja
Application granted granted Critical
Publication of JP4439796B2 publication Critical patent/JP4439796B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体デバイスの製造方法に関し、特に、CVD法(化学気相堆積法)によって、ボロンドープシリコン膜すなわち、ボロンドープアモルファスシリコン膜またはボロンドープポリシリコン膜を成膜する半導体デバイスの製造方法に関する。
【0002】
【従来の技術】
【特許文献1】
特開平5−62904号公報
IC、LSI等の半導体デバイスを製造する工程においては、CVD法(化学気相堆積法)によって、基板上に薄膜を成膜することが行われている。そのような成膜方法の1つとして、減圧CVD法によって、ボロンをドープしたシリコン膜を成膜することが実施されている。
【0003】
従来、シリコン膜にボロンをドープするのにジボランが用いられていた。この場合に、反応炉内でボートに複数枚のウェハを垂直方向に積層支持した状態で、炉体下部よりガスを導入し、垂直方向に上昇させ、そのガスを用いて、熱CVD法により、前記ウェハ上に薄膜を形成する減圧CVD装置(図1に例示)を用いると、CVD装置内のボトム領域(下部領域)からトップ領域(上部領域)までの全領域において、膜厚および抵抗率の面内均一性が10〜20%と悪かった。
【0004】
また、CVD装置内のボトム領域からトップ領域まで(図1参照)の抵抗率の面間(基板面間)均一性が温度フラット(均一)な状態で30〜40%と悪く、この均一性は、成膜温度を下げジボランの分解を抑えることで改善されるが成膜温度を下げると成膜速度が低下し、スループットが落ちるといった問題があった。
【0005】
上記の膜厚面内均一性は、ジボランに代えて三塩化ホウ素を用いることによって大幅に改善されることが判明している。図2に、ボロンドープポリシリコン膜の膜厚面内均一性を、シリコン源としてモノシランを用い、ボロンドープ用にジボランを用いた場合と三塩化ホウ素を用いた場合とで比較して示す。図中、縦軸は膜厚面内均一性(ただし、膜厚面内不均一量の百分率で表しているので、縦軸の数値が小さいほど均一性が良い)、横軸はウェハ搭載スロット位置(図1参照)である。図2から明らかなように、ジボランを用いた場合よりも三塩化ホウ素を用いた場合のほうが、膜厚面内均一性が大幅に改善していることが分かる。
【0006】
また、上記の抵抗率の面間均一性も、上記のジボランを三塩化ホウ素(BCl)に代えることによって、大幅に改善されることが判明している。例えば、モノシラン(SiH)と三塩化ホウ素とを用いて作製したボロンドープポリシリコン膜において、抵抗率面間均一性は、モノシラン分圧63.4Pa、三塩化ホウ素分圧3.2Paで温度400〜420℃フラットの状態で約10%である。
【0007】
【発明が解決しようとする課題】
しかしながら、ボロンドープ用のガスとして三塩化ホウ素を用いた場合においても、ボトム領域(スロット位置No11-36)での膜厚面内均一性は5〜6%であり、この値は、半導体素子の製造用としては十分に低い値ではなく、この膜厚面内均一性をさらに改善することは実用上の重要な課題となっている。
【0008】
また、抵抗率の面間均一性についても、三塩化ホウ素を用いた場合においては、ジボランガスでの結果と比較すると、良い値であるが、生産レベルで考えた場合は不十分であり、この抵抗率面間均一性は3%以下であることが要求される。
【0009】
抵抗率面間均一性が悪い理由の1つに、三塩化ホウ素分圧の反応炉内位置による変化が挙げられる。リアクター内に導入された三塩化ホウ素ガスは、成膜によって消費されながらリアクター内を上昇し、排気されるが、モノシランとの消費率が違うため、炉内位置によって三塩化ホウ素ガスの分圧が変化していることが考えられる。そこで、抵抗率を三塩化ホウ素ガス分圧の変化に左右されずに面間で均一にすることが望ましく、それを実現するための条件を求めることが実用上重要である。
【0010】
本発明の目的は、上記課題を解決し、モノシランと三塩化ホウ素とを使用し、CVD法によって基板上にボロンドープシリコン膜を成膜する半導体デバイスの製造方法であって、膜厚面内均一性が良好なボロンドープシリコン膜の作製を可能とする半導体デバイスの製造方法および基板処理装置を提供することである。
【0011】
また、本発明の他の目的は、上記課題を解決し、モノシランと三塩化ホウ素とを使用し、CVD法によって基板上にボロンドープシリコン膜を成膜する半導体デバイスの製造方法であって、抵抗率面間均一性が良好なボロンドープシリコン膜の作製を可能とする半導体デバイスの製造方法および基板処理装置を提供することである。
【0012】
【課題を解決するための手段】
上記の課題を解決するために、本発明は、
第1の手段として、反応ガスとしてモノシランと三塩化ホウ素とを使用し、反応炉内において、CVD法によって基板上にボロンドープシリコン膜を成膜する半導体デバイスの製造方法において、前記ボロンドープシリコン膜成膜時における前記反応炉内温度を460℃以上600℃未満とすることを特徴とする半導体デバイスの製造方法を構成し、
第2の手段として、前記第1の手段において、前記反応炉内でボートに複数枚の基板を垂直方向に積層支持した状態で、炉体下部よりガスを導入し垂直方向に上昇させ、熱CVD法により各前記基板上にボロンドープシリコン膜を形成することを特徴とする半導体デバイスの製造方法を構成し、
第3の手段として、前記第1の手段において、前記ボロンドープシリコン膜成膜時における前記反応炉内温度を480℃以上600℃未満とすることを特徴とする半導体デバイスの製造方法を構成し、
第4の手段として、前記第1の手段において、前記ボロンドープシリコン膜成膜時における前記反応炉内温度を520℃以上600℃未満とすることを特徴とする半導体デバイスの製造方法を構成し、
第5の手段として、前記第1の手段において、前記ボロンドープシリコン膜成膜時における前記反応炉内のガスの合計平均流速を3890cm/分以下とすることを特徴とする半導体デバイスの製造方法を構成し、
第6の手段として、前記第3の手段において、前記ボロンドープシリコン膜成膜時における前記反応炉内のガスの合計平均流速を3990cm/分以下とすることを特徴とする半導体デバイスの製造方法を構成し、
第7の手段として、前記第4の手段において、前記ボロンドープシリコン膜成膜時における前記反応炉内のガスの合計平均流速を4200cm/分以下とすることを特徴とする半導体デバイスの製造方法を構成し、
第8の手段として、反応ガスとしてモノシランと三塩化ホウ素とを使用し、反応炉内において、CVD法によって基板上にボロンドープシリコン膜を成膜する半導体デバイスの製造方法において、前記ボロンドープシリコン膜成膜時における前記反応炉内のガスの合計平均流速を2200cm/分以下とすることを特徴とする半導体デバイスの製造方法を構成し、
第9の手段として、前記第8の手段において、前記反応炉内でボートに複数枚の基板を垂直方向に積層支持した状態で、炉体下部よりガスを導入し垂直方向に上昇させ、熱CVD法により各前記基板上にボロンドープシリコン膜を形成することを特徴とする半導体デバイスの製造方法を構成し、
第10の手段として、前記第8の手段において、前記ボロンドープシリコン膜成膜時における前記反応炉内のガスの合計平均流速を1470cm/分以下とすることを特徴とする半導体デバイスの製造方法を構成し、
第11の手段として、前記第8の手段において、前記ボロンドープシリコン膜成膜時における前記反応炉内のガスの合計平均流速を730cm/分以下とすることを特徴とする半導体デバイスの製造方法を構成し、
第12の手段として、前記第8の手段において、前記ボロンドープシリコン膜成膜時における前記反応炉内温度を400℃以上600℃未満とすることを特徴とする半導体デバイスの製造方法を構成し、
第13の手段として、前記第8の手段において、前記ボロンドープシリコン膜成膜時における前記反応炉内温度を400℃以上440℃以下とすることを特徴とする半導体デバイスの製造方法を構成し、
第14の手段として、反応炉内でボートに複数枚の基板を垂直方向に積層支持した状態で、炉体下部より反応ガスとしてモノシランと三塩化ホウ素とを導入し垂直方向に上昇させ、熱CVD法により各前記基板上にボロンドープシリコン膜を形成する半導体デバイスの製造方法において、前記ボロンドープシリコン膜成膜時における前記反応炉内のガスの合計平均流速を、各前記基板上に形成される前記ボロンドープシリコン膜の膜厚面内均一性が3%以下となるような流速とすることを特徴とする半導体デバイスの製造方法を構成し、
第15の手段として、反応ガスとしてモノシランと三塩化ホウ素とを使用し、反応炉内において、CVD法によって基板上にボロンドープシリコン膜を成膜する半導体デバイスの製造方法において、前記ボロンドープシリコン膜成膜時における前記反応炉内の三塩化ホウ素の分圧を0.7Pa以下とすることを特徴とする半導体デバイスの製造方法を構成し、
第16の手段として、ヒータにより加熱された反応炉内において、モノシランと三塩化ホウ素とを使用し、CVD法によって、基板上にボロンドープシリコン膜を形成する半導体デバイスの製造方法において、前記反応炉内に設置され、前記ヒータに対向する部分と、前記反応炉内におけるガス流路の上流側にガスを放出する噴出口とを有するノズル管を通して前記三塩化ホウ素を前記反応炉内に供給することを特徴とする半導体デバイスの製造方法を構成し、
第17の手段として、内部で基板を処理する反応管と、前記反応管の外部に設けられ、前記基板を加熱するヒータと、前記反応管内にモノシランを供給するノズルと、前記反応管内に三塩化ホウ素を供給するノズル管とを有する基板処理装置において、前記三塩化ホウ素を供給するノズル管は、前記反応管内において前記ヒータに対向する部分と、反応炉内におけるガス流路の上流側に前記三塩化ホウ素を放出する噴出口とを有することを特徴とする基板処理装置を構成する。
【0013】
【発明の実施の形態】
参考形態]
本発明がなされる前の予備的考察において、上記ボトム領域で形成された膜厚面内均一性が5〜6%のボロンドープポリシリコン膜は、ウェハ中心部で厚く、外側にいくほど薄くなっていく傾向が見られた。これは、ボロンが有する成膜速度を増加させる触媒効果を考慮すると、ボトム領域ウェハ外側部分では三塩化ホウ素ガスは十分に分解しておらず、ウェハ内側方向に拡散していく際に除々に分解していることが考えられる。ウェハ面内温度分布による影響も原因として挙げられるが、成膜前温度安定化時間やボトム領域下方ダミーウェハの有無に対する膜厚面内均一性の依存性が無いことから、それは考えにくい。これらの結果から、三塩化ホウ素をボトム領域に達するまでに十分分解させることが、ボトム領域の膜厚面内均一性を改善する上で重要であるといえる。本発明は、このような考察に基づいてなされたものである。
【0014】
反応ガスとしてモノシラン(SiH)と三塩化ホウ素(BCl)とを使用して、反応炉内でボートに複数枚のウェハを垂直方向に積層支持した状態で、炉体下部よりガスを導入し垂直方向に上昇させ、そのガスを用いて、熱CVD法により、前記ウェハ上に、ボロンドープシリコン薄膜、すなわち、ボロンドープアモルファスシリコン薄膜またはボロンドープポリシリコン薄膜を形成するホットウォール式のバッチ式縦型減圧CVD装置の構造概略図を図1に示す。
【0015】
ホットウォール炉を構成し、基板としてのウェハ4を加熱する、4ゾーンに分かれたヒータ6a〜6dの内側に、反応炉10の外筒である石英製の反応管すなわちアウターチューブ1およびアウターチューブ1内部のインナーチューブ2が、軸を垂直にして設置されており、この2種のチューブの間をメカニカルブースタポンプ7およびドライポンプ8を用いて真空引きしている。従って、インナーチューブ2内側に導入される反応ガスは、インナーチューブ2内を垂直に上昇し、2種のチューブの間を下降して排気される。インナーチューブ2の全長は約1250〜1260mm、内径は約250〜270mmであり、アウターチューブ1の全長は約1270〜1280mm、内径は約290〜310mmであり、反応管内容積は約66600cm〜66700cmである。
【0016】
複数枚のウェハ4が中心をそろえて垂直方向に積層して装填された石英製のボート3はインナーチューブ2内に設置され、反応ガスにさらされた時に、気相中およびウェハ4表面での反応により、ウェハ4上に薄膜が形成される。断熱板5は、ウェハ4が存在する位置範囲内の温度を均一化するためのものである。また、図1中、9はボート回転軸である。
【0017】
なお、ボート3には、ウェハ4を支持するスロットが合計172個設けられており、一番下のスロットから数えて10スロット目まではダミーのウェハ4が、11から167スロット目までは製品のウェハ4が、168から172スロット目まではダミーのウェハ4が支持される。また、図1中のトップ領域、センタ領域、ボトム領域とは、それぞれ、129から167スロット目までの製品のウェハ4の存在する領域、37から128スロット目までの製品のウェハ4の存在する領域、11から36スロット目までの製品のウェハ4の存在する領域のことを示している。また、4つに分かれたヒータゾーンのうち、一番下のL(Lower)ゾーン(ヒータ6dに対応)は1スロット目より下側の、ウェハが殆ど存在しない領域に対応しており、下から二番目のCL(Center Lower)ゾーン(ヒータ6cに対応)は2から56スロット目までのダミーのウェハ4と製品のウェハ4とが混在する領域に対応しており、下から三番目すなわち上から二番目のCU(Center Upper)ゾーン(ヒータ6bに対応)は57から172スロット目までの製品のウェハ4とダミーのウェハ4とが混在する領域に対応しており、下から四番目すなわち一番上のU(Upper)ゾーン(ヒータ6aに対応)はそれより上側のウェハの存在しない領域に対応している。また、三塩化ホウ素ガス(BCl)を供給する石英ノズルはモノシラン(SiH)を供給するノズルとともにヒータと対向する領域より下方であって反応管下方の炉口部(図中、左下)にそれぞれ設けられている。また、断熱板5はLゾーンに対応するヒータ6dよりも下側に設置される。
【0018】
成膜手順を図3に示す。まず反応炉10内を成膜温度に安定化させた後、ウェハ4を装填したボート3を反応炉10内にロード(挿入)する。リアクター(反応炉10)内を排気し、ボート3やチューブ1、2に吸着した水分等を脱離させるためにNパージを行なう。リアクター(反応炉10)内リークチェックを行なった後、モノシランと三塩化ホウ素の流量を設定し、反応炉10内にガスを流して圧力を安定化させ、ボロンドープシリコン膜、すなわち、ボロンドープアモルファスシリコン膜またはボロンドープポリシリコン膜の成膜を行なう。成膜が終了したら配管内をNでサイクルパージし、Nでリアクター内を大気圧まで戻す。大気圧に戻ったらボート3をアンロードし、ウェハ4を自然冷却する。最後にウェハ4をボート3から取り出す。
【0019】
参考例1]
(成膜温度の高温化)
図4にボトム領域膜厚面内均一性の炉内温度依存性を示す。図中、縦軸は膜厚面内均一性(ただし、膜厚面内不均一量の百分率で表しているので、縦軸の数値が小さいほど均一性が良い)、横軸は炉内温度である。この場合に、モノシランと三塩化ホウ素の分圧は、それぞれ、69.3Paと0.7Paであり、流量は、それぞれ、500sccmと5sccmである。
【0020】
図4が示すように、炉内温度を上げることにより三塩化ホウ素の分解が促進され、特に、炉内温度480℃以上で良好な膜厚面内均一性が得られている。半導体デバイスの種類によっては、膜厚面内均一性が3%以下ならば、その膜を利用できる場合もあるので、そのような場合には、成膜温度、すなわち炉内温度を460℃以上、例えば480℃とすればよい。図4が示すように、成膜温度を460℃以上とすることにより、ボトム領域での膜厚面内均一性を3%以下とすることができ、また、成膜温度を480℃以上とすることにより、ボトム領域での膜厚面内均一性を2%以下とすることができる。また、成膜温度を520℃以上とすることにより、ボトム領域での膜厚面内均一性を1%以下とすることができる。ただし、成膜温度を600℃以上とすると、三塩化ホウ素不足による抵抗率の増大や、トップ、センタ領域の膜厚面内均一性の悪化という問題が生じるので、成膜温度は600℃未満であることが望ましい。
【0021】
以上のことから、抵抗率を増大させることなく膜厚面内均一性を良好とするには、成膜温度を460℃以上600℃未満とすることが好ましい。また、成膜温度を480℃以上600℃未満とすると、抵抗率を増大させることなく膜厚面内均一性をさらに良好にすることができるので、より好ましい。
【0022】
上記特許文献1においては、シラン(SiH)などのシリコン材と、PH、BClなどのドープガスとを用い、枚葉処理方式で、約600℃から約700℃のウェーハ温度でウェーハ上にドープされたポリシリコン層を形成する方法が記載されている。しかしながら特許文献1に記載の上記ウェーハ温度範囲は、ドープガスとしてPHを用いた場合のものであって、BClを用いた場合のものではない。BClを用いた場合と、PHを用いた場合とでは、反応の仕方が全く異なるので、ウェーハ温度も当然異なる。本参考例、後述の参考例および実施例に示すように、本発明においては、モノシランと三塩化ホウ素とを用いて、ボロンをドープされたシリコン膜を成膜する場合に、600℃未満の温度を好ましい成膜温度とする。
【0023】
以上に説明したように、成膜温度の高温化により、ボトム領域での膜厚面内均一性を1%程度まで低下させて、膜厚面内均一性を改善することができ、これまで膜厚面内均一性が5〜6%と悪くて廃棄してきたボトム領域(スロット位置No11〜36)のウェハを生産ラインに乗せることができるようになるため、生産性を大幅に向上させることができる。
【0024】
参考例2]
(ガス流速の低速化)
炉内温度を上げることにより、三塩化ホウ素の分解が促進されるので、炉内温度高温化により膜厚面内均一性を改善する方法が有効であることは、参考例1で述べた通りである。しかしながら、半導体デバイスの種類によっては、例えば440℃以下の温度で成膜しなければならない場合があり、このような場合、温度を上げることなく三塩化ホウ素の分解を促進する必要がある。そこで、本発明者らはガス流速を制御することにより(低速化することにより)、三塩化ホウ素の分解を促進する方法を見出した。
【0025】
図5に膜厚面内均一性のモノシランと三塩化ホウ素の合計流量依存性を示す。図中、縦軸は膜厚面内均一性(ただし、膜厚面内不均一量の百分率で表しているので、縦軸の数値が小さいほど均一性が良い)、横軸はモノシランと三塩化ホウ素の合計流量である。この場合に、三塩化ホウ素の流量を5sccm一定とし、モノシランの流量を500sccmから100sccmまで減少させ、炉内温度は400〜420℃で成膜している。モノシランと三塩化ホウ素の分圧は、それぞれ、60.0〜69.3Paと0.7〜10Pa、合計70Paである。
【0026】
図5より、条件(C)に対して、ガス流速を約1/5にすることによって、反応炉10内にガスが導入されてからボトム領域に達するまでの所要時間を大きくし、三塩化ホウ素が加熱される時間を延ばして、三塩化ホウ素の分解を促進させることができ、全領域で1%程度の膜厚面内均一性を実現させることができる(図中、(A)で示す)。この時に用いた膜厚モニタのスロット位置は、ボトム領域がNo11(下から11枚目)、センタ領域がNo89(下から89枚目)、トップ領域がNo167(下から167枚目)である。すでに述べたように、半導体デバイスの種類によっては、膜厚面内均一性が3%以下ならば、その膜を利用できる場合もあるので、そのような場合には、図中、(B)で示した条件下で成膜すればよい。すなわち、全領域で3%程度の膜厚面内均一性が許される場合には、モノシランと三塩化ホウ素の合計流量を255sccmとすればよい。
【0027】
さらに、図5は、合計流量を300sccm以下とすれば、全領域で膜厚面内均一性が3%以下となることを示している。ガス流路の断面積は531cmであるので、圧力70Pa、温度400〜420℃における流量300sccmは平均流速2200cm/分となる。すなわち、平均流速2200cm/分以下で成膜を行えば、全領域で膜厚面内均一性が3%以下であるようなボロンドープポリシリコン膜が得られることになる。
【0028】
また、図5は、合計流量を200sccm以下、100sccm以下とすれば、全領域で膜厚面内均一性が、それぞれ、2%以下、1%以下となることを示している。ここで、合計流量が200sccm、100sccmのときの、それぞれの平均流速は、1470cm/分、730cm/分となる。すなわち、平均流速1470cm/分以下で成膜を行えば、全領域で膜厚面内均一性が2%以下であるようなボロンドープポリシリコン膜が得られることとなり、平均流速730cm/分以下で成膜を行えば、全領域で膜厚面内均一性が1%以下であるようなボロンドープポリシリコン膜が得られることとなる。
【0029】
また、図5より、合計平均流速を、730cm/分〜2200cm/分として成膜を行えば、全領域で、膜厚均一性が、1〜3%以下であるようなボロンドープシリコン膜が得られることが分かる。
【0030】
以上に説明したように、ガス流速の低速化により、ボトム領域での膜厚面内均一性を1%程度とすることが可能となり、膜厚面内均一性を改善することができ、これまで膜厚面内均一性が5〜6%と悪くて廃棄してきたボトム領域(スロット位置No11〜36)のウェハを生産ラインに乗せることができるようになるため、生産性を大幅に向上させることができる。また、本方法、すなわちガス流速の低速化では低温プロセスにも対応することができる。
【0031】
なお、炉内温度380〜400℃として、BCl分圧、全圧、断熱板枚数を変化させて、ボトム領域膜厚面内均一性の変化を調べたところ、BCl分圧、全圧、断熱板枚数は、何れもボトム領域膜厚面内均一性に対し依存性はないことが実験により確認された。これらの実験から、ボトム領域膜厚面内均一性に最も影響を及ぼすのは、反応ガスの合計平均流速と炉内温度であることが判明した。
【0032】
参考例1の図4に示した結果を得る際の実験において、各測定点にける反応ガスの合計平均流速は、炉内温度が390℃のとき3510cm/分、410℃のとき3620cm/分、450℃のとき3830cm/分、480℃のとき3990cm/分、520℃のとき4200cm/分である。また同じ条件で炉内温度を460℃としたときの合計平均流速は3890cm/分であり、600℃としたときは4630cm/分となる。前述のように、ボトム領域膜厚面内均一性に最も影響を及ぼすのは、反応ガスの合計平均流速と炉内温度であり、合計平均流速は低速である方が、また炉内温度は高い方がボトム領域膜厚面内均一性は良好となる。従って、少なくとも炉内温度を460℃とした場合に、合計平均流速を3890cm/分以下とすれば、ボトム領域での膜厚面内均一性を確実に3%以下とすることができ、また、少なくとも炉内温度を480℃とした場合に、合計平均流速を3990cm/分以下とすれば、ボトム領域での膜厚面内均一性を確実に2%以下とすることができ、また、少なくとも炉内温度を520℃とした場合に、合計平均流速を4200cm/分以下とすれば、ボトム領域での膜厚面内均一性を確実に1%以下とすることができる。
【0033】
また、参考例2の図5に示した結果を得る際の実験において、炉内温度を400〜420℃として行っている。前述のように、ボトム領域膜厚面内均一性に最も影響を及ぼすのは、反応ガスの合計平均流速と炉内温度であり、合計平均流速は低速である方が、また炉内温度は高い方がボトム領域膜厚面内均一性は良好となる。従って、少なくとも炉内温度を400℃とした場合に、合計平均流速を2200cm/分以下とすれば、全領域で膜厚面内均一性を確実に3%以下とすることができ、また、少なくとも炉内温度を400℃とした場合において、合計平均流速を1470cm/分以下とすれば、全領域で膜厚面内均一性を確実に2%以下とすることができ、少なくとも炉内温度を400℃とした場合において、合計平均流速を730cm/分以下とすれば、全領域で膜厚面内均一性を確実に1%以下とすることができる。なお、本参考例においても、成膜温度は参考例1と同様、600℃未満とすることが好ましいが、本参考例は参考例1よりも低温、例えば440℃以下として成膜しなければならないような場合にも適用できるという利点がある。
【0034】
参考例3]
(三塩化ホウ素の予備加熱)
参考例における基板処理装置としてのホットウォール式のバッチ式縦型減圧CVD装置の構造概略図を図6に示す。
【0035】
基板処理装置の構成や、この基板処理装置を用いて半導体デバイス製造の一工程として基板上に成膜を行う方法については、三塩化ホウ素を供給するノズルとしてリターンノズルを用いる点以外は、前述の参考例1、2と同等なので、ここでは本参考例の特徴的部分であるリターンノズルについて主に説明する。なお、図6中、図1で示したものと同等のものには同符号を付し、その説明を省略する。
【0036】
図6に例示したように、モノシランは、従来技術と同様に、ヒータと対向する領域より下方であって反応管下方に設けられたノズル13によって反応炉10内に供給し、三塩化ホウ素はリターンノズル12を通して反応炉10内に供給する。リターンノズル12は、上記第16の手段および第17の手段におけるノズル管に該当し、反応炉10内において、ヒータ6により加熱されるよう、ヒータ6と対向する領域より下方であって反応管下方のボート3の底部の高さからヒータ6と対向する領域内のボート3の頂部(ボート天板部分)の高さまでを往復しており、反応炉10内におけるガス流路のウエハ4よりも上流側に三塩化ホウ素を放出する噴出口を有している。すなわち、リターンノズル12は、ヒータ6と対向する領域を経由するU字型ノズルとなっている。リターンノズル12中を通して反応炉10内に供給される三塩化ホウ素は加熱された状態で反応炉10内の上記流路の上流側に供給される。
【0037】
図6におけるリターンノズル12として、U字部分(反応炉10底部からボート天板部分の高さまでの往復部分)の全長が2.6m程度、内径が4mm程度である石英管を用い、反応炉10内温度390℃、圧力70Pa、モノシランの流量500sccm、三塩化ホウ素の流量5sccm、希釈ガス無し、という条件下で、ウエハ4上にボロンドープポリシリコン膜を形成したところ、三塩化ホウ素をノズル13と同様の通常ノズルを通して供給した場合に較べて、膜厚面内均一性を約10%改善することができた。
【0038】
上記の結果は、反応炉10内において加熱され、しかも長い流路を有するリターンノズル12を使用することで、三塩化ホウ素が反応炉10内に導入されてからボトム領域に達するまでの所要時間を大きくし、三塩化ホウ素がリターンノズル12の管内壁によって加熱される時間を延ばすことで、三塩化ホウ素を十分に加熱してから反応炉10内に供給し、反応炉10内における三塩化ホウ素の分解を促進させたことによると考えられる。
【0039】
また、リターンノズル12内の三塩化ホウ素流量を減少させることや、リターンノズル12の管内径を大きくして管内断面積を増加させることで、ノズル内の三塩化ホウ素の流速を遅くすることができ、三塩化ホウ素が加熱される時間を延ばすことで、三塩化ホウ素の分解を促進させることができる。
【0040】
また、図6のリターンノズル12以外にも、例えば、図7に示したように、W字形(図中の(a))、波状(図中の(b))あるいは螺旋状(図中の(c))のノズル管を用いても、上記と同様の膜厚面内均一性の改善が可能となる。すなわち、これらのノズル管をリターンノズル12に代えて使用した場合に、これらのノズル管は、反応炉10内において、ヒータ6と対向し、ヒータ6で加熱される部分と、ガス流路のウエハ4よりも上流側に三塩化ホウ素を放出する噴出口とを有し、従って、通常のノズルよりも長い全長を有しているので、このようなノズル管を使用することによって、ノズル管の多くの部分はヒータ6で加熱され、しかも、三塩化ホウ素がこのようなノズル管の内壁によって加熱されるので、三塩化ホウ素を十分に加熱してから反応炉10内のガス流の上流側に供給することができ、その結果として、膜厚面内均一性を改善することができる。なお、図7中、矢印はガスの流れる方向を示し、各ノズル管の右側の端部が噴出口となっている。また、三塩化ホウ素を放出する噴出口の数は1つであってもよいし、複数であっても構わない。
【0041】
施形態]
本実施形態における基板処理装置としてのホットウォール式のバッチ式縦型減圧CVD装置の構造概略図を図8に示す。基板処理装置の構成や、この基板処理装置を用いて、半導体デバイス製造の一工程として基板上に成膜を行う方法については、三塩化ホウ素を供給するノズルとして長さの異なる複数本のノズルを用いる点と、BClの分圧を制御する点以外は、前述の参考形態と同等なので、ここでは本実施形態の特徴的部分である、長さの異なる複数本のノズルと、BClの分圧を制御する方法について主に説明する。なお、図8中、図1で示したものと同等なものには同符号を付し、その説明を省略する。
【0042】
インナーチューブ2内側に三塩化ホウ素を導入するための石英ノズルは、長さの異なるものが複数本反応炉10内に設置されており、三塩化ホウ素を複数箇所から途中供給することが可能であり、三塩化ホウ素ガス(BCl)の分圧を反応炉10内各位置において制御することができる。また、モノシランを導入するためのノズルは反応管下方に設けられている。
【0043】
三塩化ホウ素ガス(BCl)を供給する石英ノズルは合計5本設けられており、1本はモノシラン(SiH)を供給するノズルとともにヒータと対向する領域より下方であって反応管下方の炉口部(図中、左下)に設けられており、その他の4本は、前記炉口部を通り、それぞれの噴出口が30スロット目、70スロット目、110スロット目、150スロット目の位置に対応するように、それぞれ等間隔に設けられており、三塩化ホウ素を、反応炉10内の複数箇所から途中供給可能に構成されている。
【0044】
成膜の際、三塩化ホウ素の流量を減少させる、あるいは三塩化ホウ素を希釈することで、三塩化ホウ素分圧を低くするよう制御することができ、形成されるボロンドープシリコン膜の抵抗率面間(ウェハ間)均一性を改善することができる。また反応炉10内に複数本設置された石英ノズルからの三塩化ホウ素流量を制御(三塩化ホウ素分圧を制御)することでも抵抗率面間均一性を改善することができる。
【0045】
[実施
(三塩化ホウ素分圧の最適化)
図9に上記装置を用いて上記方法により複数枚のウェハにボロンドープシリコン膜を形成した際の抵抗率の三塩化ホウ素分圧依存性を示す。この場合に、モノシランの分圧は60.0〜69.3Paであり、その流量は500sccmであり、反応温度は390℃あるいは450℃である。
【0046】
図9において、全領域、すなわち、トップ、センタ、ボトム領域(図8に表示、図中のNoはボート3のウェハ搭載スロット位置を示す)において、三塩化ホウ素分圧が0.7Pa付近あるいはそれ以下の範囲(例えば、図9中の点0.06Pa、0.2Pa)では、抵抗率の三塩化ホウ素分圧に対する変化の度合いは比較的小さく(図中、各点を結んだ曲線の勾配が比較的に緩やかであり)、三塩化ホウ素分圧が0.7Paを超える領域では、抵抗率の三塩化ホウ素分圧に対する変化の度合いは急激に大きくなる(図中、各点を結んだ曲線の勾配が急になる)傾向が見られる。すなわち、三塩化ホウ素分圧を0.7Pa程度以下として成膜を行えば、反応炉10内で三塩化ホウ素が消費されることにより面間(ウェハ間)方向(垂直方向)に三塩化ホウ素分圧に分布ができたとしても、抵抗率の変化は少なく、抵抗率の面間均一性が良好であると言える。これに対し、三塩化ホウ素分圧が0.7Paを超える範囲で成膜を行うと、反応炉10内で三塩化ホウ素が消費されることにより面間(ウェハ間)方向(垂直方向)に三塩化ホウ素分圧に分布ができた場合に、抵抗率の変化は大きくなり、抵抗率の面間均一性が悪くなることが分かる。
【0047】
よって、成膜時における反応炉10内の三塩化ホウ素の分圧は、0.7Pa以下とするのが好ましい。
【0048】
図9からは、成膜時における反応炉10内の三塩化ホウ素の分圧を、0.06Pa〜0.7Paとするのが好ましいことが分かる。
【0049】
図10に抵抗率面間均一性の三塩化ホウ素分圧依存性を示す。ただし、図中、抵抗率面間均一性は抵抗率面間不均一量の百分率で表されている(縦軸の数値が小さいほど均一性が良い)。この場合に、モノシランの分圧は60.0〜69.3Paであり、その流量は100〜500sccmであり、反応温度は400〜420℃である。
【0050】
図10から、抵抗率面間均一性が三塩化ホウ素分圧の低下とともに改善されていくことが分かる。
【0051】
上記の2つの結果から、抵抗率の変化が三塩化ホウ素分圧に対して急峻な領域(三塩化ホウ素分圧が0.7Paを超える領域)では抵抗率面間均一性が悪く、抵抗率の変化が三塩化ホウ素分圧に対して緩やかな領域(0.7Pa以下)まで三塩化ホウ素分圧を低下させることで、抵抗率面間均一性を10%(150枚領域)から5%以下とすることが可能となり50%以上改善することができる。抵抗率面間不均一量は、トップ、センタ、ボトム領域における抵抗率平均値の中の最大値から最小値を差し引き、全領域での抵抗率平均値の2倍で割った値を100倍して算出した。
【0052】
(反応炉内各位置における三塩化ホウ素分圧の最適化)
反応炉10内に複数本設置された石英ノズルより、複数箇所から、三塩化ホウ素をそれぞれ分圧にして約0.1Pa分途中供給する(全部で0.7Pa)ことで、抵抗率面間均一性を10%(150枚領域)から4%以下とすることが可能となり60%以上改善することができる。
【0053】
以上に説明したように、抵抗率の変化が三塩化ホウ素分圧に対して綬やかな領域(0.7Pa以下)まで三塩化ホウ素分圧を低下させることにより、抵抗率面間均一性を10%(150枚領域)から5%以下とすることが可能となり50%以上改善することができる。また反応炉10内に複数本設置された石英ノズルからの三塩化ホウ素流量を制御(三塩化ホウ素分圧を制御)することで抵抗率面間均一性をさらに改善することができ、生産性を大幅に向上させることが期待できる。
【0054】
【発明の効果】
本発明の実施によって、モノシランと三塩化ホウ素とを使用し、CVD法によってボロンドープポリシリコン膜を成膜する半導体デバイスの製造方法であって、膜厚面内均一性が良好なボロンドープポリシリコン膜の作製を可能とする半導体デバイスの製造方法および基板処理装置を提供することができる。
【0055】
また、本発明の実施によって、モノシランと三塩化ホウ素とを使用し、CVD法によってボロンドープシリコン膜を成膜する半導体デバイスの製造方法であって、抵抗率面間均一性が良好なボロンドープシリコン膜の作製を可能とする半導体デバイスの製造方法および基板処理装置を提供することができる。
【図面の簡単な説明】
【図1】 反応ガスとしてモノシラン(SiH)と三塩化ホウ素(BCl)とを使用して薄膜を形成する減圧CVD装置の構造概略図である。
【図2】 膜厚面内均一性のウェハスロット位置依存性を示す図である。
【図3】 減圧CVD法による成膜手順を説明する図である。
【図4】 ボトム領域膜厚面内均一性の炉内温度依存性を示す図である。
【図5】 膜厚面内均一性のモノシラン、三塩化ホウ素合計流量依存性を示す図である。
【図6】 参考形態である、反応ガスとしてモノシラン(SiH)と三塩化ホウ素(BCl)とを使用して薄膜を形成する減圧CVD装置の構造概略図である。
【図7】 参考形態におけるノズル管の形状例を示す図である。
【図8】 反応ガスとしてモノシラン(SiH)と三塩化ホウ素(BCl)とを使用して薄膜を形成する減圧CVD装置の構造概略図である。
【図9】 抵抗率の三塩化ホウ素分圧依存性を示す図である。
【図10】 抵抗率面間均一性の三塩化ホウ素分圧依存性を示す図である。
【符号の説明】
1…アウターチューブ、2…インナーチューブ、3…ボート、4…ウェハ、5…断熱板、6…ヒータ、7…メカニカルブースタポンプ、8…ドライポンプ、9…ボート回転軸、10…反応炉、11…ステンレス製蓋、12…リターンノズル、13…ノズル。

Claims (10)

  1. 複数枚の基板をボートにより垂直方向に積層支持した状態で反応炉内に搬入するステップと、
    前記反応炉内にSiHとBClとを導入して、熱CVD法により前記ボートに支持された前記各基板上にボロンドープシリコン膜を成膜する成膜ステップと、
    成膜後の前記基板を前記反応炉より搬出するステップとを有し、
    前記成膜ステップでは、SiH を基板配列領域よりも上流側より導入して他端側に向けて流すと共に、BCl長さの異なる複数のノズルを用いて、前記基板配列領域よりも上流側及び前記基板配列領域における複数箇所より導入して前記他端側に向けて流し、その際、前記反応炉内の温度を390℃〜450℃とし、前記反応炉内のBCl の分圧を0.06Pa〜0.7Paとすることを特徴とする半導体デバイスの製造方法。
  2. 前記基板配列領域における複数箇所とは、前記基板配列領域の垂直方向における異なる複数箇所であることを特徴とする請求項1記載の半導体デバイスの製造方法。
  3. 前記基板配列領域よりも上流側には複数の断熱板が配列され、前記基板配列領域よりも上流側より導入するBClは前記断熱板配列領域よりも上流側より導入することを特徴とする請求項1記載の半導体デバイスの製造方法。
  4. 前記基板配列領域よりも上流側には複数の断熱板が配列され、前記基板配列領域よりも上流側より導入するBClおよびSiHは前記断熱板配列領域よりも上流側より導入することを特徴とする請求項1記載の半導体デバイスの製造方法。
  5. 前記成膜ステップにおける前記反応炉内の温度を390℃又は450℃とすることを特徴とする請求項1記載の半導体デバイスの製造方法。
  6. 複数枚の基板をボートにより垂直方向に積層支持した状態で反応炉内に搬入するステップと、
    前記反応炉内にSiHとBClとを導入して、熱CVD法により前記ボートにより支持された前記各基板上にボロンドープシリコン膜を成膜する成膜ステップと、
    成膜後の基板を前記反応炉より搬出するステップとを有し、
    前記成膜ステップでは、SiH を基板配列領域よりも上流側より導入して他端側に向けて流すと共に、BCl長さの異なる複数のノズルを用いて、前記基板配列領域よりも上流側及び前記基板配列領域における複数箇所より別々に導入して前記他端側に向けて流し、その際、前記反応炉内の温度を390℃〜450℃とし、前記反応炉内のBCl の分圧を0.06Pa〜0.7Paとすることを特徴とする半導体デバイスの製造方法。
  7. 前記成膜ステップでは、前記複数のノズルごとにBClの分圧を個別にコントロールすることを特徴とする請求項記載の半導体デバイスの製造方法。
  8. 前記成膜ステップでは、前記複数のノズルごとにBClの流量を個別にコントロールすることを特徴とする請求項記載の半導体デバイスの製造方法。
  9. 基板を処理する反応管と、
    前記反応管内で複数枚の基板を積層支持するボートと、
    前記反応管の外部に設けられ、前記反応管内の前記基板を加熱するヒータと、
    前記反応管内にSiHを導入するノズルと、
    前記反応管内にBClを導入するノズルと、
    を有し、前記反応管内に前記ノズルよりSiHとBClとを導入して、熱CVD法により前記ボートにより支持された前記各基板上にボロンドープシリコン膜を形成する基板処理装置において、
    前記BClを導入するノズルは、
    基板配列領域よりも上流側よりBClを導入するノズルと、前記基板配列領域における複数箇所からそれぞれBClを導入する長さの異なる複数のノズルと、により構成され
    前記SiH を導入するノズルは、前記基板配列領域よりも上流側よりSiH を導入するノズルにより構成され、
    前記各基板上にボロンドープシリコン膜を形成する際に、前記各ノズルを介して、SiH を前記基板配列領域よりも上流側より導入して他端側に向けて流すと共に、BCl を、前記基板配列領域よりも上流側及び前記基板配列領域における複数箇所より導入して前記他端側に向けて流し、その際、前記反応炉内の温度を390℃〜450℃とし、前記反応炉内のBCl の分圧を0.06Pa〜0.7Paとするように制御する制御部を更に有することを特徴とする基板処理装置。
  10. 前記基板配列領域よりも上流側には複数の断熱板が配列され、前記基板配列領域よりも上流側よりBClを導入するノズルおよびSiHを導入するノズルは、前記断熱板配列領域よりも上流側より各ガスを導入するように構成されることを特徴とする請求項9記載の基板処理装置。
JP2002291517A 2001-10-05 2002-10-03 半導体デバイスの製造方法および基板処理装置 Expired - Lifetime JP4439796B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291517A JP4439796B2 (ja) 2001-10-05 2002-10-03 半導体デバイスの製造方法および基板処理装置

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2001-310201 2001-10-05
JP2001310154 2001-10-05
JP2001310201 2001-10-05
JP2001-310213 2001-10-05
JP2001-310154 2001-10-05
JP2001310213 2001-10-05
JP2001310146 2001-10-05
JP2001-310146 2001-10-05
JP2002291517A JP4439796B2 (ja) 2001-10-05 2002-10-03 半導体デバイスの製造方法および基板処理装置

Publications (2)

Publication Number Publication Date
JP2003178992A JP2003178992A (ja) 2003-06-27
JP4439796B2 true JP4439796B2 (ja) 2010-03-24

Family

ID=27532019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291517A Expired - Lifetime JP4439796B2 (ja) 2001-10-05 2002-10-03 半導体デバイスの製造方法および基板処理装置

Country Status (1)

Country Link
JP (1) JP4439796B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556839B2 (en) 2004-03-29 2009-07-07 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device and apparatus for processing substrate
US7772097B2 (en) 2007-11-05 2010-08-10 Asm America, Inc. Methods of selectively depositing silicon-containing films
FI124354B (fi) 2011-04-04 2014-07-15 Okmetic Oyj Menetelmä yhden tai useamman polykiteisen piikerroksen pinnoittamiseksi substraatille
JP5793398B2 (ja) * 2011-10-28 2015-10-14 東京エレクトロン株式会社 シード層の形成方法及びシリコン含有薄膜の成膜方法

Also Published As

Publication number Publication date
JP2003178992A (ja) 2003-06-27

Similar Documents

Publication Publication Date Title
US6686281B2 (en) Method for fabricating a semiconductor device and a substrate processing apparatus
US8652258B2 (en) Substrate treatment device
KR100907148B1 (ko) 성막 장치 및 성막 방법
JP4371425B2 (ja) 半導体装置の製造方法及び基板処理装置
US10388511B2 (en) Method of forming silicon nitride film, film forming apparatus and storage medium
CN101440482B (zh) 薄膜形成装置及其使用方法
US20010047764A1 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
JPH0567571A (ja) 気相成長装置
CN101154589A (zh) 形成硅氧化膜的成膜方法和装置
US8178428B2 (en) Manufacturing method of semiconductor device and substrate processing apparatus
JPWO2005015619A1 (ja) 基板処理装置および半導体装置の製造方法
US6905963B2 (en) Fabrication of B-doped silicon film by LPCVD method using BCI3 and SiH4 gases
CN101413111A (zh) 成膜装置及其使用方法
JP5560093B2 (ja) 基板処理装置及び半導体装置の製造方法及び基板製造方法
JP4439796B2 (ja) 半導体デバイスの製造方法および基板処理装置
KR101290996B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
CN102586759B (zh) 一种气体输送系统及应用该系统的半导体处理设备
JP4792180B2 (ja) 半導体デバイスの製造方法、基板処理方法および基板処理装置
CN103898476A (zh) 薄膜沉积装置及薄膜沉积方法
JP2020188237A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2004104014A (ja) 半導体装置の製造方法
JP2003273020A (ja) 基板処理方法
JP2023504829A (ja) 堆積チャンバ用のガス分配セラミックヒータ
WO1999036588A1 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
US5766785A (en) Method and apparatus for manufacturing a semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4439796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term