JP5169501B2 - Electrode paste for electrodes and transparent touch panel - Google Patents

Electrode paste for electrodes and transparent touch panel Download PDF

Info

Publication number
JP5169501B2
JP5169501B2 JP2008145738A JP2008145738A JP5169501B2 JP 5169501 B2 JP5169501 B2 JP 5169501B2 JP 2008145738 A JP2008145738 A JP 2008145738A JP 2008145738 A JP2008145738 A JP 2008145738A JP 5169501 B2 JP5169501 B2 JP 5169501B2
Authority
JP
Japan
Prior art keywords
fine powder
conductive paste
conductive
electrode
tin oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008145738A
Other languages
Japanese (ja)
Other versions
JP2009295325A (en
Inventor
一也 矢部
敦俊 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2008145738A priority Critical patent/JP5169501B2/en
Publication of JP2009295325A publication Critical patent/JP2009295325A/en
Application granted granted Critical
Publication of JP5169501B2 publication Critical patent/JP5169501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、透明導電性基板の電極材料として使用される透明導電性ペースト、また、それを用いた透明タッチパネルに関するものである。   The present invention relates to a transparent conductive paste used as an electrode material for a transparent conductive substrate, and a transparent touch panel using the same.

近年LCD等の表示素子の前面に、透明性タッチパネルを用いて各種電子機器の機能を切換えることが行われる。例えば、透明なプラスチッックフィルム上にインジウム錫の酸化物(以下、ITO)の層を形成し、この上の適所に銀微粉末を用いた導電性ペーストからなる電極層を形成した構成材料から製造されている。しかしながら、前記電極は接触抵抗が高いことが指摘されていた。そこで、このような問題点を改良する技術として、特許文献1が提案されている。すなわち、光透過性タッチパネルにおいては、上下導電層の材料である酸化インジウム錫と上下電極である銀との親和性があまり良くないため上導電層と上電極及び下導電層と下電極の界面の接続抵抗が大きいという問題があった、そこで、導電層と電極との界面の接続抵抗の小さい導電ペーストを提供するとして、合成樹脂中に、銀とインジウムの合金或いは銀にインジウムを付着させたものを分散させると共に、この銀に対するインジウムの比率を1〜50重量%とした導電ペーストを用いることによって、この導電性ペーストの電極は、酸化インジウム錫の導電層との界面の親和性が良く接続抵抗を小さくできると共に、電極全体の抵抗値も小さくできると記載されている。しかしながら、この導電性ペーストでは接触抵抗を改善することはできるが、銀とインジウムの合金の作製や微粉末化の工程が必要であり、また、銀微粉末にインジウムを付着する場合もそのような工程が必要なため、コスト増に繋がりあまり実用的ではなかった。
特開2003−217348号公報
In recent years, functions of various electronic devices are switched using a transparent touch panel on the front surface of a display element such as an LCD. For example, it is manufactured from a constituent material in which an indium tin oxide (hereinafter referred to as ITO) layer is formed on a transparent plastic film, and an electrode layer made of a conductive paste using silver fine powder is formed in an appropriate position on the layer. Has been. However, it has been pointed out that the electrode has a high contact resistance. Therefore, Patent Document 1 has been proposed as a technique for improving such problems. That is, in the light transmissive touch panel, the affinity between indium tin oxide, which is the material of the upper and lower conductive layers, and silver, which is the upper and lower electrodes, is not so good. There was a problem that the connection resistance was large. Therefore, as a conductive paste having a low connection resistance at the interface between the conductive layer and the electrode, an alloy of silver and indium or indium attached to silver in a synthetic resin By using a conductive paste in which the ratio of indium to silver is 1 to 50% by weight, the electrode of this conductive paste has a good interface affinity with the conductive layer of indium tin oxide and has a connection resistance. It is described that the resistance value of the entire electrode can be reduced. However, although the contact resistance can be improved with this conductive paste, it is necessary to prepare an alloy of silver and indium and to make a fine powder, and such a case where indium is adhered to the fine silver powder. Since a process is required, it led to an increase in cost and was not very practical.
JP 2003-217348 A

よって本発明が解決しようとする課題は、導電性微粉末が前述したような特別の処理工程を行わなくても、透明導電性塗膜の電極層として用いた場合に接触抵抗が小さく、具体的には、銀微粉末を用いた導電性ペーストの1/4〜1/10となるような安定した電極用導電性ペーストを提供することにある。また、そのような電極用導電性ペーストを電極層として形成することによって、特に接触抵抗等の電気的特性に優れた透明タッチパネルを提供することにある。   Therefore, the problem to be solved by the present invention is that the conductive fine powder has a small contact resistance when used as an electrode layer of a transparent conductive coating film, even without performing a special treatment step as described above. The object of the present invention is to provide a stable conductive paste for electrodes which is 1/4 to 1/10 of the conductive paste using fine silver powder. Another object of the present invention is to provide a transparent touch panel excellent in electrical characteristics such as contact resistance by forming such an electrode conductive paste as an electrode layer.

前記解決しようとする課題は、請求項1に記載するように、透明導電性膜の電極用として使用される導電性ペーストであって、バインダー樹脂、導電性微粉末及び溶剤を必須成分とし、前記導電性微粉末は酸化錫微粉末が0.2〜20質量%、銀微粉末が99.8〜80質量%からなる電極用導電性ペーストとすることによって、解決される。   The problem to be solved is a conductive paste used for an electrode of a transparent conductive film as described in claim 1, and includes a binder resin, conductive fine powder and a solvent as essential components, The conductive fine powder can be solved by forming a conductive paste for an electrode composed of 0.2 to 20% by mass of tin oxide fine powder and 99.8 to 80% by mass of silver fine powder.

また、好ましくは請求項2に記載するように、前記酸化錫微粉末がアンチモンドープされた酸化錫微粉末とすること、さらに請求項3に記載するように、前記酸化錫微粉末の粒径が、5nm〜30μmである請求項1または2のいずれかに記載の電極用導電性ペーストとすることによって、好ましく解決される。   Preferably, the tin oxide fine powder is an antimony-doped tin oxide fine powder as described in claim 2, and the tin oxide fine powder has a particle size as described in claim 3. It is 5 nm-30 micrometers, Preferably it is solved by setting it as the electrically conductive paste for electrodes in any one of Claim 1 or 2.

そして、請求項4に記載するように、請求項1〜3のいずれかに記載される電極用導電性ペーストを用いて、透明導電性膜に電極層を形成した透明タッチパネルとすることによって、解決される。   And, as described in claim 4, by using a conductive paste for an electrode according to any one of claims 1 to 3, a transparent touch panel in which an electrode layer is formed on a transparent conductive film is solved. Is done.

本発明の透明導電性膜の電極用として使用される導電性ペーストは、バインダー樹脂、導電性微粉末及び溶剤を必須成分とし、前記導電性微粉末が酸化錫微粉末0.2〜20質量%、銀微粉末99.8〜80質量%からなる電極用導電性ペーストであるから、前記導電性微粉末を特別に処理する等の必要がなく、透明導電性塗膜の電極として使用しても接触抵抗が小さく、安定した電極用導電性ペーストである。すなわち、比抵抗が略10×10-5Ω・cm台であり、耐熱試験後、耐湿試験後の値が初期接触抵抗値に対して50%以内と変化が小さく安定しており、また、具体的な接触抵抗値として、銀微粉末を用いた導電性ペーストの1/4〜1/10の範囲である。 The conductive paste used for the electrode of the transparent conductive film of the present invention contains a binder resin, conductive fine powder and a solvent as essential components, and the conductive fine powder is 0.2 to 20% by mass of tin oxide fine powder. Since it is a conductive paste for electrodes composed of 99.8 to 80% by mass of silver fine powder, there is no need for special treatment of the conductive fine powder, and it can be used as an electrode for a transparent conductive coating film. This is a stable conductive paste for electrodes with low contact resistance. That is, the specific resistance is on the order of 10 × 10 −5 Ω · cm, the value after the heat resistance test and after the moisture resistance test is stable with little change within 50% of the initial contact resistance value, and A typical contact resistance value is in the range of 1/4 to 1/10 of the conductive paste using silver fine powder.

また、前記導電性微粉末として、好ましくは前記酸化錫微粉末が、アンチモンドープされた酸化錫微粉末を用いることによって、電極用導電性ペーストとしての導電性と接着性を維持すると共に、比抵抗が略10×10-5Ω・cm台であり、耐熱試験後、耐湿試験後の値が初期接触抵抗値に対して50%以内と余り変化せず、具体的な接触抵抗値としても、銀微粉末を用いた導電性ペーストの1/4〜1/10の範囲であり、透明導電性塗膜用の電極として使用される導電性ペーストとして好ましいものである。さらに、前記酸化錫微粉末の粒径として5nm〜30μmであるから、得られた電極用導電性ペーストは、電極層の形成時の取扱いが容易であると共に、比抵抗が略10×10-5Ω・cm台であり、耐熱試験後、耐湿試験後の値が初期接触抵抗値に対して50%以内と余り変化せず、具体的な接触抵抗値としても、銀微粉末を用いた導電性ペーストの1/4〜1/10の範囲であり、透明導電性塗膜用の電極として使用される導電性ペーストとして好ましいものである。 Further, as the conductive fine powder, preferably, the tin oxide fine powder is an antimony-doped tin oxide fine powder, thereby maintaining conductivity and adhesiveness as a conductive paste for an electrode and a specific resistance. Is about 10 × 10 −5 Ω · cm, and the value after the heat resistance test and after the moisture resistance test does not change much within 50% of the initial contact resistance value. It is the range of 1 / 4-1 / 10 of the conductive paste using fine powder, and is preferable as a conductive paste used as an electrode for a transparent conductive coating film. Furthermore, since the particle size of the tin oxide fine powder is 5 nm to 30 μm, the obtained conductive paste for electrodes is easy to handle when forming the electrode layer and has a specific resistance of about 10 × 10 −5. It is in the Ω · cm range, and after heat resistance test, the value after moisture resistance test does not change much less than 50% of the initial contact resistance value. It is the range of 1/4 to 1/10 of a paste, and is preferable as a conductive paste used as an electrode for a transparent conductive coating film.

そして、請求項4に記載するように、請求項1〜3のいずれかに記載される電極用導電性ペーストを用いて電極層を形成した透明性タッチパネルは、前述した特性を全て有し、電極層の形成性にも優れた透明性タッチパネルである。   And as described in Claim 4, the transparent touch panel which formed the electrode layer using the electrically conductive paste for electrodes as described in any one of Claims 1-3 has all the characteristics mentioned above, and is an electrode. It is a transparent touch panel with excellent layer formability.

請求項1に記載する発明は、透明導電性膜の電極用として使用される導電性ペーストに関するもので、用いる導電性微粉末は、酸化錫微粉末が0.2〜20質量%、銀微粉末が99.8〜80質量%からなる電極用導電性ペーストであって、前記導電性微粉末は特別な処理工程を施す必要がなく、混合するだけで良いので比較的簡単に小さな接触抵抗が得られる電極用導電性ペーストである。   The invention described in claim 1 relates to a conductive paste used as an electrode for a transparent conductive film, and the conductive fine powder used is 0.2 to 20% by mass of tin oxide fine powder, silver fine powder. Is a conductive paste for electrodes composed of 99.8 to 80% by mass, and the conductive fine powder does not need to be subjected to a special processing step, and can be simply mixed so that a small contact resistance can be obtained relatively easily. It is the conductive paste for electrodes.

より詳細に説明する。この種の電極用導電性ペーストは、透明タッチパネルを構成する透明性や光透過性を有するガラスやポリエチレンテレフタレート(以下、PET)、アクリル樹脂、ポリカーボネート等のプラスチック基材上に形成したITO塗膜等の透明導電性塗膜上に、電極層を形成するための材料として使用されるものである。すなわち、バインダー樹脂、導電性微粉末および溶剤を必須成分とする導電性ペースの前記導電性微粉末として、酸化錫微粉末(球状や燐片状等)と銀微粉末(球形や燐片状等)の混合物を使用することにある。より詳細に説明すると導電性微粉末は、酸化錫微粉末が0.2〜20質量%、銀微粉末が99.8〜80質量%の混合物から構成されるものである。そして、このような混合割合とするのは、酸化錫微粉末の添加量が0.2質量%未満では、接触抵抗が不十分であり、また20質量%を超えると導電性が悪くなるためである。前記の混合範囲とすることによって、目的とする接触抵抗が得られ十分な導電性を有する電極用導電性ペーストが得られる。具体的には、接触抵抗値が銀微粉末を用いた導電性ペーストの1/4〜1/10の範囲であり、また、耐熱試験後、耐湿試験後の接触抵抗値が初期接触抵抗値と余り変化しない(50%以内)ものである。そして、好ましくは酸化錫微粉末と銀微粉末の混合割合が、酸化錫微粉末1〜15質量%、銀微粉末99〜85質量%とするものである。さらに、導電性微粉末の添加量としては、電極用導電性ペーストの固形分100質量部に対して、70〜95質量部となるようにするのが良い。また、導電性ペーストの必須成分であるバインダー樹脂としては、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、塩化ビニル酢酸ビニル共重合樹脂、ウレタン樹脂、エポキシ樹脂等が使用でき、その添加量は、電極用導電性ペーストの固形分100質量部に対して、5〜30質量部の範囲で添加される。さらに、必須成分としての溶剤としては、エチルジグリコールアセテート、ブチルグリコールアセテート、ブチルジグリコールアセテート、ベンジルアルコール、イソホロン等が使用できる。なお、この電極用導電性ペーストには、銀メッキ銅微粉末、銀メッキニッケル微粉末等の銀メッキ金属微粉末や酸化チタン微粉末、カーボン微粉末、ニッケル微粉末、シリカ微粉末等を、必要により添加することができる。以上のような本発明の電極用導電性ペーストは、透明導電性塗膜の電極層として使用しても接触抵抗が小さく、安定したものであると共に、導電性微粉末は、特定の割合で銀微粉末と酸化錫微粉末を混合するだけで良いので、特許文献1に記載される技術ように特別の処理工程を行う必要がない。   This will be described in more detail. This type of conductive paste for electrodes is made of transparent and light-transmitting glass, polyethylene terephthalate (hereinafter referred to as PET), acrylic resin, polycarbonate, and other ITO coatings formed on plastic substrates. It is used as a material for forming an electrode layer on the transparent conductive film. That is, as the conductive paced conductive fine powder containing binder resin, conductive fine powder and solvent as essential components, tin oxide fine powder (spherical or flake shaped) and silver fine powder (spherical or flake shaped etc.) ) To use a mixture. More specifically, the conductive fine powder is composed of a mixture of 0.2 to 20% by mass of tin oxide fine powder and 99.8 to 80% by mass of silver fine powder. And, such a mixing ratio is because the contact resistance is insufficient when the addition amount of the tin oxide fine powder is less than 0.2% by mass, and the conductivity deteriorates when it exceeds 20% by mass. is there. By setting it as the said mixing range, the target contact resistance is obtained and the electroconductive paste for electrodes which has sufficient electroconductivity is obtained. Specifically, the contact resistance value is in the range of 1/4 to 1/10 of the conductive paste using fine silver powder, and after the heat resistance test, the contact resistance value after the moisture resistance test is the initial contact resistance value. It does not change much (within 50%). And preferably, the mixing ratio of the tin oxide fine powder and the silver fine powder is 1 to 15% by mass of the tin oxide fine powder and 99 to 85% by mass of the silver fine powder. Further, the amount of the conductive fine powder added is preferably 70 to 95 parts by mass with respect to 100 parts by mass of the solid content of the electrode conductive paste. In addition, as the binder resin, which is an essential component of the conductive paste, polyester resin, acrylic resin, phenol resin, vinyl chloride vinyl acetate copolymer resin, urethane resin, epoxy resin, and the like can be used. It is added in a range of 5 to 30 parts by mass with respect to 100 parts by mass of the solid content of the adhesive paste. Furthermore, as a solvent as an essential component, ethyl diglycol acetate, butyl glycol acetate, butyl diglycol acetate, benzyl alcohol, isophorone and the like can be used. This conductive paste for electrodes requires silver-plated metal fine powder such as silver-plated copper fine powder, silver-plated nickel fine powder, titanium oxide fine powder, carbon fine powder, nickel fine powder, silica fine powder, etc. Can be added. The conductive paste for electrodes of the present invention as described above has a low contact resistance and is stable even when used as an electrode layer of a transparent conductive coating film, and the conductive fine powder contains silver at a specific ratio. Since only the fine powder and the tin oxide fine powder need to be mixed, it is not necessary to perform a special processing step as in the technique described in Patent Document 1.

また、酸化錫微粉末としては、請求項2に記載するように、5nm〜30μmのものが使用される。ただ、5nm未満のものは製造が難しく、30μmを超えるような微粉末はスクリーン印刷やディスペンサー塗布での目詰まりが見られるので、好ましくは10nm〜10μmの粒径のものを選択するのが良い。さらに、酸化錫微粉末は、請求項3に記載するようにアンチモンドープされた酸化錫微粉末であることが好ましい。これは、アンチモンをドープすることによって、導電性が高まるので好ましいためである。通常、酸化錫微粉末100質量部に対して、0.1〜20質量部程度までドープされたものが好ましい。以上のように、導電性微粒子が特定された電極用導電性ペーストは、透明導電性塗膜の電極層として使用しても接触抵抗が小さく、安定した導電性ペーストとなる。具体的には、耐熱試験後、耐湿試験後の接触抵抗値が初期接触抵抗値と余り変化しない安定したものである。すなわち、接触抵抗値が、銀微粉末を用いた導電性ペーストの場合の1/4〜1/10の範囲のものである。さらに、用いる導電性微粒子は特別の処理工程を行う必要がないので、製造コストを上昇させることがなく実用的である。   Moreover, as tin oxide fine powder, a 5 nm-30 micrometer thing is used as described in Claim 2. However, if it is less than 5 nm, it is difficult to produce, and fine powders exceeding 30 μm are clogged by screen printing or dispenser application. Therefore, it is preferable to select particles having a particle diameter of 10 nm to 10 μm. Further, the tin oxide fine powder is preferably an antimony-doped tin oxide fine powder as described in claim 3. This is because doping with antimony is preferable because conductivity is increased. Usually, the thing doped to about 0.1-20 mass parts with respect to 100 mass parts of tin oxide fine powder is preferable. As described above, the electrode conductive paste in which the conductive fine particles are specified has a low contact resistance and becomes a stable conductive paste even when used as an electrode layer of a transparent conductive coating film. Specifically, after the heat resistance test, the contact resistance value after the moisture resistance test is stable and does not change much from the initial contact resistance value. That is, the contact resistance value is in the range of 1/4 to 1/10 of the conductive paste using fine silver powder. Furthermore, since the conductive fine particles to be used do not need to be subjected to a special processing step, they are practical without increasing the manufacturing cost.

そして、請求項4に記載するように、請求項1〜3のいずれかに記載される電極用導電性ペーストを用いて、透明導電性膜上に電極層を形成した透明タッチパネルは、比抵抗が略10×10-5Ω・cm台であり、耐熱試験後、耐湿試験後の接触抵抗値が初期接触抵抗値に対して、銀微粉末を用いた導電性ペーストの1/4〜1/10の範囲と安定しており、電気的特性に優れると共に電極層の形成性にも優れたものである。 And as described in Claim 4, the transparent touch panel which formed the electrode layer on the transparent conductive film using the conductive paste for electrodes described in any one of Claims 1-3 has a specific resistance. It is about 10 × 10 −5 Ω · cm, and the contact resistance value after the heat resistance test and after the moisture resistance test is ¼ to 1/10 of the conductive paste using silver fine powder with respect to the initial contact resistance value. The range is stable and excellent in electrical characteristics and in the formability of the electrode layer.

本出願人が提供している透明タッチパネルの一例を、図1によって説明する。符号1が透明タッチパネルを示す。そして、ガラス或いはポリエチレンテレフタレート(以下、PET)、アクリル樹脂、ポリカーボネート等のプラスチック基材からなる下部基材板2、或いは上部基材板2´である。下部基材板2或いは上部基材板2´にはITO等の光透過性の下部導電層3或いは上部導電層3´がそれぞれ形成される。そして、下部基材板2の下部導電層3の両端部には、本発明の導電性ペースト(例えば、酸化錫微粉末が0.2〜20質量%、銀微粉末が99.8〜80質量%含有)を用いて、下部電極4、4が形成される。同様に上部基材板2´の上部導電層3´上には、前記導電性ペーストを用いて、上部電極4´、4´が下部電極4、4と耐向するように形成される。また、対向する前記上部電極4´、4´および下部電極4、4は、粘着材5、5を介してレジスト層6、6および6´、6´が形成されて配置される。そして、下部導電層3上の適所にはスペーサ7が設けられて、透明タッチパネル1とされるものである。このような透明タッチパネルは、長期間にわたり各種電子機器の機能を切換える部品として安定して使用できると共に、電気的特性に優れたものである。   An example of a transparent touch panel provided by the present applicant will be described with reference to FIG. Reference numeral 1 denotes a transparent touch panel. The lower base plate 2 or the upper base plate 2 'is made of a plastic base material such as glass or polyethylene terephthalate (hereinafter referred to as PET), acrylic resin, or polycarbonate. A light-transmissive lower conductive layer 3 or upper conductive layer 3 ′ such as ITO is formed on the lower base plate 2 or the upper base plate 2 ′. The conductive paste of the present invention (for example, 0.2 to 20% by mass of tin oxide fine powder and 99.8 to 80% by mass of silver fine powder) is formed at both ends of the lower conductive layer 3 of the lower base plate 2. % Electrode) is used to form the lower electrodes 4 and 4. Similarly, the upper electrodes 4 ′ and 4 ′ are formed on the upper conductive layer 3 ′ of the upper base plate 2 ′ so as to face the lower electrodes 4 and 4 using the conductive paste. The upper electrodes 4 ′, 4 ′ and the lower electrodes 4, 4 facing each other are arranged with resist layers 6, 6 and 6 ′, 6 ′ formed through adhesive materials 5, 5. And the spacer 7 is provided in the appropriate place on the lower conductive layer 3, and it is set as the transparent touch panel 1. FIG. Such a transparent touch panel can be stably used as a component for switching the functions of various electronic devices over a long period of time and has excellent electrical characteristics.

以下の実施例によって、本発明の導電性ペーストの効果を説明する。表1に記載する組成の電極用導電性ペーストを、ITO導電層を有する東洋紡(株)の基材フィルム(品番:300RM−4)上に、120℃で10分間硬化させて電極層を形成し、これについて比抵抗、初期接触抵抗、耐熱試験、耐湿試験、付着性を測定した。用いたバインダー樹脂は、東洋紡(株)のポリエステル樹脂であるバイロン500である。リンドープ酸化錫微粉末(以下、酸化Sn(P)微粉末)としては三菱マテリアル社のS−2000、またアンチモンドープ酸化錫微粉末(以下、酸化Sn(Sb)微粉末)としては、三菱マテリアル社の透明導電粉TZ−1(粒径10nm)および触媒化成社のエレコムTL−20(粒径7μm)である。さらに、酸化錫微粉末(以下、酸化Sn)としては三井金属社のTIPEVI(粒径1μm)、銀微粉末(以下、Ag微粉末)としてはフレーク状銀微粉末であるフェロー社のシルバーフレイク#65である。これらの導電性微粉末を前記バインダー樹脂と共に、固形分が75質量%となるように溶剤(ダイセル化学工業社のエチルグリコールアセテート)に分散して電極用導電性ペーストとしたものである。比較のために、酸化錫微粉末に変えて石原産業社の酸化チタン微粉末(以下、酸化Ti微粉末)ET−500W、ライオン社のカーボンブラック(以下、CB微粉末)であるケッチェンブラックEC、Inco Limited社のニッケル微粉末(以下、Ni微粉末)であるニッケルパウダー210を添加した電極用導電性ペーストも作製した。   The effects of the conductive paste of the present invention will be described by the following examples. The electrode paste having the composition shown in Table 1 is cured on a base film (product number: 300RM-4) of Toyobo Co., Ltd. having an ITO conductive layer at 120 ° C. for 10 minutes to form an electrode layer. The specific resistance, initial contact resistance, heat resistance test, moisture resistance test, and adhesion were measured. The binder resin used is Byron 500, which is a polyester resin from Toyobo Co., Ltd. As phosphorous-doped tin oxide fine powder (hereinafter referred to as Sn (P) oxide fine powder), Mitsubishi Materials Corporation S-2000, and as antimony-doped tin oxide fine powder (hereinafter referred to as Sn (Sb) oxide fine powder), Mitsubishi Materials Corporation. Transparent conductive powder TZ-1 (particle size: 10 nm) and Elecom TL-20 (particle size: 7 μm) manufactured by Catalyst Kasei. Furthermore, as a tin oxide fine powder (hereinafter referred to as Sn oxide), TIPEVI (particle size: 1 μm) manufactured by Mitsui Kinzoku Co., Ltd., and as a silver fine powder (hereinafter referred to as Ag fine powder), a flaky silver fine powder manufactured by Fellow's Silver Flake # 65. These conductive fine powders are dispersed in a solvent (Ethyl Glycol Acetate from Daicel Chemical Industries) together with the binder resin so as to have a solid content of 75% by mass to obtain a conductive paste for electrodes. For comparison, Ketjen Black EC, which is a titanium oxide fine powder (hereinafter referred to as Ti oxide fine powder) ET-500W manufactured by Ishihara Sangyo Co., Ltd., and a carbon black (hereinafter referred to as CB fine powder) manufactured by Lion, is used instead of tin oxide fine powder. In addition, a conductive paste for electrodes to which nickel powder 210, which is nickel fine powder (hereinafter referred to as Ni fine powder), manufactured by Inco Limited was added.

つぎに、前記試験項目について説明する。比抵抗は、導電性ペーストをガラス板上で120℃×10分間硬化させて電極層とし、ADVANTEST社製のデジタルマルチメーター(R6581D)を用いて抵抗値を測定し、さらに膜厚、電極間距離を測定して算出した。接触抵抗は、導電性ペーストをITO導電層を有する基材フィルム上で120℃×10分間硬化させて電極層を形成し、ダイアインスツルメンツ社製の4端子4深針法高精度低抵抗率計(ロレスターGP)を用いて測定した。また耐熱試験は、初期接触抵抗測定に用いた試料を85℃×500時間放置した後の接触抵抗を測定したものである。さらに耐湿試験は、初期接触抵抗測定に用いた試料を65℃×湿度95%×500時間放置した後の接触抵抗を測定したものである。また、付着性としては、電極層を形成し導電性ペーストをITO導電層を有する基材フィルム上で120℃×10分間硬化して電極層を形成し、1mm幅で10×10の碁盤目状にカッターで切れ目を入れセロハンテープ試験を行い、全く剥がれないものを合格として○印で記載した。結果は表1に示したとおりである。   Next, the test items will be described. The specific resistance is obtained by curing a conductive paste on a glass plate at 120 ° C. for 10 minutes to form an electrode layer, measuring the resistance value using a digital multimeter (R6581D) manufactured by ADVANTEST, and further measuring the film thickness and interelectrode distance. Was measured and calculated. The contact resistance is obtained by curing the conductive paste on a substrate film having an ITO conductive layer at 120 ° C. for 10 minutes to form an electrode layer, and a four-terminal four-deep needle method high-precision low resistivity meter (manufactured by Dia Instruments) ( Measured using Lorester GP). The heat resistance test is a measurement of the contact resistance after the sample used for the initial contact resistance measurement is left at 85 ° C. for 500 hours. Further, the moisture resistance test is a measurement of the contact resistance after the sample used for the initial contact resistance measurement is left at 65 ° C. × 95% humidity × 500 hours. In addition, as an adhesive property, an electrode layer is formed, and the conductive paste is cured on a substrate film having an ITO conductive layer at 120 ° C. for 10 minutes to form an electrode layer. A cellophane tape test was conducted with a cutter, and those that did not peel off at all were marked as “O”. The results are as shown in Table 1.

Figure 0005169501
Figure 0005169501

表1に記載するとおり、実施例1〜16に示した電極用導電性ペーストを使用したものは、導電性微粉末の特別な処理工程を行わなくても、透明導電性塗膜の電極層として用いた場合に、接触抵抗が銀微粉末を用いた導電性ペーストの1/4〜1/10と優れた電極用導電性ペーストであり、それを用いた透明タッチパネルを同様の特性を有していた。すなわち、実施例1〜4に記載されるように、Ag微粉末99〜85質量%と、粒径が10nmの酸化Sn(Sb)微粉末1〜15質量%とを混合した導電性微粉末を用いた電極用導電性ペーストは、比抵抗値が略10×10−5台であり、耐熱試験後の接触抵抗値が7.2〜3.6Ω、耐湿試験後の接触抵抗値も7.5〜4.0Ωと、銀微粉末を用いた導電性ペーストの1/4〜1/10と優れた電極用導電性ペーストであることが判る。また、付着性についても前記セロハンテープ試験で全く剥がれがなく、合格であった。また、実施例5〜8に記載されるように、粒径が70μmの酸化Sn(Sb)微粉末を用いた他は、実施例1〜4と同様の組成の導電性微粉末を使用した電極用導電性ペーストも、比抵抗値が略10×10−5台であり、耐熱試験後の接触抵抗値が7.3〜4.0Ω、耐湿試験後の接触抵抗値も7.7〜4.4Ωと、銀微粉末を用いた導電性ペーストの1/4〜1/10と優れた電極用導電性ペーストであることが判る。また、付着性についても前記セロハンテープ試験で全く剥がれがなく、合格であった。さらに、実施例9〜12に記載されるように、Ag微粉末99〜85質量%と、粒径が10nmの酸化Sn(P)微粉末1〜15質量%とを混合した導電性微粉末を使用した電極用導電性ペーストは、比抵抗値が略10×10−5台であり、耐熱試験後の接触抵抗値が7.1〜3.3Ω、耐湿試験後の接触抵抗値も8.3〜4.7Ωと、銀微粉末を用いた導電性ペーストの1/4〜1/10と優れた電極用導電性ペーストであることが判る。また、付着性についても前記セロハンテープ試験で全く剥がれがなく、合格であった。また、実施例13〜16に記載されるように、Ag微粉末99〜85質量%と、粒径が1μmの酸化Sn微粉末1〜15質量%とを混合した導電性微粉末を用いた電極用導電性ペーストも、比抵抗値が略10×10−5台であり、耐熱試験後の接触抵抗値が7.4〜4.1Ω、耐湿試験後の接触抵抗値も9.1〜5.6Ωと、銀微粉末を用いた導電性ペーストの1/4〜1/10と優れた電極用導電性ペーストであることが判る。また、付着性についても前記セロハンテープ試験で全く剥がれがなく、合格であった。 As described in Table 1, those using the conductive paste for electrodes shown in Examples 1 to 16 can be used as the electrode layer of the transparent conductive coating film without performing a special treatment step for the conductive fine powder. When used, it is a conductive paste for electrodes with a contact resistance of 1/4 to 1/10 that of a conductive paste using fine silver powder, and a transparent touch panel using the same has similar characteristics. It was. That is, as described in Examples 1 to 4, a conductive fine powder obtained by mixing 99 to 85% by mass of Ag fine powder and 1 to 15% by mass of oxidized Sn (Sb) fine powder having a particle diameter of 10 nm. The electrode conductive paste used has a specific resistance value of about 10 × 10 −5 units, a contact resistance value of 7.2 to 3.6Ω after the heat resistance test, and a contact resistance value of 7.5 after the moisture resistance test. It can be seen that it is a conductive paste for an electrode having an excellent conductivity of ˜4.0Ω and ¼ to 1/10 of the conductive paste using silver fine powder. In addition, the adhesiveness was acceptable without any peeling in the cellophane tape test. Further, as described in Examples 5 to 8, an electrode using conductive fine powder having the same composition as in Examples 1 to 4 except that oxidized Sn (Sb) fine powder having a particle size of 70 μm was used. The conductive paste also has a specific resistance value of about 10 × 10 −5 units, a contact resistance value after the heat resistance test of 7.3 to 4.0Ω, and a contact resistance value after the moisture resistance test of 7.7 to 4. It can be seen that the conductive paste for electrodes is excellent as 4Ω and ¼ to 1/10 of the conductive paste using silver fine powder. In addition, the adhesiveness was acceptable without any peeling in the cellophane tape test. Furthermore, as described in Examples 9 to 12, a conductive fine powder obtained by mixing 99 to 85% by mass of Ag fine powder and 1 to 15% by mass of oxidized Sn (P) fine powder having a particle size of 10 nm. The electrode conductive paste used has a specific resistance value of about 10 × 10 −5 units, a contact resistance value of 7.1 to 3.3Ω after the heat resistance test, and a contact resistance value of 8.3 after the moisture resistance test. It can be seen that this is an excellent conductive paste for electrodes, ˜4.7Ω, ¼ to 1/10 of the conductive paste using silver fine powder. In addition, the adhesiveness was acceptable without any peeling in the cellophane tape test. Moreover, as described in Examples 13 to 16, an electrode using conductive fine powder in which 99 to 85% by mass of Ag fine powder and 1 to 15% by mass of oxidized Sn fine powder having a particle size of 1 μm were mixed. The conductive paste also has a specific resistance value of about 10 × 10 −5 units, a contact resistance value after the heat resistance test of 7.4 to 4.1Ω, and a contact resistance value after the moisture resistance test of 9.1 to 5. It can be seen that the conductive paste for electrodes is 6Ω and ¼ to 1/10 of the conductive paste using silver fine powder. In addition, the adhesiveness was acceptable without any peeling in the cellophane tape test.

これに対して、比較例1示したAg微粉末が100質量%の場合には、初期接触抵抗値そのものが30.0Ωと実施例のものに比較して高い値であることが判る。また、比較例2のように、Ag微粉末70質量%、粒径が10nmの酸化Sn(Sb)微粉末を30%とした導電性微粉末を使用した導電性ペーストの場合には、比抵抗が10-4の中ごろの値となり、実施例に示したものと比較すると大きくなっていることが判る。これは、Ag微粉末よりも導電性が劣る酸化Sn(Sb)微粉末の添加量が多いためと思われる。そして、比較例3のようにAg微粉末95質量%に対して、酸化Tiの微粉末を5質量%添加した導電性ペーストの場合は、初期接触抵抗値がAg微粉末100質量%のものと余り変わらず、接触抵抗を改善する効果は見られない。また、比較例4のように、Ag微粉末95質量%に対して、CB粉末を5質量%添加した導電性ペーストの場合も、初期接触抵抗値がAg微粉末100質量%のものと余り変わらず、接触抵抗を改善する効果は見られなかった。さらに、比較例5のように、Ag微粉末95質量%に対して、Niの微粉末を5質量%添加した導電性ペーストの場合も同様に、初期接触抵抗値がAg微粉末100質量%のものより大きな値となり、接触抵抗を改善する効果は見られなかった。 On the other hand, when the Ag fine powder shown in Comparative Example 1 is 100% by mass, it can be seen that the initial contact resistance value itself is 30.0Ω, which is higher than that of the example. Further, as in Comparative Example 2, in the case of the conductive paste using the conductive fine powder in which the Ag fine powder is 70% by mass and the oxidized Sn (Sb) fine powder having a particle size of 10 nm is 30%, the specific resistance It becomes a middle value of 10 −4 , which is larger than that shown in the example. This seems to be because the added amount of fine powder of oxidized Sn (Sb), which is inferior in conductivity to fine Ag powder, is large. In the case of a conductive paste in which 5% by mass of fine Ti oxide powder is added to 95% by mass of Ag fine powder as in Comparative Example 3, the initial contact resistance value is 100% by mass of Ag fine powder. There is not much change, and the effect of improving the contact resistance is not seen. Also, in the case of the conductive paste in which 5% by mass of CB powder is added to 95% by mass of Ag fine powder as in Comparative Example 4, the initial contact resistance value is much different from that of 100% by mass of Ag fine powder. In addition, the effect of improving the contact resistance was not observed. Further, as in Comparative Example 5, in the case of a conductive paste in which 5% by mass of Ni fine powder was added to 95% by mass of Ag fine powder, the initial contact resistance value was similarly 100% by mass of Ag fine powder. The value was larger than the above, and no effect of improving the contact resistance was found.

本発明の電極用導電性ペーストは、Ag微粉末のみを使用する従来の導電性ペーストと比較して、接触抵抗値を大幅に小さくできる効果があると共に、種々の環境下で長期間使用しても接触抵抗値の変化が少なく安定しているので、透明タッチパネル用の電極材料として有用なものである。さらに、電極層の形成時の取扱いが容易であるから製造コスト等からも有利な透明タッチパネルが得られる。   The conductive paste for electrodes of the present invention has an effect of greatly reducing the contact resistance value as compared with the conventional conductive paste using only Ag fine powder, and is used for a long time in various environments. Since it is stable with little change in the contact resistance value, it is useful as an electrode material for a transparent touch panel. Furthermore, since the handling at the time of formation of an electrode layer is easy, a transparent touch panel advantageous from the manufacturing cost and the like can be obtained.

本発明の透明タッチパネルの1例を示す概略断面図である。It is a schematic sectional drawing which shows one example of the transparent touch panel of this invention.

符号の説明Explanation of symbols

1 透明タッチパネル
2、下部基材板
2´ 上部基材板
3、 下部導電層
3´ 上部導電層
4、 下部電極層
4´ 上部電極層
5 粘着材
6、6´ レジスト層
7 スペーサ
DESCRIPTION OF SYMBOLS 1 Transparent touch panel 2, Lower base plate 2 'Upper base plate 3, Lower conductive layer 3' Upper conductive layer 4, Lower electrode layer 4 'Upper electrode layer 5 Adhesive material 6, 6' Resist layer 7 Spacer

Claims (4)

透明導電性膜の電極用として使用される導電性ペーストであって、バインダー樹脂、導電性微粉末及び溶剤を必須成分とし、前記導電性微粉末が酸化錫微粉末0.2〜20質量%、銀微粉末99.8〜80質量%からなり、
前記バインダー樹脂が、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、塩化ビニル酢酸ビニル共重合樹脂、ウレタン樹脂、エポキシ樹脂からなる群より選ばれる少なくとも一つであり、
前記溶剤が、エチルジグリコールアセテート、ブチルグリコールアセテート、ブチルジグリコールアセテート、ベンジルアルコール、イソホロンからなる群より選ばれる少なくとも一つであることを特徴とする電極用導電性ペースト。
A conductive paste used for an electrode of a transparent conductive film, comprising a binder resin, conductive fine powder and a solvent as essential components, wherein the conductive fine powder is 0.2 to 20% by mass of tin oxide fine powder, silver powder 99.8 to 80 wt% Tona is,
The binder resin is at least one selected from the group consisting of polyester resin, acrylic resin, phenol resin, vinyl chloride vinyl acetate copolymer resin, urethane resin, epoxy resin,
It said solvent is ethyl diglycol acetate, butyl glycol acetate, butyl diglycol acetate, benzyl alcohol, electrode conductive paste consisting at least one Der wherein Rukoto selected from the group consisting of isophorone.
前記酸化錫微粉末が、アンチモンドープされた酸化錫微粉末であることを特徴とする請求項1に記載の電極用導電性ペースト。   The conductive paste for an electrode according to claim 1, wherein the tin oxide fine powder is an antimony-doped tin oxide fine powder. 前記酸化錫微粉末の粒径が、5nm〜30μmであることを特徴とする請求項1または2のいずれかに記載の電極用導電性ペースト。   3. The conductive paste for an electrode according to claim 1, wherein the tin oxide fine powder has a particle size of 5 nm to 30 μm. 請求項1〜3のいずれかに記載される電極用導電性ペーストを用いて、透明導電性膜に電極層を形成したことを特徴とする透明タッチパネル。   A transparent touch panel, wherein an electrode layer is formed on a transparent conductive film using the electrode conductive paste according to claim 1.
JP2008145738A 2008-06-03 2008-06-03 Electrode paste for electrodes and transparent touch panel Active JP5169501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145738A JP5169501B2 (en) 2008-06-03 2008-06-03 Electrode paste for electrodes and transparent touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145738A JP5169501B2 (en) 2008-06-03 2008-06-03 Electrode paste for electrodes and transparent touch panel

Publications (2)

Publication Number Publication Date
JP2009295325A JP2009295325A (en) 2009-12-17
JP5169501B2 true JP5169501B2 (en) 2013-03-27

Family

ID=41543344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145738A Active JP5169501B2 (en) 2008-06-03 2008-06-03 Electrode paste for electrodes and transparent touch panel

Country Status (1)

Country Link
JP (1) JP5169501B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140115316A (en) * 2012-01-19 2014-09-30 도레이 카부시키가이샤 Conductive paste and method for producing conductive pattern
JP6213204B2 (en) * 2013-12-13 2017-10-18 三菱マテリアル株式会社 Ag base layer forming paste
JP6248619B2 (en) * 2013-12-25 2017-12-20 三菱マテリアル株式会社 Power module substrate, manufacturing method thereof, and power module
JP6729378B2 (en) * 2015-07-10 2020-07-22 東レ株式会社 Conductive paste, touch sensor member and conductive pattern manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286936A (en) * 1996-04-22 1997-11-04 Sumitomo Metal Mining Co Ltd Applying solution for forming transparent conductive film, transparent conductive film using the same and its formation
KR100472496B1 (en) * 1997-07-23 2005-05-16 삼성에스디아이 주식회사 Transparent conductive composition, transparent conductive layer formed therefrom and manufacturing method of the transparent conductive layer
JP2003217348A (en) * 2002-01-21 2003-07-31 Matsushita Electric Ind Co Ltd Conductive paste, manufacturing method therefor and light-transmissive touch panel using this
JP2006059720A (en) * 2004-08-20 2006-03-02 Sony Corp Conductive paste and touch panel

Also Published As

Publication number Publication date
JP2009295325A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US8766927B2 (en) Touch panel and display device using the same
US8350727B2 (en) Touch panel and electronic device including the same
CN102467989A (en) Conductive paste composition and electrode prepared using the same
KR101726908B1 (en) Transparent Electrode Formed having Improved Transmittance and Transparency
TW201132990A (en) Contact resistance measurement for resistance linearity in nanostructure thin films
JP2011248629A (en) Transparent electroconductive base material
JP5169501B2 (en) Electrode paste for electrodes and transparent touch panel
JP2015504384A (en) Base film for manufacturing transparent electrode film
KR101849449B1 (en) Conductive structure body and method for manufacturing the same
KR20150032448A (en) Transparent conductive structure having metal mesh
CN103366862A (en) Polymer thick film solder alloy/metal conductor compositions
JP4687733B2 (en) Transparent electrode, transparent conductive substrate and transparent touch panel
US20130264179A1 (en) Touch panel
CN103219062A (en) Polymer thick film solder alloy conductor composition
TW201446981A (en) Touch panel, preparing method thereof, and Ag-Pd-Nd alloy for touch panel
JP5279530B2 (en) Touch panel
JP2015032437A (en) Transparent electroconductive sheet and touch panel using transparent electroconductive sheet
CN106028637B (en) Flexible wiring board and use thereof
CN109785998B (en) Transparent conductive film and preparation method thereof
JPH1165771A (en) Electrode substrate for touch panel and manufacture of the same
JPH0250214A (en) Touch panel
US11629274B2 (en) Adhesive sheet and transparent electrode comprising the same
CN103722864A (en) Lamination of polymer thick film conductor compositions
JP6809862B2 (en) Conductive sheet for patternless touch panel and its manufacturing method
US20180067602A1 (en) Transparent pressure sensing film composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250