JP4438276B2 - データ転送装置 - Google Patents

データ転送装置 Download PDF

Info

Publication number
JP4438276B2
JP4438276B2 JP2002275620A JP2002275620A JP4438276B2 JP 4438276 B2 JP4438276 B2 JP 4438276B2 JP 2002275620 A JP2002275620 A JP 2002275620A JP 2002275620 A JP2002275620 A JP 2002275620A JP 4438276 B2 JP4438276 B2 JP 4438276B2
Authority
JP
Japan
Prior art keywords
transmission
reception
clock
data
enable signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002275620A
Other languages
English (en)
Other versions
JP2004110705A (ja
Inventor
晴一 江本
一哉 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002275620A priority Critical patent/JP4438276B2/ja
Publication of JP2004110705A publication Critical patent/JP2004110705A/ja
Application granted granted Critical
Publication of JP4438276B2 publication Critical patent/JP4438276B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Information Transfer Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非同期のクロックで動作している2つのシステム間でデータの転送を行うデータ転送装置に関する。
【0002】
【従来の技術】
非同期のクロックを用いた2つのシステム間でデータの転送を行う場合、転送するデータのクロック乗り換え処理を行わなければならない。クロック乗り換え処理の方法としては、例えば、FIFOレジスタやRAMでクロック間のタイミング差を吸収する方法や、送信側及び受信側の2つのクロックから、同期タイミング用の新たなクロックを生成し、その新たなクロックに同期させてデータを転送する方法などがある。しかしながら、前者の方法では、FIFOレジスタやRAMが必要であるので、回路規模が大きくなってしまう。また、後者の方法でも、クロック比の情報やタイミング調整用のパラメータ情報等を入力する必要があったり、同期タイミング用のクロックを生成するための回路が必要であったりするので、やはり回路規模が大きくなってしまう。
【0003】
また、送信データのイネーブル信号を受信側のクロックで検出して、その検出タイミングでデータを受信側に転送する方法もある。この方法の場合、回路規模は非常に小さくなるが、送信側のクロックよりも受信側のクロックの方が充分早くなければ実現できない。
【0004】
以上のような問題を解決するシステムとして、従来より、図12に示すような、データ送信許可及びデータ受信許可を発生して、データの転送タイミングの制御をしながらクロック乗換えを行うシステムが提案されている。
【0005】
以下、この図12に示す従来のクロック乗り換えシステムについて説明をする。
【0006】
従来のクロック乗り換えシステム100は、データの転送元の装置(以下、送信装置101という。)と、データの転送先の装置(以下、受信装置102という。)との間に、送信装置101から受信装置102へデータの受け渡しを行うデータ転送装置103が設けられた構成となっている。
【0007】
送信装置101は、所定の周波数のクロック(送信クロックckw)で動作している。送信装置101は、所定のバス幅のデータをデータ出力端子から出力する。送信装置101は、データ転送を行う場合、送信クロックckwに同期した送信データdwiをデータ転送装置103へ送信する。
【0008】
送信装置101は、データ転送を行う場合、バスを転送している送信データdwiの送信タイミングを示す送信イネーブル信号ewiも、送信データdwiに同期させてデータ転送装置103に出力する。送信イネーブル信号ewiは、送信クロックckwに同期したハイ(H)及びロー(L)の2値信号で表される。送信イネーブル信号ewiは、送信装置101からデータ転送装置103へ送信データdwiが転送されているタイミングでHとされ、送信データdwiが転送されていないタイミングにLとされる。
【0009】
送信装置101は、送信データdwiの出力を許可することを意味する送信許可信号rwoを、データ転送装置103から受信する。送信許可信号rwoは、送信クロックckwに同期したハイ(H)及びロー(L)の2値信号で表されている。送信装置101は、送信許可信号rwoが1クロック分Hとされると、1ワード分の送信データdwiを送信クロックckwに同期させてデータ転送装置103へ送信する。送信装置101は、送信許可信号rwoがLとされている間は、送信データdwi及び送信イネーブル信号dwiの出力を行わない。
【0010】
受信装置102は、送信クロックckwとは非同期のクロック(受信クロックckr)で動作している。受信装置102は、所定のバス幅のデータをデータ入力端子から入力する。受信装置102は、データ転送を行う場合、受信クロックckrに同期した受信データdroをデータ転送装置103から受信する。
【0011】
受信装置102は、バスを転送している受信データdroの受信タイミングを示す受信イネーブル信号eriを、受信クロックckrに同期させてデータ転送装置103に出力する。受信イネーブル信号eriは、受信クロックckrに同期したハイ(H)及びロー(L)の2値信号で表される。受信イネーブル信号eriは、データ転送装置103から受信装置102へ受信データdroが転送されているタイミングでHとされ、受信データdroが転送されていないタイミングにLとされる。
【0012】
受信装置102は、受信データdroの入力を許可することを意味する受信許可信号rroを、データ転送装置103から受信する。受信許可信号rroは、受信クロックckrに同期したハイ(H)及びロー(L)の2値信号で表されている。受信装置102は、受信許可信号rroがHである期間に、1ワード分の受信データdroをデータ転送装置103から受信クロックckrに同期させて受信することができる。受信装置102は、受信許可信号rroがLとされている間は、受信データdroの受信及び受信イネーブル信号eriの送信を行わない。
【0013】
データ転送装置103は、送信イネーブル信号ewiがHとなったタイミングで、1ワード分の送信データdwiを受信し、内部にラッチする。また、データ転送装置103は、受信イネーブル信号eriがHとなったタイミングで、内部にラッチしている1ワード分のデータが、受信装置102により読み出される。
【0014】
データ転送装置103は、送信装置101から送信イネーブル信号ewiが入力され、受信装置102から受信イネーブル信号eriが入力される。また、データ転送装置103は、送信許可信号rwoを送信装置101に出力し、受信許可信号rroを受信装置102に出力する。
【0015】
以上のようなクロック乗り換えシステム100の動作例について説明をする。
【0016】
クロック乗り換えシステム100では、次の(S1)〜(S4)の処理を巡回的に行う。なお、例えば電源投入時やデータの転送開始の命令の受信時等のデータ転送の開始時には、データ転送装置103は、送信許可信号rwoをHとし、受信許可信号rroをLとしている。
【0017】
(S1)まず、送信装置101は、送信許可信号rwoがHとなったことを受けて、1ワード分の送信データdwiをデータ転送装置103に格納する。このとき、送信装置101は、送信データdwiの転送に同期させて、送信イネーブル信号ewiを1クロック分(送信クロックckw)Hとする。
【0018】
(S2)続いて、データ転送装置103は、送信イネーブル信号ewiがHとなったことを受けて、送信許可信号rwoをLとするとともに、受信許可信号rroをHとする。なお、このとき、データ転送装置103は、送信イネーブル信号ewiがHとなったタイミング(例えば送信イネーブル信号ewiの立ち上がりエッジ)から、受信許可信号rroをHとするタイミング(例えば受信許可信号rroの立ち上がりエッジ)までの時間間隔に、送信クロックckwの1周期分以上の時間を空ける。このように時間間隔をとるのは、送信装置101から送信データdwiの格納が確実に完了することを保障するためである。
【0019】
(S3)続いて、受信装置102は、受信許可信号rroがHとなったことを受けて、1ワード分の受信データdroをデータ転送装置103から読み出す。このとき、受信装置102は、受信データdroの転送に同期させて、受信イネーブル信号eriを1クロック分(受信クロックckr)Hとする。
【0020】
(S4)続いて、データ転送装置103は、受信イネーブル信号eriがHとなったことを受けて、受信許可信号rroをLとするとともに、送信許可信号rwoをHとする。なお、このとき、データ転送装置103は、受信イネーブル信号eriがHとなったタイミング(例えば、受信イネーブル信号eriの立ち上がりエッジ)から、送信許可信号rwoをHとするタイミング(例えば送信許可信号rwoの立ち上がりエッジ)までの時間間隔として、受信クロックckrの1周期分以上の時間を空ける。このように時間間隔をとるのは、受信装置102の受信データdroの読み出しが確実に完了することを保障するためである。
【0021】
図13及び図14に、以上のような動作を行う場合における各信号のタイミングチャートを示す。図13は、ckw<ckrの場合のタイミングチャートである。図14は、ckw>ckrの場合のタイミングチャートである。
【0022】
以上のように従来のクロック乗り換えシステム100では、送信許可信号rwoの発行→送信データdwiの格納→受信許可信号rroの発行→受信データdroの読み出し→送信許可信号rwoの発行→送信データdwiの格納→・・・といった処理を巡回的に繰り返していくこととなる。
【0023】
従って、従来のクロック乗り換えシステム100では、大容量のFIFOやRAM等を用いることなく、且つ、非同期のクロック間のデータの転送を実現することができ、さらに、送信クロックckwと受信クロックckrとのクロック比がどのような値であっても、データの転送を実現できる。
【0024】
【発明が解決しようとする課題】
ところで、非同期のクロックを用いた2つのシステム間でデータ転送を行う場合、送信クロックckwと受信クロックckrとの関係がckw<ckrであれば、送信データdwiの転送レートと送信クロックckwとが一致することが、理論的に最も効率良いデータ転送となる。同様に、送信クロックckwと受信クロックckrとの関係がckw>ckrであれば、受信データdroの転送レートと受信クロックckrとが一致することが、理論的に最も効率良いデータ転送となる。
【0025】
しかしながら、図13に示す場合(ckw<ckr)における送信データdwiの転送レートは、送信クロックckwに対して1/2の転送レートとなっている。このように転送レートが低くなるのは、送信イネーブル信号ewiがHとなったタイミングから、受信許可信号rroをHとするタイミングまでの時間間隔に、送信クロックckwの1周期分以上の時間を空け、送信装置101からデータ転送装置103への送信データdwiの格納が確実に完了することを保障するためである。
【0026】
同様に、図14に示す場合(ckw>ckr)における受信データdroの転送レートは、受信クロックckrに対して1/2の転送レートとなっている。これも同様に、受信イネーブル信号eriがHとなったタイミングから、送信許可信号rwoをHとするタイミングまでの時間間隔として、受信クロックckrの1周期分以上の時間を空け、データ転送装置103から受信装置102への受信データdroの読み出しが確実に完了することを保障するためである。
【0027】
つまり、従来のクロック乗り換えシステム100では、送信許可信号rwoの発行及び受信許可信号rroの発行を行う際に、データ転送レートに冗長な時間が生じてしまい、理論的に最も効率の良い転送レートでデータを転送することができなかった。
【0028】
本発明は、このような従来の実情に鑑みて提案されたものであり、データ送信許可及びデータ受信許可によりデータの転送を制御するクロック乗り換えシステムにおいて、効率よくデータ転送を行うことができるデータ転送装置を提供することを目的とする。
【0029】
【課題を解決するための手段】
本発明にかかるデータ転送装置は、第1のクロックに同期してデータを送信する送信装置と、上記第1のクロックとは異なる第2のクロックに同期してデータを受信する受信装置とを有するクロック乗り換えシステムに適用される。
【0030】
上記送信装置は、送信許可信号を受信し、この送信許可信号に応じて、データが有効であることを示す送信イネーブル信号を送信するとともに、この送信イネーブル信号に同期してデータを送信する。また、上記受信装置は、受信許可信号を受信し、受信した受信許可信号に応じて、データが有効であることを示す受信イネーブル信号を送信するとともに、この受信イネーブル信号に同期してデータを受信する。
【0031】
このデータ転送装置は、送信装置にデータを送信することを許可することを示す送信許可信号、及び上記送信装置から送信されたデータを受信装置に入力することを許可することを示す受信許可信号を生成するとともに、データをラッチするn個(nは、2以上の整数)の転送ユニットと、送信データが有効であることを示す送信イネーブル信号がイネーブルとなった回数をカウントして、1〜nの値を巡回的に発生する送信カウンタと、受信データが有効であることを示す受信イネーブル信号がイネーブルとなった回数をカウントして、1〜nの値を巡回的に発生する受信カウンタと、上記複数の転送ユニットのうち、上記送信カウンタから発生された値に基づき指定される1つの転送ユニットを選択し、上記データの送信元である送信装置から送信された送信イネーブル信号を、選択した転送ユニットに供給する送信イネーブル信号デコーダと、上記複数の転送ユニットのうち、上記受信カウンタから発生された値に基づき指定される1つの転送ユニットを選択し、上記データの受信先である受信装置から送信された受信イネーブル信号を選択した転送ユニットに供給する受信イネーブル信号デコーダと、上記複数の転送ユニットのうち、上記送信カウンタから発生された値に基づき指定される1つの転送ユニットを選択し、選択した転送ユニットにより生成された送信許可信号を選択して出力する送信許可信号セレクタと、上記複数の転送ユニットのうち、上記受信カウンタから発生された値に基づき指定される1つの転送ユニットを選択し、選択した転送ユニットにより生成された受信許可信号を選択して出力する受信許可信号セレクタと、上記複数の転送ユニットのうち、上記受信カウンタから発生された値に基づき指定される1つの転送ユニットを選択し、選択した転送ユニットによりラッチされているデータを出力するデータセレクタとを備え、上記各転送ユニットは、上記送信装置から送信された送信データを上記送信イネーブル信号デコーダから供給された送信イネーブル信号が、上記送信装置から送信された送信データが有効であることを示す期間に、上記送信装置がデータを送信する場合に同期する第1のクロックのエッジに同期してラッチし、ラッチしている送信データが上記受信イネーブル信号デコーダから供給された受信イネーブル信号のタイミングで読み出されるデータラッチ手段と、上記送信イネーブル信号デコーダから供給された送信イネーブル信号を上記第1のクロックのエッジに同期してラッチし、ラッチした送信イネーブル信号を上記受信装置がデータを受信する場合に同期する第2のクロックのエッジに同期してラッチし、少なくとも上記第2のクロックの1周期の間だけ保持する第1のラッチ手段と、上記第1のラッチ手段によりラッチされた送信イネーブル信号を上記第2のクロックのエッジに同期してラッチする第2のラッチ手段と、上記第2のラッチ手段によりラッチされた送信イネーブル信号に応じて上記第2のクロックに同期した受信許可信号を発生し、上記受信イネーブル信号デコーダから供給された受信イネーブル信号に応じて当該受信許可信号の発生を停止する受信許可信号発生手段と、上記受信イネーブル信号デコーダから供給された受信イネーブル信号を上記第2のクロックのエッジに同期してラッチし、ラッチした受信イネーブル信号を上記1のクロックでラッチし、少なくとも上記第1のクロックの1周期の間だけ保持する第3のラッチ手段と、上記第3のラッチ手段によりラッチされた受信イネーブル信号を上記第1のクロックのタイミングでラッチする第4のラッチ手段と、上記第4のラッチ手段によりラッチされた受信イネーブル信号に応じて上記第1のクロックに同期した送信許可信号を発生し、上記送信カウンタから供給された送信イネーブル信号に応じて当該送信許可信号の発生を停止する送信許可信号発生手段とを備えている。
【0032】
さらに、上記転送ユニットは、データラッチ手段と、第1から第4のラッチ手段、並びに、受信許可信号発生手段及び送信許可発生手段を備えている。
【0033】
上記データラッチ手段は、送信装置から送信されたデータを送信イネーブル信号のタイミングでラッチし、ラッチしているデータが上記受信装置により上記受信イネーブル信号のタイミングで読み出される。
【0034】
上記第1のラッチ手段は、上記送信装置から送信された送信イネーブル信号を上記第1のクロックのタイミングでラッチし、ラッチした送信イネーブル信号を少なくとも上記第1のクロックの1周期分遅延させる。上記第2のラッチ手段は、上記第1のラッチ手段によりラッチされた送信イネーブル信号を上記第2のクロックのタイミングでラッチする。上記受信許可信号発生手段は、上記第2のラッチ手段によりラッチされた送信イネーブル信号に応じて上記第2のクロックに同期した受信許可信号を送信し、上記受信装置から送信された受信イネーブル信号に応じて当該受信許可信号の送信を停止する。
【0035】
上記第3のラッチ手段は、上記受信装置から送信された受信イネーブル信号を上記第2のクロックのタイミングでラッチし、ラッチした受信イネーブル信号を少なくとも上記第2のクロックの1周期分遅延させる。上記第4のラッチ手段は、上記第3のラッチ手段によりラッチされた受信イネーブル信号を上記第1のクロックのタイミングでラッチする。上記送信許可信号発生手段は、上記第4のラッチ手段によりラッチされた受信イネーブル信号に応じて上記第1のクロックに同期した送信許可信号を送信し、上記送信装置から送信された送信イネーブル信号に応じて当該送信許可信号の送信を停止する。
【0036】
【発明の実施の形態】
以下、本発明の実施の形態として、本発明を適用したクロック乗り換えシステムについて説明をする。本実施の形態のクロック乗り換えシステムは、非同期のクロックを用いた2つのシステム間でデータの転送処理に適用されるシステムである。
【0037】
(システム全体構成)
図1に本発明の実施の形態のクロック乗り換えシステムのブロック構成図を示す。
【0038】
本発明の実施の形態のクロック乗り換えシステム1は、データの転送元の装置(以下、送信装置11という。)と、データの転送先の装置(以下、受信装置12という。)との間に、送信装置11から受信装置12へデータの受け渡しを行うデータ転送装置13が設けられた構成となっている。なお、ここでは、データ転送装置13は、送信装置11及び受信装置12のそれぞれから独立した構成となっているが、送信装置11又は受信装置12のいずれか一方の組み込まれた構成とされていてもよい。
【0039】
送信装置11は、所定の周波数のクロックで動作している。送信装置11の動作クロックを、以下、送信クロックckwという。送信装置11は、所定のバス幅のデータをデータ出力端子から出力する。送信装置11は、データ転送を行う場合、送信クロックckwに同期したデータをデータ転送装置13へ送信する。送信装置11からデータ転送装置13へ送信されるデータを、以下、送信データdwiという。
【0040】
送信装置11は、データ転送を行う場合、バスを転送している送信データdwiが有効であるか無効であるかを示す送信イネーブル信号ewiも、送信データdwiに同期させて出力する。送信装置11は、この送信イネーブル信号ewiをデータ転送装置13に送信する。送信イネーブル信号ewiは、送信クロックckwに同期したハイ(H)及びロー(L)の2値信号で表される。送信イネーブル信号ewiは、送信装置11からデータ転送装置13へ送信データdwiが転送されているタイミングでHとされ、送信データdwiが転送されていないタイミングにLとされる。
【0041】
送信装置11は、送信データdwiの出力を許可することを意味する送信許可信号rwoを、データ転送装置13から受信する。送信許可信号rwoは、送信クロックckwに同期したハイ(H)及びロー(L)の2値信号で表されている。送信装置11は、送信許可信号rwoが1クロック分Hとされると、1ワード分の送信データdwiを送信クロックckwに同期させてデータ転送装置13へ送信する。送信装置11は、送信許可信号rwoがLとされている間は、送信データdwiの出力を行わない。
【0042】
受信装置12は、送信クロックckwとは非同期のクロックで動作している。受信装置12の動作クロックを、以下、受信クロックckrいう。受信装置12は、所定のバス幅のデータをデータ入力端子から入力する。受信装置12は、データ転送を行う場合、受信クロックckrに同期したデータをデータ転送装置13から受信する。データ転送装置13から受信装置12へ転送されるデータを、以下、受信データdroという。
【0043】
受信装置12は、バスを転送している受信データdroが有効であるか無効であるかを示す受信イネーブル信号eriを、受信クロックckrに同期させて出力する。受信装置12は、この受信イネーブル信号eriをデータ転送装置13に送信する。受信イネーブル信号eriは、受信クロックckrに同期したハイ(H)及びロー(L)の2値信号で表される。受信イネーブル信号eriは、データ転送装置13から受信装置12へ受信データdroが転送されているタイミングでHとされ、受信データdroが転送されていないタイミングにLとされる。
【0044】
受信装置12は、受信データdroの入力を許可することを意味する受信許可信号rroを、データ転送装置13から受信する。受信許可信号rroは、受信クロックckrに同期したハイ(H)及びロー(L)の2値信号で表されている。受信装置12は、受信許可信号rroが1クロック分Hとされると、1ワード分の受信データdroをデータ転送装置13から受信クロックckrに同期させて受信する。受信装置12は、受信許可信号rroがLとされている間は、受信データdroの受信を行わない。
【0045】
データ転送装置13は、送信イネーブル信号ewiがHとなったタイミングで、1ワード分の送信データdwiを送信装置11から受信して内部にラッチする。また、データ転送装置13は、受信イネーブル信号eriがHとなったタイミングで、内部にラッチしている1ワード分のデータが、受信装置12により読み出される。
【0046】
データ転送装置13は、送信装置11から送信イネーブル信号ewiが入力され、受信装置12から受信イネーブル信号eriが入力される。また、データ転送装置13は、送信許可信号rwoを送信装置11に出力し、受信許可信号rroを受信装置12に出力する。
【0047】
以上のようなクロック乗り換えシステム1では、次の(S11)〜(S14)の処理を巡回的に行うこととなる。なお、例えば電源投入時やデータの転送開始の命令の受信時等のデータ転送の開始時には、データ転送装置13は、送信許可信号rwoをHとし、受信許可信号rroをLとしている。
【0048】
(S11)まず、送信装置11は、送信許可信号rwoがHとなったことを受けて、1ワード分の送信データdwiをデータ転送装置13に格納する。このとき、送信装置11は、送信データdwiの転送に同期させて、送信イネーブル信号ewiを1クロック分(送信クロックckw)Hとする。
【0049】
(S12)続いて、データ転送装置13は、送信イネーブル信号ewiがHとなったことを受けて、送信許可信号rwoをLとするとともに、受信許可信号rroをHとする。
【0050】
(S13)続いて、受信装置12は、受信許可信号rroがHとなったことを受けて、1ワード分の受信データdroをデータ転送装置13から読み出す。このとき、受信装置12は、受信データdroの転送に同期させて、受信イネーブル信号eriを1クロック分(受信クロックckr)Hとする。
【0051】
(S14)続いて、データ転送装置13は、受信イネーブル信号eriがHとなったことを受けて、受信許可信号rroをLとするとともに、送信許可信号rwoをHとする。
【0052】
(データ転送装置内の具体的な構成)
つぎに、データ転送装置13内の具体的な内部構成について、図2を参照して説明をする。
【0053】
データ転送装置13は、図2に示すように、第1〜第nの転送ユニット20-1〜20-nと、送信カウンタ21と、受信カウンタ22と、送信イネーブル信号デコーダ23と、受信イネーブル信号デコーダ24と、送信許可信号セレクタ25と、受信許可信号セレクタ26と、データセレクタ27とを備えている。なお、nは、本データ転送装置13内に備えられた転送ユニット20の個数である。また、以下の説明で用いる図面中には、n=4のときの回路例を示している。
【0054】
第1〜第nの転送ユニット20-1〜20-nは、内部構成が全て同一となっている。以下、第1〜第nの転送ユニット20-1〜20-nのうちの任意の転送ユニットのことを、以下第xの転送ユニット20-xと言う。なお、xは、1〜nの整数となる。
【0055】
第xの転送ユニット20-xには、送信イネーブル信号デコーダ23により生成された第xの送信イネーブル信号ewi#x、及び、受信イネーブル信号デコーダ24により生成された第xの受信イネーブル信号eri#xが入力される。
【0056】
第xの転送ユニット20-xは、第xの送信許可信号rwo#x並びに第xの受信許可信号rro#xを生成する。第xの部分データユニット20-xは、第xの受信許可信号rro#xを受信許可信号セレクタ26に出力する。
【0057】
第xの転送ユニット20-xには、送信装置11から送信データdwiが入力される。第xの転送ユニット20-xは、送信イネーブル信号デコーダ23から供給された第xの送信イネーブル信号ewi#xのタイミング(例えば立ち上がりエッジ)で送信データdwiをラッチする。また、第xの転送ユニット20-xにラッチされたデータは、受信イネーブル信号デコーダ24から供給された第xの受信イネーブル信号eri#xのタイミング(例えば立ち上がりエッジ)で、データセレクタ27を介して受信装置12により読み出される。
【0058】
なお、第1〜第nの転送ユニット20-1〜20-nの具体的な回路構成は、後で詳細に説明をする。
【0059】
送信カウンタ21は、クロック入力端子に入力される送信クロックckwのクロック数(例えば立ち上がりエッジの数)を、1からnまで巡回的にカウントするカウンタ回路である。送信カウンタ21には、送信装置11から供給された送信イネーブル信号ewiが入力されるイネーブル端子(en)が設けられている。送信カウンタ21は、送信イネーブル信号ewiがHとなっているときにカウントを行い、Lとなっているときにはカウントをしない。つまり、送信カウンタ21は、送信イネーブル信号ewiがHとなった回数を1からnまで巡回的にカウントする。送信カウンタ21のカウント値を以下送信イネーブルカウント値cwrという。送信イネーブルカウント値cwrは、送信イネーブル信号デコーダ23及び送信許可信号セレクタ25に供給される。
【0060】
受信カウンタ22は、クロック入力端子に入力される受信クロックckrのクロック数(例えば立ち上がりエッジの数)を、1からnまで巡回的にカウントするカウンタ回路である。受信カウンタ22には、受信装置12から供給された受信イネーブル信号eriが入力されるイネーブル端子(en)が設けられている。受信カウンタ22は、受信イネーブル信号eriがHとなっているときにカウントを行い、Lとなっているときにはカウントをしない。つまり、受信カウンタ22は、受信イネーブル信号eriがHとなった回数を1からnまで巡回的にカウントする。受信カウンタ22のカウント値を以下受信イネーブルカウント値crdという。受信イネーブルカウント値crdは、送信イネーブル信号デコーダ23及び送信許可信号セレクタ25に供給される。
【0061】
送信イネーブル信号デコーダ23は、送信イネーブルカウント値cwrが入力される入力端子と、ハイ(H)とロー(L)の2値信号を出力する第1から第nまでの出力端子が設けられている。送信イネーブル信号デコーダ23は、送信イネーブルカウント値cwrに対応した出力端子の値のみをHとするデコーダである。つまり、入力されたカウント値cwrが“1”であれば第1の出力端子をHとし、他の出力端子をLとする。また、カウント値cwrが“2”であれば第2の出力端子をHとし、他の出力端子をLとする。また、カウント値cwrが“n”であれば第nの出力端子をHとし、他の出力端子をLとする。
【0062】
送信イネーブル信号デコーダ23は、クロック入力端子に送信クロックckwが入力され、送信クロックckwのタイミング(例えば立ち上がりエッジ)に同期して動作をする。また、送信イネーブル信号デコーダ23には、送信イネーブル信号ewiが入力されるイネーブル端子(en)が設けられており、送信イネーブル信号ewiがHのときのみ動作し、送信イネーブル信号ewiがLのときには、出力端子の値を全てLに落とす。
【0063】
送信イネーブル信号デコーダ23の第1から第nの出力端子から出力される信号は、第1から第nの送信イネーブル信号ewi#1〜ewi#nとして、第1〜第nの転送ユニット20-1〜20-nに供給される。つまり、第1の出力端子から出力された信号は、第1の送信イネーブル信号ewi#1として、第1の転送ユニット20-1に供給され、第2の出力端子から出力された信号は、第2の送信イネーブル信号ewi#2として、第2の転送ユニット20-2に供給され、第nの出力端子から出力された信号は、第nの送信イネーブル信号ewi#nとして、第nの転送ユニット20-nに供給される。
【0064】
従って、送信イネーブル信号デコーダ23の動作は、図3に示すタイミングチャートのように、送信イネーブルカウント値cwrで特定された転送ユニット20に対して送信イネーブル信号ewiを供給することとなる。
【0065】
受信イネーブル信号デコーダ24は、受信イネーブルカウント値crdが入力される入力端子と、ハイ(H)とロー(L)の2値信号を出力する第1から第nまでの出力端子が設けられている。受信イネーブル信号デコーダ24は、受信イネーブルカウント値crdに対応した出力端子の値のみをHとするデコーダである。つまり、入力されたカウント値crdが“1”であれば第1の出力端子をHとし、他の出力端子をLとする。また、カウント値crdが“2”であれば第2の出力端子をHとし、他の出力端子をLとする。また、カウント値crdが“n”であれば第nの出力端子をHとし、他の出力端子をLとする。
【0066】
受信イネーブル信号デコーダ24には、クロック入力端子に受信クロックckrが入力され、受信クロックckrのタイミング(例えば立ち上がりエッジ)に同期して動作をする。また、受信イネーブル信号デコーダ24には、受信イネーブル信号eriが入力されるイネーブル端子(en)が設けられており、受信イネーブル信号eriがHのときのみ動作し、受信イネーブル信号eriがLのときには、出力端子の値を全てLに落とす。
【0067】
受信イネーブル信号デコーダ24の第1から第nの出力端子から出力される信号は、第1から第nの受信イネーブル信号eri#1〜ewi#nとして、第1〜第nの転送ユニット20-1〜20-nに供給される。つまり、第1の出力端子から出力された信号は、第1の受信イネーブル信号eri#1として、第1の転送ユニット20-1に供給され、第2の出力端子から出力された信号は、第2の受信イネーブル信号eri#2として、第2の転送ユニット20-2に供給され、第nの出力端子から出力された信号は、第nの受信イネーブル信号eri#nとして、第nの転送ユニット20-nに供給される。
【0068】
従って、受信イネーブル信号デコーダ24の動作は、図3に示すタイミングチャートのように、受信イネーブル信号eriカウント値crdで特定された転送ユニット20に対して受信イネーブル信号eriを供給することとなる。
【0069】
送信許可信号セレクタ25は、送信イネーブルカウント値cwrが入力されるセレクト端子(sel)と、第1〜第nの入力端子と、1つの出力端子とが設けられたセレクタ回路である。第1〜第nの入力端子には、第1〜第nの転送ユニット20-1〜20-nから出力された第1〜第nの送信許可信号rwo#1〜rwo#nが入力される。
【0070】
送信許可信号セレクタ25は、セレクト端子(sel)入力された送信イネーブルカウント値cwrに対応した1つの入力端子を選択し、選択した入力端子に入力された信号を出力端子から出力する。つまり、送信許可信号セレクタ25は、カウント値cwrが“1”であれば第1の送信許可信号rwo#1を出力端子から出力し、カウント値cwrが“2”であれば第2の送信許可信号rwo#2を出力端子から出力し、カウント値cwrが“n”であれば第nの送信許可信号rwo#nを出力端子から出力する。
【0071】
送信許可信号セレクタ25は、選択して出力した信号を、送信許可信号rwoとして送信装置11に供給する。
【0072】
受信許可信号セレクタ26は、受信イネーブルカウント値crdが入力されるセレクト端子(sel)と、第1〜第nの入力端子と、1つの出力端子とが設けられたセレクタ回路である。第1〜第nの入力端子には、第1〜第nの転送ユニット20-1〜20-nから出力された第1〜第nの受信許可信号rro#1〜rro#nが入力される。
【0073】
受信許可信号セレクタ26は、セレクト端子(sel)入力された受信イネーブルカウント値crdに対応した1つの入力端子を選択し、選択した入力端子に入力された信号を出力端子から出力する。つまり、受信許可信号セレクタ26は、カウント値crdが“1”であれば第1の受信許可信号rro#1を出力端子から出力し、カウント値crdが“2”であれば第2の受信許可信号rro#2を出力端子から出力し、カウント値crdが“n”であれば第nの受信許可信号rro#nを出力端子から出力する。
【0074】
受信許可信号セレクタ26は、選択して出力した信号を、受信許可信号rroとして受信装置12に供給する。
【0075】
データセレクタ27は、受信イネーブルカウント値crdが入力されるセレクト端子(sel)と、第1〜第nの入力端子と、1つの出力端子とが設けられたセレクタ回路である。第1〜第nの入力端子には、第1〜第nの転送ユニット20-1〜20-nにラッチされている第1〜第nの受信データdro #1〜dro #nが入力される。つまり、第1の入力端子には、第1の転送ユニット20-1から第1の受信データdro #1が入力され、第2の入力端子には、第2の転送ユニット20-2から第2の受信データdro #2が入力され、第nの入力端子には、第nの転送ユニット20-nから第nの受信データdro #nが入力される。
【0076】
データセレクタ27は、セレクト端子(sel)入力された受信イネーブルカウント値crdに対応した1つの入力端子を選択し、選択した入力端子に入力された信号を出力端子から出力する。つまり、データセレクタ27は、カウント値crdが“1”であれば第1の受信データdro #1を出力端子から出力し、カウント値crdが“2”であれば第2の受信データdro #2を出力端子から出力し、カウント値crdが“n”であれば第nの受信データdro #nを出力端子から出力する。
【0077】
データセレクタ27は、選択して出力した信号を、受信データdro として受信装置12に供給する。
【0078】
(転送ユニット20の構成例)
つぎに、任意の転送ユニット20-xの具体的な内部構成について、図4を参照して説明をする。
【0079】
転送ユニット20-xは、図4に示すように、内部に、データラッチ28と、タイミング制御回路29とを備えている。
【0080】
データラッチ28は、クロック入力端子が設けられ、このクロック入力端子に入力される信号の立ち上がりエッジに同期して動作するラッチ回路である。データラッチ28は、このクロック入力端子に送信クロックckwが入力される。データラッチ28は、入力端子(d)、イネーブル端子(en)及び出力端子(q)を備えている。入力端子(d)には、送信装置11から送信データdwiが入力され、イネーブル端子(en)には、送信イネーブルカウンタ23から供給された第xの送信イネーブル信号ewi#xが入力される。データラッチ28は、送信イネーブル信号ewi#xがHとなっていると、バス上の1ワード分の送信データdwiをラッチする。また、受信端子(q)は、データセレクタ27の第xの入力端子に接続されている。データラッチ28は、受信イネーブル信号eri#xがHとなったタイミングで、内部にラッチしている1ワード分のデータが、データセレクタ27を介して受信装置12により読み出される。
【0081】
タイミング制御回路29は、第1〜第4のSR-フリップフロップ回路(SR-FF回路)31〜34と、第1〜第2のD-フリップフロップ回路(D-FF回路)35〜36と、第1〜第2のOR演算回路(OR回路)37〜38と、第1〜第2の反転回路39〜40と、第1〜第2のAND演算回路(AND回路)41〜42とを備えている。
【0082】
第1〜第4のSR-FF回路31〜34は、クロック入力端子が設けられ、このクロック入力端子に入力される信号のタイミング(例えば、立ち上がりエッジ)に同期して動作するSR-フリップフロップ回路である。つまり、第1〜第4のSR-FF回路31〜34は、セット端子(set)、リセット端子(rst)、出力端子(q)が設けられている。第1〜第4のSR-FF回路31〜34は、セット端子(set)がHとなっていると内部状態をHとし、その後にリセット端子(rst)がHとなるまでそのHとなっている内部状態を保持し続ける。第1〜第4のSR-FF回路31〜34は、リセット端子(rst)がHとなると、その内部状態をLにリセットする。第1〜第4のSR-FF回路31〜34は、内部状態が出力端子(q)に反映されている。
【0083】
また、第1〜第4のSR-FF回路31〜34には、初期化端子(xrs,spr)が設けられている。第1〜第3のSR-FF回路31〜33は、初期化端子(xrs)がHとされると、強制的に内部状態をLとする。第4のSR-FF回路34は、初期化端子(spr)がHとされると、強制的に内部状態をHとする。
【0084】
第1〜第2のD-FF回路35〜36は、クロック入力端子が設けられ、このクロック入力端子に入力される信号のタイミング(例えば、立ち上がりエッジ)に同期して動作するD-フリップフロップ回路である。つまり、第1〜第2のD-FF回路35〜36は、入力端子(d)、出力端子(q)が設けられている。第1〜第2のD-FF回路35〜36は、入力端子(d)に入力された値(ハイ(H)又はロー(L))を、1クロック期間分ラッチする。第1〜第2のD-FF回路35〜36は、その内部状態が出力端子(q)に反映されている。
【0085】
第1〜第2のOR回路37〜38は、2つの入力端子及び1つの出力端子が設けられており、この2つの入力端子に入力された2つの値(ハイ(H)又はロー(L))のOR論理演算を行い、出力端子に反映する回路である。第1〜第2の反転回路39〜40は、1つの入力端子及び1つの出力端子が設けられており、入力端子に入力された値(ハイ(H)又はロー(L))を反転して、出力端子に反映する回路である。第1〜第2のAND回路41〜42は、2つの入力端子及び1つの出力端子が設けられており、この2つの入力端子に入力された2つの値(ハイ(H)又はロー(L))のAND論理演算を行い、出力端子に反映する回路である。
【0086】
タイミング制御回路29では、以上のような各回路が次のように接続されている。
【0087】
第1のSR-FF回路31は、セット端子(set)に送信イネーブル信号デコーダ23からの第xの送信イネーブル信号ewi#xが入力され、リセット端子(rst)に第1のD-FF回路35の出力信号が入力されている。第1のSR-FF回路31は、クロック端子に送信クロックckwが入力されている。
【0088】
第2のSR-FF回路32は、セット端子(set)に第1のD-FF回路35の出力信号が入力され、リセット端子(rst)に第3のSR-FF回路33の出力信号が入力されている。第2のSR-FF回路32は、クロック端子に受信クロックckrが入力されている。
【0089】
第3のSR-FF回路33は、セット端子(set)に受信イネーブル信号デコーダ24からの第xの受信イネーブル信号eri#xが入力され、リセット端子(rst)に第2のD-FF回路36の出力信号が入力されている。第3のSR-FF回路33は、クロック端子に受信クロックckrが入力されている。
【0090】
第4のSR-FF回路34は、セット端子(set)に第2のSR-FF回路36の出力信号が入力され、リセット端子(rst)に第1のSR-FF回路31の出力信号が入力されている。第4のSR-FF回路34は、クロック端子に送信クロックckwが入力されている。
【0091】
第1のD-FF回路35は、入力端子(d)に第1のSR-FF回路31の出力信号が入力されている。第1のD-FF回路35は、クロック端子に受信クロックckrが入力されている。第2のD-FF回路36は、入力端子(d)に第3のSR-FF回路33の出力信号が入力されている。第3のD-FF回路36は、クロック端子に送信クロックckwが入力されている。
【0092】
第1のOR回路37は、一方の入力端子に第1のD-FF回路35の出力信号が入力され、他方の入力端子に第2のSR-FF回路32の出力信号が入力されている。第2のOR回路38は、一方の入力端子に第2のD-FF回路36の出力信号が入力され、他方の入力端子に第4のSR-FF回路34の出力信号が入力されている。
【0093】
第1の反転回路39は、入力端子に第3のSR-FF回路33の出力信号が入力されている。第2の反転回路40は、入力端子に第1のSR-FF回路31の出力信号が入力されている。
【0094】
第1のAND回路41は、一方の入力端子に第1の反転回路39の出力信号が入力され、他方の入力端子に第2のSR-FF回路37の出力信号が入力されている。第2のAND回路42は、一方の入力端子に第2の反転回路40の出力信号が入力され、他方の入力端子に第4のSR-FF回路37の出力信号が入力されている。
【0095】
そして、以上のように接続されたタイミング制御回路28では、第1のAND回路41の出力信号が、第xの受信許可信号rro#xとして受信許可信号セレクタ26に対して出力され、第2のAND回路42の出力信号が、第xの送信許可信号rwo#xとして送信許可信号セレクタ25に対して出力される。
【0096】
(データ転送装置の動作タイミング)
つぎに、図5〜図8を参照して、以上のような構成のデータ転送装置13の動作タイミングについて説明をする。図5及び図6は、ckw<ckrの場合のタイミングチャートである。図7及び図8は、ckw>ckrの場合のタイミングチャートである。なお、図5〜図8において、T1,T2,T3,T4・・・は、送信クロックckwの立ち上がりエッジに同期した時刻を示しており、Tx〜T(x+1)の時間間隔は、送信クロックckwの1周期分である(ここでのxは整数である。)。また、t1,t2,t3,t4・・・は、受信クロックckrの立ち上がりエッジに同期した時刻を示しており、tx〜t(x+1)の時間間隔は、受信クロックckrの1周期分である(ここでのxは整数である。)。
【0097】
また、本例は、送信装置11は、データ転送装置13から送信許可信号rwoが与えられると、即時送信イネーブル信号ewiをHとして、送信データdwiの書き込みを行う構成となっている。同様に、受信装置12は、データ転送装置13から受信許可信号rroが与えられると、即時受信イネーブル信号eriをHとして、受信データdroの読み出しを行う構成となっている。
【0098】
まず、ckw<ckrの場合の動作について図5及び図6を参照して説明をする。
【0099】
データ転送開始時(T0)には、送信カウンタ21及び受信カウンタ22のカウント値cwr,crdが同一の値となっている。ここでは、“1”という値となっている。そのため、時刻T0において、第1の転送ユニット20-1から発生された送信許可信号rwo(rwo#1)が送信装置11に与えられる。送信装置11は、送信許可信号rwoを受信すると即時送信イネーブル信号ewiをHとし、送信データdwi(D1)を送信クロックckwに同期してデータ転送装置13に入力する。このとき、送信カウンタ21の値が“1”であるので、送信データdwi(D1)は第1の転送ユニット20-1にラッチ(dro#1)され、送信イネーブル信号ewi(ewi#1)も第1の転送ユニット20-1に入力される。
【0100】
第1の転送ユニット20-1は、時刻T0に受信した送信イネーブル信号ewi(ewi#1)に応じて、時刻t3に受信許可信号rro(rro#1)をHとする。時刻T0〜時刻t3の間の時間間隔は、送信クロックckwの1周期以上の間隔が空けられている。また、時刻t3でHとされた受信許可信号rro(rro#1)は、受信カウンタ22の値が1であるので、第1の転送ユニット20-1から受信装置12へ送信される。そのため、受信許可信号rroと同時に受信イネーブル信号eriがHとされ、時刻t3に、受信データdro(D1)が受信クロックckrに同期して第1の転送ユニット20-1から受信装置12へ出力される。第1の転送ユニット20-1は、時刻t3に受信した受信イネーブル信号eri(eri#1)に応じて、時刻T3に送信許可信号rwo(rwo#1)をHとする。時刻t3〜時刻T3の間の時間間隔は、受信クロックckrの1周期以上の間隔が空けられている。
【0101】
続いて、時刻T0から送信クロックckwの1周期後の時刻T1において、時刻T0で送信イネーブル信号ewiがHとなったことに伴って送信カウンタ21の値が1つインクリメントされ“2”となる。そのため、時刻T1に、送信装置11は、送信許可信号rwoを受信し、即時送信イネーブル信号ewiをHとし、送信データdwi(D2)を送信クロックckwに同期してデータ転送装置13に入力する。送信データdwi(D2)は第2の転送ユニット20-2にラッチ(dro#2)され、送信イネーブル信号ewi(ewi#2)も第2の転送ユニット20-2に入力される。
【0102】
時刻t4において、時刻t3で受信イネーブル信号eriがHとなったことに伴って受信カウンタ22の値が1つインクリメントされ“2”となる。そのため、時刻t4に、受信装置12は、第2の転送ユニット20-2から受信許可信号rro(rro#2)を受信し、同時に受信イネーブル信号eriをHとし、受信データdro(D2)を受信クロックckrに同期して受信する。第2の転送ユニット20-2は、時刻T4に送信許可信号rwo(rwo#2)をHとする。
【0103】
以後、データ転送装置13では、送信イネーブル信号ewiがHとなる毎に、転送ユニットを1つずつずらしながら、送信データdwiの書き込みが行われていく。また、データ転送装置13では、受信イネーブル信号eriがHとなる毎に、転送ユニットを1つずつずらしながら、受信データdroの読み出しが行われていく。このとき、送信クロックckwよりも受信クロックckrの方が早いため、充分な数の転送ユニットを備えていれば、データ転送装13に対して連続して送信データdwiを書き込んだとしても、個々の転送ユニット内で書き込みと読み出しの干渉が生じない。
【0104】
このように、データ転送装置13では、ckw<ckrの場合、送信装置11へ供給する送信許可信号rwoが常にHの状態とすることができ、データの転送効率を最大とすることができる。
【0105】
次に、ckw>ckrの場合の動作について図7及び図8を参照して説明をする。
【0106】
例えば時刻T3には、送信カウンタ21の値cwrが“4”となっており、受信カウンタ22の値crdが“1”となっている。時刻T3において、第4の転送ユニット20-4から発生された送信許可信号rwo(rwo#4)が送信装置11に与えられる。送信装置11は、送信許可信号rwoを受信すると即時送信イネーブル信号ewiをHとし、送信データdwi(D4)を送信クロックckwに同期してデータ転送装置13に入力する。このとき、送信カウンタ21の値が“4”であるので、送信データdwi(D4)は第4の転送ユニット20-4にラッチ(dro#4)され、送信イネーブル信号ewi(ewi#4)も第4の転送ユニット20-4に入力される。
【0107】
第4の転送ユニット20-4は、時刻T3に受信した送信イネーブル信号ewi(ewi#4)に応じて、時刻t3に受信許可信号rro(rro#4)をHとする。時刻T3〜時刻t3の間の時間間隔は、送信クロックckwの1周期以上の間隔が空けられている。また、時刻t3でHとされた受信許可信号rro(rro#4)は、時刻t3以後で初めて受信カウンタ22の値が4となった時刻t4に、第4の転送ユニット20-4から受信装置12へ送信される。そのため、この時刻t4に、受信許可信号rroと同時に受信イネーブル信号eriがHとされ、受信データdro(D4)が受信クロックckrに同期して第4の転送ユニット20-4から受信装置12へ出力される。第4の転送ユニット20-4は、時刻t4に受信した受信イネーブル信号eri(eri#4)に応じて、時刻T9に送信許可信号rwo(rwo#4)をHとする。時刻t4〜時刻T9の間の時間間隔は、受信クロックckrの1周期以上の間隔が空けられている。
【0108】
続いて、時刻T3から送信クロックckwの1周期後の時刻T4において、時刻T3で送信イネーブル信号ewiがHとなったことに伴って送信カウンタ21の値が1つインクリメントされ“1”となる。そのため、時刻T4に、送信装置11は、送信許可信号rwoを受信し、即時送信イネーブル信号ewiをHとし、送信データdwi(D5)を送信クロックckwに同期してデータ転送装置13に入力する。送信データdwi(D5)は第1の転送ユニット20-1にラッチ(dro#1)され、送信イネーブル信号ewi(ewi#1)も第1の転送ユニット20-1に入力される。
【0109】
時刻t5において、時刻t4で受信イネーブル信号eriがHとなったことに伴って受信カウンタ22の値が1つインクリメントされ“1”となる。そのため、時刻t5に、受信装置12は、第1の転送ユニット20-1から受信許可信号rro(rro#1)を受信し、同時に受信イネーブル信号eriをHとし、受信データdro(D5)を受信クロックckrに同期して受信する。第1の転送ユニット20-1は、時刻T10に送信許可信号rwo(rwo#1)をHとする。
【0110】
以後、データ転送装置13では、送信イネーブル信号ewiがHとなる毎に、転送ユニットを1つずつずらしながら、送信データdwiの書き込みが行われていく。また、データ転送装置13では、受信イネーブル信号eriがHとなる毎に、転送ユニットを1つずつずらしながら、受信データdroの読み出しが行われていく。このとき、送信クロックckwよりも受信クロックckrの方が遅いため、充分な数の転送ユニットを備えていれば、受信データdroの転送を連続しても、個々の転送ユニット内で書き込みと読み出しの干渉が生じない。
【0111】
このように、データ転送装置13では、ckw>ckrの場合、受信装置12へ供給する受信許可信号rroが常にHの状態とすることができ、データの転送効率を最大とすることができる。
【0112】
(連続した伝送を行うために必要な転送ユニット20の数)
つぎに、ckw≦ckrの場合において、送信データdwiを待ち時間なく連続して伝送するための転送ユニット20の数について説明をする。
【0113】
ckw≦ckrの場合、送信データdwiを連続して伝送するには、送信装置11が、データ転送装置13から送信許可信号rwoが与えられると即時に送信イネーブル信号ewiをHとして、送信データdwiの書き込みを行う構成となっていることが条件となる。
【0114】
この条件で、もし、転送ユニット20の数が1つであるとすると、図9に示すような転送動作となる。
【0115】
この図9に示すように、送信許可信号rwoの立ち下がりエッジから、次の送信許可信号rwoHの立ち上がりエッジまでの時間間隔を、ΔTとする。このΔTは、次の式(1)で表される。
ΔT=Δtw+(1/ckr)+Δtr …(1)
Δtwは、送信許可信号rwoの立ち下がりエッジから、次の受信許可信号rroの立ち上がりエッジまでの時間間隔である。Δtrは、受信許可信号rroの立ち下がりエッジから次の送信許可信号rwoの立ち上がりエッジまでの時間間隔である。(1/ckw)は、送信クロックckwの周期である。(1/ckr)は、受信クロックckrの周期である。
【0116】
ここで、Δtwの最大値Δtw_maxは、受信クロックckrの1サイクル分の周期となる。また、Δtrの最大値Δtr_maxは、送信クロックckwの1サイクル分の周期となる。従って、ΔTの最大値ΔT_maxは、次の式(2)となる。
Figure 0004438276
この式(2)を変形すると、以下の式(3)となる。
ΔT_max×ckw =2×(ckw/ckr) + 1 …(3)
式(3)の左辺のΔT_max×ckwは、1回のデータ転送に必要となる送信側のクロック数を示している。つまり、ΔT_max×ckwを上回る数の転送ユニット20を並列に接続すれば、送信データdwiを連続して転送することが可能となる。
【0117】
従って、ckw/ckr=1の場合、ΔT_max×ckw=3となる。つまり、ckw/ckr=1の場合には、転送ユニット20を4つ設ければ送信データdwiを連続転送できる。
【0118】
また、ckw/ckr<1の場合、ΔT_max×ckw<3となる。つまり、ckw/ckr<1の場合には、転送ユニット20を3つ設ければ送信データdwiを連続転送できる。
【0119】
さらに、ckw/ckr<1/2の場合、ΔT_max×ckw<2となる。つまり、ckw/ckr<1/2の場合には、転送ユニット20を2つ設ければ送信データdwiを連続転送できる。
【0120】
なお、ckw≧ckrの場合において、受信データdroを待ち時間なく連続して伝送するための転送ユニット20の数も、ckw≦ckrの場合と同様に求めることができる。この場合には、受信装置12が、データ転送装置13から受信許可信号rroが与えられると、即時に受信イネーブル信号eriをHとして、受信データdroの書き込みを行う構成となっていることが条件となる。
【0121】
このckw≧ckrの場合、受信許可信号rroの立ち下がりエッジから、次の受信許可信号rroHの立ち上がりエッジまでの時間間隔を、ΔTとすると、以下の式(4)を求めることができる。
ΔT_max×ckr =2×(ckr/ckw) + 1 …(4)
式(4)の左辺のΔT_max×ckrは、1回のデータ転送に必要となる受信側のクロック数を示している。つまり、ΔT_max×ckrを上回る数の転送ユニット20を並列に接続すれば、受信データdroを連続して転送することが可能となる。
【0122】
従って、ckr/ckw=1の場合、ΔT_max×ckr=3となる。つまり、ckr/ckw=1の場合には、転送ユニット20を4つ設ければ受信データdroを連続転送できる。
【0123】
また、ckr/ckw<1の場合、ΔT_max×ckr<3となる。つまり、ckr/ckw<1の場合には、転送ユニット20を3つ設ければ受信データdroを連続転送できる。
【0124】
さらに、ckr/ckw<1/2の場合、ΔT_max×ckr<2となる。つまり、ckr/ckw<1/2の場合には、転送ユニット20を2つ設ければ受信データdroを連続転送できる。
【0125】
(第2の実施の形態)
つぎに、本発明の第2の実施の形態のクロック乗り換えシステムについて説明をする。
【0126】
上述した転送ユニット20の場合、第1のD-FF回路35は、受信クロックckrの立ち上がりタイミングで動作する。しかしながら、第1のD-FF回路35がラッチする信号は、第1のSR-FF回路31が送信クロックckwの立ち上がりタイミングでラッチした信号である。そのため、第1のSR-FF回路35が送信イネーブル信号ewiをラッチしてから、次の受信クロックckrの立ち上がりタイミングまでの時間間隔が非常に短くなってしまう場合がある。このようにラッチ間隔が短い場合、いわゆるメタステーブルと呼ばれる現象が生じる可能性があり、後段のラッチ回路(第1のD-FF回路35)の動作が不安定となってしまう。また、第2のD-FF回路36も、同様にメタステーブルと呼ばれる現象が生じる可能性がある。
【0127】
そこで、第2の実施の形態のクロック乗り換えシステムでは、上記データ転送装置13内の第1〜第nの転送ユニット20-1〜20-nを、次に説明する転送ユニット50に置き換えた構成としている。
【0128】
以下、転送ユニット50について説明をする。
【0129】
転送ユニット50は、図10に示すように、内部に、データラッチ51と、タイミング制御回路52とを備えている。
【0130】
データラッチ51は、クロック入力端子が設けられ、このクロック入力端子に入力される信号の立ち上がりエッジに同期して動作するラッチ回路である。データラッチ51は、このクロック入力端子に送信クロックckwが入力される。データラッチ51は、入力端子(d)、イネーブル端子(en)及び出力端子(q)を備えている。入力端子(d)には、送信装置11から送信データが入力され、イネーブル端子(en)には、送信装置11から送信イネーブル信号ewiが入力される。データラッチ51は、送信イネーブル信号ewiがHとなっていると、バス上の1ワード分の送信データdwiをラッチする。また、受信端子(q)は、受信装置12のデータ入力端子に接続されている。データラッチ51は、受信イネーブル信号eriがHとなったタイミングで、内部にラッチしている1ワード分のデータが、受信装置12により読み出される。
【0131】
タイミング制御回路52は、第1〜第4のSR-フリップフロップ回路(SR-FF回路)61〜64と、第1〜第4のD-フリップフロップ回路(D-FF回路)65〜68と、第1〜第2の反転回路69〜70と、第1〜第4のAND演算回路(AND回路)71〜74とを備えている。
【0132】
第1〜第4のSR-FF回路61〜64は、クロック入力端子が設けられ、このクロック入力端子に入力される信号のタイミング(例えば、立ち上がりエッジ)に同期して動作するSR-フリップフロップ回路である。つまり、第1〜第4のSR-FF回路61〜64は、セット端子(set)、リセット端子(rst)、出力端子(q)が設けられている。第1〜第4のSR-FF回路61〜64は、セット端子(set)がHとなっていると内部状態をHとし、その後にリセット端子(rst)がHとなるまでそのHとなっている内部状態を保持し続ける。第1〜第4のSR-FF回路61〜64は、リセット端子(rst)がHとなると、その内部状態をLにリセットする。第1〜第4のSR-FF回路61〜64は、内部状態が出力端子(q)に反映されている。
【0133】
また、第1〜第4のSR-FF回路61〜64には、初期化端子(xrs,spr)が設けられている。第1〜第3のSR-FF回路61〜63は、初期化端子(xrs)がHとされると、強制的に内部状態をLとする。第4のSR-FF回路64は、初期化端子(spr)がHとされると、強制的に内部状態をHとする。
【0134】
第1〜第4のD-FF回路65〜68は、クロック入力端子が設けられ、このクロック入力端子に入力される信号のタイミング(例えば、立ち上がりエッジ)に同期して動作するD-フリップフロップ回路である。つまり、第1〜第4のD-FF回路65〜68は、入力端子(d)、出力端子(q)が設けられている。第1〜第4のD-FF回路65〜68は、入力端子(d)に入力された値(ハイ(H)又はロー(L))を、1クロック期間分ラッチする。第1〜第4のD-FF回路65〜68は、その内部状態が出力端子(q)に反映されている。
【0135】
第1〜第2の反転回路69〜70は、1つの入力端子及び1つの出力端子が設けられており、入力端子に入力された値(ハイ(H)又はロー(L))を反転して、出力端子に反映する回路である。
【0136】
第1〜第4のAND回路69〜74は、2つの入力端子及び1つの出力端子が設けられており、この2つの入力端子に入力された2つの値(ハイ(H)又はロー(L))のAND論理演算を行い、出力端子に反映する回路である。
【0137】
タイミング制御回路52では、以上のような各回路が次のように接続されている。
【0138】
第1のSR-FF回路61は、セット端子(set)に送信装置11からの送信イネーブル信号ewiが入力され、リセット端子(rst)に第1のAND回路71の出力信号が入力されている。第1のSR-FF回路61は、クロック端子に送信クロックckwが入力されている。
【0139】
第1のD-FF回路65は、入力端子(d)に第1のSR-FF回路61の出力信号が入力されている。第1のD-FF回路65は、クロック端子に受信クロックckrが入力されている。
【0140】
第2のD-FF回路66は、入力端子(d)に第1のD-FF回路65の出力信号が入力されている。第2のD-FF回路66は、クロック端子に受信クロックckrが入力されている。
【0141】
第2のSR-FF回路62は、セット端子(set)に第3のAND回路72の出力信号が入力され、リセット端子(rst)に受信イネーブル信号eriが入力されている。第2のSR-FF回路62は、クロック端子に受信クロックckrが入力されている。
【0142】
第3のSR-FF回路63は、セット端子(set)に受信装置12からの受信イネーブル信号eriが入力され、リセット端子(rst)に第2のAND回路73の出力信号が入力されている。第3のSR-FF回路63は、クロック端子に受信クロックckrが入力されている。
【0143】
第3のD-FF回路67は、入力端子(d)に第3のSR-FF回路63の出力信号が入力されている。第3のD-FF回路67は、クロック端子に送信クロックckwが入力されている。
【0144】
第4のD-FF回路68は、入力端子(d)に第3のD-FF回路67の出力信号が入力されている。第4のD-FF回路68は、クロック端子に送信クロックckwが入力されている。
【0145】
第4のSR-FF回路64は、セット端子(set)に第4のAND回路74の出力信号が入力され、リセット端子(rst)に送信イネーブル信号ewiが入力されている。第4のSR-FF回路64は、クロック端子に送信クロックckwが入力されている。
【0146】
第1の反転回路69は、入力端子に第2のD-FF回路66の出力信号が入力されている。
【0147】
第2の反転回路70は、入力端子に第4のD-FF回路68の出力信号が入力されている。
【0148】
第1のAND回路71は、一方の入力端子に第1のD-FF回路65の出力信号が入力され、他方の入力端子に第2のD-FF回路66の出力信号が入力されている。
【0149】
第2のAND回路72は、一方の入力端子に第3のD-FF回路67の出力信号が入力され、他方の入力端子に第4のD-FF回路68の出力信号が入力されている。
【0150】
第3のAND回路73は、一方の入力端子に第1の反転回路69の出力信号が入力され、他方の入力端子に第1のD-FF回路65の出力信号が入力されている。
【0151】
第4のAND回路74は、一方の入力端子に第2の反転回路70の出力信号が入力され、他方の入力端子に第3のD-FF回路67の出力信号が入力されている。
【0152】
そして、以上のように接続されたタイミング制御回路22では、第2のSR-FF回路62の出力信号が、受信許可信号rroとして受信装置12に対して出力され、第4のSR-FF回路の出力信号が、送信許可信号rwoとして送信装置11に対して出力される。
【0153】
以上のような転送ユニットでは、第1のD-FF回路65は、受信クロックckrの立ち上がりタイミングで動作する。しかしながら、第1のD-FF回路65がラッチする信号は、第1のSR-FF回路61が送信クロックckwの立ち上がりタイミングでラッチした信号である。そのため、第1のSR-FF回路61が送信イネーブル信号ewiをラッチしてから、次の受信クロックckrの立ち上がりタイミングまでの時間間隔が非常に短くなってしまう場合がある。このようにラッチ間隔が短い場合、いわゆるメタステーブルと呼ばれる現象が生じる可能性があり、第1のD-FF回路65の動作が不安定となってしまう。また、第3のD-FF回路67も、同様にメタステーブルと呼ばれる現象が生じる可能性がある。
【0154】
しかしながら、このタイミング制御回路22では、第1のD-FF回路65の後段で、もう一度受信クロックckrの立ち上がりタイミングで動作する第2のD-FF回路65が設けらており、この第2のD-FF回路66がラッチしている信号に基づき受信許可信号rroが生成されている。同様に、第3のD-FF回路67の後段で、もう一度送信クロックckwの立ち上がりタイミングで動作する第4のD-FF回路65が設けらており、この第4のD-FF回路68がラッチしている信号に基づき送信許可信号rwoが生成されている。
【0155】
従って、このタイミング制御回路22では、上記第1のD-FF回路65及び第3のD-FF回路67においてメタステーブルが生じて動作が不安定となったとしても、後段の第2のD-FF回路66及び第4のD-FF回路68でその影響が除去され、常に安定した制御信号を出力することが可能となっている。
【0156】
(連続した伝送を行うために必要な転送ユニット50の数)
つぎに、ckw≦ckrの場合において、送信データdwiを待ち時間なく連続して伝送するための転送ユニット50の数について説明をする。
【0157】
ckw≦ckrの場合、送信データdwiを連続して伝送するには、送信装置11が、データ転送装置13から送信許可信号rwoが与えられると、即時に送信イネーブル信号ewiをHとして、送信データdwiの書き込みを行う構成となっていることが条件となる。
【0158】
この条件で、転送ユニット50の数が1つであるとすると、図11に示すような転送動作となる。
【0159】
この図11に示すように、送信許可信号rwoの立ち下がりエッジから、次の送信許可信号rwoHの立ち上がりエッジまでの時間間隔を、ΔTとする。このΔTは、次の式(5)で表される。
ΔT=Δtw+(1/ckr)+Δtr …(5)
Δtwは、送信許可信号rwoの立ち下がりエッジから、次の受信許可信号rroの立ち上がりエッジまでの時間間隔である。Δtrは、受信許可信号rroの立ち下がりエッジから次の送信許可信号rwoの立ち上がりエッジまでの時間間隔である。(1/ckr)は、送信クロックckwの周期である。(1/ckr)は、受信クロックckrの周期である。
【0160】
ここで、Δtwの最大値Δtw_maxは、受信クロックckrの2サイクル分の周期となる。また、Δtrの最大値Δtr_maxは、送信クロックckwの2サイクル分の周期となる。従って、ΔTの最大値ΔT_maxは、次の式(6)となる。
Figure 0004438276
この式(6)を変形すると、以下の式(7)となる。
ΔT_max×ckw =3×(ckw/ckr) + 2 …(7)
式(7)の左辺のΔT_max×ckwは、1回のデータ転送に必要となる送信側のクロック数を示している。つまり、ΔT_max×ckwを上回る数の転送ユニット50を並列に接続すれば、送信データdwiを連続して転送することが可能となる。
【0161】
従って、ckw/ckr=1の場合、ΔT_max×ckw=5となる。つまり、ckw/ckr=1の場合には、転送ユニット50を6つ設ければ送信データdwiを連続転送できる。
【0162】
また、ckw/ckr<1の場合、ΔT_max×ckw<5となる。つまり、ckw/ckr<1の場合には、転送ユニット50を5つ設ければ送信データdwiを連続転送できる。
【0163】
また、ckw/ckr<1/2の場合、ΔT_max×ckw<2となる。つまり、ckw/ckr<1/2の場合には、転送ユニット50を2つ設ければ送信データdwiを連続転送できる。
【0164】
また、ckw/ckr<2/3の場合、ΔT_max×ckw<4となる。つまり、ckw/ckr<2/3の場合には、転送ユニット50を4つ設ければ送信データdwiを連続転送できる。
【0165】
また、ckw/ckr<1/3の場合、ΔT_max×ckw<3となる。つまり、ckw/ckr<1/3の場合には、転送ユニット50を3つ設ければ送信データdwiを連続転送できる。
【0166】
なお、ckw≧ckrの場合において、受信データdroを待ち時間なく連続して伝送するための転送ユニット50の数も、ckw≦ckrの場合と同様に求めることができる。この場合には、受信装置12が、データ転送装置13から受信許可信号rroが与えられると、即時に受信イネーブル信号eriをHとして、受信データdroの書き込みを行う構成となっていることが条件となる。
【0167】
このckw≧ckrの場合、受信許可信号rroの立ち下がりエッジから、次の受信許可信号rroHの立ち上がりエッジまでの時間間隔を、ΔTとすると、以下の式(8)を求めることができる。
ΔT_max×ckr =3×(ckr/ckw) + 2 …(8)
式(8)の左辺のΔT_max×ckrは、1回のデータ転送に必要となる受信側のクロック数を示している。つまり、ΔT_max×ckrを上回る数の転送ユニット50を並列に接続すれば、受信データdroを連続して転送することが可能となる。
【0168】
従って、ckr/ckw=1の場合、ΔT_max×ckr=5となる。つまり、ckr/ckw=1の場合には、転送ユニット50を6つ設ければ受信データdroを連続転送できる。
【0169】
また、ckr/ckw<1の場合、ΔT_max×ckr<5となる。つまり、ckr/ckw<1の場合には、転送ユニット50を5つ設ければ受信データdroを連続転送できる。
【0170】
また、ckr/ckw<2/3の場合、ΔT_max×ckr<4となる。つまり、ckr/ckw<2/3の場合には、転送ユニット50を4つ設ければ受信データdroを連続転送できる。
【0171】
さらに、ckr/ckw<1/3の場合、ΔT_max×ckr<3となる。つまり、ckr/ckw<1/3の場合には、転送ユニット50を3つ設ければ受信データdroを連続転送できる。
【0172】
【発明の効果】
本発明にかかるデータ転送装置は、第1のクロックに同期してデータを送信する送信装置と、上記第1のクロックとは異なる第2のクロックに同期してデータを受信する受信装置とを有するクロック乗り換えシステムに適用される。
【0173】
本発明にかかるデータ転送装置は、上記送信許可信号及び受信許可信号を生成するとともに上記データをラッチする第1〜第n(nは、2以上の整数)の転送ユニットを有している。本発明にかかるデータ転送装置では、各転送ユニットを巡回的に切り換えながら、上記送信許可信号及び受信許可信号を外部に出力するとともに、データをラッチしている。
【0174】
このため、本発明にかかるデータ転送装置では、データ送信許可及びデータ受信許可を発生する際に生じる冗長な時間を無くし、効率よくデータ転送を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態のクロック乗り換えシステムのブロック構成図である。
【図2】上記クロック乗り換えシステムで用いられるデータ転送装置の回路図である。
【図3】送信イネーブル信号デコーダ及び受信イネーブル信号デコーダの動作を説明するためのタイミングチャートである。
【図4】転送ユニットの回路図である。
【図5】 ckw<ckrの場合における、データ転送装置の第1の転送ユニット及び第2の転送ユニットのデータ転送のタイミングチャートである。
【図6】 ckw<ckrの場合における、データ転送装置の第3の転送ユニット及び第4の転送ユニットのデータ転送のタイミングチャートである。
【図7】 ckw>ckrの場合における、データ転送装置の第1の転送ユニット及び第2の転送ユニットのデータ転送のタイミングチャートである。
【図8】 ckw>ckrの場合における、データ転送装置の第3の転送ユニット及び第4の転送ユニットのデータ転送のタイミングチャートである。
【図9】送信データdwiを連続して伝送する条件を説明するための図である。
【図10】第2の実施の形態に適用される転送ユニットの回路図である。
【図11】図10に示す転送ユニットを用いた場合に、送信データdwiを連続して伝送する条件を説明するための図である。
【図12】従来のクロック乗り換えシステムのブロック構成図である。
【図13】従来のクロック乗り換えシステムのデータ転送のタイミングチャート(ckw<ckr)である。
【図14】従来のクロック乗り換えシステムのデータ転送のタイミングチャート(ckw>ckr)である。
【符号の説明】
1 クロック乗り換えシステム、11 送信装置、12 受信装置、13 データ転送装置、20 転送ユニット、21 送信カウンタ、22 受信カウンタ、23 送信イネーブル信号デコーダ、24 受信イネーブル信号デコーダ、25 送信許可信号セレクタ、26 受信許可信号セレクタ、27 データセレクタ

Claims (10)

  1. 送信装置にデータを送信することを許可することを示す送信許可信号、及び上記送信装置から送信されたデータを受信装置に入力することを許可することを示す受信許可信号を生成するとともに、データをラッチするn個(nは、2以上の整数)の転送ユニットと、
    送信データが有効であることを示す送信イネーブル信号がイネーブルとなった回数をカウントして、1〜nの値を巡回的に発生する送信カウンタと、
    受信データが有効であることを示す受信イネーブル信号がイネーブルとなった回数をカウントして、1〜nの値を巡回的に発生する受信カウンタと、
    上記複数の転送ユニットのうち、上記送信カウンタから発生された値に基づき指定される1つの転送ユニットを選択し、上記データの送信元である送信装置から送信された送信イネーブル信号を、選択した転送ユニットに供給する送信イネーブル信号デコーダと、
    上記複数の転送ユニットのうち、上記受信カウンタから発生された値に基づき指定される1つの転送ユニットを選択し、上記データの受信先である受信装置から送信された受信イネーブル信号を選択した転送ユニットに供給する受信イネーブル信号デコーダと、
    上記複数の転送ユニットのうち、上記送信カウンタから発生された値に基づき指定される1つの転送ユニットを選択し、選択した転送ユニットにより生成された送信許可信号を選択して出力する送信許可信号セレクタと、
    上記複数の転送ユニットのうち、上記受信カウンタから発生された値に基づき指定される1つの転送ユニットを選択し、選択した転送ユニットにより生成された受信許可信号を選択して出力する受信許可信号セレクタと、
    上記複数の転送ユニットのうち、上記受信カウンタから発生された値に基づき指定される1つの転送ユニットを選択し、選択した転送ユニットによりラッチされているデータを出力するデータセレクタとを備え、
    上記各転送ユニットは、
    上記送信装置から送信された送信データを上記送信イネーブル信号デコーダから供給された送信イネーブル信号が、上記送信装置から送信された送信データが有効であることを示す期間に、上記送信装置がデータを送信する場合に同期する第1のクロックのエッジに同期してラッチし、ラッチしている送信データが上記受信イネーブル信号デコーダから供給された受信イネーブル信号のタイミングで読み出されるデータラッチ手段と、
    上記送信イネーブル信号デコーダから供給された送信イネーブル信号を上記第1のクロックのエッジに同期してラッチし、ラッチした送信イネーブル信号を上記受信装置がデータを受信する場合に同期する第2のクロックのエッジに同期してラッチし、少なくとも上記第2のクロックの1周期の間だけ保持する第1のラッチ手段と、
    上記第1のラッチ手段によりラッチされた送信イネーブル信号を上記第2のクロックのエッジに同期してラッチする第2のラッチ手段と、
    上記第2のラッチ手段によりラッチされた送信イネーブル信号に応じて上記第2のクロックに同期した受信許可信号を発生し、上記受信イネーブル信号デコーダから供給された受信イネーブル信号に応じて当該受信許可信号の発生を停止する受信許可信号発生手段と、
    上記受信イネーブル信号デコーダから供給された受信イネーブル信号を上記第2のクロックのエッジに同期してラッチし、ラッチした受信イネーブル信号を上記1のクロックでラッチし、少なくとも上記第1のクロックの1周期の間だけ保持する第3のラッチ手段と、
    上記第3のラッチ手段によりラッチされた受信イネーブル信号を上記第1のクロックのタイミングでラッチする第4のラッチ手段と、
    上記第4のラッチ手段によりラッチされた受信イネーブル信号に応じて上記第1のクロックに同期した送信許可信号を発生し、上記送信カウンタから供給された送信イネーブル信号に応じて当該送信許可信号の発生を停止する送信許可信号発生手段と
    を備えたデータ転送装置。
  2. 上記第2のラッチ手段は、上記第1のラッチ手段によりラッチされた送信イネーブル信号を、上記第2のクロックのタイミングで1回ラッチし、
    上記第4のラッチ手段は、上記第3のラッチ手段によりラッチされた送信イネーブル信号を、上記第1のクロックのタイミングで1回ラッチする請求項1記載のデータ転送装置。
  3. 上記nは、4以上とされている請求項1記載のデータ転送装置。
  4. 第1のクロックの周期と第2のクロックの周期とが異なり、
    上記nは、3以上である請求項1記載のデータ転送装置。
  5. 上記第1のクロックの周期と第2のクロックとの周期の比が、1/2より小さく、或いは、2より大きくなっており、
    上記nは、2以上である請求項1記載のデータ転送装置。
  6. 上記第2のラッチ手段は、上記第1のラッチ手段によりラッチされた送信イネーブル信号を、上記第2のクロックのタイミングで2回ラッチし、
    上記第4のラッチ手段は、上記第3のラッチ手段によりラッチされた送信イネーブル信号を、上記第1のクロックのタイミングで2回ラッチする請求項1記載のデータ転送装置。
  7. 上記nは、6以上とされている請求項1記載のデータ転送装置。
  8. 第1のクロックの周期と第2のクロックの周期とが異なり、
    上記nは、5以上である請求項1記載のデータ転送装置。
  9. 上記第1のクロックの周期と第2のクロックとの周期の比が、2/3より小さく、或いは、3/2より大きくなっており、
    上記nは、4以上である請求項1記載のデータ転送装置。
  10. 上記第1のクロックの周期と第2のクロックとの周期の比が、1/3より小さく、或いは、3より大きくなっており、
    上記nは、3以上である請求項1記載のデータ転送装置。
JP2002275620A 2002-09-20 2002-09-20 データ転送装置 Expired - Fee Related JP4438276B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275620A JP4438276B2 (ja) 2002-09-20 2002-09-20 データ転送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275620A JP4438276B2 (ja) 2002-09-20 2002-09-20 データ転送装置

Publications (2)

Publication Number Publication Date
JP2004110705A JP2004110705A (ja) 2004-04-08
JP4438276B2 true JP4438276B2 (ja) 2010-03-24

Family

ID=32271766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275620A Expired - Fee Related JP4438276B2 (ja) 2002-09-20 2002-09-20 データ転送装置

Country Status (1)

Country Link
JP (1) JP4438276B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172395A (ja) * 2004-12-20 2006-06-29 Ricoh Co Ltd データ転送制御装置及びデータ転送制御システム

Also Published As

Publication number Publication date
JP2004110705A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
JP3565600B2 (ja) データ通信装置およびデータ通信方法
JPH11316706A (ja) データ高速転送同期システム及びデータ高速転送同期方法
JP4091941B2 (ja) クロック同期回路
US6973078B2 (en) Method and apparatus for implementing low latency crossbar switches with integrated storage signals
US5764967A (en) Multiple frequency memory array clocking scheme for reading and writing multiple width digital words
US5594743A (en) Fifo buffer system having an error detection and correction device
JP4438276B2 (ja) データ転送装置
JP3165229B2 (ja) Atmスイッチの同期化方法およびatmスイッチ
JPH06311127A (ja) ディジタルデータ調停装置
EP1211603A1 (en) Interface for multi-processor
US6016521A (en) Communication control device
JPH1115783A (ja) 同期回路
JP2004110191A (ja) データ転送装置
JPH08249273A (ja) 転送速度切り替え機能付き非同期転送回路
US6744833B1 (en) Data resynchronization between modules sharing a common clock
JP2502030B2 (ja) 同期式デ―タ処理システム用の同期化装置
JP3592169B2 (ja) 非同期データ転送制御装置および非同期データ転送制御方法
JP2645462B2 (ja) データ処理システム
GB2234372A (en) Mass memory device
JP3013767B2 (ja) フレームタイミング位相調整回路
US20020172311A1 (en) Large-input-delay variation tolerant (lidvt) receiver adopting FIFO mechanism
KR100445915B1 (ko) 메모리 시스템의 제어 장치
JP3256464B2 (ja) 非同期転送制御方式
JP2008135047A (ja) マルチプロセッサ用インタフェース
JPH0720091B2 (ja) データバッファ回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees