KR101726908B1 - Transparent Electrode Formed having Improved Transmittance and Transparency - Google Patents
Transparent Electrode Formed having Improved Transmittance and Transparency Download PDFInfo
- Publication number
- KR101726908B1 KR101726908B1 KR1020130096310A KR20130096310A KR101726908B1 KR 101726908 B1 KR101726908 B1 KR 101726908B1 KR 1020130096310 A KR1020130096310 A KR 1020130096310A KR 20130096310 A KR20130096310 A KR 20130096310A KR 101726908 B1 KR101726908 B1 KR 101726908B1
- Authority
- KR
- South Korea
- Prior art keywords
- transparent electrode
- overcoat layer
- layer
- metal
- transparency
- Prior art date
Links
- 238000002834 transmittance Methods 0.000 title description 5
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 239000002184 metal Substances 0.000 claims description 40
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 38
- 239000002070 nanowire Substances 0.000 claims description 36
- 239000002041 carbon nanotube Substances 0.000 claims description 25
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 25
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 229920006254 polymer film Polymers 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 238000003980 solgel method Methods 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 3
- 239000004695 Polyether sulfone Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229920006393 polyether sulfone Polymers 0.000 claims description 3
- 239000000523 sample Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229920006289 polycarbonate film Polymers 0.000 claims description 2
- 229920006267 polyester film Polymers 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims 3
- 239000010931 gold Substances 0.000 claims 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 238000010030 laminating Methods 0.000 claims 1
- 239000004332 silver Substances 0.000 claims 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims 1
- 229920001940 conductive polymer Polymers 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 60
- 238000000576 coating method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002109 single walled nanotube Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002079 double walled nanotube Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 239000002048 multi walled nanotube Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000002042 Silver nanowire Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Non-Insulated Conductors (AREA)
- Laminated Bodies (AREA)
Abstract
본 발명에 따른 투명전극은 (A) 베이스 기판의 상단에 (B) 전도막층이 적층되고, 전도막층(B) 상단에 (C) 제1오버코팅층이 적층되며, 베이스 기판(A)의 하단에 (D) 제2오버코팅층이 적층되는 적층형 투명전극이고, 투명도, 투과도 및 전기전도도가 우수하다.The transparent electrode according to the present invention comprises (A) a conductive polymer film layer (B) on the top of a base substrate, (C) a first overcoat layer laminated on the conductive film layer (B) (D) a second overcoat layer, and is excellent in transparency, transparency and electric conductivity.
Description
본 발명은 투명전극에 관한 것이다. 보다 구체적으로, 본 발명은 투과도, 투명도 및 전기전도도가 우수한 투명전극에 관한 것이다.
The present invention relates to a transparent electrode. More specifically, the present invention relates to a transparent electrode having excellent transparency, transparency and electrical conductivity.
최근 얇고 가벼운 디스플레이 분야의 기술이 누적적으로 진보함에 따라 투명전극용 소재에 대한 관심이 높아지고 있다. 투명전극용 소재로 사용되기 위해서는 전기전도성을 가지면서 동시에 투명한 성질을 가져야 하고, 이러한 투명전극용 소재는 평판디스플레이(flat panel display) 및 터치스크린 패널(touch screen panel)과 같은 첨단 디스플레이 기기에 주로 응용되고 있다.Recently, as the technologies of thin and light display fields have progressed cumulatively, attention has been paid to materials for transparent electrodes. In order to be used as a material for a transparent electrode, the material for the transparent electrode must have electrical conductivity and at the same time have a transparent property. The transparent electrode material is mainly applied to advanced display devices such as a flat panel display and a touch screen panel .
평판디스플레이 분야에서 투명전극으로 사용되는 재료는 보통 인듐주석산화물(ITO), 인듐아연산화물(IZO)과 같은 금속산화물전극을 유리 또는 플라스틱 기판상에 스퍼터링(sputtering)과 같은 증착방법을 이용하여 코팅하여 사용하여 왔다. 다만, 금속산화물을 이용하여 제조된 투명전극 필름은 높은 전도성과 투명도를 가지지만 마찰저항이 낮고 구부림(bending)에 대한 취약한 성질을 가지고 있다. 또한, 주재료로 사용되는 인듐(indium)은 천연 매장량이 한정되어 가격이 매우 높을 뿐만 아니라 가공성이 좋지 않은 문제점을 가진다.In the field of flat panel displays, materials used as transparent electrodes are usually formed by coating a metal oxide electrode such as indium tin oxide (ITO), indium zinc oxide (IZO) on a glass or plastic substrate using a deposition method such as sputtering Has been used. However, the transparent electrode film produced using the metal oxide has high conductivity and transparency, but has a low frictional resistance and a weak bending property. In addition, indium used as a main material has a problem of not only having a very high price due to limited natural reserves but also having poor processability.
상기와 같은 가공성 문제를 해결하기 위하여 폴리아닐린, 폴리티오펜과 같은 전도성고분자를 이용한 투명전극의 개발이 이루어지고 있다. 전도성고분자를 이용한 투명전극필름은 도핑에 의해 높은 전도성을 얻을 수 있으며, 코팅막의 접합도가 우수하고, 구부러짐 특성이 우수하다는 장점이 있다. 그러나 전도성고분자를 이용한 투명필름은 투명전극에 사용될 정도의 우수한 전기전도도를 얻기가 어려우며, 또한 투명도가 낮다는 문제가 있다.In order to solve the above processability problem, a transparent electrode using a conductive polymer such as polyaniline or polythiophene has been developed. The transparent electrode film using the conductive polymer has an advantage that high conductivity can be obtained by doping, excellent adhesion of the coating film, and excellent bending property. However, a transparent film using a conductive polymer has a problem that it is difficult to obtain an excellent electrical conductivity as high as that used for a transparent electrode, and transparency is low.
그리하여 상기 인듐주석산화물(ITO)과 필적할 수 있는 소재로 탄소나노튜브를 개발하고 있다. 이러한 탄소나노튜브는 여러 분야에서 이용되고 있는데, 특히 우수한 전기전도성으로 인한 전극재료로서의 연구가 활발하게 이루어지고 있다. Thus, carbon nanotubes are being developed as materials comparable to indium tin oxide (ITO). Such carbon nanotubes have been used in various fields, and studies as an electrode material due to excellent electrical conductivity have been actively carried out.
탄소나노튜브는 흑연면(graphite sheet)이 나노크기직경의 실린더 형태를 가지며, sp2 결합 구조를 갖는다. 이 흑연면의 각도 및 구조에 따라서 도체 또는 반도체의 특성을 보인다. 또한 벽을 이루고 있는 결합 수에 따라서 단일벽 탄소나노튜브(SWCNT; single-walled carbon nanotube), 이중벽 탄소나노튜브(DWCNT; double-walled carbon nanotube), 다중벽 탄소나노튜브(MWCNT; multi-walled carbon nanotube), 다발형 탄소나노튜브(rope carbon nanotube)로 분류될 수 있다. 특히 단일벽 탄소나노튜브는 금속적 특성과 반도체적인 특성을 가지고 있어 다양한 전기적, 화학적, 물리적 및 광학적 특성을 나타내며, 이러한 특성들을 이용하여 더욱 세밀하고 집적된 소자들을 구현할 수 있다. 현재 연구되고 있는 탄소나노튜브의 응용분야는 플렉시블 또는 일반 투명전극(flexible and/or transparent conductive film), 정전분산필름, 전계방출 소자(field emission device), 면상발열체(sheet type heating element), 광전자 소자(optoelectronic device) 및 각종 센서(sensor), 트랜지스터 등이 있다. Carbon nanotubes have a nano-sized cylindrical shape with a graphite sheet and an sp 2 bond structure. The characteristics of the conductor or the semiconductor are shown according to the angle and the structure of the graphite surface. In addition, depending on the number of walls, a single-walled carbon nanotube (SWCNT), a double-walled carbon nanotube (DWCNT), a multi-walled carbon nanotube (MWCNT) nanotubes, and rope carbon nanotubes. In particular, single-walled carbon nanotubes exhibit various electrical, chemical, physical, and optical characteristics due to their metallic and semiconducting properties, which can be used to implement more detailed and integrated devices. Current applications of carbon nanotubes include flexible and / or transparent conductive films, electrostatic dispersion films, field emission devices, sheet type heating elements, optoelectronic devices, (optoelectronic device), various sensors, and transistors.
이러한 탄소나노튜브는 전도성 재료로서 활발하게 사용되고 있으나, 투명전극에 사용하는 경우에는 전기전도성이 충분히 확보되지 못하는 문제점을 가진다. 다만, 탄소나노튜브는 비교적 헤이즈 값이 낮으므로 투명성을 확보하는 것이 용이한 이점을 가진다. Such a carbon nanotube is actively used as a conductive material, but when it is used for a transparent electrode, there is a problem that sufficient electrical conductivity can not be secured. However, since carbon nanotubes have a relatively low haze value, it is easy to secure transparency.
반면, 금속나노와이어는 시간의 흐름에 따라 산화될 수 있으며, 금속나노와이어가 산화되면 투명전극의 전기전도도가 저하되고, 전극이 부식될 수 있으며, 변색의 문제가 발생할 수 있다. 따라서 투명전극을 장기간 사용하기 위해서는 금속나노와이어의 산화를 방지할 필요가 있다. 또한, 금속나노와이어는 전기전도도가 우수한 반면, 투명성이 저하되므로 금속나노와이어를 적용하는 경우에는 전기전도성을 유지하되 투명성을 동시에 확보하기 위한 기술적 해결원리가 필요하다.On the other hand, the metal nanowires can be oxidized with the passage of time, and when the metal nanowires are oxidized, the electrical conductivity of the transparent electrode is lowered, the electrodes may be corroded, and discoloration may occur. Therefore, in order to use the transparent electrode for a long time, it is necessary to prevent oxidation of the metal nanowire. In addition, since metal nanowires have excellent electrical conductivity, transparency is deteriorated. Therefore, when metal nanowires are applied, a technical solution principle is required to maintain the electrical conductivity but secure transparency at the same time.
일반적으로 투명전극에 있어서 전도막층을 형성하고 전도막층 상단에 탄소나노튜브와 금속나노와이어를 포함하는 오버코팅층을 추가하여 투과도 및 전기전도도를 향상시킨다. 그러나 전도막층 상단에만 오버코팅층을 추가하는 경우, 목적하는 투과도, 투명도 및 전기전도도를 달성할 수 없다는 문제점이 있다. Generally, a conductive film layer is formed on a transparent electrode and an overcoat layer containing carbon nanotubes and metal nanowires is added to the top of the conductive film layer to improve the transmittance and electrical conductivity. However, when an overcoat layer is added only to the top of the conductive film layer, the desired transparency, transparency and electrical conductivity can not be achieved.
한국공개특허 제2008-0066658호는 제1층, 도전층, 제2층, 기판, 제3층으로 구성된 다중층 투명 도전체를 개시하고 있으나, 도전층과 기판 사이에 제2층을 형성하기 위한 추가적인 공정이 필요하며, 제2층은 도전층과 기판을 접착하기 위한 접착층의 역할을 하므로, 목적하는 투과도, 투명도 및 전기전도도를 달성할 수 없다는 문제점이 있다. Korean Patent Publication No. 2008-0066658 discloses a multilayer transparent conductor composed of a first layer, a conductive layer, a second layer, a substrate, and a third layer, An additional process is required, and since the second layer serves as an adhesive layer for bonding the conductive layer and the substrate, the desired transmittance, transparency and electric conductivity can not be achieved.
이에 본 발명자는 상기와 같은 문제점을 해결하기 위하여, 전도막층이 형성된 베이스 기판의 상단 및 하단에 오버코팅층을 형성하여, 투과도, 투명도 및 전기전도도가 우수한 투명전극을 개발하기에 이른 것이다.
Accordingly, the present inventors have developed a transparent electrode having superior transparency, transparency, and electrical conductivity by forming an overcoat layer on the upper and lower ends of a base substrate having a conductive film layer.
본 발명의 목적은 투과도가 우수한 투명전극을 제공하기 위한 것이다.An object of the present invention is to provide a transparent electrode having excellent transparency.
본 발명의 다른 목적은 투명도가 우수한 투명전극을 제공하기 위한 것이다.Another object of the present invention is to provide a transparent electrode having excellent transparency.
본 발명의 또다른 목적은 전기전도도가 우수한 투명전극을 제공하기 위한 것이다.It is still another object of the present invention to provide a transparent electrode having excellent electrical conductivity.
본 발명의 상기 및 기타의 목적들은 모두 하기 설명되는 본 발명에 의해서 달성될 수 있다.
The above and other objects of the present invention can be achieved by the present invention described below.
본 발명에 따른 적층형 투명전극은 (A) 베이스 기판의 상단에 (B) 전도막층이 적층되고, 전도막층(B) 상단에 (C) 제1오버코팅층이 적층되며, 베이스 기판(A)의 하단에 (D) 제2오버코팅층이 적층되어 형성된다.The laminated transparent electrode according to the present invention is a laminated transparent electrode comprising: (A) a conductive film layer (B) laminated on an upper side of a base substrate, (C) a first overcoat layer laminated on the conductive film layer (B) (D) a second overcoat layer.
베이스 기판(A)은 고분자 필름 또는 유리기판이고, 고분자 필름은 폴리에스테르계 필름, 폴리카보네이트계 필름, 폴리에테르설폰계 필름, 또는 아크릴계 필름으로 이루어진다.The base substrate (A) is a polymer film or a glass substrate, and the polymer film is composed of a polyester film, a polycarbonate film, a polyether sulfone film, or an acrylic film.
전도막층(B)은 탄소나노튜브, 금속나노와이어, 탄소나노튜브-금속나노와이어의 복합체, 그래핀 또는 이들의 혼합물로 이루어진다.The conductive film layer (B) is composed of a carbon nanotube, a metal nanowire, a composite of a carbon nanotube-metal nanowire, a graphene, or a mixture thereof.
탄소나노튜브는 종횡비(aspect ratio)가 1:10 내지 1:20,000이다.Carbon nanotubes have an aspect ratio of 1:10 to 1: 20,000.
금속나노와이어는 금속으로 은(Ag), 금(Au), 백금(Pt), 주석(Sn), 철(Fe), 니켈(Ni), 코발트(Co), 알루미늄(Al), 아연(Zn), 구리(Cu), 인듐(In), 티타늄(Ti), 또는 이들의 혼합물을 포함하고, 금속나노와이어는 종횡비(aspect ratio)가 1:20 내지 1:2,000이다.The metal nanowires are made of metal such as Ag, Au, Pt, Sn, Fe, Ni, Cobalt, Al, Zn, , Copper (Cu), indium (In), titanium (Ti), or mixtures thereof, and the metal nanowires have an aspect ratio of 1:20 to 1: 2,000.
제1오버코팅층(C) 및 제2오버코팅층(D)은 고분자계 또는 무기계 용액이다. 무기계 용액은 졸-겔 공법에 의해 제조되고, 메탈옥사이드를 포함한다. 무기계 용액은 메탈 첨가제를 더 포함할 수 있다.The first overcoat layer (C) and the second overcoat layer (D) are polymeric or inorganic solutions. The inorganic solution is prepared by a sol-gel method and includes a metal oxide. The inorganic solution may further comprise a metal additive.
제1오버코팅층(C) 및 제2오버코팅층(D)은 두께가 40 내지 200 nm이다.The first overcoat layer (C) and the second overcoat layer (D) have a thickness of 40 to 200 nm.
이하 본 발명의 구체적인 내용을 하기에 상세히 설명한다.
Hereinafter, the present invention will be described in detail.
본 발명에 따른 투명전극은 투과도, 투명도 및 전기전도도가 우수한 투명전극을 제공하는 발명의 효과를 갖는다.
The transparent electrode according to the present invention has the effect of providing a transparent electrode having excellent transparency, transparency and electrical conductivity.
도 1은 본 발명의 실시예에 따라 제조된 투명전극을 나타낸다.
도 2는 본 발명의 비교실시예에 따라 제조된 투명전극을 나타낸다.1 shows a transparent electrode manufactured according to an embodiment of the present invention.
Figure 2 shows a transparent electrode made according to a comparative example of the present invention.
본 발명은 투명전극에 관한 것으로, 투과도, 투명도 및 전기전도도가 우수한 투명전극용 조성물에 관한 것이다.TECHNICAL FIELD The present invention relates to a transparent electrode, and relates to a composition for a transparent electrode having excellent transparency, transparency and electrical conductivity.
본 발명에 따른 적층형 투명전극은 (A) 베이스 기판의 상단에 (B) 전도막층이 적층되고, 전도막층(B) 상단에 (C) 제1오버코팅층이 적층되며, 베이스 기판(A)의 하단에 (D) 제2오버코팅층이 적층되어 형성된다.
The laminated transparent electrode according to the present invention is a laminated transparent electrode comprising: (A) a conductive film layer (B) laminated on an upper side of a base substrate, (C) a first overcoat layer laminated on the conductive film layer (B) (D) a second overcoat layer.
(A) 베이스 기판(A) a base substrate
본 발명은 투명전극에 관한 것이므로, 베이스 기판(A)은 기본적으로 투명성이 있을 것이 요구된다. 따라서 베이스 기판(A)은 투명성 고분자 필름 또는 유리기판을 사용하는 것이 바람직하다. 고분자 필름은 폴리에스테르계, 폴리카보네이트계, 폴리에테르설폰계, 또는 아크릴계 계통의 투명한 필름을 사용할 수 있으며, 보다 구체적으로는 폴리에틸렌테레프탈레이트(PET), 폴리이미드(PI), 폴리에틸렌나프탈레이트(PEN), 또는 폴리에테르설폰(PES)를 사용하는 것이 바람직하며, 더욱 바람직하게는 폴리에틸렌테레프탈레잉트(PET)를 사용할 수 있다.
Since the present invention relates to a transparent electrode, it is required that the base substrate (A) is basically transparent. Therefore, it is preferable to use a transparent polymer film or a glass substrate as the base substrate (A). As the polymer film, a transparent film of a polyester type, a polycarbonate type, a polyether sulfone type, or an acrylic type can be used. More specifically, a polyethylene terephthalate (PET), a polyimide (PI), a polyethylene naphthalate (PEN) , Or polyethersulfone (PES), and more preferably polyethylene terephthalate (PET).
(B) 전도막층(B) Conductive film layer
본 발명에 사용되는 전도막층(B)은 1차원구조 또는 2차원구조를 가지는 구조체를 사용할 수 있다. 1차원구조를 가지는 구조체는 탄소나노튜브, 금속나노와이어, 탄소나노튜브-금속나노와이어의 복합체가 있으며, 2차원구조를 가지는 구조체는 그래핀이 있다. 바람직하게는 1차원구조를 가지는 탄소나노튜브-금속나노와이어의 복합체를 사용할 수 있다.The conductive film layer (B) used in the present invention may be a structure having a one-dimensional structure or a two-dimensional structure. Structures having a one-dimensional structure include a carbon nanotube, a metal nanowire, and a composite of a carbon nanotube-metal nanowire. A structure having a two-dimensional structure includes graphene. Preferably, a composite of carbon nanotube-metal nanowires having a one-dimensional structure can be used.
탄소나노튜브는 비교적 헤이즈 값이 낮으므로 투명전극의 투명성을 향상시킬 수 있다. 탄소나노튜브는 단일벽 탄소나노튜브(single-walled carbon nanotube; SWCNT), 이중벽 탄소나노튜브(double-walled carbonnanotube; DWCNT), 다중벽 탄소나노튜브(multi-walled carbon nanotube; MWCNT), 다발형 탄소나노튜브(rope carbon nanotube) 중에서 하나 이상을 선택하여 사용할 수 있다. 이 중에서 단일벽 또는 이중벽 탄소나노튜브를 적어도 90 중량% 이상 포함하고, 1:10 내지 1:20,000의 종횡비(aspect ratio)를 갖는 탄소나노튜브를 사용하는 것이 바람직하다. Carbon nanotubes have a relatively low haze value, so that the transparency of the transparent electrode can be improved. BACKGROUND ART Carbon nanotubes include single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), multi-walled carbon nanotubes (MWCNTs) One or more of rope carbon nanotubes may be selected and used. Among them, it is preferable to use carbon nanotubes having at least 90% by weight of single wall or double wall carbon nanotubes and having an aspect ratio of 1:10 to 1: 20,000.
탄소나노튜브의 종횡비가 1:10 미만인 경우, 와이어(wire) 형상 구조물의 랜덤 네트워크(random network) 형성시 콘택 정션(contact junction)의 개수가 너무 많아져 면저항이 높아지며, 면저항을 유지하기 위한 탄소나노튜브의 개수가 증가하여 투과도를 떨어뜨리는 작용을 할 수 있으며, 탄소나노튜브의 종횡비가 1:20,000초과인 경우, 탄소나노튜브 분산성을 떨어뜨려 용액의 안정성에 영향을 미치고, 랜덤 네트워크(random network) 형성시 면저항이 불균일해질 수 있다.When the aspect ratio of the carbon nanotubes is less than 1:10, the number of contact junctions becomes too high when a random network of a wire-shaped structure is formed, so that the sheet resistance is increased, and the carbon nanotubes When the aspect ratio of the carbon nanotubes is more than 1: 20,000, the dispersion of the carbon nanotubes is deteriorated to affect the stability of the solution, and when the ratio of the random network ), The sheet resistance may become non-uniform.
금속나노와이어는 전기전도도가 우수하므로 투명전극의 전기전도도를 향상시킬 수 있다. 금속나노와이어에 사용되는 금속으로는 은(Ag), 금(Au), 백금(Pt), 주석(Sn), 철(Fe), 니켈(Ni), 코발트(Co), 알루미늄(Al), 아연(Zn), 구리(Cu), 인듐(In), 티타늄(Ti), 또는 이들의 혼합물을 사용할 수 있다. 이 중에서 전기전도도가 우수한 은나노와이어 또는 구리나노와이어를 사용하는 것이 바람직하고, 전기전도도가 가장 우수한 은나노와이어를 사용하는 것이 가장 바람직하며, 1:20 내지 1:2,000의 종횡비(aspect ratio)를 갖는 금속나노와이어를 사용하는 것이 바람직하다. The metal nanowire has an excellent electrical conductivity, so that the electrical conductivity of the transparent electrode can be improved. Examples of the metal used for the metal nanowire include a metal such as Ag, Au, Pt, Sn, Fe, Ni, Co, Al, (Zn), copper (Cu), indium (In), titanium (Ti), or a mixture thereof. Among them, it is preferable to use silver nano wire or copper nano wire having excellent electric conductivity, and it is most preferable to use silver nano wire having the highest electric conductivity, and metal having an aspect ratio of 1:20 to 1: 2,000 It is preferable to use nanowires.
금속나노와이어의 종횡비가 1:20 미만인 경우, 와이어(wire) 형상 구조물의 랜덤 네트워크(random network) 형성시 콘택 정션(contact junction)의 개수가 너무 많아져 면저항이 높아지며, 면저항을 유지하기 위한 나노와이어의 개수가 증가하여 투과도를 떨어뜨리는 작용 및 Haze를 높일 수 있으며, 반대로 금속나노와이어의 종횡비가 1:2,000 초과인 경우, 나노와이어 코팅한 후, 랜덤 네트워크(random network) 형성 시 contact junction이 적어져 면저항이 불균일 해질 수 있으며 특히 이로 인해 패턴 후 선저항이 불균일해질 수 있다.When the aspect ratio of the metal nanowires is less than 1:20, the number of contact junctions becomes too high in the formation of a random network of a wire-shaped structure, so that the sheet resistance is increased, And the haze can be increased. On the contrary, when the aspect ratio of the metal nanowires is more than 1: 2,000, the contact junction is reduced when forming a random network after nanowire coating. The sheet resistance may become nonuniform, and in particular, the line resistance of the pattern may become non-uniform.
투명전극의 투명성과 전기전도도를 동시에 향상시키기 위하여 탄소나노튜브-금속나노와이어의 복합체를 사용할 수 있다. 탄소나노튜브-금속나노와이어의 복합체는 상기에서 설명한 탄소나노튜브 및 금속나노와이어를 포함하며, 탄소나노튜브 20 내지 75 중량% 및 금속나노와이어 25 내지 80 중량%를 포함할 수 있다. A composite of carbon nanotube-metal nanowires can be used to simultaneously improve the transparency and electrical conductivity of the transparent electrode. The carbon nanotube-metal nanowire composite includes carbon nanotubes and metal nanowires as described above, and may include 20 to 75% by weight of carbon nanotubes and 25 to 80% by weight of metal nanowires.
본 발명은 1차원구조의 구조체뿐만 아니라 2차원구조의 구조체인 그래핀을 사용할 수 있다.
The present invention can use not only a one-dimensional structure but also a two-dimensional structure, graphene.
(C) 제1오버코팅층 및 (D) 제2오버코팅층(C) a first overcoat layer and (D) a second overcoat layer
제1오버코팅층(C) 및 제2오버코팅층(D)은 고분자계 또는 무기계 용액이다. 고분자계 용액을 사용하는 경우 UV-경화 또는 열경화에 의하여 고분자계 용액을 건조해야 하므로, 무기계 용액을 사용하는 것이 바람직하다. 무기계 용액은 졸-겔 공법에 의해 제조되고, 메탈옥사이드를 포함하며, 메탈옥사이드의 예로는 실리카옥사이드, 티타늄옥사이드 등이 있다. 전기전도도를 향상시키기 위하여 무기계 용액은 메탈 첨가제를 더 포함할 수 있다.The first overcoat layer (C) and the second overcoat layer (D) are polymeric or inorganic solutions. When a polymer-based solution is used, the polymer-based solution must be dried by UV-curing or thermosetting, so it is preferable to use an inorganic solution. Inorganic solutions are prepared by the sol-gel process and include metal oxides. Examples of metal oxides include silica oxides, titanium oxides, and the like. The inorganic solution may further include a metal additive to improve electrical conductivity.
제1오버코팅층(C) 및 제2오버코팅층(D)의 두께는 동일할 수도 있고 상이할 수도 있다. 제1오버코팅층(C) 및 제2오버코팅층(D)은 두께가 40 내지 200 nm이다. 두께가 40 nm 미만인 경우 헤이즈 값이 증가하여 투명전극의 투명도가 저하되고, 200 nm 초과인 경우 절연층인 오버코팅층에 의해 투명전극의 전기전도도가 저하된다. The thicknesses of the first overcoat layer (C) and the second overcoat layer (D) may be the same or different. The first overcoat layer (C) and the second overcoat layer (D) have a thickness of 40 to 200 nm. When the thickness is less than 40 nm, the haze value increases and the transparency of the transparent electrode decreases. When the thickness exceeds 200 nm, the electric conductivity of the transparent electrode decreases due to the overcoat layer as the insulating layer.
제1오버코팅층(C)을 형성하는 경우 투명전극의 투과도와 전기전도도를 향상시킬 수 있다.When the first overcoat layer (C) is formed, the transmittance and electrical conductivity of the transparent electrode can be improved.
금속나노와이어의 경우 베이스 기판(A) 위에 떠 있는 형상을 가지므로 전기전도도가 저하되나, 제1오버코팅층(C)을 형성하는 경우 금속나노와이어가 오버코팅층에 의해 눌려 금속나노와이어와 베이스 기판(A)과의 접촉에 의한 전기전도도가 향상되고, 금속나노와이어가 공기 중에 노출되는 것을 방지하여 금속나노와이어의 산화를 방지할 수 있다.In the case of the metal nanowire, since the metal nanowire has a floating shape on the base substrate A, the electrical conductivity is lowered. However, when the first overcoat layer C is formed, the metal nanowire is pressed by the overcoat layer, A) is improved and the metal nanowires are prevented from being exposed to the air, thereby preventing oxidation of the metal nanowires.
또한, 제1오버코팅층(C)은 베이스 기판(A) 위에 들뜬 탄소나노튜브 및 금속나노와이어를 고정시켜 탄소나노튜브 및 금속나노와이어의 이탈을 방지하므로, 투명전극을 구부려도 크랙이 거의 발생하지 않는다.In addition, the first overcoat layer C prevents the carbon nanotubes and the metal nanowires from being separated by fixing the carbon nanotubes and the metal nanowires on the base substrate A, so that even when the transparent electrodes are bent, Do not.
제2오버코팅층(D)을 형성하는 경우 각 층마다의 반사율을 제2오버코팅층(D)이 억제하므로, 투명전극의 투명도와 전기전도도를 향상시킬 수 있다. When the second overcoat layer (D) is formed, the second overcoat layer (D) suppresses the reflectance of each layer, thereby improving transparency and electrical conductivity of the transparent electrode.
제1오버코팅층(C) 및 제2오버코팅층(D)은 단면코팅법 또는 양면코팅법을 사용할 수 있다. 양면코팅법 중 롤투롤(Roll To Roll) 코팅법은 코팅층의 두께를 조절할 수 있고, 딥(Dip) 코팅법은 기판을 코팅용액에 담궈 코팅층을 형성하므로 코팅층의 두께를 조절할 수는 없으나 코팅법이 간단하다. The first overcoat layer (C) and the second overcoat layer (D) can be formed by a single-sided coating method or a double-sided coating method. In the double-side coating method, the roll-to-roll coating method can control the thickness of the coating layer. In the dip coating method, the substrate is immersed in the coating solution to form a coating layer. Simple.
본 발명의 투명전극은 UV/Vis 분광계를 사용하여 550㎚의 파장에서 측정한 전투과도가 94 내지 99%이다. 본 발명의 투명전극은 베이스 기판(A)의 전투과도에 비하여 5 내지 7% 향상된 성능을 갖는다. 높은 전투과도를 갖는 경우 디스플레이를 구동하기 위한 전압을 낮출 수 있어 디스플레이의 수명을 늘릴 수 있다.The transparent electrode of the present invention has a combattime of 94 to 99% measured at a wavelength of 550 nm using a UV / Vis spectrometer. The transparent electrode of the present invention has an improved performance of 5 to 7% compared to the transit time of the base substrate (A). Having high combat transients can lower the voltage to drive the display and increase the life of the display.
본 발명의 투명전극은 Nippon Denshoku社의 헤이즈 미터인 NHD-5000으로 측정한 헤이즈 값이 1.6% 이하이고, 투명전극과 베이스 기판(A)의 헤이즈 값의 차이가 0.6% 이하이다. 다시 말하면, 전도막층(B)의 헤이즈 값이 0.6% 이하이다. 이러한 투명전극과 베이스 기판(A)의 헤이즈 값의 차이를 조절함에 따라 베이스 기판(A) 종류의 헤이즈 값에 따른 전체 헤이즈 값을 예측할 수 있다. The transparent electrode of the present invention has a haze value of 1.6% or less as measured by a haze meter NHD-5000 manufactured by Nippon Denshoku, and a difference in haze value between the transparent electrode and the base substrate (A) is 0.6% or less. In other words, the haze value of the conductive film layer (B) is 0.6% or less. By adjusting the difference in haze value between the transparent electrode and the base substrate A, the total haze value according to the haze value of the type of the base substrate A can be predicted.
본 발명의 투명전극은 4점법(4 point-probe)방식을 이용하여 측정한 면저항이 30 내지 300Ω/□이다.The transparent electrode of the present invention has a sheet resistance of 30 to 300? /? As measured using a 4-point probe method.
제조된 투명전극은 투과도, 투명도 및 전기전도도가 우수하여 평판디스플레이, 터치스크린 패널과 같은 첨단 디스플레이 기기에 적용할 수 있다.The manufactured transparent electrode is excellent in transparency, transparency and electrical conductivity and can be applied to advanced display devices such as flat panel displays and touch screen panels.
본 발명은 하기의 실시예에 의해 보다 구체화될 것이나, 하기의 실시예는 본 발명을 예시하기 위한 목적으로 사용될 뿐이며 본 발명의 보호범위를 한정하고자 하는 것은 아니다.
The present invention will be further illustrated by the following examples, but the following examples are used for the purpose of illustrating the present invention and are not intended to limit the scope of protection of the present invention.
실시예Example 및 And 비교실시예Comparative Example
실시예 및 비교실시예에서 사용되는 각 구성성분은 다음과 같다.The components used in Examples and Comparative Examples are as follows.
(A) 베이스기판(A) a base substrate
TORAY社의 PET 필름으로 두께 188 ㎛의 XU46H를 사용하였으며, 투과도는 90.3%이며, 헤이즈 값은 1.0이다.The PET film of TORAY Co. used XU46H having a thickness of 188 탆, a transmittance of 90.3% and a haze value of 1.0.
(B) 전도막층(B) Conductive film layer
종횡비가 1:10,000 내지 1:15,000인 나노솔루션社의 SA210 grade의 단일벽 탄소나노튜브 20 내지 75 중량% 및 종횡비가 1:800 내지 1:1,200인 캠브리오스社의 은나노와이어 25 내지 80 중량%를 포함하는 탄소나노튜브-금속나노와이어 복합체를 사용하였다.20 to 75% by weight of SA210 grade single wall carbon nanotubes having an aspect ratio of 1: 10,000 to 1: 15,000 and 25 to 80% by weight of Cambria's silver nano wire having an aspect ratio of 1: 800 to 1: Carbon nanotube-metal nanowire composite was used.
(C) 제1오버코팅층 (C) a first overcoat layer
졸-겔 공법에 의해 제조된 무기계 용액인 메탈옥사이드(실리카옥사이드 또는 티타늄옥사이드) 용액을 사용하였다.A solution of a metal oxide (silica oxide or titanium oxide) which is an inorganic solution prepared by a sol-gel method was used.
(D) 제2오버코팅층(D) a second overcoat layer
졸-겔 공법에 의해 제조된 무기계 용액인 메탈옥사이드(실리카옥사이드 또는 티타늄옥사이드) 용액을 사용하였다.A solution of a metal oxide (silica oxide or titanium oxide) which is an inorganic solution prepared by a sol-gel method was used.
실시예Example 1 내지 4 1 to 4
실시예 1 내지 4는 베이스 기판에 전도막층의 두께를 각각 36, 40, 50, 60 nm로 조절하여 적층하고, 전도막층을 적층한 베이스 기판의 양면을 딥 코팅법을 이용하여 제1오버코팅층 및 제2오버코팅층을 적층하여 투명전극을 제조하였다.In Examples 1 to 4, the thickness of the conductive film layer was adjusted to 36, 40, 50, and 60 nm on the base substrate, respectively, and the both surfaces of the conductive substrate layer were laminated. A second overcoat layer was laminated to produce a transparent electrode.
비교실시예Comparative Example 1 내지 4 1 to 4
비교실시예 1 내지 4는 베이스 기판에 전도막층의 두께를 각각 0, 7, 8, 10 ㎛로 조절하여 적층하고, 비교실시예 1을 제외하고 롤투롤 코팅법을 이용하여 전도막층 위에 하나의 오버코팅층을 적층하여 투명전극을 제조하였다.
In Comparative Examples 1 to 4, the thickness of the conductive film layer was adjusted to 0, 7, 8 and 10 탆, respectively, on the base substrate, and one over The coating layer was laminated to prepare a transparent electrode.
제조된 투명전극에 대하여 하기와 같은 방법으로 물성을 측정하였으며 그 결과를 표 1에 나타내었다.The properties of the transparent electrode thus prepared were measured by the following method. The results are shown in Table 1.
(1) 전투과도(T.T, %): UV/Vis 분광계를 사용하여 550㎚의 파장에서 측정하였다.(1) Combat Transition (T.T,%): Measured at a wavelength of 550 nm using a UV / Vis spectrometer.
(2) 투명도(%): 헤이즈 미터(Nippon Denshoku Indusries Co. LTD, NHD-5000)로 측정하였다. 헤이즈(헤이즈)값은 전투과도(T.T)에 대한 회절도(DIF)의 비를 의미한다. (2) Transparency (%): Measured with a haze meter (Nippon Denshoku Indusries Co. LTD, NHD-5000). The haze value means the ratio of the diffraction index (DIF) to the batting transient (T.T).
(3) 전기전도도(Ω/□): 4점법(4 point-probe)방식을 이용하여 Mitsubishi Chemical Corporation, Loresta-GP, MCP-T610으로 면저항값을 측정하였다.
(3) Electrical Conductivity (Ω / □): The sheet resistance value was measured by Mitsubishi Chemical Corporation, Loresta-GP, and MCP-T610 using a 4 point-probe method.
상기 표1에 나타나 있듯이, 전도막층 상부 및 베이스 기판 하부에 각각 제1오버코팅층 및 제2오버코팅층을 형성한 실시예 1 내지 4는 전도막층 상부에 제1오버코팅층만을 형성한 비교실시예 2 내지 4에 비하여 전투과도, 투명도 및 면저항이 우수하다는 것을 알 수 있다. 또한, 실시예 1 내지 4는 베이스 기판만 존재하는 비교실시예 1에 비하여 현저하게 우수한 전투과도, 투명도 및 면저항을 갖는다.
As shown in Table 1, in Examples 1 to 4 in which the first overcoat layer and the second overcoat layer were formed on the conductive film layer and the base substrate, respectively, in Comparative Examples 2 to 4, in which only the first overcoat layer was formed on the conductive film layer, 4, it shows that the battle transient, transparency and sheet resistance are superior. In addition, Examples 1 to 4 have remarkably excellent combat transient, transparency and sheet resistance as compared with Comparative Example 1 in which only the base substrate is present.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (14)
상기 전도막층은 탄소나노튜브 20 내지 75 중량% 및 금속나노와이어 25 내지 80 중량%를 포함하는 탄소나노튜브-금속나노와이어 복합체이고, 상기 탄소나노튜브는 종횡비(aspect ratio)가 1:10 내지 1:20,000이며, 상기 금속나노와이어는 종횡비(aspect ratio)가 1:20 내지 1:2,000이고,
상기 제1오버코팅층(C) 및 제2오버코팅층(D)은 메탈옥사이드를 포함하는 무기계 용액으로부터 형성되며,
상기 적측형 투명전극은 UV/Vis 분광계를 사용하여 550㎚의 파장에서 측정한 전투과도가 94 내지 99%인 것을 특징으로 하는 적층형 투명전극.
(C) a first overcoat layer is laminated on the upper end of the conductive film layer (B), and (D) a second overcoat layer is formed on the lower end of the base substrate (A) Layered transparent electrode formed by laminating an overcoat layer,
Wherein the conductive film layer is a carbon nanotube-metal nanowire composite comprising 20 to 75% by weight of carbon nanotubes and 25 to 80% by weight of metal nanowires, wherein the carbon nanotubes have an aspect ratio of 1:10 to 1 : 20,000, and the metal nanowires have an aspect ratio of 1:20 to 1: 2,000,
The first overcoat layer (C) and the second overcoat layer (D) are formed from an inorganic solution containing a metal oxide,
Wherein the transparent electrode has a combattime of 94 to 99% measured at a wavelength of 550 nm using a UV / Vis spectrometer.
The method of claim 1, wherein the base substrate (A) is a polymer film or a glass substrate, and the polymer film is at least one selected from the group consisting of a polyester film, a polycarbonate film, a polyether sulfone film, Wherein the transparent electrode is a transparent electrode.
The method of claim 1, wherein the metal nanowire is selected from the group consisting of silver (Ag), gold (Au), platinum (Pt), tin (Sn), iron (Fe), nickel (Ni), cobalt (Co) , Zinc (Zn), copper (Cu), indium (In), titanium (Ti), and mixtures thereof.
The laminated transparent electrode according to claim 1, wherein the inorganic solution is prepared by a sol-gel process.
The laminated transparent electrode according to claim 1, wherein the inorganic solution further comprises a metal additive.
The stacked transparent electrode according to claim 1, wherein the first overcoat layer (C) and the second overcoat layer (D) have a thickness of 40 to 200 nm.
The method according to claim 1, wherein the transparent electrode has a haze value of 1.6% or less as measured by a haze meter NHD-5000 manufactured by Nippon Denshoku, and a difference in haze value between the transparent electrode and the base substrate is 0.6% Transparent electrode.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120144251 | 2012-12-12 | ||
KR20120144251 | 2012-12-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140076472A KR20140076472A (en) | 2014-06-20 |
KR101726908B1 true KR101726908B1 (en) | 2017-04-13 |
Family
ID=51128794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130096310A KR101726908B1 (en) | 2012-12-12 | 2013-08-14 | Transparent Electrode Formed having Improved Transmittance and Transparency |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101726908B1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104318981A (en) * | 2014-07-18 | 2015-01-28 | 江苏大学 | Metal nanowire/carbon nanotube composite transparent conducting film and preparation method thereof |
CN104867618B (en) * | 2015-04-08 | 2017-01-18 | 济宁利特纳米技术有限责任公司 | Preparation method for graphene and metal nanowire composite conductive thin film |
KR102401556B1 (en) | 2015-04-20 | 2022-05-25 | 삼성디스플레이 주식회사 | Touch Screen Panel and Method for Manufacturing the Same |
CN104882224A (en) * | 2015-04-28 | 2015-09-02 | 中科院广州化学有限公司南雄材料生产基地 | Preparation of transparent conducting film based on nano-silver wires and caboxylated carbon nano-materials |
KR20170019568A (en) | 2015-08-11 | 2017-02-22 | (주)다산 | A Preparation Method For Carbon Nano Tube-Silver Nano Wire Composite Dispersed Conductive Ink, A Conductive Ink Prepared By The Same, And A Film Fabricated Using The Same |
KR102687588B1 (en) * | 2015-09-25 | 2024-07-24 | 삼성전자주식회사 | Electrical conductors, electrically conductive structures, electronic devices including the same |
KR102591112B1 (en) * | 2015-11-06 | 2023-10-17 | 삼성전자주식회사 | Population of metal oxide nanosheets, preparation method thereof, and elelctrical conductor and elecronic device including the same |
WO2019022552A1 (en) * | 2017-07-28 | 2019-01-31 | 한양대학교 산학협력단 | Transparent electrode comprising polymer overcoat layer, and manufacturing method therefor |
CN108753147B (en) * | 2018-05-24 | 2020-10-23 | 宁波安特弗新材料科技有限公司 | Cured resin composition and transparent conductive film |
CN113096883A (en) * | 2021-03-31 | 2021-07-09 | 重庆烯宇新材料科技有限公司 | Formula and process of high-biocompatibility nanowire network OC protective layer |
CN117374135B (en) * | 2023-12-04 | 2024-03-22 | 广东省载诚新材料有限公司 | Metal oxide composite conductive film and application thereof in preparation of heterojunction solar cell |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009070660A (en) * | 2007-09-12 | 2009-04-02 | Kuraray Co Ltd | Transparent conductive film and its manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5546763B2 (en) * | 2005-08-12 | 2014-07-09 | カンブリオス テクノロジーズ コーポレイション | Transparent conductors based on nanowires |
-
2013
- 2013-08-14 KR KR1020130096310A patent/KR101726908B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009070660A (en) * | 2007-09-12 | 2009-04-02 | Kuraray Co Ltd | Transparent conductive film and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
KR20140076472A (en) | 2014-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101726908B1 (en) | Transparent Electrode Formed having Improved Transmittance and Transparency | |
Li et al. | Highly bendable, conductive, and transparent film by an enhanced adhesion of silver nanowires | |
Huang et al. | Highly thermostable, flexible, transparent, and conductive films on polyimide substrate with an AZO/AgNW/AZO structure | |
JP6181698B2 (en) | Liquid crystal display cell | |
Lee et al. | Low resistive transparent and flexible ZnO/Ag/ZnO/Ag/WO3 electrode for organic light-emitting diodes | |
US20140308524A1 (en) | Stacked Transparent Electrode Comprising Metal Nanowires and Carbon Nanotubes | |
Yoo et al. | Silver nanowire–conducting polymer–ITO hybrids for flexible and transparent conductive electrodes with excellent durability | |
CN103068573B (en) | The base material of nesa coating, band nesa coating and use its organic electroluminescent device | |
CN104900723A (en) | Transparent conductor and device | |
Lai et al. | One-step process for high-performance, adhesive, flexible transparent conductive films based on p-type reduced graphene oxides and silver nanowires | |
CN103050169A (en) | Flexible transparent electrode and preparation method thereof | |
Kang et al. | Flexible polymer/metal/polymer and polymer/metal/inorganic trilayer transparent conducting thin film heaters with highly hydrophobic surface | |
JP2010086512A (en) | Transparent conductive layered structure for touch panel input device | |
JP2009211978A (en) | Transparent conductive film, and optical device using the same | |
KR20160117430A (en) | Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures | |
Shankar et al. | A review on the alternative of indium tin oxide coated glass substrate in flexible and bendable organic optoelectronic device | |
Entifar et al. | Simultaneously enhanced optical, electrical, and mechanical properties of highly stretchable transparent silver nanowire electrodes using organic surface modifier | |
KR102591112B1 (en) | Population of metal oxide nanosheets, preparation method thereof, and elelctrical conductor and elecronic device including the same | |
Azoubel et al. | Controlling Adhesion Properties of SWCNT–PET Films Prepared by Wet Deposition | |
Li et al. | Electroactive triphenylamine-based polymer films as passivation layers for improving electrochemical oxidation stability of silver nanowires | |
CN109346211B (en) | Composite structure transparent conductive film | |
JP2012111141A (en) | Transparent conductive film, and liquid crystal display element, organic el element and organic thin film solar cell using the same | |
KR100989409B1 (en) | Multi-layered flexible transparent electrode and its manufacturing method | |
JP5169501B2 (en) | Electrode paste for electrodes and transparent touch panel | |
US9842668B2 (en) | Composition for transparent electrode and transparent electrode formed from composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20200305 Year of fee payment: 4 |