JP4406746B2 - Manufacturing method of zinc alloy for fuse - Google Patents

Manufacturing method of zinc alloy for fuse Download PDF

Info

Publication number
JP4406746B2
JP4406746B2 JP2007247212A JP2007247212A JP4406746B2 JP 4406746 B2 JP4406746 B2 JP 4406746B2 JP 2007247212 A JP2007247212 A JP 2007247212A JP 2007247212 A JP2007247212 A JP 2007247212A JP 4406746 B2 JP4406746 B2 JP 4406746B2
Authority
JP
Japan
Prior art keywords
fuse
alloy
fusing
zinc alloy
fuses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007247212A
Other languages
Japanese (ja)
Other versions
JP2008034394A (en
Inventor
和隆 中島
洋 小川
紀弘 大橋
隆吉 遠藤
弘紀 近藤
美佳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2007247212A priority Critical patent/JP4406746B2/en
Publication of JP2008034394A publication Critical patent/JP2008034394A/en
Application granted granted Critical
Publication of JP4406746B2 publication Critical patent/JP4406746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Description

本発明はヒューズ材およびヒューズに関するものであって、特に自動車用としての諸特性に優れたヒューズ用亜鉛合金およびヒューズならびにその製造方法に関する。   The present invention relates to a fuse material and a fuse, and more particularly to a zinc alloy for fuses excellent in various characteristics for automobiles, a fuse, and a method for manufacturing the same.

現在、溶断特性からみて、ヒューズには大きく分けて下記の3タイプがある。
1.「速動溶断型」と呼ばれ、過電流に速やかに反応して溶断時間が短く、主に半導体の保護に利用されているタイプ。
2.「タイムラグ溶断型」と呼ばれ、モーターの起動電流など瞬間的な過電流に即応して溶断することなく、過電流に対する溶断時間が長く、瞬間的な過電流を伴う回路の保護を目的としたタイプであり、自動車用ヒューズもこのタイプに属する。
3.「普通溶断型」と呼ばれ、上記2タイプの中間的特性を持ち、一般的な回路に利用されているタイプ。
At present, from the viewpoint of fusing characteristics, there are the following three types of fuses.
1. This type is called “Fast-acting fusing type”, which responds quickly to overcurrent and has a short fusing time, which is mainly used for protecting semiconductors.
2. It is called “time lag fusing type”, and it aims to protect the circuit with momentary overcurrent because the fusing time for overcurrent is long without fusing in response to momentary overcurrent such as motor starting current. The fuse for automobiles also belongs to this type.
3. This type is called “normally blown type” and has the intermediate characteristics of the above two types and is used for general circuits.

従来、自動車用ヒューズとしては、古くは純亜鉛を材料とするガラス管ヒューズが用いられたが、最近では亜鉛を主成分とするZn−Cu−Ti系合金を使用したブレード型ヒューズ等亜鉛合金系のものが主流となっており、また、溶断部を亜鉛合金線に置き換えた特殊なブレード型ヒューズを使用する等ヒューズの溶断特性の調整が形状面からも行われるようになっており、現在、さらに溶断部に別部材を組み付けて溶断特性の調整をすることも行われている。
また、ヒューズにおいては、製造過程において諸加工を必要としており、加工性もまた重要な要素になっている。
Conventionally, glass fuses made of pure zinc were used as automotive fuses in the past, but recently, zinc alloy systems such as blade-type fuses using Zn-Cu-Ti alloys mainly composed of zinc. In addition, the adjustment of the fusing characteristics of the fuse, such as the use of a special blade type fuse in which the fusing part is replaced with a zinc alloy wire, is also performed from the shape side, Furthermore, the fusing characteristics are also adjusted by assembling another member to the fusing part.
In addition, fuses require various processes in the manufacturing process, and processability is also an important factor.

純亜鉛は導電率が28%IACSで融点419.5℃であって純亜鉛を材料とするヒューズは速動溶断型であり、重量%でZn−0.3〜0.6%Cu−0.1〜0.3%Ti合金は導電率が27%IACSで融点420〜422℃であり、普通溶断型に相当している(以下、成分%は重量%を示すものとする)。このようなヒューズの溶断特性に関連してその材料面からの提案として、特開平10−134698号公報にはAlが0.5〜17.0%で残部がZnと不可避的不純物からなる材料によって可溶温度を300〜400℃に下げたとするヒューズ用亜鉛合金が開示されている。
特開平10−134698号公報
Pure zinc has an electrical conductivity of 28% IACS and a melting point of 419.5 ° C., and a fuse made of pure zinc is a fast-acting blow type, and Zn-0.3 to 0.6% Cu-0. The 1-0.3% Ti alloy has a conductivity of 27% IACS and a melting point of 420-422 ° C., and corresponds to a normal blown mold (hereinafter, “component%” represents “% by weight”). As a proposal from the viewpoint of the material in relation to the fusing characteristics of such a fuse, Japanese Patent Laid-Open No. 10-134698 discloses a material comprising 0.5 to 17.0% of Al and the balance of Zn and inevitable impurities. A fuse zinc alloy is disclosed in which the melting temperature is lowered to 300 to 400 ° C.
Japanese Patent Laid-Open No. 10-134698

しかしながら、最近、自動車の電装品の増加によってバッテリーの容量アップが検討され、バッテリー電圧の高電圧化が検討されている。
この場合、回路数の増加やその高密度化のため、従来のZn−Cu−Ti合金系のヒューズでは抵抗性の点から通電時の温度上昇が高くなり、この熱により周辺のケースやヒューズハウジングに悪影響を与えるという問題があり、また、溶断部が熱により溶断したときアーク放電が発生して溶断不良を生じやすいという問題があった。さらに、このZn−Cu−Ti合金ではヒューズの溶断部を薄板に加工仕上げする際、寸法不良やこま折れの不具合が発生し易く加工性に問題があった。
Recently, however, an increase in the capacity of the battery has been studied due to an increase in the number of electrical components for automobiles, and an increase in the battery voltage has been studied.
In this case, due to the increase in the number of circuits and the increase in density, conventional Zn-Cu-Ti alloy-based fuses have a high temperature rise during energization due to their resistance, and this heat causes surrounding cases and fuse housings. In addition, there is a problem that when the fusing part is blown by heat, arc discharge is generated and a fusing defect is likely to occur. Further, in this Zn-Cu-Ti alloy, when the fused part of the fuse is processed and finished into a thin plate, there is a problem in workability because a defect in dimension or a problem of cracking is likely to occur.

また、上記特開平10−134698号公報の技術による亜鉛材料では、Alの含有範囲を0.5〜17.0%と広くしてあるが、Alが約8%以下では実質的に機械的強度が低く、また、Alが8%以上では、Zn―Al合金の状態図(図1参照)から分かるように、液相線と固相線との温度差が25℃以上となり、液相と固溶体の共存区間が長くなり、ヒューズとして使用した場合、溶断特性が不良となる等自動車用ヒューズとしても適当でなく、さらに、Zn−Al二元合金系には耐食性の面から長期安定性に問題がある。   Moreover, in the zinc material according to the technique of the above-mentioned Japanese Patent Laid-Open No. 10-134698, the Al content range is widened to 0.5 to 17.0%, but the mechanical strength is substantially reduced when Al is about 8% or less. When Al is 8% or more, and the phase diagram of the Zn-Al alloy (see FIG. 1) shows that the temperature difference between the liquidus and the solidus becomes 25 ° C. or more, the liquid and solid solution When the fuse is used as a fuse, it is not suitable as a fuse for automobiles due to poor fusing characteristics. Furthermore, the Zn-Al binary alloy system has a problem in long-term stability in terms of corrosion resistance. is there.

上記の問題に鑑み、本発明は、溶断部に別部材を組み付ける等の特殊な加工を施すことなく、溶断特性の調整が可能であり、従来品に比較して通電時の温度上昇が低く、また、機械的性質をはじめプレスや鍛造等の加工性等の諸特性が改善されると共に、自動車用等のヒューズとして長期的に安定して使用でき、比較的安価な材料として供給できるヒューズ用亜鉛合金材料、ヒューズの提供を目的とする。   In view of the above problems, the present invention can adjust the fusing characteristics without performing special processing such as assembling a separate member to the fusing part, and the temperature rise during energization is low compared to conventional products, In addition to improved mechanical properties and other characteristics such as workability such as press and forging, zinc for fuses that can be used stably as a fuse for automobiles for a long time and can be supplied as a relatively inexpensive material The purpose is to provide alloy materials and fuses.

本発明者等は上記の諸課題を解決するために主として材料面から鋭意研究した結果、ヒューズ材の組成として亜鉛に所定量のAlに加えてさらにMgを含有させることにより極めて優れた特性を有して前記の目的を達成し得る新規なヒューズ用亜鉛合金材が得られることを知見し、本発明を提供するに至った。   As a result of intensive studies mainly from the material viewpoint in order to solve the above-mentioned problems, the present inventors have found that the fuse material composition has extremely excellent characteristics by further adding Mg in addition to a predetermined amount of Al. As a result, the inventors have found that a novel zinc alloy material for fuses that can achieve the above-described object can be obtained, and have provided the present invention.

すなわち、本発明は、第1に、重量%でAl:3.0〜8.0%およびMg:0.0005〜0.06%を含み、残部がZnおよび不可避的不純物からなる組成を有する亜鉛合金材であることを特徴とするヒューズ用亜鉛合金であり、第2に、前記亜鉛合金材が自動車のヒューズ用である、第1記載のヒューズ用亜鉛合金であり、第3に、前記亜鉛合金材が、前記組成を有する板厚0.5〜1.0mmの板状体が鍛造加工および打抜きによって仕上げられヒューズ溶断部を形成する亜鉛合金材である、第1または2に記載のヒューズ用亜鉛合金であり、第4に、前記亜鉛合金材が直径0.1〜5.0mmの線である、第1または2に記載のヒューズ用亜鉛合金であり、第5に、第1〜4のいずれかに記載の亜鉛合金材からなることを特徴とするヒューズであり、第6に、重量%でAl:3.0〜8.0%およびMg:0.0005〜0.06%を含み、残部がZnおよび不可避的不純物からなる組成を有する亜鉛合金材を圧延によって0.5〜1.0mmの厚さの圧延板とし、該圧延板についてさらに鍛造加工および打抜きを行って、ヒューズ溶断部を形成することを特徴とするヒューズの製造方法である。   That is, the present invention first includes zinc having a composition containing Al: 3.0 to 8.0% and Mg: 0.0005 to 0.06% by weight, with the balance being Zn and inevitable impurities. A zinc alloy for fuses, characterized in that it is an alloy material, secondly, the zinc alloy material for fuses according to the first aspect, wherein the zinc alloy material is for automotive fuses, and thirdly, the zinc alloy The fuse zinc according to claim 1 or 2, wherein the material is a zinc alloy material in which a plate-like body having the above-described composition and having a thickness of 0.5 to 1.0 mm is finished by forging and punching to form a fuse fusing part. 4) The zinc alloy for fuses according to 1 or 2, wherein the zinc alloy material is a wire having a diameter of 0.1 to 5.0 mm, and fifth, any of the first to fourth A fuse comprising the zinc alloy material according to claim 1 And sixth, rolling a zinc alloy material containing Al: 3.0-8.0% and Mg: 0.0005-0.06% by weight, the balance being composed of Zn and inevitable impurities Is a rolled plate having a thickness of 0.5 to 1.0 mm, and a forging process and punching are further performed on the rolled plate to form a fuse blown portion.

本発明合金のヒューズは従来合金のヒューズに比較して通電時の温度上昇が低く、周辺のケースやヒューズハウジングに悪影響を与えることが防止できる。また、本発明合金のヒューズ材は機械的特性やプレス加工性、鍛造加工性、溶断特性また耐食性等の諸特性が改善されたヒューズ用亜鉛合金からなり、自動車用のヒューズとして長期安定的に使用できるばかりでなく、価格の安い材料として供給できるため経済的価値も高い。
また、本発明によれば、ヒューズ材における液相−固相両線の温度差を調整することにより、溶断部に別部材を使用することなく、「普通溶断型」、「タイムラグ溶断型」さらには「速動溶断型」の各特性に対応が可能なヒューズが得られるという効果を奏する。
The fuse of the alloy of the present invention has a lower temperature rise when energized than the conventional alloy fuse, and can prevent adverse effects on the surrounding case and fuse housing. In addition, the fuse material of the alloy of the present invention is made of a zinc alloy for fuses with improved mechanical properties, press workability, forging workability, fusing properties, corrosion resistance and other properties, and can be used stably as a fuse for automobiles for a long period of time. Not only can it be made, but it can also be supplied as a low-priced material, so it has high economic value.
In addition, according to the present invention, by adjusting the temperature difference between the liquid phase and the solid phase line in the fuse material, a “normal fusing type”, “time lag fusing type”, Has the effect of obtaining a fuse capable of responding to each of the characteristics of the “fast moving fusing type”.

本発明は、ヒューズ材として3.0〜8.0%Alおよび0.0005〜0.06%Mgを含有し残部が亜鉛と不可避的不純物からなるZn−Al―Mg系亜鉛合金材を使用する。この材料は、(1) 従来のZn−0.3〜0.6%Cu−0.1〜0.3%Ti系亜鉛合金によるヒューズ材に比べて融点が低く、(2) Alの配合比を変えることにより、図1の部分状態図に示すように、液相−固相線間の温度差すなわち合金の液相と固溶体との混合領域の温度幅が変化するという特徴を有し、Alの配合比を変えることで、ヒューズにおける溶断時間を拡大乃至縮小することができるという特長を有する。
なお、図1は、0.005%Mgを含むZn−Al合金についてAl含有量を1.8〜15.0%に変化させた場合の液相線と固相線と共析変態温度を示差熱分析手法により本発明者等が実測した結果に基づいて作成してある。
The present invention uses a Zn—Al—Mg-based zinc alloy material containing 3.0 to 8.0% Al and 0.0005 to 0.06% Mg as the fuse material, the balance being zinc and inevitable impurities. . This material has a lower melting point than (1) conventional Zn-0.3 to 0.6% Cu-0.1 to 0.3% Ti-based zinc alloy fuse materials, and (2) Al content ratio 1, the temperature difference between the liquid phase and the solidus, that is, the temperature range of the mixed region of the alloy liquid phase and the solid solution changes, as shown in the partial state diagram of FIG. By changing the blending ratio, the fusing time in the fuse can be enlarged or reduced.
FIG. 1 shows the difference between the liquidus, solidus and eutectoid transformation temperatures when the Al content is changed from 1.8 to 15.0% for a Zn-Al alloy containing 0.005% Mg. It is created based on the result of actual measurement by the present inventors using a thermal analysis technique.

本発明亜鉛合金によるヒューズ材の製造にあたっては、熱間押出し法や縦型または横型連続鋳造方法、あるいはロータリーストリップキャスト法等の従来のいずれの製造方法をも利用できる。溶製した本発明の組成のZn−Al−Mg合金の溶湯から、例えば、ロータリーストリップキャスト法(ストリップ形成溝を有する鋳造ホィールとこれを被う鋼帯を備える連続鋳造機を用いる)と2段ロール圧延法の組合わせにより3.5〜8mm厚さのコイルを製造することができる。   In manufacturing the fuse material using the zinc alloy of the present invention, any conventional manufacturing method such as a hot extrusion method, a vertical or horizontal continuous casting method, or a rotary strip casting method can be used. From the molten Zn-Al-Mg alloy having the composition of the present invention, for example, a rotary strip casting method (using a continuous casting machine having a casting wheel having a strip forming groove and a steel strip covering the same) and two stages A coil having a thickness of 3.5 to 8 mm can be manufactured by a combination of roll rolling methods.

このコイルは引き続き150〜300℃の熱間圧延を経由しまたは経由することなく冷間圧延を実施することにより0.5〜1.0mm厚さのコイルに作製することができる。その後、適当な幅となるようにスリッター加工を行い、0.5〜1.0μmの銅下地めっきと1〜2μmのSnめっき処理を行う。この場合、スリッター加工とめっき加工の順番は逆になっても差し支えない。
次に、プレス加工によりヒューズの型に打抜き、さらに、その溶断部について数回の鍛造とプレスによる型抜きを繰り返すことにより、厚さ0.1mmの定格2〜30Aに必要な断面積の溶断部をもつヒューズを作製することができる。
この鍛造加工は加工度の微調整が容易であり、また、微小厚さの制御と共に、結晶組織を均一制御し機械的特性と溶断特性を均一保持させるための極めて重要な加工となっている。
This coil can be made into a coil having a thickness of 0.5 to 1.0 mm by performing cold rolling continuously through or without hot rolling at 150 to 300 ° C. Thereafter, slitting is performed so as to obtain an appropriate width, and 0.5 to 1.0 μm of copper base plating and 1-2 μm of Sn plating are performed. In this case, the order of slitting and plating may be reversed.
Next, by punching into a die of a fuse by press working, and by further repeating several times of forging and die cutting by pressing, a melted portion having a cross-sectional area required for a rating of 2 to 30 A with a thickness of 0.1 mm It is possible to produce a fuse having
This forging process is easy to finely adjust the degree of processing, and it is an extremely important process for controlling the fine thickness and uniformly controlling the crystal structure to maintain the mechanical characteristics and the fusing characteristics uniformly.

なお、本発明亜鉛合金は、直径0.1〜5.0mmの細線状ヒューズとしても使用できる。本発明亜鉛合金は細線加工にあたり、一般の伸線加工方法を問題なく適用できる。すなわち、円柱状亜鉛合金インゴットを熱間押出し加工により、または、ロータリーストリップキャスト法と多段タンデム圧延機の組み合わせで素線を得、さらに高速伸線加工によって容易に前記細径のヒューズ線に仕上げることができる。   The zinc alloy of the present invention can also be used as a thin wire fuse having a diameter of 0.1 to 5.0 mm. The zinc alloy of the present invention can be applied with a general wire drawing method without any problem in thin wire processing. That is, a cylindrical zinc alloy ingot is obtained by hot extrusion or by a combination of a rotary strip casting method and a multi-stage tandem rolling mill, and further finished into the small-diameter fuse wire by high-speed wire drawing. Can do.

本発明における典型的なZn−6.4%Al−0.005%Mg合金によるヒューズ材は導電率が32%IACSで融点が393℃である。
すなわち、本発明合金組成のヒューズは、導電性に優れ抵抗熱が少なく、且つ、上記温度範囲を拡大するとヒューズの溶断温度に幅ができ、比較的低い温度での長時間通電により溶断するようになる。従ってこのヒューズ材は瞬間的な過電流による溶断は防止されるが、比較的長い時間の過電流で溶断が行われるという「タイムラグ溶断型」の溶断特性を出すのに適している。
このヒューズ材はまた、温度範囲を狭めておくことで、従来の一般向けヒューズの場合と同様の「普通溶断型」の特性を出すこともできる。また、共晶成分を選択することで半導体回路用の「速動溶断型」とすることも可能である。
A typical Zn-6.4% Al-0.005% Mg alloy fuse material in the present invention has a conductivity of 32% IACS and a melting point of 393 ° C.
That is, the fuse of the alloy composition of the present invention is excellent in electrical conductivity, has little resistance heat, and when the above temperature range is expanded, the fuse fusing temperature can be widened so that it can be blown by energization for a long time at a relatively low temperature. Become. Accordingly, this fuse material is suitable for producing a “time lag fusing type” fusing characteristic in which fusing is prevented by an overcurrent for a relatively long time, although fusing due to an instantaneous overcurrent is prevented.
This fuse material can also exhibit the “normally blown” characteristics similar to those of conventional general-purpose fuses by narrowing the temperature range. It is also possible to select a “fast moving fusing type” for a semiconductor circuit by selecting a eutectic component.

この結果、本発明のヒューズ材は前記した純亜鉛や従来のZn−Cu−Ti系亜鉛合金によるものに比べて導電率が高く、材料の抵抗が小さくなるため、ヒューズに加工して定格電流を通電した場合の端子の温度上昇は小さくなり、周辺のケースやヒューズハウジングに悪影響を与えないという特長を有する。
また、融点も低くなっているため、同定格のヒューズを設計する場合には抵抗の設計値を下げることができ、さらに温度上昇を抑制することが可能になるためヒューズ材として極めて適切である。
As a result, the fuse material of the present invention has higher conductivity and lower material resistance than those of the pure zinc or the conventional Zn-Cu-Ti-based zinc alloy, so that the rated current can be obtained by processing the fuse. The temperature rise of the terminal when energized is reduced, and there is a feature that the surrounding case and the fuse housing are not adversely affected.
In addition, since the melting point is low, the design value of the resistance can be lowered when designing a fuse of the same rating, and further, the temperature rise can be suppressed, so that it is extremely suitable as a fuse material.

ヒューズ用亜鉛合金において8%以下のAl単独の添加の場合では機械的強度が低く、そのままでは自動車用ヒューズとしては不適当であるが、本発明では、Mgの添加により向上する機械的強度により十分に補うことができる。また、Alが8%を越えると機械的強度は向上するものの、液相線と固相線間の間隔が拡大し過ぎて、ヒューズとしての溶断性が不十分となる。
一方、Alの含有量が3%未満の場合は、導電率が下がることからヒューズの通電に対する温度上昇度が高くなる。
このため、本発明ではAlの含有量については3.0〜8.0%とする。
In the case of addition of 8% or less Al alone in a zinc alloy for fuses, the mechanical strength is low, and as such, it is unsuitable as a fuse for automobiles. However, in the present invention, the mechanical strength improved by the addition of Mg is sufficient. Can make up for. On the other hand, if Al exceeds 8%, the mechanical strength is improved, but the distance between the liquidus line and the solidus line becomes too large, and the fusing property as a fuse becomes insufficient.
On the other hand, when the Al content is less than 3%, the electrical conductivity decreases, and therefore the temperature rise with respect to the energization of the fuse increases.
For this reason, in the present invention, the Al content is set to 3.0 to 8.0%.

3.0〜8.0%のAlを含む亜鉛合金に第3元素として少量のMgを添加することにより融点や導電率を変化させることなく、上記のように機械的強度を顕著に改善することができる。しかし、Mgが0.0005%未満ではこのような機械的強度の改善効果は十分でない。
また、Mgが0.06%を越えて含有された場合は伸びが小さくなり、製造時の圧延加工において割れの発生が見られる等加工性に問題を生じる。
さらに、Mgの添加は亜鉛合金ヒューズの耐食性を向上させるという顕著な効果を有する。
以上の結果から、本発明においてはMgの含有量は0.0005〜0.06%とする。
By adding a small amount of Mg as a third element to a zinc alloy containing 3.0-8.0% Al, the mechanical strength is remarkably improved as described above without changing the melting point and conductivity. Can do. However, when Mg is less than 0.0005%, such an effect of improving the mechanical strength is not sufficient.
Further, when Mg is contained in an amount exceeding 0.06%, the elongation becomes small, which causes a problem in workability such as occurrence of cracks in rolling during production.
Further, the addition of Mg has a remarkable effect of improving the corrosion resistance of the zinc alloy fuse.
From the above results, in the present invention, the Mg content is set to 0.0005 to 0.06%.

本発明の亜鉛合金によるヒューズ材は、引張強度が200N/mm2 以上 、硬度(Hv)が50以上、伸びが50%以上、導電率が30%IACS以上であり、融点は380〜418℃である。
たとえば、Zn−6.4%Al−0.005%Mg合金では引張強度が約258N/mm2 、硬度がHv=70、伸びが約50%である。
The fuse material made of the zinc alloy of the present invention has a tensile strength of 200 N / mm 2 or more, a hardness (Hv) of 50 or more, an elongation of 50% or more, a conductivity of 30% IACS or more, and a melting point of 380 to 418 ° C. is there.
For example, a Zn-6.4% Al-0.005% Mg alloy has a tensile strength of about 258 N / mm 2 , a hardness of Hv = 70, and an elongation of about 50%.

これに対して、Mgを含まないZn−6.4%Al合金材は引張強度が約160N/mm2 、硬度がHv=35と低く、また、現在自動車用ヒューズ材として最も多く使われているZn−0.56%Cu−0.13%Ti合金材の導電率は27%IACSと低い。
すなわち、本発明合金によるヒューズ材の従来材料に対する優位性は明らかで、これまでの製造ラインを使用する場合において、プレス等加工時や組立て時における取り扱いが容易になっている。
On the other hand, Zn-6.4% Al alloy material not containing Mg has a tensile strength of about 160 N / mm 2 and a hardness as low as Hv = 35, and is currently most frequently used as a fuse material for automobiles. The conductivity of the Zn-0.56% Cu-0.13% Ti alloy material is as low as 27% IACS.
That is, the superiority of the fuse material of the present invention alloy over the conventional material is clear, and when using the conventional production line, handling at the time of processing such as pressing and assembly is easy.

なお、本発明合金によるヒューズ材は、液相線−固相線間の幅の選択により溶断時間の調整が可能であり、自動車用ヒューズ等「タイムラグ溶断型」ヒューズに限ることなく、一般回路用の「普通溶断型」への適用が可能であり、さらには成分の厳しい条件付与により半導体回路向けの「速動溶断型」のヒューズ材としても利用可能である。また、極一般的な半田ヒューズに比べても鉛を含まないヒューズ材料であり、地球環境にも優しいヒューズとなっている。   It should be noted that the fuse material of the present invention alloy can adjust the fusing time by selecting the width between the liquidus line and the solidus line, and is not limited to “time lag fusing type” fuses such as automobile fuses, but for general circuits Can be used as a “fast-acting fusing type” fuse material for semiconductor circuits by applying strict conditions for components. In addition, it is a fuse material that does not contain lead compared to the most general solder fuses, and is a fuse that is friendly to the global environment.

表1に示される各組成の本発明実施例合金1〜3およびZn−Cu−Tiからなる従来合金を含む比較例合金1〜6をそれぞれ鋳造し、そのインゴットを熱間圧延と冷間圧延により、厚さ0.8mmの圧延板に加工した。次いで該圧延板を鍛造加工によりヒューズ溶断部として厚さ0.1mmまで薄くした後、プレス打抜きにより仕上げを行い定格電流5Aと25Aのヒューズ端子を作りヒューズ材とし、さらにこれをインナーケースに組み付けヒューズ供試材とした。ただし、比較例合金4は圧延時に割れが発生したので、以後の加工を中止し、測定試験は行わなかった。   Inventive Examples Alloys 1 to 3 of each composition shown in Table 1 and Comparative Examples Alloys 1 to 6 including a conventional alloy made of Zn-Cu-Ti were cast, respectively, and the ingot was subjected to hot rolling and cold rolling. And processed into a rolled plate having a thickness of 0.8 mm. Next, the rolled plate is forged and thinned to a thickness of 0.1 mm as a fuse blown portion, and then finished by press punching to produce fuse terminals with rated currents of 5A and 25A to be used as a fuse material. A test material was used. However, since the comparative example alloy 4 was cracked during rolling, the subsequent processing was stopped and no measurement test was performed.

Figure 0004406746
Figure 0004406746

比較例合金4を除く供試材について、機械的特性、導電率、加工性、さらに溶断特性と温度上昇度について測定試験を行った。
その結果を表2と表3に示した。
なお、上記測定試験において、機械的特性は、引張強度、伸び、硬度を測定して評価し、特に、引張強度200N/mm2 以上、かつ、硬度Hv50以上を基準に良好(○)、不良(×)に区分した。加工性は、製品の割れを基準にプレス加工性と鍛造加工性を評価し、一応使用に耐える場合の評価(△)をも加えた。
溶断特性は各供試材に定格電流の110%、135%、150%、200%、350%、600%の電流を通電し、溶断時間を測定して実質定格と溶断状況を調査して評価し、通電率200%における溶断時間5秒以上を基準とした。
温度上昇は定格25Aのヒューズに対して、定格電流の100%電流を1時間通電時のハウジング端子の温度を測定して評価し、上昇温度70℃を基準に良、不良を区分した。
About the test material except the comparative example alloy 4, the measurement test was done about mechanical characteristics, electrical conductivity, workability, and also the fusing characteristics and temperature rise.
The results are shown in Tables 2 and 3.
In the above measurement test, the mechanical properties are evaluated by measuring the tensile strength, elongation, and hardness, and in particular, good (◯), poor (based on a tensile strength of 200 N / mm 2 or more and a hardness of Hv 50 or more. ×). As for workability, press workability and forging workability were evaluated based on the cracks of the product, and an evaluation (△) in the case of enduring use was added.
Fusing characteristics are evaluated by conducting current of 110%, 135%, 150%, 200%, 350%, 600% of the rated current to each test material, measuring the fusing time, and investigating the actual rating and fusing status. The fusing time of 5 seconds or more at an energization rate of 200% was used as a reference.
The temperature rise was evaluated by measuring the temperature of the housing terminal when energizing 100% of the rated current for 1 hour for a rated 25 A fuse, and classifying the good and defective based on the raised temperature of 70 ° C.

Figure 0004406746
Figure 0004406746

Figure 0004406746
Figure 0004406746

また、特に、標準的な組成を示す実施例合金3と従来ヒューズ材に相当する比較例合金6について、通電率に対する溶断までの時間の関係を表4と図2に示した。   In particular, for Example Alloy 3 showing a standard composition and Comparative Example Alloy 6 corresponding to a conventional fuse material, Table 4 and FIG.

Figure 0004406746
Figure 0004406746

前記のように、比較例合金4は加工性が悪く、測定試験を行わなかった。比較例合金5(純Zn)については強度が弱く、プレス加工時に金型への付着が強くて問題があり、以降の鍛造加工性の検討や溶断特性等の測定試験は行わなかった。また、比較例合金2と従来のZn−Cu−Ti合金による比較例合金6は鍛造加工性が劣っていた。ヒューズに加工して以降の試験を実施した比較例合金1と比較例合金3は比較例合金6に比べても機械的強度や特性が若干低く、プレス性や鍛造性も実施例合金1〜3に比べて若干劣っていた。実施例合金1〜3については強度とプレス加工性、鍛造加工性に全く問題はなく、実施例合金間の差もなかった。   As described above, Comparative Example Alloy 4 has poor workability and was not subjected to a measurement test. Comparative Example Alloy 5 (pure Zn) has a weak strength and has a problem of strong adhesion to the mold during press working, and the subsequent forging workability studies and measurement tests such as fusing characteristics were not performed. Moreover, the comparative example alloy 2 and the comparative example alloy 6 by the conventional Zn-Cu-Ti alloy were inferior in forge processability. Comparative Example Alloy 1 and Comparative Example Alloy 3 which were processed into fuses and subjected to subsequent tests had slightly lower mechanical strength and characteristics than Comparative Example Alloy 6, and the press alloys and forgeability were also in Examples Alloys 1 to 3. It was slightly inferior to For Example Alloys 1 to 3, there were no problems in strength, press workability and forgeability, and there was no difference between the Example Alloys.

溶断特性に関しては、比較例合金1と比較例合金2は液相線と固相線の温度差が25℃以上に達し溶断特性が不良であった。また、比較例合金6も溶断時にアーク放電が発生し溶断不良を生じ易かった。
比較例合金1の温度上昇は85℃、比較例合金6は99℃になったのに対して、本発明実施例合金1〜3および比較例合金2と比較例合金3は61℃〜65℃の範囲で温度上昇が抑制されていた。
また、表4と図2から、実施例合金3によるヒューズの溶断特性は、比較例合金6によるヒューズの特性とは異なり、通電率約150%から約400%部分において溶断時間が長くなることが分かる。
Regarding the fusing characteristics, Comparative Example Alloy 1 and Comparative Example Alloy 2 had poor temperature fusing characteristics because the temperature difference between the liquidus and solidus reached 25 ° C. or more. In addition, the comparative alloy 6 was also susceptible to arcing due to arc discharge during melting.
The temperature rise of Comparative Example Alloy 1 was 85 ° C. and Comparative Example Alloy 6 was 99 ° C., whereas Examples Alloys 1 to 3 of this invention and Comparative Example Alloy 2 and Comparative Example Alloy 3 were 61 ° C. to 65 ° C. In the range, the temperature rise was suppressed.
Also, from Table 4 and FIG. 2, the fusing characteristics of the fuses of the example alloy 3 are different from the characteristics of the fuses of the comparative example alloy 6, and the fusing time becomes longer in the portion where the current ratio is about 150% to about 400%. I understand.

Zn−Al合金の共晶成分付近の部分状態図である。It is a partial state diagram near the eutectic component of a Zn-Al alloy. 本発明の実施例合金によるヒューズと従来の比較例合金によるヒューズの溶断特性を示す図表である。It is a graph which shows the fusing characteristic of the fuse by the Example alloy of this invention, and the fuse by the conventional comparative example alloy.

Claims (4)

重量%でAl:3.0〜8.0%およびMg:0.0005〜0.06%を含み、残部がZnおよび不可避的不純物からなる組成を有する亜鉛合金材の該Al配合比を変えることによって、ヒューズにおける溶断時間を拡大乃至縮小することを特徴とするヒューズ用亜鉛合金の製造方法。   Changing the Al compounding ratio of a zinc alloy material having a composition containing Al: 3.0-8.0% and Mg: 0.0005-0.06% by weight, with the balance being Zn and inevitable impurities. A method for manufacturing a zinc alloy for fuses, characterized in that the fusing time in the fuse is expanded or reduced. 重量%でAl:3.0〜8.0%およびMg:0.0005〜0.06%を含み、残部がZnおよび不可避的不純物からなる組成を有し、且つ、液相線と固相線との温度差が25℃未満である亜鉛合金材の該Al配合比を変えることによって、ヒューズにおける溶断時間を拡大乃至縮小することを特徴とするヒューズ用亜鉛合金の製造方法。   The composition contains Al: 3.0 to 8.0% and Mg: 0.0005 to 0.06% by weight, the balance being composed of Zn and inevitable impurities, and a liquidus and a solidus A method for producing a zinc alloy for fuses, wherein the fusing time in the fuse is expanded or reduced by changing the Al compounding ratio of the zinc alloy material having a temperature difference of less than 25 ° C. 重量%でAl:3.0〜8.0%およびMg:0.0005〜0.06%を含み、残部がZnおよび不可避的不純物からなる組成を有し、且つ、引張強度200N/mm2以上、硬度Hv50以上、伸び50%以上、導電率30%IACS以上で、液相線と固相線との温度差が25℃未満である亜鉛合金材の該Al配合比を変えることによって、ヒューズにおける溶断時間を拡大乃至縮小することを特徴とするヒューズ用亜鉛合金の製造方法。 The composition contains Al: 3.0-8.0% and Mg: 0.0005-0.06% by weight, the balance being composed of Zn and inevitable impurities, and a tensile strength of 200 N / mm 2 or more. By changing the Al compounding ratio of the zinc alloy material having a hardness Hv of 50 or more, an elongation of 50% or more, an electrical conductivity of 30% IACS or more, and a temperature difference between the liquidus and the solidus of less than 25 ° C. A method for producing a zinc alloy for fuses, wherein the fusing time is expanded or reduced. 前記ヒューズが普通溶断型、タイムラグ溶断型または速動溶断型のヒューズである、請求項1〜3のいずれかに記載の方法。   The method according to claim 1, wherein the fuse is a normal blown type, a time lag blown type, or a fast acting blown type fuse.
JP2007247212A 2007-09-25 2007-09-25 Manufacturing method of zinc alloy for fuse Expired - Fee Related JP4406746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007247212A JP4406746B2 (en) 2007-09-25 2007-09-25 Manufacturing method of zinc alloy for fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247212A JP4406746B2 (en) 2007-09-25 2007-09-25 Manufacturing method of zinc alloy for fuse

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001059942A Division JP4348444B2 (en) 2001-03-05 2001-03-05 Zinc alloy for fuse, fuse and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008034394A JP2008034394A (en) 2008-02-14
JP4406746B2 true JP4406746B2 (en) 2010-02-03

Family

ID=39123548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247212A Expired - Fee Related JP4406746B2 (en) 2007-09-25 2007-09-25 Manufacturing method of zinc alloy for fuse

Country Status (1)

Country Link
JP (1) JP4406746B2 (en)

Also Published As

Publication number Publication date
JP2008034394A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
US6471792B1 (en) Stress relaxation resistant brass
JP5456927B2 (en) High-strength, high-conductivity copper rod
KR101213801B1 (en) High strength and high conductivity copper alloy pipe, rod, or wire
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP4439447B2 (en) Manufacturing method of irregular cross-section copper alloy sheet
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP5075447B2 (en) Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component
JP5619389B2 (en) Copper alloy material
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP2007126739A (en) Copper alloy for electronic material
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JPH11256256A (en) Copper alloy for electric and electronic parts
JP4348444B2 (en) Zinc alloy for fuse, fuse and manufacturing method thereof
JP6015571B2 (en) Pb-free Zn-Al alloy fuse
JP2018076588A (en) Copper alloy sheet material and manufacturing method therefor
JP4431741B2 (en) Method for producing copper alloy
JP2001152303A (en) Copper or copper-base alloy, excellent in press workability, and its manufacturing method
JP4406746B2 (en) Manufacturing method of zinc alloy for fuse
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP2020002439A (en) Copper alloy for fuse
JP5260201B2 (en) Highly conductive heat-resistant copper alloy and method for producing the same
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
CN113439128A (en) Copper alloy material, commutator segment, and electrode material
JP2011017073A (en) Copper alloy material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees