JP4429011B2 - X線及び核分光システムにおける基線補正方法及び装置 - Google Patents
X線及び核分光システムにおける基線補正方法及び装置 Download PDFInfo
- Publication number
- JP4429011B2 JP4429011B2 JP2003502524A JP2003502524A JP4429011B2 JP 4429011 B2 JP4429011 B2 JP 4429011B2 JP 2003502524 A JP2003502524 A JP 2003502524A JP 2003502524 A JP2003502524 A JP 2003502524A JP 4429011 B2 JP4429011 B2 JP 4429011B2
- Authority
- JP
- Japan
- Prior art keywords
- baseline
- filter
- value
- time
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 65
- 238000012937 correction Methods 0.000 title claims description 25
- 238000000441 X-ray spectroscopy Methods 0.000 title 1
- 238000004958 nuclear spectroscopy Methods 0.000 title 1
- 238000012360 testing method Methods 0.000 claims description 65
- 238000007689 inspection Methods 0.000 claims description 28
- 238000001514 detection method Methods 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 6
- 238000012935 Averaging Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 230000005855 radiation Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 238000007493 shaping process Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 239000000872 buffer Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000002083 X-ray spectrum Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007620 mathematical function Methods 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000005461 Bremsstrahlung Effects 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005316 response function Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/17—Circuit arrangements not adapted to a particular type of detector
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
Description
図1は、ソリッドステート検出ダイオード7を使用した公知の放射線分光システムの回路図である。X線、γ線、α線及びβ粒子線を測定するのに同様のシステムが使用されるが、主として検出ダイオード7の物理的形態が異なり、検出ダイオードは、比例カウンタ又は他の検出器に置き換えられてもよい。これら全ての検出器7は、電源8によりバイアスされると、吸収事象を検出したときに出力電流パルスを特徴的に発生し、このパルスの全電荷QEは、その事象において蓄積されるエネルギーEにほぼ比例する。前置増幅器10に電流が流れて、それが増幅器12により値Cfのフィードバックキャパシタ13において積分され、その出力は、振幅Ae=QE/Cfのステップ状パルスとなる。用語の問題として、事象に応答して前置増幅器により発生されるパルスを「事象パルス」とも称する。
図2Aは、なぜ基線補正が必要かを示す。曲線30は、前置増幅器の出力10を示し、事象からステップ34が発生する。曲線30の僅かな傾斜は、検出器の漏れ電流、非理想的増幅器12又はノイズの拾い上げから物理的に生じるものである。曲線32は、エネルギーフィルタの出力17を示し、整形されたパルス35は、入力ステップ34に応答するものである。パルス35の全振幅A37は、その高さと、基線(DC)オフセットB38との和であり、ここで、Bは、前置増幅器の信号傾斜に対するエネルギーフィルタ回路の応答である。従って、分光増幅器15において、ピーク捕獲回路20は、値A37を捕獲し、一方、基線捕獲回路22は、基線値B38を測定し、そして減算回路23は、検出器事象エネルギーを表わす信号A−Bを出力する。
高い計数率では、図2Bに示すように、正確な基線測定を得ることが困難である。というのは、エネルギーフィルタ回路17の出力がその基線値に復帰することは滅多になく、事象間の間隔を出力パルスの基本巾(即ち、図2Aのτb39)より著しく大きくする必要があるからである。τbを入力計数率(ICR)と比較すると、ICRが特定のエネルギーフィルタに対して「高い」かどうかが分かる。というのは、効率的なパイルアップ検査では、τbがエネルギーフィルタのデッドタイムτdになるからである。分光計の出力計数率(OCR)は、次の延長デッドタイム式により与えられる(KNOLL-1989、チャプター4、セクションVII、「Dead Time」)。
OCR=ICR exp(−ICRτd) (1)
その最大値OCRmax=ICRmax/e=(eτd)-1は、ICRmax=τd -1=τo -1において生じる。
図3は、実際の結果を示している。データは、4つのピーキング時間(peaking time)1.0μs50、4.0μs52、16μs53、及び20μs55に対し異なる距離においてFe−55放射線源に露出された高品質HPGeのX線検出器に接続されたXIA DXP−4CデジタルX線分光計を使用して収集された。ICRmaxを越える3つのケースにおいて、エネルギー分解能は、鮮明に低下し始める。この形態において、サンプルは、もはや確実に収集することができず、そして捕獲されたものは、しばしば隣接パルスからのエネルギーで汚染される。又、同じ実験で、高いICR値において著しいセントロイドシフトが示されている。というのは、パルス振幅がそれらの最大値と基線との間で異なるからである。これらの問題は、検出器が露出される計数率又は計器が動作するノイズ環境を制限することにより、しばしば取り扱われるが、いずれの状態も容易に制御されないケースも多々ある。それ故、ノイズの多い環境でも分解能が低下せずに分光計が機能し得るICRの「ダイナミックレンジ」を向上させる方法は、種々様々な放射線検出用途において有益である。
第3に、基線スペクトルを使用して、他の滅多にない形態のパイルアップ又は処理エラーから生じることのある無効基線値を基線平均から排除する。全ての基線値をこのスペクトルに集合させ、時々、その巾WBを、最大値の所定の一部分(通常5%)において決定する。従って、基線平均値には、切断式|BB|<Wを満足する基線値のみを含む。
1.はじめに
基線補正のための本発明の技術は、検出器にランダムに到着する放射線吸収事象が分光フィルタといかに相互作用して、基本巾τbの整形されたパルスを出力するか理解することが必要である。上記の式1は、デッドタイムτdを有するフィルタに対する出力計数率(OCR)対入力計数率(ICR)を与える。OCRは、ICRmax=1/τdで最大値に増加し、次いで、下降する。分光計のパイルアップ検査回路は、「デッド」タイムτdを、第2の事象が生じないところの2つの検査時間(事象に先行するtip及び事象に後続するtif)の和とする。従って、式1は、事象の周りに位置する長さτd=tip+tifの時間周期内にパルスが生じない「パイルアップなし」の確率を反映する。
tip≧tf (2A)
tif≧tr (2B)
従って、次のようになる。
τd=tip+tif≧tr+tf=τb (2C)
B=L(L+G)SΔt (3)
但し、Δtは、サンプルとサンプルとの間の時間である。この式3は、両フィルタが台形である好ましい実施形態において基線フィルタ値BBをエネルギーフィルタ値BEに簡単に関連付けることができるようにする。従って、τpB=LBΔt及びτgB=GBΔtが基線フィルタのピーキング時間及びギャップ時間であって、エネルギーフィルタの項τpE及びτgEが同等に定義される場合には、BEとBBとの間の倍率関係は、次のようになる。
BE=BB(τpE(τpE+τgE))/(τpB(τpB+τgB))=
BB(LE(LE+GE))/(LB(LB+GB))=KEBBB (4)
この比例性は、実際上、一般的なものであり、使用する特定のフィルタの形状とは独立して又はそれらがデジタルフィルタであるかアナログフィルタであるかに拘らず保持される。いずれの直線的フィルタiについても、式3と同様の式は、次のように書き表すことができる。
Bi=KiSΔt (5)
従って、基線フィルタB及びエネルギーフィルタEの両方が直線的である限り、式4は、上記のように一般化される。
BE=BBKE/KB=KEBBB (6)
簡単な例として、エネルギーフィルタが台形であって且つ基線フィルタが三角形である場合には、それらの間の式6の関係は、GBをゼロにセットすることにより式4から見出すことができる。式6は、本発明を理解する上で重要である。というのは、基線フィルタ及びエネルギーフィルタが異なる関数式を有し、そしてその両方が直線的フィルタである限り、スケーリングしたBB測定値を使用してBEを決定できることを明確に示しているからである。式5及び6を分析で導出することが困難である場合には、制御された状態のもとでフィルタ出力比を測定してKEBを得ることができる。
2.1 回路の説明
図6は、エネルギー事象しか存在しないときに充分に機能する第1の好ましい実施形態を示す(即ち、図1のパイルアップ検査回路18において高速チャンネル弁別器を確実にトリガーする事象)。図6の実施形態において、分光増幅器15は、デジタル回路90として実施され、該回路は、ADC92を備え、これは、デジタル処理回路93へ信号供給し、その出力は、DSP98へ供給される。処理回路93は、高速チャンネル95及び低速チャンネル96を備え、現場でプログラムできるゲートアレーにおいて組み合せロジックを使用して実施される。その動作は、実質的に「WARBURTON-1999B」に述べられた通りであり、即ち高速チャンネル95は、短い整形時間回路100、弁別器102、及びパイルアップテスト・タイマー回路103を使用してパイルアップ検査回路18を実施し、一方、低速チャンネル96は、台形エネルギーフィルタ110と、該エネルギーフィルタからのピーク値を捕獲するためのレジスタ112とを備え、パイルアップタイマー103は、パルスを検出し、カウントダウンタイマーをスタートし、そしてそれらがパイルアップされないときにエネルギーフィルタ110からのピーク値を捕獲するようにロードライン113を経てエネルギーレジスタ112に信号し、エネルギーフィルタの捕獲に続いて、パイルアップテスター103は、フラグライン114をDSP98へ上昇させ、DSP98は、アドレスバス118を経てエネルギーレジスタ112を選択した後にデータバス117を経てエネルギーレジスタ112の値を読み取る。
好ましい実施形態では、「WARBURTON-1997」により教示されたように、次のような指数関数的に減衰する無限応答関数を使用して、基線フィルタからの次々のスケーリングされた値を平均化し基線平均化ノイズを減少する。
<b>i=Bi/N+<b>i-1(N−1)/N (7)
但し、Biは、i番目のスケーリングされた基線サンプルであり、<b>iは、i番目の基線平均値であり、そしてNBは、平均値の長さを制御する整数である。基線フィルタ及びエネルギーフィルタが分解能対ピーキング時間の曲線上のどこで下降するかに基づいて、NBは、エネルギーフィルタの基線平均化に使用される値NEから本質的に不変であってもよいし、又は実質的に大きい必要があってもよい。
多数のテストにも拘らず、前置増幅器の出力信号における時々の欠陥から誤った基線値が時々捕獲される。それらは、多くの標準偏差だけ真の値から相違し、そして基線平均値に含まれた場合には、数百の基線サンプルに対してそれを崩壊させる。それ故、このような値を基線平均値から除外するために更なる切断を適用する。第1に、捕獲された全ての基線値を基線スペクトルに入れる。第2に、時々、スペクトルのセントロイド及び標準偏差σを計算する。第3に、σのある倍数C(例えば、ピークの5%である3σ)である切断偏差をセットする。第4に、各捕獲された基線を比較して、それがセントロイドのCσ内にあるかどうか調べる。もしそうであれば、それが基線平均値に含まれる。もしそうでなければ、それが破棄される。要点は、各基線サンプルは、たとえそれが基線平均値から除外されても基線スペクトルに含まれることである。従って、例えば、基線分布が時間的に安定しない場合も、セントロイド推定値がそれを追跡するように確実に更新される。セントロイド推定値をいかに頻繁に更新する必要があるかは、分光計の安定性に依存する。典型的な値は、1000ないし10000の基線捕獲である。
最終的に基線補正されたエネルギーを得るために実行される多数の動作を以下に示す。即ち、BB値を捕獲し、これらの値を式4によりBEに対してスケーリングし、平均化<EE>を行ってノイズを減少し、エネルギーフィルタから値Aを捕獲し、そして<EE>をAから減算して、基線補正されたエネルギー値を得る。しかしながら、これらの動作を実行する順序は、ある程度任意であり、デジタル処理回路93とDSP98との間にどんな労力分担が希望されるかに一部依存する。例えば、基線値を捕獲する(デジタル処理回路93においてスケーリングすることにより)前、捕獲された値を平均化する前、又は捕獲されたエネルギーフィルタピーク値から平均値を減算する前に、基線スケーリングを実行することができる。同様に、エネルギーフィルタから基線平均値を減算することは、ピーク値を捕獲する前、又はそれらをDSPにより読み取る前に行うこともできる。実際に、全ての動作は、組み合せ論理のみを使用して回路93内で実施することができ、これは、最高のスループットが望まれるときには好ましい実施形態である。それ故、特定の好ましい実施形態の説明において取り上げられた動作の種々の順序は、本発明の範囲を限定するものではない。
図8は、図3と同様であるが、図6の好ましい実施形態を使用してピーキング時間4.0μs128、16μs129及び64μs131に対してデータが収集される。ΔEが低下せずにICRの範囲が延長したことが顕著である。図3では、ΔEの低下は、ICR>2ICRmaxの場合に顕著となり、そして3ICRmaxで発散されるが、好ましい実施形態の回路では、ICRは、かろうじて分かるΔEの低下が生じる前に3ICRmaxを越え、そして通常は、顕著な低下を生じることなくICRmaxの4倍に到達する。従って、64μs及び16μsの両方においては、5eV未満のΔEの増加が4ICRmaxによって生じ、一方、4μsでは、増加が10eV(7%)となるが、発散はまだ生じていない。同じICR範囲にわたって、MnKαエネルギーピークのセントロイドは、64μs及び4μsピーキング時間の場合に0.02%より良好に安定するが、16μsデータは、0.1%より良好に安定する。
図6の好ましい実施形態は、参照特許に開示された技術を使用し、そしてエネルギーフィルタの機能と基線フィルタの機能とを分離することによりその作用を増大し、これは、次いで、特定の基線フィルタ120、基線レジスタ122、パイルアップテスト・タイマー103の基線テストロジック、及びDSP98において実行される基線平均化コードの説明された変更を追加することにより実施される。
本発明の原理が理解されると、「なぜ付加的なフィルタを追加するか?そしてなぜパイルアップフィルタを基線フィルタとして使用しないか?」という質問が当然生じる。この質問に対する回答は、主として3つの実施上の問題に依存する。
3.1 問題の説明
式7の平均化された基線と、慣習的なサンプル・ホールド基線捕獲は、両方とも、時間遅れのある基線で、それらを使用して補正するところのA値の前の時間に捕獲された値を使用する。その時間遅れが長いほど、介在するノイズ又はドリフトが、Aが捕獲されるときに基線をその「真」の値から異ならせる確率がより高くなる。図9は、この状態を示している。実線の曲線132で示されたドリフトする基線信号は、多数の逐次ポイント(方形ドット)においてサンプリングされる。ポイントA133においてその値を推定し、正確なエネルギー測定値を与えることを望む。慣例的な解決策で6つの基線値を平均化しなければならないと仮定すると、これらは、ポイントB134でスタートし、時間Tにわたる遅れ平均値を形成する。この平均値は、ポイントAにおける希望値から著しくずれる。このずれは、ポイントS135でスタートして6つのポイントを捕獲しAに対して対称的な平均値を形成することにより減少できる。その値は、Aにおける瞬時基線値からも異なるが、平均では、時間遅れ方法の場合より厳密な1組の値を与える。以下のセクションでは、時間対称的な基線平均化を実施するための多数の考えられる方法の1つを説明する。
図6に示す好ましい実施形態を使用して時間対称的基線平均値を形成するための1つの好ましい解決策は、若干のDSP98メモリと簡単なブックキーピングプログラムしか必要としない。図10は、このメモリ140を示し、第1カラムはメモリアドレスを示し、そして第2カラムはそれらの値を示し、これは最初ゼロにされる。メモリに対して2つのポインタ、即ち基線カウンタポインタBC−POINT142(最初ゼロ)と、振幅挿入ポインタAI−POINT144(最初NLEAD)とを形成する。メモリは、大きさBCmaxの繰り返しバッファとして実施され、従って、両ポインタは、BCmaxに到達すると、ゼロに戻る(即ち、全てのポインタ演算は、モジュロBCmax)である。BCmaxは、NLEADを越えねばならないが、他の点では制約がない。
wj=((N−1)/N)j/N (8)
NLEADは、次の式で与えられる。
但し、lnは、自然対数である。例えば、N=32の場合には、NLEADは、22に等しい。
時間対称的基線により追加される有益さは、分光計の基線特性に強く依存する。基線が安定していて、低周波数ノイズにより汚染されないシステムでは、エネルギー分解能の改善がほとんど得られない。しかしながら、この方法は、電力ライン周波数及びその高調波が基線ノイズに影響するシステムや、低周波数電流フィードバック安定化システムでは、エネルギー分解能を著しく改善することができる。シリコンドリフト検出器において現在一般的であるこの解決策では、検出器における光子到着率の統計学的な変動に応答して基線が常時変動する。この状態では、本時間対称的基線方法は、特に、高いデータ率において、従来の基線サンプリング方法が上述したように破壊し始めたときに、優れた結果をもたらす。
4.1 パイルアップ検査に対する基線フィルタの使用
図6に示す特定の実施形態では、3つの異なるピーキング時間(peaking time)(ひいては、基本巾)をもつデジタルフィルタ、即ち長いピーキング時間のエネルギーフィルタ、中間ピーキング時間の基線フィルタ、及び非常に短いパルスの検出又はトリガーフィルタが使用される。後者のピーキング時間が100から200nsであることは、そのノイズレベルが高く、典型的なSi(Li)X線検出器では約1000eVより低いエネルギーのX線を検出できないことを意味する。これは、185eVのBK又は280eVのCKまでのX線を検出しなければならない走査電子顕微鏡において元素を分析するといった多数の用途を除外するものである。従って、エネルギーフィルタは、従来、パルス検出に使用されるが、これは、パイルアップを検出する全ての能力を失う。しかしながら、セクション2.2で述べたように、長いピーキング時間における新たな基線フィルタのΔEは、たとえそのτpが4倍短くても、エネルギーフィルタのΔEに極めて匹敵することが多い。この場合には、基線フィルタをトリガーフィルタとして使用し、標準的な高速トリガーフィルタに置き換えるか又はそれを増強するのが非常に有益である。例えば、16μsの基線フィルタを64μsのエネルギーフィルタと共に使用するものとする。図7から、基線フィルタのΔEは、72eVであり、これは、エネルギーフィルタの53eVのノイズより19eV悪いだけであり、150eVのトリガースレッシュホールドを使用する185eVのBKX線と共に作用するに充分なほどおそらく良好である。
基線弁別器147にセットされるスレッシュホールドは、基線が時間的に著しく変化する場合には時間従属である必要がある。即ち、基線より上でフィルタ動作をトリガーすることを希望するので、基線スレッシュホールド値は、基線値を含まねばならず、そして基線値が変化する場合には、それと共に変化しなければならない。ワーバートン及びハバードにより説明された形式のデジタル分光計(WARBURTON-1997, 1999A)では、システムADCに対するダイナミックレンジ要求を低減するために、経時変化する傾斜信号をリセット型前置増幅器の出力から減算するケースがほとんどである。この減算は、信号に効果的な傾斜を付加し、従って、率従属である人為的な基線成分を生成する。上記から明らかなように、傾斜に対する基線値の従属性は、フィルタの時定数でスケーリングされるので、この作用は、高速チャンネルフィルタよりも基線フィルタにおいて著しく大きい。というのは、それらの時定数が大きく異なるからである(例えば、200nsに比して16μs)。それ故、傾斜信号ジェネレータが存在する場合には、基線を、各々傾斜信号発生項及び残余項である2つの項BS及びBRに分割される。次いで、基線スレッシュホールド値TBは、次の式に基づいてセットされる。
TB=Δ+BS+BR (10)
但し、BSは、傾斜信号ジェネレータを調整するたびにDSPにより計算され、そしてBRは、時々更新される基線平均値<b>である。この場合には、基線平均値は、式7を使用して計算され、ここで、捕獲される値Biは、BSを減算した後に、それらを使用して<b>iを更新する。多数の実施形態では、このオフセット減算は、組み合せロジックを使用して直接実行することができ、従って、DSPは、Bi−BSの値を取り扱うだけでよい。このような実施形態を以下に示す。
基線フィルタをパイルアップ検査に使用するときには、基線の連続平均に含ませるためにフィルタから捕獲された値が、まだ未確認の軟X線事象からのエネルギーで汚染されないように確保するために更に注意を払わねばならない。図12は、この問題を示すもので、トリガースレッシュホールドT152にかろうじて交差する3つの比較的至近離間されたピークを含む基線フィルタ曲線150を示している。上述したように、第1のパルスから始めて、下向きのスレッシュホールド交差の後であって基線値B1154を捕獲する前に、前捕獲検査周期PKINT153を待機する。しかしながら、図示されたように、別の軟X線が到来するが、そのスレッシュホールド交差によってまだ検出されない場合には、B1が真に基線に存在しないことがある。この問題は、付加的な後捕獲検査周期155を実施し、この検査周期が終了するまで付加的なスレッシュホールド交差が生じない場合だけ、捕獲した基線B2156が有効であると宣誓することにより解決される。従って、前捕獲PKINT検査157は、手前のピークが基線に戻るよう確保し、一方、後捕獲PKINT検査155は、その後到着するピークにより汚染されないことを確保する。実施の便宜上、2つの検査周期を同一にするが、これは、台形フィルタが時間対称的であるので良好に作用する。より一般的なフィルタの場合は、異なる検査周期PKINT1及びPKINT2が使用される。又、より一般的には、検査周期PKINT1がどこでスタートするかは、実際には、パルスが基線に復帰した後にどれほどで有効な基線値B2156を確実に捕獲できるかに対して、実施の容易さを妥協するところの工学的な問題である。従って、例えば、PKINT1は、スレッシュホールドの上向きの交差、パルスの検出されたピーク、又は検出された上向き交差と下向き交差との間の中間で開始することもできる。ここに実施する方法は、保守的であると共に、パイルアップ事象からの汚染を比較的免れるものである。
セクション4.14.3に記載する変更を利用して達成できる改善された性能の一例が図13に示され、これは、純粋な硼素の上に導電率のために薄い炭素膜を設けたもので構成されたSEMサンプルから得られたX線スペクトルを示す。このスペクトルは、高品質の10mm2Si(Li)検出器と、図11に示す回路とを使用して収集されたものである。185eVのB−K線158は、低エネルギーノイズ159から良好に分解され(54.3eVのFWHM)そして分離されている。又、282eVにおいて97eVしか離れていない隣接するC−K線162からの極めて良好な分離も示されている。制動放射バックグランド163は、右へゆっくり上昇する。個別の測定では、C−Kピークは、約58eVのエネルギー分解能を有することが分かった。
基線フィルタを「高速」検査回路として使用するときには超軟X線又は他の低エネルギー事象に対して最も有効なパイルアップ確認を実施する上で問題が生じる。通常、2つのテストを使用してパイルアップ検査を取り扱う。即ち、次々のパルスをエネルギーフィルタのピーキング時間以上で分離することを必要とするインターバルテストと、スレッシュホールドにおけるトリガーフィルタの巾ttがテスト値MAXWIDTH未満であることを必要とするMAXWIDTH切断である(WARBURTON-1997)。この値は、通常、トリガーフィルタのピーキング時間の約2倍にセットされる。超軟X線の場合には、このテストは、図14に示すように、失敗となる。前置増幅器の出力170は、2つの至近離間された軟X線パルスを含み、これらパルスは、基線フィルタにより処理されて基線出力曲線171を発生し、これは、スレッシュホールド切断T173が図示されたようにセットされたときに単一ピークとして現われる。更に、このピークは、テスト周期MAXWIDTH174が経過する前にスレッシュホールドより下降する。それ故、基線トリガー回路に関する限り、前置増幅器の信号には単一のパルスしかない。
Δt(EB、T、τp、τg)=2(EB−T)τr/EB+τg (11)
それ故、この解決策では、MAXWIDTH=Δt(EB、T、τp、τg)+δをパルスごとのベースで調整し、ここで、δは、ノイズ変動を考慮するための小さなエラー余裕である。パイルアップ検査がゲートアレーロジックにおいてリアルタイムで実行される好ましい実施形態では、式11をパルスごとのベースで計算しない。EBがTより相当に大きい(例えば、T=200eVに対して>2000eV)ときには、
であることはなく、むしろ、多数のEBレンジに対して1組のMAXWIDTHを前計算し、この数は、通常、小さく、10程度である。例えば、T=200eVで続けると、EBを、200、250、285、333、400、500、667、1000、2000及びEBmaxeVに境界をもつ1組の連続するレンジに分割した場合に、均一の離間された一連のテスト値が得られる。
MAXWIDTH={0.2、0.3、0.4、0.5、0.6、0.7、
0.8、0.9、1.0}τp+τg+δ (12)
軟X線パイルアップ問題に対する第2の解決策は、エネルギー比較テストである。図14は、この解決策の基礎を示す。図14において、エネルギーフィルタを定数でスケーリングして、その出力を基線フィルタの出力に直接比較できるようにする。エネルギーフィルタの時定数は、相当長いので、その出力176は、この対のパルスを全く分解せず、従って、それらのエネルギーを加算する。従って、基線フィルタから見つかる最大エネルギーEB177は、エネルギーフィルタから見つかるスケーリングされた最大エネルギーEE178の約半分に過ぎない。それ故、この差を、超軟X線のための鋭敏なパイルアップテストとして使用することができる。基線フィルタを使用して「良好」なパルスを検出すると、基線フィルタからそのエネルギーEB177の第1推定値が捕獲される。パルスは「良好」であるから、エネルギーフィルタからそのエネルギーEE178の標準推定値も捕獲される。次いで、少なくともこのテストの検出能力内で次のテストを行う。
(KBEEE<EB+Δn)の場合には、EEは良好である。 (13)
本発明の場合の台形フィルタについては、KBEは、式4について定義されたフィルタのピーキング時間定数値LE及びLBに次のように単純に関連付けられ、
KBE=LB/LE (14)
そしてこの例の場合には4に等しい。より一般的な直線的フィルタの場合には、KBEは、式4に続く説明に基づき、導出することができるか、又は測定されねばならない。Δnは、2つのフィルタ回路における電子ノイズに基づくエラー帯域に過ぎない(同じX線を両方のケースにおいて測定するときには、「ファノ(Fano)」ノイズは同一である)。周囲環境に基づき、Δnは、分析で導出されても良いし、又は実験で決定されてもよい。典型的な値は、エネルギーフィルタのノイズの1ないし2倍は低下する。フィルタにおける基線値が顕著なときには、EE及びEBは、式10のテストに適用する前に基線補正されねばならない。
セクション2.4において、種々の動作が実行される順序に関連した問題を説明した。特に、幾つかの動作をデジタル処理回路93へ移動できることを述べた。図16には、セクション4.5で述べたエネルギー比較テストも組み込んだ実施形態が示されている。この実施形態では、エネルギーフィルタ110及び基線フィルタ120の両方の出力がサンプルごとのベースで各基線値に対して補正される。従って、基線フィルタ120の出力に続いて減算器190があり、これは、レジスタ192に記憶された基線フィルタオフセット値を取り出し、この値は、データバス117及びアドレスライン118を使用してDSP98からロードすることができる。式10の説明を想起すると、Bフィルタオフセットレジスタ192へロードされた値は、通常、基線傾斜成分BSと残留基線成分BRとの和であり、従って、減算器190の出力は、基線フィルタ120がその基線にあるときには公称ゼロである。ゼロからのずれは、基線レジスタ122により通常の基線フィルタサンプリングの一部分として捕獲され、そしてDSP98によりBRの値を更新するのに使用される。この解決策は、パルス検出弁別器147及びピーク検出・捕獲回路180の両方の動作が、ここでは、基線フィルタの基線出力における変動とは独立したものになるので、効果的である。特に、回路180により捕獲されたピーク値は、ここでは、基線フィルタにより見た事象エネルギーの真の推定値で、式13で与えられるパイルアップ比較テストに必要とされるものである。
図6、図11、図15及び図16に示された好ましい実施形態は、主に標準的な商業用のデジタル分光計がデジタルに基づくものであるので、デジタルに基づくものである。しかしながら、本発明は、デジタルの実施形態を必要とするものではなく、図17の技術を組み込んだアナログ分光器の回路図も示す。この回路には新規な要素が使用されず、アナログ回路において種々のフィルタ、弁別器、ゲート等を実施するための方法は、全て、当業者に良く知られたものである。図6の場合と同様に、3つの整形フィルタが使用され、即ちタイミングフィルタ200と、基線フィルタ202と、エネルギーフィルタ203であり、これらは、各々、短い整形時間、中間の整形時間及び長い整形時間(ひいては、短い基本巾、中間の基本巾及び長い基本巾)を有する。タイミングフィルタは、弁別器205に信号供給し、そして弁別器は、前置増幅器の信号にパルスが検出されるたびにパイルアップ検査・タイミング回路207に信号供給する。この回路207は、3つのゲート、即ち基線平均化ゲートBLGATE208、エネルギーピーク捕獲ゲートPCGATE210及びオプションの自動利得調整ゲートAGGATE212により、分光器の動作を制御する。図18は、これらゲートを制御する信号で、図4に示す信号に追加される信号を示す。ゲートは、それらの制御信号が高レベルであるときにオープン(導通)である。BLGATE208は、基線信号60がその基線値63にあり且つBLGATE信号230が高レベルであるときに基線フィルタ202を平均化フィルタ215へ接続する。BLGATE208を経て接続される次々の基線フィルタ値の平均値である平均化フィルタ215の出力は、可変利得増幅器217により振幅が調整され、そして減算回路218によりエネルギーフィルタ203の出力から減算される。ピーク検出・捕獲回路220は、この信号からピーク値を捕獲し、これらピーク値は、それらがパイルアップされない場合に、ピーク捕獲ゲートPCGATE210を通過し、多チャンネル分析器222へ到達する。図18のPCGATE信号232から明らかなように、PCGATEは、良好な振幅値A45及び46が捕獲された後にのみ短時間オープンする。予想通りに、基線フィルタは、その時間の良好な部分を有効な基線値において費やし、従って、BLGATE230信号も、同様の時間部分中に高レベルとなる。
参照文献として次のものが含まれる。
KNOLL-1989:「Radiation Detection and Measurement」、第2版、グレンF.ノル著(J.Wiley、ニューヨーク、1989)、チャプター4、セクションVII、「Dead Time」、及びチャプター16、セクションIII、「Pulse Shaping」;
WARBURTON-1997:1997年11月4日付、W.K.ワーブアトン及びB.ハバードの「Method and apparatus for digitally based high speed x-ray spectrometer」と題する米国特許第5,684,850号;
WARBURTON-1999A:1999年2月9日付、W.K.ワーブアトン及びB.ハバードの「Method and apparatus for Analog Signal Conditioning for High Speed, Digital X-ray Spectrometer」と題する米国特許第5,870,051号;及び
WARBURTON-1999B:1999年2月16日付、W.K.ワーブアトン及びZ.ゾウの「Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer」と題する米国特許第5,873,054号。
特定実施形態の以上の説明において、分光計のエネルギーフィルタの基線を、著しく短い基本巾を有する第2フィルタの基線出力をサンプリングすることにより推定する一般的な技術の例を説明した。この技術について考えるときには、その新規性が、付加的なフィルタ自体を含ませたことにあるのではなく、通常の高速及び低速エネルギーフィルタを越えて付加的なフィルタを使用する分光計が知られていることを理解するのが重要である。むしろ、その新規性は、第2フィルタにおいて基線測定を行うことにより第1フィルタの基線の推定値を形成し、そして2つのフィルタが共通の数学式を共用する必要がないことを実現する可能性を認識することにある。
Claims (42)
- 事象に応答して事象パルスと称されるパルスを発生する前置増幅器に接続された検出器に発生する事象のエネルギーを測定する分光計において基線を決定するための方法であって、
エネルギーフィルタと称される第1の直線的フィルタを使用して、上記事象パルスを、エネルギーパルスと称される整形されたパルスへと変換し、
少なくとも幾つかのエネルギーパルスの特性を測定して、それらの関連事象のエネルギーの推定値を与え、
基線補正を使用して、事象パルスがないときに上記エネルギーフィルタの出力が非ゼロであることに対して上記測定された特性を補償し、
基線フィルタと称される第2の直線的フィルタを使用して、上記事象パルスを、基線パルスと称される整形されたパルスへと変換し、
上記基線フィルタの出力がその基線値にある時間を決定し、
このように決定された時間中に上記基線フィルタからの基線値を捕獲し、そして
上記捕獲された基線値の少なくとも幾つかを使用して上記基線補正を更新する、
という段階を備えた方法。 - 所与のエネルギーパルスの特性の上記測定は、そのピーク値、その面積又はその両方の推定を捕獲することを含む請求項1に記載の方法。
- 上記エネルギーフィルタは、基本巾の値τEによって規定され、
上記基線フィルタは、基本巾の値τBによって規定され、そして
τBは、τEより短い請求項1に記載の方法。 - 上記基線フィルタがその基線値にある時間は、基線フィルタの出力が所定のスレッシュホールド値T未満である時間を測定することにより決定される請求項1に記載の方法。
- 上記基線フィルタがその基線値にある時間は、基線パルスの存在を検出し、そして基線カウントダウンタイマーを使用して、基線フィルタがその基線に復帰するに要する時間を測定することにより決定される請求項1に記載の方法。
- 基線補正の上記更新は、上記基線フィルタから捕獲された基線値に定数を乗算して、エネルギーフィルタ基線値の推定値を得ることを含む請求項1に記載の方法。
- 上記エネルギーフィルタ及び基線フィルタは、同じ数式で表され、そして
2つのフィルタの各時定数の商は、定数Kだけ異なり、基線フィルタの基線の平均とエネルギーフィルタの基線の平均の商が同じ定数の平方だけ異なるようにする請求項6に記載の方法。 - 上記エネルギーフィルタ及び基線フィルタは、両方とも台形フィルタであり、
上記基線フィルタは、ピーキング時間τpB及びギャップ時間τgBを有し、
上記エネルギーフィルタは、ピーキング時間τpE及びギャップ時間τgEを有し、そして 上記基線フィルタから捕獲された基線値BBに定数KEBを乗算して、エネルギーフィルタの基線値の推定値BEを得、但し、
KEB=(τpE(τpE+τgE))/(τpB(τpB+τgB))
である請求項1に記載の方法。 - 上記基線補正の上記更新は、上記基線フィルタから捕獲された多数の基線値の平均値を形成することを含む請求項1に記載の方法。
- 上記平均値は、Nを定数とすれば、上記基線フィルタから最も最近捕獲されたN個の基線値の演算平均である請求項9に記載の方法。
- i番目の平均値<b>iは、次の式により計算され、
<b>i=Bi/N+<b>i-1(N−1)/N
但し、Biは、基線フィルタから捕獲されたi番目の基線値であり、<b>i-1は、手前の平均値であり、そしてNは、定数である請求項9に記載の方法。 - 上記基線フィルタは、デジタルフィルタであり、そして
次々に捕獲される基線値間の時間間隔をサンプリングし、それらが最小許容インターバルBASETIME1を越えることを必須として、次々に捕獲される基線値が、重畳するデータポイントを共用しないように確保する請求項1に記載の方法。 - 上記最小許容インターバルBASETIME1の値は、次々に捕獲される基線値間の時間相関を破壊するようにランダムなものとされる請求項12に記載の方法。
- 上記分光計は、測定された特性値をセーブするように変更され、上記測定値が捕獲された後の時間に更新された基線補正を使用して補償を行えるようにする請求項1に記載の方法。
- 上記分光計は、デジタルメモリを含むデジタル分光計であり、
上記メモリに対するアドレスポインタ(BC−POINT)は、上記基線補正が更新されるたびに1だけ増加され、
各測定された特性値は、上記アドレスポインタの値に定数NLEADを加算することにより計算されたメモリ位置にセーブされ、そして
上記基線補正が更新されるたびに、位置BC−POINTにおけるメモリの値が読み取られ、そして
読み取られたメモリの値がゼロの場合には、何も行わず、
さもなければ、読み取られたメモリの値から上記更新された基線補正を減算しそして同じメモリ位置に値ゼロを書き込むことにより補償を実行する請求項14に記載の方法。 - 上記基線フィルタは、その基線フィルタの出力振幅をスレッシュホールド値Tと比較することにより上記前置増幅器の出力における事象パルスの存在を検出するのにも使用される請求項1に記載の方法。
- 上記補償は、上記基線フィルタの基線の値の変化に対し、
上記スレッシュホールド値Tを時々調整するか、又は
上記スレッシュホールド値Tとの比較を行う前に上記基線フィルタの出力からオフセット基線値を減算する、
ことにより行われる請求項16に記載の方法。 - 上記基線フィルタは、
上記基線フィルタにより検出された事象パルス間の時間分離を測定し、そして
このような時間分離が充分小さくて上記エネルギーフィルタの対応出力パルスがパイルアップされるときには上記エネルギーフィルタからの特性値の測定を防止する、
ことにより、パイルアップ検査を行うのに用いられる請求項16に記載の方法。 - 上記分光計は、前置増幅器の出力における事象パルスの存在を検出するのに用いられる、高速チャンネルフィルタと呼ばれるフィルタを有する、高速チャンネルを備え、
上記基線フィルタが、上記エネルギーフィルタ及び上記高速チャンネルフィルタに加えられ、
上記前置増幅器の出力におけるパルスの存在を検出するための上記基線フィルタの上記分光計による使用は、前置増幅器の出力におけるパルスの存在を検出するための上記高速チャンネルフィルタの分光計による使用に加えて行われ、そして
上記高速チャンネルフィルタは、上記基線フィルタの基本巾の値より著しく短い基本巾の値によって規定され、上記高速チャンネルフィルタは、上記高速チャンネルフィルタの出力をスレッシュホールド値と比較するための比較器を備えた請求項16に記載の方法。 - 上記基線フィルタがその基線値にある時間は、
上記基線フィルタの出力において基線パルスが各々検出された後であって且つ基線値を上記のように捕獲する前に、上記出力がT未満の値に復帰するのを待機し、次いで、
検査インターバルPKINT1も待機し、そして
更に、基線値を上記のように捕獲した後に、
上記基線フィルタの出力が、第2の検査インターバルPKINT2中に上記スレッシュホールド値Tを再び越えないことをテストする、
ことにより決定され、ここで、
上記PKINT1は、上記基線フィルタがその基線値に復帰するに充分な時間を有するよう確保するに足る長さであり、そして上記PKINT2は、上記前置増幅器の出力にまだ未検出のパルスが存在するために上記基線フィルタがその基線値から離脱しないことを確保するに足る長さである請求項16に記載の方法。 - 上記基線フィルタの出力においてパイルアップ検査テストを行って、時間分離が上記基線フィルタの時定数に匹敵するか又はそれ未満であるような事象パルスを検出し、これは、上記基線フィルタの出力がスレッシュホールドTを越えるたびに、
上記基線フィルタの出力がスレッシュホールドTを越える時間ttと、上記基線フィルタの出力がスレッシュホールドTを越える前記時間ttの間に到達する最大値EBとの両方を測定し、
上記EBの大きさに依存するテスト値MAXWIDTHを選択し、
上記MAXWIDTHを上記ttと比較し、そして
上記ttがMAXWIDTHを越えるところの事象を、パイルアップしたものとして拒絶する、
ことにより行う請求項16に記載の方法。 - 上記テスト値MAXWIDTHは、
上記分光計をセットするときに、
1組の隣接するEBレンジを選択し、そして
各レンジに対してMAXWIDTHの値を計算して記憶し、そして
上記分光計を動作するときに、
EBの値が見つかるたびに、それがどのEBレンジ内に存在するか決定し、そして
そのEBレンジに対するMAXWIDTHの予め記憶された値を、選択されたMAXWIDTHテスト値として使用する、
ことにより選択される請求項21に記載の方法。 - 上記基線フィルタの出力においてパイルアップ検査テストを行って、時間分離が上記基線フィルタの時定数に匹敵するか又はそれ未満であるような事象パルスを検出し、これは、上記基線フィルタの出力がスレッシュホールドTを越えるたびに、
上記基線パルスの特性EBを測定し、
測定されたエネルギーパルス特性EEを定数KBEでスケーリングし、
KBEEEをEB+Δnと比較し、但し、Δnは上記基線フィルタ及び上記エネルギーフィルタの回路における電子ノイズに基づく定数であり、そして
KBEEEがEB+Δnより小さい場合には、
値EEを、このテストの検出能力内でパイルアップから影響されないものとして表示する、
ことにより行う請求項16に記載の方法。 - 測定された特性EEをスケーリングしそしてKBEEEをEB+Δnと比較する前に、EEをエネルギーフィルタの基線値に対して補正するか、EBを基線フィルタの基線値に対して補正するか、又はその両方を行う請求項23に記載の方法。
- 事象に応答して事象パルスと称されるパルスを発生する前置増幅器に接続された検出器に発生する事象のエネルギーを測定する分光計において基線を決定するための装置であって、
上記事象パルスを、エネルギーパルスと称される整形されたパルスへと変換するエネルギーフィルタと称される第1の直線的フィルタと、
少なくとも幾つかのエネルギーパルスの特性を測定して、それらの関連事象のエネルギーの推定値を与える手段と、
基線補正を使用して、事象パルスがないときに上記エネルギーフィルタの出力が非ゼロであることに対して上記測定された特性を補償する手段と、
上記事象パルスを、基線パルスと称される整形されたパルスへと変換する基線フィルタと称される第2の直線的フィルタと、
上記基線フィルタの出力がその基線値にある時間を決定する手段と、
このように決定された時間中に上記基線フィルタからの基線値を捕獲する手段と、
上記捕獲された基線値の少なくとも幾つかを使用して上記基線補正を更新する手段と、を備えた装置。 - 所与のエネルギーパルスの特性を測定する上記手段は、そのピーク値、その面積又はその両方の推定を捕獲する手段を含む請求項25に記載の装置。
- 上記エネルギーフィルタは、基本巾の値τEによって規定され、
上記基線フィルタは、基本巾の値τBによって規定され、そして
τBは、τEより短い請求項25に記載の装置。 - 上記基線フィルタがその基線値にある時間を決定する上記手段は、上記基線フィルタの出力が所定スレッシュホールド値T未満であるときを決定するための比較手段を含む請求項25に記載の装置。
- 上記基線フィルタがその基線値にある時間を決定する上記手段は、
基線カウントダウンタイマーと、
上記基線パルスの存在を検出し、そして上記カウントダウンタイマーをトリガーして、上記基線フィルタが基線へ復帰するに必要な時間を測定するための手段と、
を備えた請求項25に記載の装置。 - 上記エネルギーフィルタ及び上記基線フィルタは、両方とも、直線的フィルタであり、そして
上記基線補正を更新する上記手段は、上記捕獲された基線値に定数を乗算して上記基線補正の推定値を得るための手段を備えた請求項25に記載の装置。 - 上記エネルギーフィルタ及び基線フィルタは、同じ数式で表され、そして
2つのフィルタの各時定数の商は、定数Kだけ異なり、基線フィルタの基線の平均とエネルギーフィルタの基線の平均の商が同じ定数の平方だけ異なるようにする請求項30に記載の装置。 - 上記基線補正を更新する上記手段は、上記基線フィルタから捕獲された多数の基線値の平均値を形成するための手段を備えた請求項25に記載の装置。
- 上記基線フィルタは、デジタルフィルタであり、そして
上記基線値捕獲手段は、次々に捕獲される基線値間の時間間隔をサンプリングして、それらが最小許容インターバルBASETIME1を越えることを必須とし、次々に捕獲される基線値が、重畳するデータポイントを共用しないように確保するための手段を備えた請求項25に記載の装置。 - 上記分光計は、上記測定された特性値をセーブするための手段と、所与の特性が測定された後の時間に更新された基線補正を使用してその所与の特性を補償するための手段とを更に備えた請求項25に記載の装置。
- 上記分光計は、
デジタルメモリと、
上記基線補正が更新されるたびに1だけ増加される上記メモリに対するアドレスポインタ(BC−POINT)と、
上記アドレスポインタの値に定数NLEADを加算することにより計算されたメモリ位置に各測定された特性値をセーブするための手段と、
上記基線補正が更新されるたびに位置BC−POINTにおいてメモリの値を読み取るための手段と、
を備えたデジタル分光計であり、そして
上記読み取られたメモリの値がゼロの場合には、何も行わず、
さもなければ、上記読み取られたメモリの値から上記更新された基線補正を減算しそして同じメモリ位置に値ゼロを書き込むことにより上記補償を実行する請求項34に記載の装置。 - 上記基線フィルタを、その基線フィルタの出力振幅をスレッシュホールド値Tと比較することにより上記前置増幅器の出力における事象パルスの存在を検出するのにも使用できるようにするための手段を更に備えた請求項25に記載の装置。
- 上記スレッシュホールド値Tを時々調整するか、又は
上記スレッシュホールド値Tとの比較を行う前に上記基線フィルタの出力からオフセット基線値を減算することにより、
上記基線フィルタの基線値の変化を補償するための手段を更に備えた請求項36に記載の装置。 - 検出された事象パルス間の時間分離を測定し、そしてこのような時間分離が充分小さくて上記エネルギーフィルタの対応出力パルスがパイルアップされるときに上記エネルギーフィルタからの特性値の捕獲を防止することによりパイルアップ検査を実施するための手段を更に備えた請求項36に記載の装置。
- 上記基線フィルタがその基線値にある時間を決定するための上記手段は、
上記基線フィルタを上記のように使用してパルスを検出した後であって且つ基線値を上記のように捕獲する前に、先ず上記基線フィルタの出力がT未満の値に復帰するのを待機し、次いで、検査インターバルPKINT1も待機する手段と、
各基線フィルタの基線値を捕獲した後に、上記基線フィルタの出力が、第2の検査インターバルPKINT2中に上記スレッシュホールド値Tを再び越えないことをテストする手段と、
を備え、ここで、
上記PKINT1は、上記基線フィルタがその基線値に復帰するに充分な時間を有するよう確保するに足る長さであり、そして上記PKINT2は、上記前置増幅器の出力にまだ未検出のパルスが存在するために上記基線フィルタがその基線値から離脱しないことを確保するに足る長さである請求項36に記載の装置。 - 上記基線フィルタの出力においてパイルアップ検査テストを行って、時間分離が上記基線フィルタの時定数に匹敵するか又はそれ未満であるような事象パルスを検出するための手段を更に備え、該手段は、上記基線フィルタの出力がスレッシュホールドTを越えるたびに、
上記基線フィルタの出力が上記スレッシュホールドTを越える時間ttと、上記基線フィルタの出力がスレッシュホールドTを越える前記時間ttの間に到達する最大値EBとの両方を測定し、
上記EBの大きさに依存するテスト値MAXWIDTHを選択し、
上記MAXWIDTHを上記ttと比較し、そして
上記ttがMAXWIDTHを越えるところの事象を、パイルアップしたものとして表示する、
ための手段を含む請求項36に記載の装置。 - 上記基線フィルタの出力においてパイルアップ検査テストを行って、時間分離が上記基線フィルタの時定数に匹敵するか又はそれ未満であるような事象パルスを検出するための手段を更に備え、該手段は、上記基線フィルタの出力がスレッシュホールドTを越えるたびに、
上記基線パルスの特性EBを測定し、
上記測定されたエネルギーパルス特性EEを定数KBEでスケーリングし、
KBEEEをEB+Δnと比較し、但し、Δnは上記基線フィルタ及び上記エネルギーフィルタの回路における電子ノイズに基づく定数であり、そして
KBEEEがEB+Δnより小さい場合には、
捕獲された値EEを、このテストの検出能力内でパイルアップから影響されないものとして表示する、
ための手段を含む請求項36に記載の装置。 - 上記スケーリング及び比較手段の動作の前に呼び出されて、EBを基線フィルタの基線値に対して補正するか、EEをエネルギーフィルタの基線値に対して補正するか、又はその両方を行うための手段を更に備えた請求項41に記載の装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/874,405 US6609075B1 (en) | 2001-06-04 | 2001-06-04 | Method and apparatus for baseline correction in x-ray and nuclear spectroscopy systems |
PCT/US2002/017400 WO2002099459A1 (en) | 2001-06-04 | 2002-05-28 | Method and apparatus for baseline correction in x-ray and nuclear spectroscopy systems |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004529367A JP2004529367A (ja) | 2004-09-24 |
JP4429011B2 true JP4429011B2 (ja) | 2010-03-10 |
Family
ID=25363673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003502524A Expired - Fee Related JP4429011B2 (ja) | 2001-06-04 | 2002-05-28 | X線及び核分光システムにおける基線補正方法及び装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6609075B1 (ja) |
EP (1) | EP1393094B1 (ja) |
JP (1) | JP4429011B2 (ja) |
SI (1) | SI1393094T1 (ja) |
WO (1) | WO2002099459A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014219362A (ja) * | 2013-05-10 | 2014-11-20 | 株式会社堀場製作所 | パルス波高検出装置、放射線検出装置、放射線分析装置、及びパルス波高検出方法 |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7110445B2 (en) * | 2001-08-28 | 2006-09-19 | Texas Instruments Incorporated | Oversampled clip-shaping |
US7638760B1 (en) * | 2004-05-28 | 2009-12-29 | Gvi Technology Partners, Ltd. | Method for tracking and correcting the baseline of a radiation detector |
US7966155B2 (en) * | 2004-06-04 | 2011-06-21 | William K. Warburton | Method and apparatus for improving detection limits in x-ray and nuclear spectroscopy systems |
US8014850B2 (en) | 2004-07-01 | 2011-09-06 | Gvi Technology Partners, Ltd. | Initiation of dynamic data acquisition |
US8231414B2 (en) | 2004-10-04 | 2012-07-31 | Gvi Technology Partners, Ltd. | Sensor interconnect system |
FR2879305B1 (fr) * | 2004-12-15 | 2007-06-29 | Commissariat Energie Atomique | Traitement d'un signal representatif de rayonnement |
US7521682B1 (en) | 2006-05-31 | 2009-04-21 | The United States Of America As Represented By The National Aeronautics And Space Administration | Processing circuitry for single channel radiation detector |
US7411198B1 (en) | 2006-05-31 | 2008-08-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Integrator circuitry for single channel radiation detector |
CN101136624B (zh) * | 2006-08-28 | 2010-05-12 | 深圳迈瑞生物医疗电子股份有限公司 | 脉冲信号识别装置及方法 |
US7612343B2 (en) | 2006-10-16 | 2009-11-03 | Gvi Medical Devices | Collimator for radiation detectors and method of use |
GB2463402B (en) * | 2007-06-20 | 2012-11-21 | Thermo Electron Scient Instr | Processing of spectrometer pile-up events |
CN101809435B (zh) * | 2007-08-03 | 2012-09-05 | 普尔斯特有限责任公司 | 检测代表光子的边沿的方法,脉冲处理器及能量色散辐射光谱测量系统 |
JP5425071B2 (ja) * | 2007-08-03 | 2014-02-26 | パルセータ,エルエルシー | パルスプロセッサのエネルギー測定フィルタの応答を調整する方法およびこの方法を実行するパルスプロセッサ、エネルギー分散型放射線分光分析システム |
US8340377B2 (en) * | 2007-09-17 | 2012-12-25 | Siemens Medical Solutions Usa, Inc. | Method for energy calculation and pileup determination for continuously sampled nuclear pulse processing |
US7807973B2 (en) * | 2008-08-01 | 2010-10-05 | Pulsetor, Llc | Pileup rejection in an energy-dispersive radiation spectrometry system |
US8384038B2 (en) * | 2009-06-24 | 2013-02-26 | General Electric Company | Readout electronics for photon counting and energy discriminating detectors |
WO2012029496A1 (ja) * | 2010-09-02 | 2012-03-08 | 株式会社日立製作所 | 放射線計測装置 |
CN103080774B (zh) * | 2010-09-06 | 2015-04-22 | 株式会社岛津制作所 | 放射线检测器 |
JP5076012B1 (ja) * | 2011-05-20 | 2012-11-21 | 株式会社リガク | 波長分散型蛍光x線分析装置 |
JP5917071B2 (ja) * | 2011-09-30 | 2016-05-11 | 株式会社東芝 | 放射線測定器 |
US8590361B1 (en) * | 2012-01-27 | 2013-11-26 | Onicon, Inc. | Magnetic flow meters with automatic field maintenance |
US9128194B2 (en) * | 2013-04-19 | 2015-09-08 | Kabushiki Kaisha Toshiba | Pileup correction method for a photon-counting detector |
WO2015078753A1 (en) | 2013-11-27 | 2015-06-04 | Koninklijke Philips N.V. | Detection device for detecting photons and method therefore |
JP2016061614A (ja) * | 2014-09-16 | 2016-04-25 | 株式会社東芝 | 信号処理装置、放射線検出装置および信号処理方法 |
WO2016096580A1 (en) * | 2014-12-16 | 2016-06-23 | Koninklijke Philips N.V. | Baseline shift determination for a photon detector |
AT517499B1 (de) * | 2015-08-12 | 2018-02-15 | Avl List Gmbh | Verfahren und Vorrichtung zur Detektion von Signalpulsen |
US10345249B1 (en) | 2017-12-15 | 2019-07-09 | The United States Of America, As Represented By The Secretary Of Commerce | System for detecting and real time processing x-ray pulses from microcalorimeter detectors |
CN109212576B (zh) * | 2018-08-23 | 2020-06-23 | 绵阳市维博电子有限责任公司 | 一种多模式快速核素检测系统 |
DE102019104710B4 (de) * | 2019-02-25 | 2023-04-27 | Ketek Gmbh | Verfahren zum Betreiben eines Strahlungsdetektionssystems und Strahlungsdetektionssystem |
CN111538067B (zh) * | 2020-05-06 | 2022-09-06 | 东华理工大学 | 一种数字化核脉冲直线成形方法 |
CN112764082B (zh) * | 2020-12-08 | 2023-05-23 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | 一种基于fpga的核脉冲数字化成形采样方法 |
CN114236596B (zh) * | 2021-12-30 | 2023-06-30 | 温州理工学院 | 基于双模探测器系统的核废物包装体自适应扫描方法 |
CN115980821B (zh) * | 2023-01-16 | 2023-09-05 | 中国科学院近代物理研究所 | 一种基于fpga的自适应能谱测量方法及系统 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4217496A (en) * | 1978-03-14 | 1980-08-12 | The United States Of America As Represented By The Secretary Of Health, Education And Welfare | Portable instrument for measuring neutron energy spectra and neutron dose in a mixed n-γ field |
US5021664A (en) * | 1990-06-22 | 1991-06-04 | Tennelec/Nucleus, Inc. | Method and apparatus for correcting the energy resolution of ionizing radiation spectrometers |
US5225682A (en) | 1992-01-24 | 1993-07-06 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for providing pulse pile-up correction in charge quantizing radiation detection systems |
US5347129A (en) * | 1993-04-14 | 1994-09-13 | University Of Missouri-Columbia | System for determining the type of nuclear radiation from detector output pulse shape |
US5873054A (en) | 1995-08-14 | 1999-02-16 | William K. Warburton | Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer |
US5684850A (en) | 1995-08-14 | 1997-11-04 | William K. Warburton | Method and apparatus for digitally based high speed x-ray spectrometer |
US5774522A (en) * | 1995-08-14 | 1998-06-30 | Warburton; William K. | Method and apparatus for digitally based high speed x-ray spectrometer for direct coupled use with continuous discharge preamplifiers |
US5870051A (en) | 1995-08-14 | 1999-02-09 | William K. Warburton | Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer |
JP4083802B2 (ja) * | 1995-08-14 | 2008-04-30 | ワーバートン,ウィリアム,ケイ. | デジタルベースの高速x線スペクトロメータについての方法 |
US5757751A (en) * | 1996-01-16 | 1998-05-26 | International Business Machines Corporation | Baseline correction circuit for pulse width modulated data readback systems |
US5884234A (en) * | 1996-08-30 | 1999-03-16 | Schlumberger Technology Corporation | Method for pulse shape regulation and discrimination in a nuclear spectroscopy system |
EP1007988B1 (en) * | 1997-05-07 | 2003-07-23 | The Board Of Regents, The University Of Texas System | Method and apparatus to prevent pile-up when detecting the energy of incoming signals |
EP1042690A4 (en) * | 1998-05-09 | 2003-05-21 | Canberra Ind Inc | DIGITAL DERANDOMIZATION OF PULSES FOR RADIATION SPECTROSCOPY |
US6587814B1 (en) * | 1999-08-27 | 2003-07-01 | William K. Warburton | Method and apparatus for improving resolution in spectrometers processing output steps from non-ideal signal sources |
-
2001
- 2001-06-04 US US09/874,405 patent/US6609075B1/en not_active Expired - Lifetime
-
2002
- 2002-05-28 WO PCT/US2002/017400 patent/WO2002099459A1/en active Application Filing
- 2002-05-28 EP EP02732011.8A patent/EP1393094B1/en not_active Expired - Lifetime
- 2002-05-28 JP JP2003502524A patent/JP4429011B2/ja not_active Expired - Fee Related
- 2002-05-28 SI SI200231086T patent/SI1393094T1/sl unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014219362A (ja) * | 2013-05-10 | 2014-11-20 | 株式会社堀場製作所 | パルス波高検出装置、放射線検出装置、放射線分析装置、及びパルス波高検出方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2004529367A (ja) | 2004-09-24 |
SI1393094T1 (sl) | 2017-11-30 |
EP1393094B1 (en) | 2017-01-25 |
EP1393094A1 (en) | 2004-03-03 |
US6609075B1 (en) | 2003-08-19 |
WO2002099459A1 (en) | 2002-12-12 |
EP1393094A4 (en) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4429011B2 (ja) | X線及び核分光システムにおける基線補正方法及び装置 | |
US5393982A (en) | Highly sensitive nuclear spectrometer apparatus and method | |
CA2214231C (en) | Method for pulse shape regulation and discrimination in a nuclear spectroscopy system | |
US9057789B2 (en) | Radiation measuring device | |
CA2732522C (en) | Pileup rejection in an energy-dispersive radiation spectrometry system | |
CA2732756C (en) | Pileup rejection in an energy-dispersive radiation spectrometry system | |
JP2008501954A (ja) | X線及び核分光システムにおける検出限界を向上するための方法及び装置 | |
JP2013506822A (ja) | 放射線検出器によって供給される信号を処理するためのデバイス | |
US20220342090A1 (en) | Xrf analyzer with improved resolution by using micro-reset | |
US5936249A (en) | Method and system for obtaining x-ray single photon spectroscopic data using room-temperature solid state detectors by measuring the induced electron current | |
US11397270B2 (en) | Method for operating a signal filter and radiation detection system | |
JP3103047B2 (ja) | 核分光システムにおけるパルス波形調整及び弁別方法 | |
JP2021124475A (ja) | X線分析装置 | |
GB2332512A (en) | Nuclear spectroscopy signal processing system | |
Redus et al. | Dead time correction in the DP5 digital pulse processor | |
Rettenmeier et al. | Utilization of adaptive flattop time with large area silicon drift detectors | |
US20240036219A1 (en) | Electric circuitry for baseline extraction in a photon counting system | |
JPH03185386A (ja) | 放射線検出器を用いた放射線量の測定方法 | |
TW202215473A (zh) | 用於像素化電子偵測器之讀出電路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080218 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080516 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091215 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4429011 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131225 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |