JP4428609B2 - Touch panel - Google Patents

Touch panel Download PDF

Info

Publication number
JP4428609B2
JP4428609B2 JP2001281145A JP2001281145A JP4428609B2 JP 4428609 B2 JP4428609 B2 JP 4428609B2 JP 2001281145 A JP2001281145 A JP 2001281145A JP 2001281145 A JP2001281145 A JP 2001281145A JP 4428609 B2 JP4428609 B2 JP 4428609B2
Authority
JP
Japan
Prior art keywords
touch panel
particle size
silver powder
grains
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001281145A
Other languages
Japanese (ja)
Other versions
JP2003091367A (en
Inventor
俊郎 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP2001281145A priority Critical patent/JP4428609B2/en
Publication of JP2003091367A publication Critical patent/JP2003091367A/en
Application granted granted Critical
Publication of JP4428609B2 publication Critical patent/JP4428609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)
  • Push-Button Switches (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンピュータ、各種端末機、自動販売機、ATM等の機器において、液晶ディスプレイやブラウン管等の画面上に配置し、透視した画面の指示に従って使用者が情報の表示画面を指やペン等で直接押してデータの入カが行われる抵抗膜方式のアナログ型タッチパネルに関し、特に電極の信頼性の高いタッチパネルに関する。
【0002】
【従来の技術】
表示装置一体型の入力スイッチとしての抵抗膜方式のアナログ型タッチパネルは、表示装置の表示面上に配置されて使用される。前記タッチパネルは、透明基板とその下面に形成された透明電極とからなる上基板と、透明基板とその上面に形成された透明電極とからなる下基板とが、所定の空間を隔てて透明電極同士が対面するように配置されている。
【0003】
このタッチパネルにおいて、上基板の上部を入力ペンまたは指で押圧したとき、上基板が撓んでその押圧点において上基板の透明電極が下基板の透明電極と接触する。そして、その接触点の座標が電気抵抗の測定によって検知されて、入力情報が読取られる。以下、従来技術におけるタッチパネルの例を図を用いて説明する。
【0004】
従来のタッチパネルは、図4に示すように可撓性を有するタッチ側(入力側)の上基板11に形成した透明電極18と下基板12に形成した透明電極19とが絶縁性の貼り合わせ剤13を介して隙間を設けて対向配置されている。又、前記上基板11の透明電極18に接続される平行な一対のX側駆動電極14、15と、前記下基板12の前記透明電極19に接続される平行な一対のY側駆動電極21、22とが方形配置となるように対向配置されている。更に、前記上基板11のX側駆動電極14、15にそれぞれ接続する接続電極16、17が、前記下基板12に設ける接続電極23、24に導電性接着剤で、それぞれ接続されている。尚、通常は前記下基板を透明ガラス、前記上基板を透明フィルムで構成している。
【0005】
前記X側駆動電極14、15、及びY側駆動電極21、22は、上基板11、下基板12にそれぞれ銀ペーストを印刷し、焼成して低抵抗の電極として形成されていた。前記銀ペ一ストは、エポキシ樹脂、或いはアクリル樹脂等の熟硬化性樹脂の溶液に銀粉末を60〜85重量%の割合で混合し作成される。前記銀粉末の粒径は、0.5〜1.0μmのものが一般的である。
【0006】
【発明が解決しようとする課題】
しかしながら、銀に限らず、金属粒を液体中に浸すと比重の関係で当然沈殿するが、5μm以下程度の微粒子になると完全に沈殿せず、一部浮遊した状態になる。この現象は液体の粘性が高まればより顕著になる。従って金属微粒子はペースト中では拡散状態に近くなる。但し、高粘性の液体中での金属微粒子は、金属粒同士が互いに引き合う性質があり、この性質により銀粉末が塊となり易いと考えられ、ある範因で沈殿が発生する。特に、銀粉末は比重が高いために硬化前の樹脂溶液中で沈殿したり、銀粉末同士が集積した塊となって樹脂溶液中に点在するという状況が発生し、銀粉末を均一に拡散し、安定した導電性を得ることが困難であった。
【0007】
この為、銀ぺ一ストによる電極の良好な導電性を確保する為には、樹脂溶液中の銀粉末の含有量を多めにすることが必要であり、その結果、ペーストというよりは湿り気を帯びた粉未といった様相を呈する状態となって、印刷自体がやりにくく、このことが形成される駆動電極の膜厚の均一化の阻害要因となり焼成後の抵抗値が20〜30%もばらつく結果となっていた。このように、樹脂の溶液に銀粉末を拡散させて、硬化後導体とする原理は確率的なもので、どこかの銀粉末が繋がっていて全体として導通が確保されるという発想である。従って導電性ペースト中における銀粉末の均一拡散に関する技術は重要な位置付けとなる。
【0008】
上記問題への対応策として、電極パターンの印制幅Hを大きくするか、若しくは厚い印刷膜を形成することによって、抵抗値のばらつきを回避する方法が開示されている。しかし、この様な方法では、タッチパネルの外形寸法の大型化につながったり、工数が増加するなどの問題があった。
