JP4411323B2 - 改良された放射線検出の方法および装置 - Google Patents

改良された放射線検出の方法および装置 Download PDF

Info

Publication number
JP4411323B2
JP4411323B2 JP2006530632A JP2006530632A JP4411323B2 JP 4411323 B2 JP4411323 B2 JP 4411323B2 JP 2006530632 A JP2006530632 A JP 2006530632A JP 2006530632 A JP2006530632 A JP 2006530632A JP 4411323 B2 JP4411323 B2 JP 4411323B2
Authority
JP
Japan
Prior art keywords
data
interval
data interval
signal
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006530632A
Other languages
English (en)
Other versions
JP2007501085A (ja
Inventor
ジェイ ブリュネット,カール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2007501085A publication Critical patent/JP2007501085A/ja
Application granted granted Critical
Publication of JP4411323B2 publication Critical patent/JP4411323B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • H03M1/1265Non-uniform sampling
    • H03M1/127Non-uniform sampling at intervals varying with the rate of change of the input signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は診断用画像生成技術に関するものである。CTスキャナにおけるデータ区間に対する測定期間の定義法との関連で格別の用途があり、特にその関連での説明がなされるが、本発明は他の用途にも適するものであることを理解しておくべきである。
CTスキャナにおけるアナログ/デジタル(A/D)変換は積分電流−周波数変換器(IFC: current to frequency converter)を利用している。IFCは電流制御発振器である。CTスキャナに付随する検出器によって生成される電流が電流制御発振器の周波数を変えるのである。あるデータ区間(回転するガントリー、より正確には円弧の角位置によって定義される)の間、IFCパルスが計数され、最初のパルスから最後のパルスまでの時間が高精度で測定される。実際の測定値は計数値COUNTと時間TIMEの比をとることによって計算される。この測定の精度は高い。それを決めるのはTIMEの測定値の精度であるが、これは高周波数発振器からのパルスの計数によって得られるのである。
「デルタデータ」動作モードでは、COUNTパルスおよびTIMEパルスの計数は直前のデータ区間の最後のIFCパルスに始まり、測定されるデータ区間の最後のIFCパルスで終わる。測定期間が直前のデータ区間にまで広がることを認めることで、放射線検出器からの全電流が利用され、それにより量子雑音に関して高い信号対雑音比が保証される。しかしながら、「デルタデータ」技術は測定期間を物理的な円弧(すなわちデータ区間)よりも前倒しにして(すなわち、ゆがめて)いる。そのデータ区間中のCOUNTパルスが多ければ、このずれは最小限ですむ。COUNTパルスが100計数されれば、ゆがみは名目上0.5%である。しかし、信号レベルが低いとこのゆがみは著しいものになる。データ区間あたりパルスが1つしか生成されないとしたら、ゆがみは名目上50%、最大で100%にもなりうる。このデータのゆがみが受け入れられない画像の乱れを生じうる。
標準的な放射計タイプのA/D変換(デルタデータなし)は、データ区間あたり少なくとも2つのCOUNTパルスが生成されることを要求している。デルタデータを使う際には、この下限はデータ区間あたりCOUNTパルス1つにまで引き下げられる。最小パルスレートが維持されることを保証するため、フロントエンドにオフセットDC電流が注入される。このオフセット電流に由来する計数はその後、COUNTとTIMEの比をとる前に差し引かれる。しかし、このオフセット電流に付随する散射雑音はA/D変換の入力雑音を増加させ、それによりシステムの全体としてのダイナミックレンジを減じてしまう。
したがって、測定されるデータ区間に対する測定期間のゆがみを平均的に軽減する(あるいは解消する)ことによって、従来のデルタデータモードの精度を改善する必要がある。また、雑音を最小限にし、システムのダイナミックレンジを改善するために必要とされるオフセット電流をさらに減らすことも望まれる。
本発明のある実施形態では、CTスキャナは、放射線源を検査領域のまわりに回転させる手段と、検査領域を通過する放射線の強度に従って変動するアナログデータ信号を生成する手段と、前記アナログデータ信号を、放射線源が検査領域のまわりを回るにつれて検査領域を通過する放射線の強度とともに周波数が変動する非周期的パルスを含むデジタルデータ信号に変換する手段と、データ区間の指標となる時間信号を生成する手段と、各データ区間における平均放射線強度を、先行データ区間に発生するあるデジタルデータ信号パルスから始まって後続データ区間において発生するあるデジタルデータ信号パルスまで続くデジタルデータ信号のパルスを計数することによって決定する手段とを有する。
ある別の実施形態では、本発明は、CTスキャナにおける検出された放射線の強度を測定する方法を提供する。放射線源が検査領域のまわりに回転させられる。検査領域を通過する放射線の強度に従って変動するアナログデータ信号が生成される。前記アナログデータ信号は、放射線源が検査領域のまわりを回るにつれて検査領域を通過する放射線の強度とともに周波数が変動する非周期的パルスを含むデジタルデータ信号に変換される。データ区間の指標となる時間信号が生成される。各データ区間における平均放射線強度が、先行データ区間に発生するあるデジタルデータ信号パルスから始まって後続データ区間において発生するあるデジタルデータ信号パルスまで続くデジタルデータ信号のパルスを計数することによって決定される。
本発明のさらに別の実施形態では、CTスキャナにおいて検出された放射線の強度を測定する装置は、ある測定されるデータ区間についてアナログデータ信号から、先行データ区間および後続データ区間から少なくとも一つの当該アナログデータ信号の成分を含んでいる時間付デジタル情報を生成するチャネル回路と、該時間付デジタル情報を保存する保存回路と、該時間付デジタル情報をいつ保存するかを決定する制御回路と、保存された時間付デジタル情報から測定されるデータ区間について検出された放射線の平均強度を決定するプロセッサとを含む。
本発明の効果の一つは、測定されるデータ区間に対する測定期間が平均的には当該データ区間を中心とするものとなり、それにより平均測定ゆがみが0となることである。
いま一つの効果は、減衰の大きな条件下では、測定期間はデータ区間よりかなり長く、よってより積分された信号を生じ、量子雑音を低減し、システムのダイナミックレンジを拡大することである。
さらに別の効果は、入力信号が減少するにつれて測定期間を長くなることは、アナログ領域において適応フィルタの効果を生じ、それがあとからデジタル領域でフィルタ処理を行うよりも雑音をより効率的に低減させて画質を向上させる可能性があることである。
さらにいま一つ別の効果は、さまざまな実施形態において、オフセット電流を、データ区間あたり生じるパルスが1個未満になるまで低下させられることである。これにより、オフセット電流に関わる散射雑音を減らし、量子化雑音および1/f雑音の効果を減らす。結果として得られる全体としての雑音低減は、画質を改善し、システムのダイナミックレンジを拡大することになる。
その他の効果は、以下の詳細な記載を読み、理解すれば、通常の技量をもった当業者には明らかとなるであろう。
図面は本発明の代表例としての実施形態を解説する目的のためのものであって、本発明をそのような実施形態に限定するものと解釈してはならない。図面および対応する説明において与えられている以外にも、本発明は、さまざまな要素や要素の配置において、またさまざまなステップやステップの配置において実現しうることを理解しておくものとする。図面において、同様の参照符号は同様の要素を表す。
図1を参照すると、CTスキャナ10は、静止ガントリー12、回転ガントリー14、撮像領域16、放射線源20、コリメータおよびシャッター組立体22、患者台30、ヘッドレスト32、複数の放射線検出器40または42、エンコーダ44、信号プロセッサ46、再構成プロセッサ48、体積画像メモリ50、ビデオプロセッサ52、表示装置54を有している。
静止ガントリー12および回転ガントリー14は撮像領域16の範囲を決めている。回転ガントリー14は静止ガントリー12によって支持され、検査領域16のまわりに回転できるようになっている。放射線源20(たとえばX線管)は回転ガントリー14上に配置されており、一緒に回転する。放射線源20は、回転ガントリーが外部モーター(図示せず)によって検査領域16の長手軸のまわりに回転させられる間、該検査領域16の全幅にわたって通過する貫通性の放射線のビームを生成する。コリメータおよびシャッター組立体22は貫通性放射線ビームを扇形、円錐形またはくさび形に成形し、選択的にビームをオン/オフする。あるいはまた、ビームのオン/オフは放射線源20において電子的に行ってもよい。患者台30は放射線を透過する寝台のようなもので、検査または撮像される被検体を少なくとも部分的に検査領域16内に懸架または何らかの形で支え、放射線ビームのつくる体積が被検体の関心のある領域を通るようにする。ヘッドレスト32は被検体の頭部の動きを制限する。
第3世代のCTスキャナにおいては、円弧または二次元アレイ状に並べられた放射線検出器40が回転ガントリー14上で放射線源20の反対側の周に設置されている。第4世代CTスキャナにおいては、一つまたは複数の静止リング状の放射線検出器42が静止ガントリー12のまわりに設置される。構成には関わりなく、放射線検出器40、42はとにかく放射線源20から発された放射線が撮像領域16を通過したのちに入射するよう配置されている。
放射線検出器40、42は、検出された放射線をアナログデータ信号に変換する。すなわち、各放射線検出器40、42は、入射放射線の強度に比例するアナログデータ信号を生成する。
信号プロセッサ46は放射線検出器40、42からのアナログデータ信号を受信する。信号プロセッサ46は、任意的にフィルタ処理その他の処理(たとえば、時間付デジタル情報の生成やデータ区間あたりの平均放射線強度の計算など)を実行してから、データを再構成プロセッサ48に渡し、該再構成プロセッサ48が被検体の体積画像表現を再構成して体積画像メモリ50に保存できるようにする。オペレータが制御するビデオプロセッサ52は、当該データの選択された部分を取得して整形し、断層画像、三次元表示などとして表示装置54上に表示したり、プリンタで印刷したりできるようにする。
回転ガントリー14の各軌道の間にエンコーダ44は指標信号を生成しており、この指標信号が信号プロセッサ46に送信されて回転ガントリーの位置すなわち円弧角を放射線検出器40、42からのアナログデータ信号と関連付ける。回転ガントリー14が被検体のまわりを回る、すなわち軌道回転する際、放射線源の各回転は、一連の個々の走査セグメント(すなわちデータ区間)に分解される。好ましい実施形態においては、指標信号は一連のパルスであり、各データ区間に対して所定の量のパルスを含む。各データ区間に対する最後のパルスが一つのデータ区間の終了および次の、すなわち後続のデータ区間の開始を指示する。それに代わる実施形態では、同様の指標信号を生成する機能のある装置がエンコーダ44の代わりに使われうる。
エンコーダ44は指標信号パルスを一定の角度間隔、たとえば0.1度ごとに発生させる。指標信号は一連のデータ区間の始まりと終わりを規定するタイミング信号を与える。
信号プロセッサ46は、それぞれが放射線検出器40、42からの個々のアナログデータ信号に反応する複数のデルタデータチャネル回路56a〜56nと、エンコーダ44からの指標信号に反応するデルタデータ制御回路58と、アナログデータ信号に対応する時間付デジタル情報を蓄積するデルタデータ保存回路60と、デルタデータプロセッサ62と、放射線強度保存回路64とを有している。デルタデータチャネル回路56a〜56nは典型的には同一の構造である。
図2では、記述を簡単にするため、信号プロセッサ46内にはデルタデータチャネル回路56aが一つしか示されていない。デルタデータ制御回路58は、アナログデータ信号に対応するデルタデータチャネル回路56a内で時間付デジタル情報を形成する。この種の変換はアナログ−デジタル(A/D)変換と称してもいいだろう。基本的には、この種の変換は、電流−周波数変換(IFC)または電圧−周波数変換(VFC)技術を使って好適に実現される。適当な時刻において、デルタデータ制御回路58はデルタデータチャネル回路56aからの時間付デジタルデータ情報をデルタデータ保存回路60に転送し、いつデルタデータ保存回路60からデータを読み込む状態が整うかをデルタデータプロセッサ62に通知する。
デルタデータチャネル回路56aは、合計モジュール66、オフセットモジュール68、IFC70、データパルス検出器72、自走発振器74、データカウンタ76、時刻カウンタ78を有している。デルタデータ制御回路58はデータ区間検出器80およびデルタデータ制御部82を有している。
まとめると、デルタデータチャネル回路56aは、アナログデータ信号のA/D変換を、電流出力を積分してそれに応じた周波数のパルス列を生成することによって行う。デルタデータ制御回路58は、データ区間指標信号およびIFC70の出力を監視する。走査運転の間、アナログデータ信号の強度は組織密度に応じて本来的に変動する。
ある実施形態では、デルタデータ制御回路58は、当該データ区間についての「開始時データ計数」および「開始時刻」を直前のデータ区間のパルスデータ信号の最後の「パルス」に反応して保存する。この実施形態では、デルタデータ制御回路58はまた、当該データ区間についての「終了時データ計数」および「終了時刻」を直後のデータ区間の最初のパルスに反応して保存する。デルタデータプロセッサ62は「終了時データ計数」と「開始時データ計数」の間の差からパルス数(すなわちCOUNT)を決定し、また「終了時刻」と「開始時刻」の差(すなわちTIME)も決定する。デルタデータプロセッサ62はCOUNTをTIMEで割って一つの検出器に対する一つのデータ区間に対する放射線強度の数値的な値を生成する。よって、各データ区間についてCOUNTおよびTIMEによって反映されている測定期間は直前および直後のデータ区間に食い込んでいる。これは対称的デルタデータ動作モードと称される。測定期間は測定されるデータ区間の外にはみ出しているが、平均的には、測定期間は測定されるデータ区間を中心としている。この方法では、サンプリング枠は減衰の大きな一データ区間を超えて動的に広がる。測定期間が長くなることは、減衰が大きい間、雑音を減らし、SN比を向上させ(SN比を上げることがきわめて重要な場合)、そうしてA/D変換の全体としてのダイナミックレンジを拡大する。この技術は、走査運転の間、放射線強度を測定するための対称的可変フィルタ法を生じる。
記載されている実施形態において、デルタデータチャネル回路56aは好ましくは、各データ区間の間にIFC70から少なくとも一つの「パルス」が出力されることを保証する。これを実現するため、オフセットモジュール68が合計モジュール66にオフセット電流を与える。合計モジュール66はオフセット電流をアナログデータ信号と組み合わせてオフセットされたデータ信号を発生させる。好ましくは、オフセットモジュール68によって与えられる電流は、IFC70が各データ区間の間に少なくとも一つのパルスを生成するのを保証するのに必要とされる最低限のレベルに調整される。データパルス検出器72がIFCの出力を監視してパルスを検出する。パルスが検出されるたびに検出されたイベントがデルタデータ制御部82に送られる。
IFC70は、オフセットされたデータ信号のレベルに基づいて周波数が変動するデジタルパルス列出力(すなわち、パルスデータ信号)を与える。よって、パルスデータ信号はアナログデータ信号のデジタル表現になる。パルスデータ信号はデータカウンタ76に与えられる。データカウンタ76は各パルスを計数し、「データ計数」を蓄積する。これに代わる実施形態では、「データ計数」は電流ではなく電圧に基づいたものである。この代替実施形態においてはIFCはVFCで置き換えられる。
記載されている実施形態において、デルタデータチャネル回路56aの発振器74は自走発振器であり、比較的一定した高周波数でデジタルパルス列(すなわち時間信号)を時刻カウンタ78に与える。よって、時間信号は経過時間のデジタル表現である。時刻カウンタは「時間計数」を蓄積する。「データ計数」と「時間計数」を組み合わせることで、走査運転の間に被検体を通過した放射線を表す時間付デジタル情報が与えられる。代わりとなる実施形態では、発振器74および時刻カウンタ78はデルタデータチャネル回路56a〜56nとは別個の時間回路のうちに組み合わされ、各デルタデータチャネル回路に共通のものとしてもよい。
記載されている実施形態においては、データ区間検出器80はエンコーダ44からの指標信号を入力され、回転ガントリー14の運動の間に生成される立ち上がり端を検出する。各パルスは一つのデータ区間の終わりおよび次のデータ区間の開始を示している。パルスの立ち上がり端が検出されるたびに、そのイベントはデルタデータ制御部82に送られる。デルタデータ制御部82はデータパルス検出器72およびデータ区間検出器80によって検出されたイベントを組み合わせて用いてデータカウンタ76および時刻カウンタ78の内容をデルタデータプロセッサ62で処理して各データ区間についての強度の値を形成するのをいつ行うかを決定する。信号プロセッサ46によって形成される時間付デジタル情報は、測定されるデータ区間に対して前と後のデータ区間からのデータも含んでいるので、デルタデータ制御部82およびデルタデータプロセッサ62は、与えられたどの時点でも、3つの連続したデータ区間に関連付けられた情報の処理を行うことになりうる。以下の記述では、3つの連続するデータ区間についての情報が、それぞれ第2、第3、第4のデータ区間を参照することによってどのように処理されるかを議論する。第2のデータ区間に関連付けられた情報は実際には第1のデータ区間の間に始まっている。
デルタデータ制御部82は、データパルス検出器によって「パルス」が検出されるたびに「保存」信号をデータカウンタ76および時刻カウンタ78に送る。「保存」信号はデータカウンタ76および時刻カウンタ78にその現在の値(すなわち「データ計数」および「時間計数」)をデルタデータ保存回路60に転送するよう指示する。デルタデータ制御部82はまた、デルタデータ保存回路60内でデータカウンタ76と時刻カウンタ78がその現在値を保存すべき場所を指定する、デルタデータ保存回路60に関するアドレス情報も送る。
第1のデータ区間の間、アドレス情報は第2のデータ区間のための「開始時データ計数」および「開始時刻」の記憶位置を指定している。保存信号およびアドレス情報に反応して、データカウンタ76はその現在値を第2のデータ区間のための「開始時データ計数」の位置に保存し、時刻カウンタ78はその現在値を第2のデータ区間のための「開始時刻」の位置に保存する。データ区間検出器80が次の指標パルスを検出する前にパルスデータ信号をなす後続の「パルス」が検出された場合には、第2のデータ区間のための「開始時データ計数」および「開始時刻」は同じようにして上書きされる。
データ区間検出器80が次の指標パルスを検出したとき、回転ガントリー14は第2のデータ区間に達しており、デルタデータ制御部82のアドレス情報は第3のデータ区間のための「開始時データ計数」および「開始時刻」の保存位置を指定するよう変更される。第2のデータ区間の間、パルスデータ信号をなす「パルス」の起点がデータパルス検出器72によって検出されるたびに、デルタデータ制御部82は「保存」信号および関連するアドレス情報をデータカウンタ76および時刻カウンタ78に上と同じようにして送る。しかし、データカウンタ76はその現在値を第2のデータ区間のために保存されている値を上書きするのではなく、第3のデータ区間のための「開始時データ計数」の位置に保存する。同様にして、時刻カウンタ78はその電流値を第2のデータ区間のために保存されている値を上書きするのではなく、第3のデータ区間のための「開始時刻」の位置に保存する。第3のデータ区間のための「開始時データ計数」および「開始時刻」の位置は、データ区間検出器80が次の指標パルスを検出する前にパルスデータ信号をなす後続の「パルス」が検出されたときには同様にして上書きされる。
データ区間検出器80が次の指標パルスを検出したとき、回転ガントリー14は第3のデータ区間に達しており、アドレス情報は第2のデータ区間のための「終了時データ計数」および「終了時刻」ならびに第4のデータ区間のための「開始時データ計数」および「開始時刻」の保存位置を指定するよう変更される。第3のデータ区間の間、パルスデータ信号をなす最初の「パルス」の起点が検出されると、デルタデータ制御部82は「保存」信号および関連するアドレス情報をデータカウンタ76および時刻カウンタ78に上と同じようにして送る。しかし、データカウンタ76はその電流値を第2のデータ区間のための「終了時データ計数」の位置および第4のデータ区間のための「開始時データ計数」の位置の両方に保存する。同様にして、時刻カウンタ78はその電流値を第2のデータ区間のための「終了時刻」の位置および第4のデータ区間のための「開始時刻」の位置の両方に保存する。これで第2の区間のための「開始時データ計数」「終了時データ計数」「開始時刻」「終了時刻」がデルタデータ保存回路60に保存されたことになる。この時点で、デルタデータ制御部82は読み込み信号および関連するアドレス情報をデルタデータプロセッサ62に送る。読み込み信号は、保存されている第2のデータ区間のための「開始時データ計数」「開始時刻」「終了時データ計数」「終了時刻」がデルタデータ保存回路60から読み出す準備が整っていることを示す。アドレス情報は、第2のデータ区間のための時間付デジタル情報を読み込むべき「開始時データ計数」「開始時刻」「終了時データ計数」「終了時刻」の位置を指定する。
デルタデータプロセッサ62は「開始時データ計数」を「終了時データ計数」から引いて第2のデータ区間のCOUNTを決定し、「開始時刻」を「終了時刻」から引いて第2のデータ区間のTIMEを決定する。これらCOUNTとTIMEの値が第2のデータ区間の間のオフセット電流とアナログデータ信号の組み合わせについて平均強度レベルに関係する。オフセット電流によって生じた計数はCOUNTから差し引かれ、その結果をTIMEで割って第2のデータ区間についての検出された放射線の強度を決定する。各検出器、各データ区間についての放射線強度の値は放射線強度保存回路64に保存され、再構成プロセッサ48による再構成を待つ。この時点で、デルタデータプロセッサ62は再構成プロセッサ48に読み込み信号および関連したアドレス情報を伝えてもよい。読み込み信号は、第2のデータ区間についての保存されている放射線強度の値が放射線強度保存回路64から読み出す用意ができていることを指示する。アドレス情報は、第2のデータ区間についての放射線強度値をどこから読み込むかを指定する。
別の実施形態では、デルタデータプロセッサ62は位置情報を蓄積しておいて、それを読み込み信号とともに定期的に、あるいは走査運転完了の時点で送ることもできる。さらに別の実施形態では、デルタデータプロセッサ62と再構成プロセッサ48との間で位置情報を送る必要がなくなるような形で放射線強度の値を放射線強度保存回路64に配置しておいてもよい。この実施形態では、放射線強度保存回路64の配置構成は再構成プロセッサ48にはわかっている。よって、再構成プロセッサ48はデルタデータプロセッサ62その他の装置から、一つまたは複数の放射線強度値が保存された、あるいは走査運転が完了したということを示す読み込み信号または準備完了信号を受け取るだけでいいのである。
データ区間検出器80が次の指標パルスを検出したとき、回転ガントリー14は第4のデータ区間に達しており、アドレス情報は第3のデータ区間のための「終了時データ計数」および「終了時刻」ならびに第5のデータ区間のための「開始時データ計数」および「開始時刻」の保存位置を指定するよう変更される。第4のデータ区間の間にパルスデータ信号をなす最初の「パルス」の起点が検出されると、データカウンタ76はその電流値を第3のデータ区間のための「終了時データ計数」の位置および第5のデータ区間のための「開始時データ計数」の位置の両方に、上記で第3のデータ区間の間に第2、第4のデータ区間について記述したのと同じように保存する。同様にして、時刻カウンタ78はその電流値を第3のデータ区間のための「終了時刻」の位置および第5のデータ区間のための「開始時刻」の位置の両方に保存する。これで第3の区間のための「開始時データ計数」「終了時データ計数」「開始時刻」「終了時刻」が保存された。デルタデータ制御部82は読み込み信号および関連するアドレス情報をデルタデータプロセッサ62に送る。これらが示すのは上で第2のデータ区間について述べたのと同様である。デルタデータプロセッサ62は第3の区間についての放射線強度の値を計算し、その放射線強度の値を放射線強度保存回路64に、上で第2のデータ区間について述べたのと同様にして保存する。
データ区間検出器80が次の指標パルスを検出したとき、回転ガントリー14は第5のデータ区間に達しており、アドレス情報は第4のデータ区間のための「終了時データ計数」および「終了時刻」ならびに第6のデータ区間のための「開始時データ計数」および「開始時刻」の保存位置を指定するよう変更される。第5のデータ区間の間にパルスデータ信号をなす最初の「パルス」の起点が検出されると、データカウンタ76はその電流値を第4のデータ区間のための「終了時データ計数」の位置および第6のデータ区間のための「開始時データ計数」の位置の両方に、上記で第3のデータ区間の間に第2、第4のデータ区間について記述したのと同じように保存する。同様にして、時刻カウンタ78はその電流値を第4のデータ区間のための「終了時刻」の位置および第6のデータ区間のための「開始時刻」の位置の両方に保存する。これで第4の区間のための「開始時データ計数」「終了時データ計数」「開始時刻」「終了時刻」が保存された。デルタデータ制御部82は読み込み信号および関連するアドレス情報をデルタデータプロセッサ62に送る。これらが示すのは上で第2のデータ区間について述べたのと同様である。デルタデータプロセッサ62は第4の区間についての放射線強度の値を計算し、その放射線強度の値を放射線強度保存回路64に、上で第2のデータ区間について述べたのと同様にして保存する。
上で第2、第3、第4のデータ区間について述べたプロセスが、走査運転の間、回転ガントリー14の進行につれて各データ区間について繰り返される。
図3に示すように、デルタデータ保存回路60はデータ保存ブロック84および時刻保存ブロック86を有している。上述した信号プロセッサ46の実施形態については、データ保存ブロック84および時刻保存ブロック86はそれぞれ4つのデータ保存位置を含む。具体的には、データ保存ブロック84はデータ保存位置A(0)88、データ保存位置A(1)90、データ保存位置A(2)92、データ保存位置B94を含む。時刻保存ブロック86は時刻保存位置A(0)96、時刻保存位置A(1)98、時刻保存位置A(2)100、時刻保存位置B102を含む。
図2を参照しつつ説明したプロセスとの関連では、第2のデータ区間のための「開始時データ計数」はデータ保存位置A(0)88に保存され、「開始時刻」は時刻保存位置A(0)96に保存される。第2のデータ区間のための「終了時データ計数」はデータ保存位置B94に保存され、「終了時刻」は時刻保存位置B102に保存される。同様に、第3のデータ区間のための「開始時データ計数」はデータ保存位置A(1)90に保存され、「開始時刻」は時刻保存位置A(1)98に保存される。記載している実施形態では、デルタデータプロセッサ62は測定されるデータ区間のための「終了時データ計数」および「終了時刻」をデルタデータ制御部82が次のデータ区間の「終了時データ計数」および「終了時刻」を保存する前に読み込む。よって、第3のデータ区間のための「終了時データ計数」はデータ保存位置B94に保存され、「終了時刻」は時刻保存位置B102に保存される。同様に、第4のデータ区間のための「開始時データ計数」はデータ保存位置A(2)92に保存され、「開始時刻」は時刻保存位置A(2)100に、「終了時データ計数」はデータ保存位置B94に、「終了時刻」は時刻保存位置B102に保存される。
デルタデータ保存回路60やそれに関連して走査運転中に検出された放射線の強度を表す時間付デジタル情報を保存し、読み込む方法を実装するには数多くの方法がある。ある実施形態では、デルタデータ保存回路60は4組のデータ(C)および時刻(T)保存位置(たとえば記憶レジスタ)からなる。図3に描かれた保存位置はこれら4組では次のように同定される。CA(0)88とTA(0)96、CA(1)90とTA(1)98、CA(2)92とTA(2)100、CB94とTB102である。データカウンタ76および時刻カウンタ78の内容は4対の保存場所のうちの一つまたは複数に次のようにして転送される。データパルス検出器72によってパルスデータ信号をなす「パルス」が検出されると、データカウンタおよび時刻カウンタの電流値が次のように転送される。a)データ区間DI(1)、DI(4),DI(7)…についてはCA(0)とTA(0)に、b)データ区間DI(2)、DI(5),DI(8)…についてはCA(1)とTA(1)に、c)データ区間DI(3)、DI(6),DI(9)…についてはCA(2)とTA(2)にという具合である。各データ区間の最初の「パルス」が検出されると、データカウンタおよび時刻カウンタの電流値はCBおよびTBにも転送される。これでその直前のデータ区間の間の検出放射線の強度を決定するのに必要な時間付デジタル情報が与えられるので、保存されている「開始時データ計数」「終了時データ計数」「開始時刻」「終了時刻」がデルタデータプロセッサ62によって読み込まれる。
記載している実施形態では、データ区間DI(2),DI(3),DI(4),DI(5)についてのDATAおよびTIME測定値の計算はデルタデータプロセッサ62によって次のように行われる。
DATA(2)=CB−CA(0)
TIME(2)=TB−TA(0)
(D(2)についてのDATAとTIMEの測定値はDI(3)の終わりまたはそれより前に計算される)
DATA(3)=CB−CA(1)
TIME(3)=TB−TA(1)
(D(3)についてのDATAとTIMEの測定値はDI(4)の終わりまたはそれより前に計算される)
DATA(4)=CB−CA(2)
TIME(4)=TB−TA(2)
(D(4)についてのDATAとTIMEの測定値はDI(5)の終わりまたはそれより前に計算される)
DATA(5)=CB−CA(0)
TIME(5)=TB−TA(0)
(D(5)についてのDATAとTIMEの測定値はDI(6)の終わりまたはそれより前に計算される)
上記のDATAおよびTIMEの測定は次の擬似コードによって実行される。
初期化 flagB=0
for n=1:N
while データパルスを受信したときにDI=n
両カウンタをCA(n+2 mod 3)とTA(n+2 mod 3)に転送
if flagB==0
両カウンタをCBとTBに転送
flagB=1にセット
end
end
DATA(n−1)=CB−CA(n mod 3)
TIME(n−1)=TB−TA(n mod 3)
flagB=0にリセット
end
図4を参照すると、走査運転中に前述したCTスキャナ10の実施形態の内部におけるさまざまな信号のタイムチャートの例が示されている。図では、タイムチャートは例としての検出器の最初の6つのデータ区間(DI1〜DI6)および最後のデータ区間(DI N)の間の信号レベルを示している。指標信号はエンコーダ44によってデータ区間検出器80に与えられる信号を表しており、データ区間を定義するものである。図のようにこのパルスが一定の周期であることは、回転ガントリー14が一定の速度で動いていることを反映している。
データ信号(すなわち、オフセットされたデータ信号)は合計モジュール66によってIFC70に与えられる信号を表し、放射線検出器40、42からのアナログデータ信号をオフセットモジュール68からのオフセット電流と組み合わせて生成されたものである。IFC信号(すなわち、パルスデータ信号)はIFC70のパルス列出力を表しており、データパルス検出器72およびデータカウンタ76に入力されるものである。
発振器信号は時刻カウンタ78に入力される発振器74の自走出力を表している。図の解像度では発振器信号の周波数を識別することはできないが、発振器信号のパルスの周波数は非常に高周波の所定の値であり、比較的一定している。
保存A信号は、データカウンタ76および時刻カウンタ78に現在値をデルタデータ保存回路60内の開始位置に保存するよう指示するデルタデータ制御部82からの信号を表す。保存A信号は、各データ区間の間、IFC信号にパルスが検出されるたびに送られるものであることを注意しておく。保存A信号はデルタデータ制御部82によってデルタデータ保存回路60に与えられるアドレス情報と一緒になって、次のデータ区間の測定のために前記両カウンタの値を選択された「開始時データ計数」および「開始時刻」の保存位置に保存するようはたらく。
保存B信号は、データカウンタ76および時刻カウンタ78に現在値をデルタデータ保存回路60内の終了位置に保存するよう指示するデルタデータ制御部82からの信号を表す。保存B信号は、各データ区間の間、IFC信号に最初のパルスが検出されたときに送られるものであることを注意しておく。保存B信号はデルタデータ制御部82によってデルタデータ保存回路60に与えられるアドレス情報と一緒になって、前のデータ区間の測定のために前記両カウンタの値を選択された「終了時データ計数」および「終了時刻」の保存位置に保存するようはたらく。
保存A信号と保存B信号は測定されるデータ区間に対する測定期間の境界を同定する。測定されるデータ区間に対する測定期間は直前のデータ区間でデータ信号の最後の「パルス」が検出されたときに始まり、直後のデータ区間でデータ信号の最初の「パルス」が検出されたときに終わることを注意しておく。このことは、データ期間をデータ区間に対応する時間と比較することで見て取れる。たとえば、MP2をDI2と、MP3をDI3などと比較してみるとよい。
読み込み信号はデルタデータ制御部82からデルタデータプロセッサ62への信号を表しており、「開始時データ計数」「終了時データ計数」「開始時刻」「終了時刻」が測定されるデータ区間に対して保存されたことを示すものである。デルタデータプロセッサ62はデルタデータ制御部82から与えられるアドレス情報をこの読み込み信号とともに使って、当該データ区間について保存されている時間付デジタル情報を読み込む。
時間付デジタル情報を保存し、読み込む方法の別の実施形態では、オフセットモジュール68によって与えられるオフセット電流は、デルタデータチャネル回路56aがパルスデータ信号をなす「パルス」を少なくとも2.5データ区間に一回は保証するところまで低減される。この実施形態では、デルタデータ保存回路60は6対のデータ(C)および時刻(T)保存位置(たとえば記憶レジスタ)からなる。これらの対のうちの4つは「開始時データ計数」および「開始時刻」を保存するのに使われ、2つは「終了時データ計数」および「終了時刻」を保存するのに使われる。測定期間は測定される当該データ区間より先行する2つのデータ区間および当該データ区間の後続の2つのデータ区間まで拡大できる。すなわち、起点パルスは測定される当該データ区間の2つ前の区間であってもよく、終点パルスは測定される当該データ区間の2つ後の区間であってもよい。測定されるデータ区間に対する測定期間は、測定される当該データ区間より前の(すなわち、先行する2つのデータ区間内の)最後のパルスとともに始まり、測定される当該データ区間より後の(すなわち、後続の2つのデータ区間内の)最初のパルスとともに終わる。2つの先行データ区間内でパルスが生じなければ、測定期間は測定される当該データ区間の最初のパルスとともに始まる。また、2つの後続データ区間内でパルスが生じなければ、測定期間は測定される当該データ区間の最後のパルスとともに終わる。減衰が大きいとデータ区間のはみ出しも大きくなるが、平均としては、測定は現在の、すなわち測定されるデータ区間を中心としている。
図5のタイムチャートは、パルスデータ信号をなす「パルス」が少なくとも2.5データ区間ごとに一回ある実施形態について、測定されるデータ区間(n)に対する測定期間のさまざまなシナリオ(シナリオaからi)を示している。2つの先行データ区間はn−2、n−1で示されている。2つの後続データ区間はn+1、n+2で示されている。一つまたは複数のデータパルスが検出され、そのデータ区間が測定期間の開始端または終了端を含んでいる場合には、シナリオ中で第一種の線104で示される。二つ以上のデータパルスが検出され、データ区間が測定期間の開始端および終了端の両方を含んでいる場合には、シナリオ中で第二種の線106で示される。あるデータ区間の間にデータパルスが検出されなかった場合には、シナリオ中ではブランクのデータ区間108として示される。あるデータ区間の間データパルスが検出されるかどうかが問題でない場合には、シナリオ中で破線110によって示される。開始端と終了端をもつ測定期間は各シナリオで括線によって示されている。
3つの連続するデータ区間にわたってデータパルスが検出されなければ、この実施形態ではエラー状態となる。シナリオiはデータ区間nの間に二つ以上のデータパルスが必要となる状況を生じている。それ以外では、測定期間のための開始端または終了端として使われるデータ区間ではパルスが一つだけあればいい。
記憶位置を使う実施形態では、記憶位置は前記6組において次のように同定される。CA(0)とTA(0)、CA(1)とTA(1)、CA(2)とTA(2)、CA(3)とTA(3)、CB(0)とTB(0)、CB(1)とTB(1)である。一般に、データカウンタ76および時刻カウンタ78の内容はたとえば次のように転送される。
パルスデータ信号をなす「パルス」がデータパルス検出器72によって検出されると、データカウンタ76および時刻カウンタ78の内容は、たとえば次のように転送されうる。
a)データ区間DI(3)、DI(7),DI(11)…についてはCA(0)とTA(0)に
b)データ区間DI(4)、DI(8),DI(12)…についてはCA(1)とTA(1)に
c)データ区間DI(5)、DI(9),DI(13)…についてはCA(2)とTA(2)に
d)データ区間DI(6)、DI(10),DI(14)…についてはCA(3)とTA(3)に
6対のデータ(C)および時刻(T)記憶位置をもつ実施形態についての下記の擬似コードが追加的な保存の組み合わせを同定する。
あるデータ区間内で第1のパルスを検出すると、データカウンタ76および時刻カウンタ78の内容はたとえば次のように転送されうる。
a)データ区間DI(3)、DI(5)、DI(7)…についてはCB(0)とTB(0)に
b)データ区間DI(4)、DI(6)、DI(8)…についてはCB(1)とTB(1)に
6対のデータ(C)および時刻(T)記憶位置をもつ実施形態についての下記の擬似コードが追加的な保存の組み合わせを同定する。
これで記載されている実施形態の場合のあるデータ区間の間の検出放射線の強度を決定するのに必要な時間付デジタル情報が与えられる。後続の二番目のデータ区間の終わりにおいて、保存されている「開始時データ計数」「終了時データ計数」「開始時刻」「終了時刻」がデルタデータプロセッサ62によって読み込まれる。
図5を参照しつつ上述した実施形態についてのDATAおよびTIMEの測定は、次の擬似コードによって実行される。
初期化 flagB(0)=0; flagB(1)=1
for n=1:N
while データパルスを受信したときにDI=n
両カウンタをCA(n+1 mod 4)とTA(n+1 mod 4)に転送
if flagB(0)==0
両カウンタをCB(0)とTB(0)に転送
end
if flagB(1)==0
両カウンタをCB(1)とTB(1)に転送
end
if flagB(0) AND flagB(1)==0
両カウンタをCA(n mod 4)とTA(n mod 4)に転送
end
flagB(0)=1にセット
flagB(1)=1にセット
end
COUNT(n−2)=CB(n mod 2)−CA(n+2 mod 4)
TIME(n−2)=TB(n mod 2)−TA(n+2 mod 4)
両カウンタをCA(n+2 mod 4)とTA(n−2 mod 4)ならびに
CB(n mod 2)とTB(n mod 2)に転送
flagB(n mod 2)=0にリセット
end
まとめると、上述したさまざまな実施形態は、CTスキャナにおける走査運転の間のデータ区間に対して検出される放射線の強度を測定するための、対称デルタデータモードとでも言うべきものを提供する。対称デルタデータモードは測定されるデータ区間に対して、前後両方のデータ区間に拡大する測定期間を生じる。平均としては、測定期間は測定される当該データ区間を中心としたものになり、よって平均的なゆがみは0となる。結果として、データゆがみに起因する画像の乱れは従来のデルタデータモードに比べて軽減される。さらに、測定期間はデータ区間よりかなり長く、よってより積分された信号を生じ、量子雑音を低減し、それにより全体としてのダイナミックレンジを拡大する。
入力信号が減少するにつれて測定期間を長くなることは、アナログ領域において適応フィルタの効果を生じ、それがあとからデジタル領域でフィルタ処理を行うよりも画質をより効率的に改善する可能性がある。
ここでは本発明は代表例としての実施形態とともに説明されているが、数多くの代替、修正、変形が当業者には自明であろうことは明らかである。したがって、上記の本発明の実施形態は本発明の精神と範囲を解説するためのものであって限定するものではない。特に、本発明は、ここに記載されている代表例としての実施形態に対して、付属の請求項またはその等価物の精神と範囲にはいるようなあらゆる代替、修正、変形を包含するものであることが意図とされている。
本発明を組み込むCTスキャナの実施形態のブロック図である。 図1のCTスキャナに付随する信号プロセッサの実施形態のブロック図である。 図2の信号プロセッサに付随する保存回路の実施形態のブロック図である。 本発明のある実施形態に関連して、あるデータ区間についての測定期間が隣接する前後のデータ区間に広がっている様子を示すタイムチャートである。 本発明のある別の実施形態に関連して、あるデータ区間についての測定期間が、2つの先行するデータ区間のいずれかおよび2つの後続のデータ区間のいずれかにまで広がりうる様子を示すタイムチャートである。

Claims (20)

  1. 放射線源を検査領域のまわりに回転させる手段と、
    前記検査領域を通過する放射線の強度とともに変動するアナログデータ信号を生成する手段と、
    前記アナログデータ信号を、前記放射線源が前記検査領域のまわりを回るにつれて前記検査領域を通過する放射線の強度とともに周波数が変動する非周期的パルスを含むデジタルデータ信号に変換する手段と、
    データ区間の指標となる時間信号を生成する手段と、
    各データ区間における平均放射線強度を、先行データ区間に発生するあるデジタルデータ信号パルスから始まって後続データ区間において発生するあるデジタルデータ信号パルスまで続くデジタルデータ信号のパルスを計数することによって決定する手段、
    とを有することを特徴とするCTスキャナ。
  2. 前記時間信号生成手段がさらに、
    第1の測定されるデータ区間の開始および次のデータ区間の開始を検出する手段を有することを特徴とする、請求項1記載のCTスキャナ。
  3. 前記決定手段がさらに、
    前記第1の測定されるデータ区間が始まるまで前記デジタルデータ信号上にパルスが生じるたびに、第1のデジタルデータ信号パルス計数を第1の開始データ位置に保存し、前記第1のデジタルデータ信号パルス計数に関連付けられた第1の時間信号値を第1の開始時間位置に保存するための、そして前記次のデータ区間の開始が検出されたあとで前記デジタルデータ信号上に次のパルスが生じたときに、第2のデジタルデータ信号パルス計数を終了データ位置に保存し、前記第2のデジタルデータ信号パルス計数に関連付けられた第2の時間信号値を終了時間位置に保存するための手段を有しており、
    前記決定手段が前記第1の測定されるデータ区間についての検出された放射線の平均強度を、前記終了データ位置に保存されたパルス計数と前記第1の開始データ位置に保存されたパルス計数との差を前記終了時間位置に保存された値と前記第1の開始時間位置に保存された値との差で割ることによって決定することを特徴とする、請求項2記載のCTスキャナ。
  4. 前記変換手段がさらに、
    前記アナログデータ信号の強度が各データ区間の間に前記デジタルデータ信号上に少なくとも一つの非周期パルスが生じるものであるよう、前記アナログデータ信号に最小化されたオフセット信号を加える手段を有しており、
    前記決定手段が前記平均強度を決定する際に前記最小化されたオフセット信号を考慮することを特徴とする、請求項3記載のCTスキャナ。
  5. 前記変換手段がさらに、
    前記アナログデータ信号の強度が2.5データ区間毎に前記デジタルデータ信号上に少なくとも一つの非周期パルスが生じるものであるよう、前記アナログデータ信号に最小化されたオフセット信号を当該変換に先立って加える手段を有していることを特徴とする、請求項1記載のCTスキャナ。
  6. a)放射線源を検査領域のまわりに回転させ、
    b)前記検査領域を通過する放射線の強度とともに変動するアナログデータ信号を生成し、
    c)前記アナログデータ信号を、前記放射線源が前記検査領域のまわりを回るにつれて前記検査領域を通過する放射線の強度とともに周波数が変動する非周期的パルスを含むデジタルデータ信号に変換し、
    d)データ区間の指標となる時間信号を生成し、
    e)各データ区間における平均放射線強度を、先行データ区間に発生するあるデジタルデータ信号パルスから始まって後続データ区間において発生するあるデジタルデータ信号パルスまで続くデジタルデータ信号のパルスを計数することによって決定する、
    ことを有することを特徴とする、CTスキャナにおいて検出された放射線の強度を測定する方法。
  7. 請求項6記載の方法であって、ステップe)がさらに、
    f)第1の測定されるデータ区間が始まるまで前記デジタルデータ信号上にパルスが生じるたびに、第1のデジタルデータ信号パルス計数を第1の開始データ位置に保存し、第1の時間信号値を第1の開始時間位置に保存し、
    g)前記第1の測定されるデータ区間の開始を検出し、次のデータ区間の開始を検出し、
    h)前記次のデータ区間の開始が検出されたあとで前記デジタルデータ信号上に次のパルスが生じたときに、第2のデジタルデータ信号パルス計数を終了データ位置に保存し、第2の時間信号値を終了時間位置に保存し、
    i)前記第1の測定されるデータ区間についての検出された放射線の平均強度を、前記終了データ位置に保存されたパルス計数と前記第1の開始データ位置に保存されたパルス計数との差を前記終了時間位置に保存された値と前記第1の開始時間位置に保存された値との差で割ることによって決定する、
    ことを有することを特徴とする方法。
  8. 請求項7記載の方法であって、
    ステップc)において、前記アナログデータ信号の強度が各データ区間の間に前記デジタルデータ信号上に少なくとも一つの非周期パルスが生じるものであるよう、前記アナログデータ信号に最小化されたオフセット信号を当該変換に先立って加え、
    ステップi)において、前記平均強度を決定する際に前記最小化されたオフセット信号を考慮する、
    ことをさらに有することを特徴とする方法。
  9. 請求項7記載の方法であって、
    ステップc)において、前記アナログデータ信号の強度が2.5データ区間毎に前記デジタルデータ信号上に少なくとも一つの非周期パルスが生じるものであるよう、前記アナログデータ信号に最小化されたオフセット信号を当該変換に先立って加え、
    ステップf)において、ある第2のデータ区間の開始まで同じようにして前記デジタルデータ信号パルス計数の保存を続け、
    ステップg)において、前記第1の測定されるデータ区間の開始と前記次のデータ区間の開始との間に前記第2の測定されるデータ区間の開始を検出し、
    ステップi)において、前記第1の測定されるデータ区間ではなく前記第2の測定されるデータ区間についての平均強度を決定し、前記平均強度を決定する際に前記最小化されたオフセット信号を考慮する、
    ことをさらに有することを特徴とする方法。
  10. 請求項6記載の方法であって、
    ステップc)において、前記アナログデータ信号の強度が2.5データ区間毎に前記デジタルデータ信号上に少なくとも一つの非周期パルスが生じるものであるよう、前記アナログデータ信号に最小化されたオフセット信号を当該変換に先立って加える、
    ことをさらに有することを特徴とする方法。
  11. 請求項10記載の方法であって、ステップe)がさらに、
    f)第1の測定されるデータ区間が始まるまで第1および第2の先行データ区間の間、前記デジタルデータ信号上にパルスが生じるたびに、第1のデジタルデータ信号パルス計数を第1の開始データ位置に保存し、第1の時間信号値を第1の開始時間位置に保存することを有しており、前記第1の先行データ区間が前記第1の測定されるデータ区間に隣接し、前記第2の先行データ区間が前記第1の先行データ区間に隣接するものである、
    ことを特徴とする方法。
  12. 請求項11記載の方法であって、ステップe)がさらに、
    g)前記第1の測定されるデータ区間の開始を検出し、前記第1の測定されるデータ区間に隣接する第1の後続データ区間の開始を検出し、
    h)前記第1の後続データ区間の開始が検出されたあとで前記第1の後続データ区間の間に前記デジタルデータ信号上に次のパルスが生じたときに、第2のデジタルデータ信号パルス計数を第1の終了データ位置に保存し、第2の時間信号値を第1の終了時間位置に保存し、
    i)前記第1の測定されるデータ区間についての検出された放射線の平均強度を、前記第1の終了データ位置に保存されたパルス計数と前記第1の開始データ位置に保存されたパルス計数との差を前記第1の終了時間位置に保存された値と前記第1の開始時間位置に保存された値との差で割ることによって決定する、
    ことを有することを特徴とする方法。
  13. 請求項11記載の方法であって、ステップe)がさらに、
    g)前記第1の測定されるデータ区間の開始を検出し、前記第1の測定されるデータ区間に隣接する第1の後続データ区間の開始を検出し、前記第1の後続データ区間に隣接する第2の後続データ区間の開始を検出し、
    h)前記第2の後続データ区間の開始が検出されたあとで前記第2の後続データ区間の間に前記デジタルデータ信号上に次のパルスが生じたときに、第2のデジタルデータ信号パルス計数を第1の終了データ位置に保存し、第2の時間信号値を第1の終了時間位置に保存し、
    i)前記第1の測定されるデータ区間についての検出された放射線の平均強度を、前記第1の終了データ位置に保存されたパルス計数と前記第1の開始データ位置に保存されたパルス計数との差を前記第1の終了時間位置に保存された値と前記第1の開始時間位置に保存された値との差で割ることによって決定する、
    ことを有することを特徴とする方法。
  14. 請求項11記載の方法であって、ステップe)がさらに、
    g)前記第1の測定されるデータ区間の開始を検出し、前記第1の測定されるデータ区間に隣接する第1の後続データ区間の開始を検出し、
    h)前記第1の後続データ区間の開始が検出されたときに、第2のデジタルデータ信号パルス計数を第1の終了データ位置に保存し、第2の時間信号値を第1の終了時間位置に保存し、
    i)前記第1の測定されるデータ区間についての検出された放射線の平均強度を、前記第1の終了データ位置に保存されたパルス計数と前記第1の開始データ位置に保存されたパルス計数との差を前記第1の終了時間位置に保存された値と前記第1の開始時間位置に保存された値との差で割ることによって決定する、
    ことを有することを特徴とする方法。
  15. 請求項14記載の方法であって、
    前記第1の後続データ区間が第2の測定されるデータ区間であり、ステップe)がさらに、
    j)前記第2の測定されるデータ区間が始まるまで前記第2の測定されるデータ区間に関して第1および第2の先行データ区間の間、前記デジタルデータ信号上にパルスが生じるたびに、第3のデジタルデータ信号パルス計数を第2の開始データ位置に保存し、第3の時間信号値を第2の開始時間位置に保存することを有しており、前記第1の先行データ区間が前記第2の測定されるデータ区間に隣接し、前記第2の先行データ区間が前記第1の先行データ区間に隣接するものであり、
    ステップe)がさらに、
    k)前記第2の測定されるデータ区間の開始を検出し、前記第2の測定されるデータ区間に関して第1および第2の後続データ区間の開始を検出し、前記第1の後続データ区間が前記第1の測定されるデータ区間に隣接し、前記第2の後続データ区間が前記第1の後続データ区間に隣接するものであり、
    l)前記第2の後続データ区間の開始が検出されたあとで前記第2の後続データ区間の間に前記デジタルデータ信号上に次のパルスが生じたときに、第4のデジタルデータ信号パルス計数を第2の終了データ位置に保存し、第4の時間信号値を第2の終了時間位置に保存し、
    m)前記第2の測定されるデータ区間についての検出された放射線の平均強度を、前記第2の終了データ位置に保存されたパルス計数と前記第2の開始データ位置に保存されたパルス計数との差を前記第2の終了時間位置に保存された値と前記第2の開始時間位置に保存された値との差で割ることによって決定する、
    ことを有することを特徴とする方法。
  16. 請求項10記載の方法であって、ステップe)がさらに、
    f)前記第1の測定されるデータ区間の開始を検出し、
    g)前記第1の測定されるデータ区間の開始が検出されたときに、第1のデジタルデータ信号パルス計数を第1の開始データ位置に保存し、第1の時間信号値を第1の開始時間位置に保存する、
    ことを有することを特徴とする方法。
  17. 請求項16記載の方法であって、ステップe)がさらに、
    h)前記第1の測定されるデータ区間に隣接する第1の後続データ区間の開始を検出し、
    i)前記第1の後続データ区間の開始が検出されたあとで前記第1の後続データ区間の間に前記デジタルデータ信号上に次のパルスが生じたときに、第2のデジタルデータ信号パルス計数を第1の終了データ位置に保存し、第2の時間信号値を第1の終了時間位置に保存し、
    j)前記第1の測定されるデータ区間についての検出された放射線の平均強度を、前記第1の終了データ位置に保存されたパルス計数と前記第1の開始データ位置に保存されたパルス計数との差を前記第1の終了時間位置に保存された値と前記第1の開始時間位置に保存された値との差で割ることによって決定する、
    ことを有することを特徴とする方法。
  18. 請求項17記載の方法であって、
    前記第1の後続データ区間が第2の測定されるデータ区間であり、
    ステップe)がさらに、
    k)前記第2の測定されるデータ区間が始まるまで前記第2の測定されるデータ区間に関して第1および第2の先行データ区間の間、前記デジタルデータ信号上にパルスが生じるたびに、第3のデジタルデータ信号パルス計数を第2の開始データ位置に保存し、第3の時間信号値を第2の開始時間位置に保存することを有しており、前記第1の先行データ区間が前記第2の測定されるデータ区間に隣接し、前記第2の先行データ区間が前記第1の先行データ区間に隣接するものであり、
    ステップe)がさらに、
    l)前記第2の測定されるデータ区間の開始を検出し、前記第2の測定されるデータ区間に関して第1の後続データ区間の開始を検出し、前記第1の後続データ区間が前記第2の測定されるデータ区間に隣接するものであり、
    m)前記第1の後続データ区間の開始が検出されたときに、第4のデジタルデータ信号パルス計数を第2の終了データ位置に保存し、第4の時間信号値を第2の終了時間位置に保存し、
    n)前記第2の測定されるデータ区間についての検出された放射線の平均強度を、前記第2の終了データ位置に保存されたパルス計数と前記第2の開始データ位置に保存されたパルス計数との差を前記第2の終了時間位置に保存された値と前記第2の開始時間位置に保存された値との差で割ることによって決定する、
    ことを有することを特徴とする方法。
  19. 請求項16記載の方法であって、ステップe)がさらに、
    h)前記第1の測定されるデータ区間の開始を検出し、前記第1の測定されるデータ区間に隣接する第1の後続データ区間の開始を検出し、前記第1の後続データ区間に隣接する第2の後続データ区間の開始を検出し、
    i)前記第2のデータ区間の開始が検出されたあとで前記第2の後続データ区間の間に前記デジタルデータ信号上に次のパルスが生じたときに、第2のデジタルデータ信号パルス計数を第1の終了データ位置に保存し、第2の時間信号値を第1の終了時間位置に保存し、
    j)前記第1の測定されるデータ区間についての検出された放射線の平均強度を、前記第1の終了データ位置に保存されたパルス計数と前記第1の開始データ位置に保存されたパルス計数との差を前記第1の終了時間位置に保存された値と前記第1の開始時間位置に保存された値との差で割ることによって決定する、
    ことを有することを特徴とする方法。
  20. 請求項19記載の方法であって、
    前記第1の後続データ区間が第2の測定されるデータ区間であり、
    ステップe)がさらに、
    k)前記第2の測定されるデータ区間が始まるまで前記第2の測定されるデータ区間に関して第1および第2の先行データ区間の間、前記デジタルデータ信号上にパルスが生じるたびに、第3のデジタルデータ信号パルス計数を第2の開始データ位置に保存し、第3の時間信号値を第2の開始時間位置に保存することを有しており、前記第1の先行データ区間が前記第2の測定されるデータ区間に隣接し、前記第2の先行データ区間が前記第1の先行データ区間に隣接するものであり、
    ステップe)がさらに、
    l)前記第2の測定されるデータ区間の開始を検出し、前記第2の測定されるデータ区間に関して第1の後続データ区間の開始を検出し、前記第1の後続データ区間が前記第2の測定されるデータ区間に隣接するものであり、
    m)前記第1の後続データ区間の開始が検出されたあとで前記第1の後続データ区間の間に前記デジタルデータ信号上に次のパルスが生じたときに、第4のデジタルデータ信号パルス計数を第2の終了データ位置に保存し、第4の時間信号値を第2の終了時間位置に保存し、
    n)前記第2の測定されるデータ区間についての検出された放射線の平均強度を、前記第2の終了データ位置に保存されたパルス計数と前記第2の開始データ位置に保存されたパルス計数との差を前記第2の終了時間位置に保存された値と前記第2の開始時間位置に保存された値との差で割ることによって決定する、
    ことを有することを特徴とする方法。
JP2006530632A 2003-05-14 2004-04-19 改良された放射線検出の方法および装置 Expired - Lifetime JP4411323B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47031603P 2003-05-14 2003-05-14
PCT/IB2004/001505 WO2004100792A1 (en) 2003-05-14 2004-04-19 Method and apparatus for improved radiation detection

Publications (2)

Publication Number Publication Date
JP2007501085A JP2007501085A (ja) 2007-01-25
JP4411323B2 true JP4411323B2 (ja) 2010-02-10

Family

ID=33452387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006530632A Expired - Lifetime JP4411323B2 (ja) 2003-05-14 2004-04-19 改良された放射線検出の方法および装置

Country Status (5)

Country Link
US (1) US7443947B2 (ja)
EP (1) EP1624804B1 (ja)
JP (1) JP4411323B2 (ja)
AT (1) ATE526880T1 (ja)
WO (1) WO2004100792A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296658B (zh) * 2005-04-25 2011-01-12 北卡罗来纳大学查珀尔希尔分校 使用时间数字信号处理的x射线成像
EP1940291B1 (en) * 2005-10-19 2015-09-23 Koninklijke Philips N.V. X-ray examination apparatus
WO2008060670A2 (en) * 2006-04-20 2008-05-22 Multi-Dimensional Imaging, Inc. Low noise voltage-to-frequency conversion apparatus and method for quantum measurements
EP2309927B1 (en) * 2008-08-04 2017-10-11 Koninklijke Philips N.V. Data acquisition for a radiation imaging system
US9180453B2 (en) * 2008-08-15 2015-11-10 University Of Washington Method and apparatus for the discretization and manipulation of sample volumes
DE102009032252B3 (de) * 2009-07-08 2010-08-05 Siemens Aktiengesellschaft Verfahren zur Erzeugung von Röntgenbildern mit einem Mehrenergie-Röntgendetektionssystem sowie Vorrichtung zur Durchführung des Verfahrens
US9767258B2 (en) 2010-09-27 2017-09-19 Purdue Research Foundation System and method of extending the linear dynamic range of event counting
JP6012721B2 (ja) * 2011-06-14 2016-10-25 サザン イノヴェーション インターナショナル プロプライアトリー リミテッド 検出器出力データ中のパルスを特定するための方法および装置
DE102012212124B4 (de) * 2012-07-11 2018-06-14 Siemens Healthcare Gmbh Zählender digitaler Röntgendetektor und Verfahren zur Aufnahme einer Serie von Röntgenbildern
US9216005B2 (en) * 2013-10-28 2015-12-22 Kabushiki Kaisha Toshiba Synchronized view data acquisition between stationary spectral detectors and rotating energy integrating detectors for spectral computer-aided tomography
US10271803B2 (en) * 2015-11-12 2019-04-30 Prismatic Sensors Ab High-resolution computed tomography using edge-on detectors with temporally offset depth-segments

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008400A (en) * 1975-03-18 1977-02-15 Picker Corporation Transverse tomography system having multibeam orbital scanning with all beams offset from the center of orbit
GB1546076A (en) * 1975-06-10 1979-05-16 Emi Ltd Radiography
US4052620A (en) * 1975-11-28 1977-10-04 Picker Corporation Method and apparatus for improved radiation detection in radiation scanning systems
US4129783A (en) * 1976-05-06 1978-12-12 General Electric Company High speed computerized tomography imaging system
US4157472A (en) * 1976-09-16 1979-06-05 General Electric Company X-ray body scanner for computerized tomography
US4812848A (en) * 1987-09-02 1989-03-14 The Babcock & Wilcox Company Analog to digital conversion
FR2630903A1 (fr) * 1988-05-06 1989-11-10 Gen Electric Cgr Dispositif de tomographie a grande cadence d'acquisition
JPH048372A (ja) * 1990-04-26 1992-01-13 Mitsubishi Electric Corp 放射線発生装置
US5172115A (en) * 1991-02-15 1992-12-15 Crystal Semiconductor Corporation Ratiometric A/D converter with non-rationometric error offset
GB2252829B (en) * 1991-02-15 1994-10-19 Crystal Semiconductor Corp Method and apparatus for decreasing the interference and noise sensitivity of a ratiometric converter type of circuit
US5229772A (en) * 1992-02-03 1993-07-20 Integrated Semiconductor Solutions Ratiometric ADC with pulse width modulated output for wide temperature range applications
US5457458A (en) * 1993-12-21 1995-10-10 Honeywell Inc. High resolution analog current-to-frequency converter
JP3602166B2 (ja) * 1994-09-13 2004-12-15 三菱電機株式会社 センサ装置
US5953439A (en) * 1994-11-04 1999-09-14 Ishihara; Ken Apparatus for and method of extracting time series image information
US6094473A (en) * 1998-03-19 2000-07-25 Picker International, Inc. Digital automatic X-ray exposure control system
US6671345B2 (en) * 2000-11-14 2003-12-30 Koninklijke Philips Electronics N.V. Data acquisition for computed tomography
JP3958069B2 (ja) * 2001-03-28 2007-08-15 株式会社東芝 放射線測定装置

Also Published As

Publication number Publication date
JP2007501085A (ja) 2007-01-25
WO2004100792A1 (en) 2004-11-25
ATE526880T1 (de) 2011-10-15
EP1624804B1 (en) 2011-10-05
US20070005278A1 (en) 2007-01-04
US7443947B2 (en) 2008-10-28
EP1624804A1 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
US7894576B2 (en) Spectral computed tomography using correlated photon number and energy measurements
JP6482815B2 (ja) X線コンピュータ断層撮影装置及びリファレンス補正プログラム
US7480362B2 (en) Method and apparatus for spectral computed tomography
JP4411323B2 (ja) 改良された放射線検出の方法および装置
JP7179009B2 (ja) 光子計数に基づくx線検出システム
US20100008558A1 (en) Spectrally resolving x-ray imaging device
US7813472B2 (en) CT imaging system
JP2004513700A (ja) コンピュータトモグラフィ向けデータ取得
JP5823208B2 (ja) X線コンピュータ断層撮影装置
JP4642251B2 (ja) Ctイメージング・システムの検出器のための高次主減衰補正
JP4817736B2 (ja) X線コンピュータ断層撮影システム及びx線コンピュータ断層撮影システムのデータ補正方法
JP2010197396A (ja) 物体の流れを走査する方法及びシステム
JP4436365B2 (ja) 検出イベントの時間分解記録のための検出器
US7813473B2 (en) Method and apparatus for generating temporally interpolated projections
JPH10509069A (ja) 断層撮影イメージ・データの正規化
JP4908957B2 (ja) X線ct装置
JPH10328175A (ja) X線ct装置
JPH0231745A (ja) コンピュータ断層撮影装置
US7774040B1 (en) Method and apparatus of multi-phase cardiac imaging
JP4299749B2 (ja) Ct画像の再構成方法及びct装置並びにプログラム
EP0910280B1 (en) Computer tomography device for volume scanning
JP2000023965A (ja) 放射線撮像装置
JP2012527287A (ja) 補間不要な、扇形平行ビーム・リビニング
JP3421023B2 (ja) コンピュータ断層撮影装置
JPH09285461A (ja) X線ct装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091116

R150 Certificate of patent or registration of utility model

Ref document number: 4411323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250