【0009】
(発明の目的)
本発明の目的は、上記の問題点を解決し駆動電極の抵抗値のばらつきを回避し、信頼性の高いタッチパネルを提供することにある。
【0010】
【課題を解決するための手段】
前述した目的を達成するために、本発明のうちで請求項1の発明に係わるタッチパネルは、
上基板に形成した透明電極と下基板に形成した透明電極とを隙間を設けて対向配置し、前記各透明電極に接続する駆動電極を有するタッチパネルにおいて、
前記駆動電極は、粒径0.1〜5μmの銀粉末を金属粒同士が互いに引き合いを生じるような高粘性の樹脂溶液に30〜45重量%添加した導電性ペーストに平均粒径が1〜20μmの範囲にあって前記銀粉末の粒径より3〜10倍大きい粒径の球状補助粒を15〜25重量%添加して、前記銀粉末がペースト中に均一に拡散するように前記銀粉末と前記球状補助粒とを混合した導電ペーストを用いて形成された焼成膜であることを特徴とするタッチパネル。
【0011】
又、本発明のうちで請求項2の発明に係わるタッチパネルは、請求項1記載のタッチパネルにおいて、前記球状補助粒の平均粒径が1〜5μm未満の場合には粒径のばらつきが平均粒径の30%以下であり、平均粒径が5〜20μmの場合には粒径のばらつきが平均粒径の50%以下であることを特徴とする。
【0012】
又、本発明のうちで請求項3の発明に係わるタッチパネルは、請求項1又は請求項2記載のタッチパネルにおいて、前記球状補助粒が、プラスチック球、ガラス球、又はセラミック球等の絶縁性補助粒からなることを特徴とする。
【0013】
又、本発明のうちで請求項4の発明に係わるタッチパネルは、請求項1又は請求項2記載のタッチパネルにおいて、前記球状補助粒が、前記絶縁性補助粒に導電膜を被覆した導電性補助粒からなることを特徴とする。
【0014】
又、本発明のうちで請求項5の発明に係わるタッチパネルは、請求項4記載のタッチパネルにおいて、前記導電膜の膜厚が0.05〜0.2μmであることを特徴とする請求項4記載のタッチパネルである。
【0015】
又、本発明のうちで請求項6の発明に係わるタッチパネルは、請求項4又は請求項5記載のタッチパネルにおいて、前記導電膜が金であることを特徴とする。
【0017】
(作用)
本発明のタッチパネルにおける導電性ペーストは、樹脂溶液中に銀粉末よりも大きいサイズのセラミック球、ガラス球、又はプラスチック球等の絶縁性補助粒が銀粉末と共に拡散され、該絶縁性補助粒の周囲に銀粉末が分布するようになっている。これによって、導電性ペースト中に銀粉末が集積した塊となって樹脂溶液中に点在するという状況の発生を押さえ、銀粉末を均等に拡散し、安定した導電性を有する駆動電極を得ることができる。
【0018】
更に、前記絶縁性補助粒に導電膜を被覆した導電性補助粒を樹脂溶液中に銀粉末と共に拡散することにより、より安定した導電性を得ることができ、導電膜に形成する駆動電極の導電性に関する品質を更に向上させる。以下、本発明の実施の形態により詳述する。
【0019】
【発明の実施の形態】
(第1の実施の形態)
図1、図2を用いて本発明の第1の実施の形態を説明する。図1は、本実施形態におけるタッチパネルのY側駆動電極42の一部を示す断面図である。又、図2は、本実施形態における導電性ペースト中の絶縁性補助粒30と銀粉末32との拡散状態示す部分拡大図である。尚、本実施形態におけるタッチパネルの全体構造は、従来例と同様であるため、説明を省略する。以下図を用いて本実施形態について説明する。
【0020】
図1、図2に示すように本実施形態におけるタッチパネルのY側駆動電極42は、熟硬化性樹脂のエポキシ樹脂溶液に銀粉末32と共に球状補助粒としての絶縁性補助粒30を混合した導電性ペーストを下基板12に印刷し、焼成して低抵抗の電極として形成される。
【0021】
前記導電性ペーストに添加する銀粉末32の割合は、従来方法の約半分の乾燥前で30〜45重量%に設定する。叉、前記銀粉末32と共に粒径をある程度整えた絶縁性補助粒30を乾燥前で15〜25重量%添加する。前記絶縁性補助粒はプラスチック球、セラミック球、叉はガラス球等が使用でき、例えば、前記セラミック球としては、アルミナ(Al)、ガラス球としてはシリカガラス(SiO)等がある。
【0022】
前記セラミツク球(比重1.9前後)および前記シリカガラス(比重2.0前後)と、前記プラスチック球(比重1.0前後)とでは、比重が異なるにも関わらず顕著な差は見られず、同様の効果が得られた。その理由としては、セラミツク球が多孔質の構造の場合、実効的比重はプラスチック球と大差なくなるためと考えられる。
【0023】
叉、添加する絶縁性補助粒30のサイズは粒径1〜20μmのものが使えるが、本発明の場合、同時に添加する銀粉末32の粒径の3〜10倍のサイズに選定することが、効果を得る為に重要である。
【0024】
又、添加する絶縁性補助粒30の外径のばらつきは、前記絶縁性補助粒30の平均粒径が1〜5μm未満の場合には粒径のばらつきが平均粒径の30%以下、平均粒径が5〜20μmの場合には粒径のばらつきが平均粒径の50%以下に押さえるのが望ましい。
【0025】
尚、本実施形態においては、Y駆動電極を例として説明したが、X駆動電極についても同様であることは言うまでもない。
【0026】
以上本実施形態によれば、適正な状態に拡散されたセラミック球、プラスチック球、又はガラス球等の絶縁補助粒30の周囲に銀粉末32が分布することによって良好な導電特性を得ることができた。又、銀粉末32よりも大きい粒径の絶縁性補助粒30が適度に拡散されたことにより、銀粉末32が集積する現象を押さえることが可能となった。これによって、駆動電極の形状寸法(電極の幅H、厚さ)を従来方法と同一条件とした場合で、抵抗値のばらつきを5%以下に低減することができた。
【0027】
(第2の実施形態)
次に図3を用いて本発明の第2の実施の形態を説明する。図3は、本実施形態における導電性ペースト中の球状補助粒としての導電性補助粒33と銀粉末32との接触状態を示す部分拡大図である。尚、第1の実施形態と同様な部分については、説明を省略する。以下図を用いて本実施形態について説明する。
【0028】
図3に示すように本実施形態における導電性ペーストは、熟硬化性樹脂のエポキシ樹脂溶液に銀粉末32と共に球状補助粒としての導電性補助粒33を混合した点が第1の実施形態と異なり、その他は同様である。
【0029】
本実施形態においては、導電性ペーストに添加する銀粉末32の割合は、第1の実施形態と同じく30〜45重量%に設定する。叉、前記銀粉末32と共に粒径をある程度整えた絶縁性補助粒30の表面を、無電解メッキ等の方法で金の導電膜31で被覆した導電性補助粒33を乾燥前重量比で15−25%添加する。
叉、前記絶縁性補助粒30は、第1の実施形態と同様にプラスチック球、セラミック球、叉はガラス球等が使用でき、添加する絶縁性補助粒30の粒径も第1の実施形態と同様である。
【0030】
前記導電膜31の膜厚は0.05〜0.2μmが好ましい。膜厚0.05μmの下限値については、これ以上薄くすると本発明の機能を果たさなくなる限界値である。叉膜厚0.2μmの上限値は、これ以上厚くすると、温度変化により、導電膜31の表面にクラックが生じやすくなる。叉、膜厚を厚くすることは経済的にも好ましくない。厳密には絶縁性補助粒30の粒径に対応した厚みの導電膜31を形成することが望ましい。(絶縁性補助粒30の粒径が小さくなるに従って導電膜31の厚さを薄くする)。
【0031】
以上本実施形態によれば、絶縁性補助粒30の表面に金からなる導電膜31を被覆した導電性補助粒33が、比重も金属に比べて低く、粒径も銀粉末の32の3〜10倍と、より大きいことにより、ペースト中で良好(均一)に拡散し、更に銀粉末32が導電性補助粒33の周囲に付着する。この導電性補助粒33が仲介役となって導通性の安定化をもたらすことになる。又、導電性補助粒30の表面以外のぺ一スト部分では銀粉末32同士の付着がある範囲で発生するが、導電性補助粒33が適当な仲介となって、この現象をある程度抑制する。
【0032】
このように、高粘性の液体中での金属微粒子は、金属に接近して行く性質があり、銀粉末32が金を導電膜として被覆形成した導電性補助粒33の表面に付着するのも、この性質によるものと考えられる。このように銀粉末32が導電性補助粒33の表面に接近し接触する現象については、発明者が顕微鏡で観察し確認しており、更に試作実険を行って導電性が安定する効果も確認している。
【0033】
又、本実施形態においても第1の実施形態と同様に、適正な状態に拡散された導電性補助粒33の周囲に銀粉末32が分布することによって良好な導電特性を得ることができた。又、銀粉末32よりも大きい粒径の導電性補助粒33が適度に拡散されたことにより、銀粉末32が集積する現象を押さえることが可能となった。これによって、駆動電極の形状寸法(電極の幅H、厚さ)を従来方法と同一条件とした場合で、抵抗値のばらつきを5%以下に低減することができた。
【0034】
尚、本実施形態においては、導電膜31の材質として金を例として説明したが、前述の金の他に、二ッケル、銀或いは銅を絶縁性補助粒30にメッキ又はコーティングし導電性補助粒を形成した場合でもほぼ同様な効果が得られた。長期間の耐酸化性及び導通性の点では他の金属より優れた性質を有する金が最も好ましいが、導電性を良好にするという性質においては他の、ニッケル、銀、或いは銅でも、ほぼ同様な効果が得られる。
【0035】
第1の実施例と第2の実施例とを実験により比較した場合、第2の実施例の方が導電性、即ち抵抗値のばらつきにおいて若干の優位性が確認されている。これは導電性補助粒表面に付着した銀粉末同士が互いに導通状態となること、前述のように補助粒表面に金続被膜が形成され、銀粉末を引き付けやすいことが理由と考えられるが、顕微鏡観察の結果では第1の実施例においても絶縁性補助粒表面に銀粉末が均質に付着して行く様子が確認される。この現象は、粘性流体中では質量の大きな粒子に質量の小さな粒子が接近、付着する性質があるため、と考えられる。それ故に、補助粒表面に金属被膜を形成しない。第1の実施例においても、第2の実施例に比較し、それほど遜色ない効果が得られる。
【0036】
【発明の効果】
本発明によれば、タッチパネルの基板上の駆動電極を形成する導電性ペースト中において、球状補助粒が媒体の役割を担って銀粉末の均一拡散が実現する。従って銀粉末の添加割合が低減でき本来のペースト印刷が可能になる。
この結果、駆動電極の導電性に関する品質が向上し、タッチパネルの経時変化を含めた信頼性、及び歩留りが向上する。
又、前記駆動電極の幅Hを従来方法に比して狭く形成することが可能になり、タッチパネルの額縁部分の寸法を少ないエリアで構成でき、表示面に対する外形寸法の小形化が実現できる。
更に、前記駆動電極の印刷が従来方法より容易に行えるようになり、工数削減、コストダウンを実現することができる。
【図面の簡単な説明】
【図1】本発明のタッチパネルにおける駆動電極を示す部分拡大図である。
【図2】本発明の第1の実施形態における絶縁性補助粒と銀粉末との混合状態を示す部分拡大図である。
【図3】本発明の第2の実施形態における導電性補助粒と銀粉末との接触状態を示す部分拡大図である。
【図4】従来例におけるタッチパネルを示す分解斜視図である。
【符号の説明】
11 上基板
12 下基板
13 貼り合わせ剤
14、15 X側駆動電極
18 上基板の透明電極
16、17 上基板の接続電極
19 下基板の透明電極
21、22、42 Y側駆動電極
23、24 下基板の接続電極
30 絶縁性補助粒
31 導電膜
32 銀粉末
33 導電性補助粒
[0001]
BACKGROUND OF THE INVENTION
The present invention is a computer, various terminals, vending machines, ATMs, etc., which are arranged on a screen such as a liquid crystal display or a cathode ray tube, and a user displays an information display screen with a finger, a pen, etc. The present invention relates to a resistive film type analog touch panel in which data is input by directly pressing the input, and particularly relates to a touch panel with high electrode reliability.
[0002]
[Prior art]
A resistance film type analog touch panel as an input switch integrated with a display device is used by being arranged on a display surface of the display device. In the touch panel, a transparent substrate and a transparent substrate formed on a lower surface thereof, and a transparent substrate and a lower substrate formed on the upper surface of the transparent substrate are separated from each other with a predetermined space therebetween. Are arranged to face each other.
[0003]
In this touch panel, when the upper part of the upper substrate is pressed with an input pen or a finger, the upper substrate is bent and the transparent electrode of the upper substrate contacts the transparent electrode of the lower substrate at the pressing point. Then, the coordinates of the contact point are detected by measuring the electric resistance, and the input information is read. Hereinafter, an example of a touch panel in the prior art will be described with reference to the drawings.
[0004]
In the conventional touch panel, as shown in FIG. 4, the transparent electrode 18 formed on the flexible touch side (input side) upper substrate 11 and the transparent electrode 19 formed on the lower substrate 12 are insulative bonding agents. 13 are arranged opposite to each other with a gap provided therebetween. Also, a pair of parallel X-side drive electrodes 14 and 15 connected to the transparent electrode 18 of the upper substrate 11 and a pair of parallel Y-side drive electrodes 21 connected to the transparent electrode 19 of the lower substrate 12, And 22 are arranged to face each other in a square arrangement. Further, connection electrodes 16 and 17 connected to the X-side drive electrodes 14 and 15 of the upper substrate 11 are connected to connection electrodes 23 and 24 provided on the lower substrate 12 with a conductive adhesive, respectively. In general, the lower substrate is made of transparent glass and the upper substrate is made of a transparent film.
[0005]
The X-side drive electrodes 14 and 15 and the Y-side drive electrodes 21 and 22 were formed as low-resistance electrodes by printing and baking a silver paste on the upper substrate 11 and the lower substrate 12, respectively. The silver paste is prepared by mixing silver powder in a proportion of 60 to 85% by weight in a solution of a mature curable resin such as an epoxy resin or an acrylic resin. The particle size of the silver powder is generally 0.5 to 1.0 μm.
[0006]
[Problems to be solved by the invention]
However, not only silver but metal particles are naturally precipitated due to the specific gravity when immersed in a liquid. However, when the particles are about 5 μm or less, they are not completely precipitated and partially floated. This phenomenon becomes more remarkable as the viscosity of the liquid increases. Therefore, the metal fine particles are close to the diffusion state in the paste. However, the metal fine particles in the highly viscous liquid have a property that the metal particles attract each other, and it is considered that the silver powder tends to be agglomerated due to this property, and precipitation occurs for some reason. In particular, since silver powder has a high specific gravity, it may precipitate in the resin solution before curing, or a situation where silver powder accumulates in a lump and is scattered in the resin solution. However, it has been difficult to obtain stable conductivity.
[0007]
For this reason, it is necessary to increase the content of silver powder in the resin solution in order to ensure good conductivity of the electrode by the silver paste. As a result, it is damp rather than paste. As a result, the printing itself is difficult to perform, which is an obstacle to the uniformity of the thickness of the drive electrode formed, and the resistance value after firing varies by 20 to 30%. It was. In this way, the principle of making the conductor after curing by diffusing the silver powder into the resin solution is probabilistic, and it is an idea that some silver powder is connected and conduction is ensured as a whole. Therefore, the technique regarding the uniform diffusion of silver powder in the conductive paste is an important position.
[0008]
As a countermeasure to the above problem, a method for avoiding variation in resistance value by increasing the control width H of the electrode pattern or forming a thick printed film is disclosed. However, such a method has problems such as an increase in the outer dimensions of the touch panel and an increase in man-hours.
[0009]
(Object of invention)
An object of the present invention is to solve the above-described problems, avoid variations in resistance values of drive electrodes, and provide a highly reliable touch panel.
[0010]
[Means for Solving the Problems]
In order to achieve the above-described object, a touch panel according to the invention of claim 1 is included in the present invention.
In the touch panel having a drive electrode connected to each transparent electrode, the transparent electrode formed on the upper substrate and the transparent electrode formed on the lower substrate are arranged to face each other with a gap therebetween,
The drive electrode has a mean particle size of 1 to 20 μm in a conductive paste obtained by adding 30 to 45% by weight of silver powder having a particle size of 0.1 to 5 μm to a highly viscous resin solution in which metal particles attract each other. And 15 to 25% by weight of spherical auxiliary particles having a particle size 3 to 10 times larger than the particle size of the silver powder, so that the silver powder is uniformly diffused in the paste. A touch panel comprising a fired film formed using a conductive paste mixed with the spherical auxiliary grains .
[0011]
In the touch panel according to the second aspect of the present invention, in the touch panel according to the first aspect, when the average particle size of the spherical auxiliary particles is less than 1 to 5 μm, the variation in the particle size is the average particle size. When the average particle size is 5 to 20 μm, the variation in particle size is 50% or less of the average particle size.
[0012]
The touch panel according to claim 3 of the present invention is the touch panel according to claim 1 or 2, wherein the spherical auxiliary grains are insulating auxiliary grains such as plastic spheres, glass spheres, or ceramic spheres. It is characterized by comprising.
[0013]
The touch panel according to claim 4 of the present invention is the touch panel according to claim 1 or 2, wherein the spherical auxiliary grains are conductive auxiliary grains obtained by coating the insulating auxiliary grains with a conductive film. It is characterized by comprising.
[0014]
The touch panel according to a fifth aspect of the present invention is the touch panel according to the fourth aspect, wherein the conductive film has a thickness of 0.05 to 0.2 μm. It is a touch panel.
[0015]
The touch panel according to a sixth aspect of the present invention is the touch panel according to the fourth or fifth aspect, wherein the conductive film is gold.
[0017]
(Function)
In the conductive paste in the touch panel of the present invention, the insulating auxiliary grains such as ceramic spheres, glass spheres, or plastic spheres having a size larger than the silver powder are diffused together with the silver powder in the resin solution, and the surroundings of the insulating auxiliary grains Silver powder is distributed on the surface. This suppresses the occurrence of a situation where silver powder is accumulated in the conductive paste and is scattered in the resin solution, and the silver powder is uniformly diffused to obtain a drive electrode having stable conductivity. Can do.
[0018]
Furthermore, by diffusing the conductive auxiliary grains in which the insulating auxiliary grains are coated with the conductive film together with the silver powder in the resin solution, more stable conductivity can be obtained, and the conductivity of the drive electrode formed on the conductive film can be obtained. Further improve quality related to sex. Hereafter, it explains in full detail by embodiment of this invention.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a part of the Y-side drive electrode 42 of the touch panel in the present embodiment. FIG. 2 is a partially enlarged view showing a diffusion state of the insulating auxiliary grains 30 and the silver powder 32 in the conductive paste in the present embodiment. In addition, since the whole structure of the touchscreen in this embodiment is the same as that of a prior art example, description is abbreviate | omitted. Hereinafter, the present embodiment will be described with reference to the drawings.
[0020]
As shown in FIGS. 1 and 2, the Y-side drive electrode 42 of the touch panel in this embodiment is a conductive material obtained by mixing insulating auxiliary grains 30 as spherical auxiliary grains together with silver powder 32 in an epoxy resin solution of a mature curable resin. The paste is printed on the lower substrate 12 and baked to form a low resistance electrode.
[0021]
The ratio of the silver powder 32 added to the conductive paste is set to 30 to 45% by weight before drying about half of the conventional method. In addition, 15 to 25% by weight of the insulating auxiliary grains 30 having a certain particle size adjusted together with the silver powder 32 is added before drying. The insulating auxiliary grains may be plastic spheres, ceramic spheres, or glass spheres. For example, the ceramic spheres include alumina (Al 2 O 3 ), and the glass spheres include silica glass (SiO).
[0022]
The ceramic sphere (specific gravity around 1.9) and the silica glass (specific gravity around 2.0) and the plastic sphere (specific gravity around 1.0) are not markedly different despite the specific gravity being different. The same effect was obtained. The reason is considered that when the ceramic sphere has a porous structure, the effective specific gravity is not much different from that of the plastic sphere.
[0023]
In addition, the size of the insulating auxiliary grain 30 to be added may be 1 to 20 μm in size, but in the case of the present invention, the size of the grain size of the silver powder 32 to be added simultaneously may be selected to be 3 to 10 times. It is important to get an effect.
[0024]
Further, the variation in the outer diameter of the insulating auxiliary grains 30 to be added is such that when the average particle diameter of the insulating auxiliary grains 30 is less than 1 to 5 μm, the variation in the particle diameter is 30% or less of the average particle diameter. When the diameter is 5 to 20 μm, it is desirable that the variation in the particle size is suppressed to 50% or less of the average particle size.
[0025]
In this embodiment, the Y drive electrode has been described as an example, but it goes without saying that the same applies to the X drive electrode.
[0026]
As described above, according to the present embodiment, good conductive characteristics can be obtained by distributing the silver powder 32 around the auxiliary insulating grains 30 such as ceramic spheres, plastic spheres, or glass spheres diffused in an appropriate state. It was. Further, since the insulating auxiliary grains 30 having a particle size larger than that of the silver powder 32 are appropriately diffused, it is possible to suppress the phenomenon that the silver powder 32 accumulates. As a result, the variation in resistance value was reduced to 5% or less when the shape dimensions (electrode width H, thickness) of the drive electrode were the same as those in the conventional method.
[0027]
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a partially enlarged view showing a contact state between the conductive auxiliary grains 33 and the silver powder 32 as spherical auxiliary grains in the conductive paste in the present embodiment. Note that a description of the same parts as those in the first embodiment will be omitted. Hereinafter, the present embodiment will be described with reference to the drawings.
[0028]
As shown in FIG. 3, the conductive paste in this embodiment is different from the first embodiment in that conductive auxiliary grains 33 as spherical auxiliary grains are mixed with silver powder 32 in an epoxy resin solution of a mature curable resin. Others are the same.
[0029]
In this embodiment, the ratio of the silver powder 32 added to the conductive paste is set to 30 to 45% by weight as in the first embodiment. In addition, the conductive auxiliary grains 33 obtained by coating the surface of the insulating auxiliary grains 30 with the silver powder 32 having a certain particle size with a gold conductive film 31 by a method such as electroless plating are 15- Add 25%.
The insulating auxiliary grains 30 can be plastic spheres, ceramic spheres, glass spheres, etc., as in the first embodiment. The particle diameter of the insulating auxiliary grains 30 to be added is the same as that of the first embodiment. It is the same.
[0030]
The film thickness of the conductive film 31 is preferably 0.05 to 0.2 μm. The lower limit value of the film thickness of 0.05 μm is a limit value at which the function of the present invention is not achieved if the thickness is further reduced. If the upper limit value of the fork film thickness is 0.2 μm or more, cracks are likely to occur on the surface of the conductive film 31 due to temperature changes. In addition, it is not economically preferable to increase the film thickness. Strictly speaking, it is desirable to form the conductive film 31 having a thickness corresponding to the particle size of the insulating auxiliary grains 30. (The thickness of the conductive film 31 is reduced as the particle size of the insulating auxiliary grains 30 is reduced).
[0031]
As described above, according to the present embodiment, the conductive auxiliary grains 33 in which the surface of the insulating auxiliary grains 30 is coated with the conductive film 31 made of gold have a specific gravity lower than that of metal and a particle diameter of 32 By being larger than 10 times, it diffuses well (uniformly) in the paste, and the silver powder 32 adheres around the conductive auxiliary grains 33. The conductive auxiliary grains 33 serve as an intermediary to stabilize the conductivity. In addition, the paste portion other than the surface of the conductive auxiliary grain 30 is generated within a range where the silver powder 32 adheres to each other, but the conductive auxiliary grain 33 acts as an appropriate mediator to suppress this phenomenon to some extent.
[0032]
Thus, the metal fine particles in the highly viscous liquid have the property of approaching the metal, and the silver powder 32 adheres to the surface of the conductive auxiliary grains 33 formed by coating gold as a conductive film. This is considered to be due to this property. The phenomenon in which the silver powder 32 approaches and comes into contact with the surface of the conductive auxiliary grain 33 in this way has been observed and confirmed by the inventor with a microscope, and further confirmed that the conductivity is stabilized by conducting a trial production. is doing.
[0033]
Also in the present embodiment, as in the first embodiment, the silver powder 32 is distributed around the conductive auxiliary grains 33 diffused in an appropriate state, whereby good conductive characteristics can be obtained. In addition, since the conductive auxiliary grains 33 having a particle diameter larger than that of the silver powder 32 are appropriately diffused, it is possible to suppress the phenomenon that the silver powder 32 accumulates. As a result, the variation in resistance value was reduced to 5% or less when the shape dimensions (electrode width H, thickness) of the drive electrode were the same as those in the conventional method.
[0034]
In the present embodiment, gold is described as an example of the material of the conductive film 31. However, in addition to the above-described gold, nickel, silver, or copper is plated or coated on the insulating auxiliary grain 30 to form the conductive auxiliary grain. Even when the film was formed, substantially the same effect was obtained. Gold having superior properties over other metals in terms of long-term oxidation resistance and conductivity is most preferable, but in terms of improving conductivity, other nickel, silver, or copper is almost the same. Effects can be obtained.
[0035]
When the first embodiment and the second embodiment are compared by experiment, it is confirmed that the second embodiment is slightly superior in terms of conductivity, that is, variation in resistance value. This is thought to be because the silver powders adhered to the surface of the conductive auxiliary grains are in a conductive state with each other, and as described above, the gold continuous film is formed on the surface of the auxiliary grains, and it is easy to attract the silver powder. As a result of the observation, it is confirmed that the silver powder is uniformly adhered to the surface of the insulating auxiliary grains also in the first embodiment. This phenomenon is considered to be due to the property that particles with a small mass approach and adhere to particles with a large mass in a viscous fluid. Therefore, no metal film is formed on the auxiliary grain surface. Also in the first embodiment, an effect comparable to that of the second embodiment can be obtained.
[0036]
【The invention's effect】
According to the present invention, in the conductive paste that forms the drive electrode on the substrate of the touch panel, the spherical auxiliary particles serve as a medium, and uniform diffusion of the silver powder is realized. Therefore, the addition ratio of silver powder can be reduced and original paste printing becomes possible.
As a result, the quality related to the conductivity of the drive electrode is improved, and the reliability including the change with time of the touch panel and the yield are improved.
In addition, the width H of the drive electrode can be made narrower than that of the conventional method, the frame part of the touch panel can be formed with a small area, and the external dimensions with respect to the display surface can be reduced.
Furthermore, printing of the drive electrode can be performed more easily than the conventional method, and man-hour reduction and cost reduction can be realized.
[Brief description of the drawings]
FIG. 1 is a partially enlarged view showing drive electrodes in a touch panel of the present invention.
FIG. 2 is a partially enlarged view showing a mixed state of insulating auxiliary grains and silver powder in the first embodiment of the present invention.
FIG. 3 is a partially enlarged view showing a contact state between conductive auxiliary grains and silver powder in a second embodiment of the present invention.
FIG. 4 is an exploded perspective view showing a conventional touch panel.
[Explanation of symbols]
11 Upper substrate 12 Lower substrate 13 Bonding agent 14, 15 X side drive electrode
18 Transparent electrode on upper substrate
16, 17 Upper substrate connection electrode 19 Lower substrate transparent electrodes 21, 22, 42 Y-side drive electrodes 23, 24 Lower substrate connection electrode 30 Insulating auxiliary grains 31 Conductive film 32 Silver powder 33 Conductive auxiliary grains

Claims (6)

上基板に形成した透明電極と下基板に形成した透明電極とを隙間を設けて対向配置し、前記各透明電極に接続する駆動電極を有するタッチパネルにおいて、
前記駆動電極は、粒径0.1〜5μmの銀粉末を金属粒同士が互いに引き合いを生じるような高粘性の樹脂溶液に30〜45重量%添加した導電性ペーストに平均粒径が1〜20μmの範囲にあって前記銀粉末の粒径より3〜10倍大きい粒径の球状補助粒を15〜25重量%添加して、前記銀粉末がペースト中に均一に拡散するように前記銀粉末と前記球状補助粒とを混合した導電ペーストを用いて形成された焼成膜であることを特徴とするタッチパネル。
In the touch panel having a drive electrode connected to each transparent electrode, the transparent electrode formed on the upper substrate and the transparent electrode formed on the lower substrate are arranged to face each other with a gap therebetween,
The drive electrode has a mean particle size of 1 to 20 μm in a conductive paste obtained by adding 30 to 45% by weight of silver powder having a particle size of 0.1 to 5 μm to a highly viscous resin solution in which metal particles attract each other. And 15 to 25% by weight of spherical auxiliary particles having a particle size 3 to 10 times larger than the particle size of the silver powder, so that the silver powder is uniformly diffused in the paste. A touch panel comprising a fired film formed using a conductive paste mixed with the spherical auxiliary grains .
前記球状補助粒の平均粒径が1〜5μm未満の場合には粒径のばらつきが平均粒径の30%以下であり、平均粒径が5〜20μmの場合には粒径のばらつきが平均粒径の50%以下であることを特徴とする請求項1記載のタッチパネル。  When the average particle size of the spherical auxiliary particles is less than 1 to 5 μm, the particle size variation is 30% or less of the average particle size, and when the average particle size is 5 to 20 μm, the particle size variation is the average particle size. The touch panel according to claim 1, wherein the touch panel has a diameter of 50% or less. 前記球状補助粒が、プラスチック球、ガラス球、又はセラミック球等の絶縁性補助粒からなることを特徴とする請求項1又は請求項2記載のタッチパネル。  The touch panel according to claim 1, wherein the spherical auxiliary grains are made of insulating auxiliary grains such as plastic spheres, glass spheres, or ceramic spheres. 前記球状補助粒が、前記絶縁性補助粒に導電膜を被覆した導電性補助粒からなることを特徴とする請求項3記載のタッチパネル。The touch panel according to claim 3 , wherein the spherical auxiliary grains are made of conductive auxiliary grains obtained by coating the insulating auxiliary grains with a conductive film. 前記導電膜の膜厚が0.05〜0.2μmであることを特徴とする請求項4記載のタッチパネル。  The touch panel according to claim 4, wherein the conductive film has a thickness of 0.05 to 0.2 μm. 前記導電膜が金であることを特徴とする請求項4又は5記載のタッチパネル。  6. The touch panel according to claim 4, wherein the conductive film is gold.
JP2001281145A 2001-09-17 2001-09-17 Touch panel Expired - Fee Related JP4428609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001281145A JP4428609B2 (en) 2001-09-17 2001-09-17 Touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001281145A JP4428609B2 (en) 2001-09-17 2001-09-17 Touch panel

Publications (2)

Publication Number Publication Date
JP2003091367A JP2003091367A (en) 2003-03-28
JP4428609B2 true JP4428609B2 (en) 2010-03-10

Family

ID=19105026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001281145A Expired - Fee Related JP4428609B2 (en) 2001-09-17 2001-09-17 Touch panel

Country Status (1)

Country Link
JP (1) JP4428609B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622705B2 (en) * 2005-07-01 2011-02-02 パナソニック株式会社 Movable contact for panel switch
WO2009096411A1 (en) * 2008-01-30 2009-08-06 Kyocera Corporation Touch panel and touch panel display
JP5279530B2 (en) * 2009-01-28 2013-09-04 富士通コンポーネント株式会社 Touch panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284525A (en) * 1991-03-13 1992-10-09 Nitto Denko Corp Substrate for analog type touch panel
JPH07302510A (en) * 1994-05-10 1995-11-14 Sumitomo Metal Mining Co Ltd Conductive paste composition
US5518663A (en) * 1994-12-06 1996-05-21 E. I. Du Pont De Nemours And Company Thick film conductor compositions with improved adhesion
JP2001188342A (en) * 1999-12-27 2001-07-10 Sumitomo Bakelite Co Ltd Photosensitive silver paste and image display using same

Also Published As

Publication number Publication date
JP2003091367A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US10091872B2 (en) Touch window and display including the same
CN104393194A (en) Flexible electrode, fabrication method of flexible electrode, electronic skin and flexible display device
JPWO2008117770A1 (en) Protection panel with touch input function for electronic device display window
KR20150095394A (en) Touch window
CN101693817A (en) Superconductivity copper foil tape
JP2005209491A (en) Conductive particle and anisotropic conductive adhesive using this
JP4655948B2 (en) Pressure-sensitive conductive sheet, method for producing the same, and touch panel using the same
JP4428609B2 (en) Touch panel
JPH0454931B2 (en)
TW432085B (en) Heat-conductive paste
US6969264B2 (en) Transparent touch panel
JP5279530B2 (en) Touch panel
CN103365464A (en) Touch panel
JP2003241898A (en) Touch panel
JP5169501B2 (en) Electrode paste for electrodes and transparent touch panel
CN108958546B (en) Touch structure and preparation method thereof
CN211479097U (en) Capacitive touch screen with ultra-narrow frame and terminal equipment
CN208819181U (en) A kind of touch panel and display device
CN208569589U (en) Touch screen
JP2004146261A (en) Insulating coating conductive particulate and conductive connection structure
CN207764766U (en) Touch device and electronic device
CN105892732B (en) Panel device and preparation method thereof
CN110938382B (en) Conductive adhesive film, display module and electronic equipment
CN213780925U (en) Flexible folding area reinforcing touch sensor and touch-control equipment
KR100573101B1 (en) Flexible printed cable and touch panel applying such

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees