JP4399454B2 - 接触分解アルキレートの改質処理方法 - Google Patents

接触分解アルキレートの改質処理方法 Download PDF

Info

Publication number
JP4399454B2
JP4399454B2 JP2006515639A JP2006515639A JP4399454B2 JP 4399454 B2 JP4399454 B2 JP 4399454B2 JP 2006515639 A JP2006515639 A JP 2006515639A JP 2006515639 A JP2006515639 A JP 2006515639A JP 4399454 B2 JP4399454 B2 JP 4399454B2
Authority
JP
Japan
Prior art keywords
fraction
fractionation
gasoline
alkylate
catalytic cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006515639A
Other languages
English (en)
Other versions
JP2007506808A (ja
Inventor
ディン、ラン・フェン
Original Assignee
ベイジンジンウェイフイゴンチェンジシュヨウシアンゴンシ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNB031481817A external-priority patent/CN1295302C/zh
Priority claimed from CNB2003101035419A external-priority patent/CN100378197C/zh
Priority claimed from CNB2003101035404A external-priority patent/CN1309802C/zh
Application filed by ベイジンジンウェイフイゴンチェンジシュヨウシアンゴンシ filed Critical ベイジンジンウェイフイゴンチェンジシュヨウシアンゴンシ
Publication of JP2007506808A publication Critical patent/JP2007506808A/ja
Application granted granted Critical
Publication of JP4399454B2 publication Critical patent/JP4399454B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/16Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/28Recovery of used solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Description

本発明は、接触分解アルキレートの改質処理方法、特に接触分解アルキレートを改質することによる高品質のガソリンと軽油の処理方法に関する。
接触分解、DCC及び重油DCC技術が石油精製の中核技術を構成している。接触分解はろう油接触分解と重油接触分解とに大別されているが、それらの工程により得られる生成油は接触分解アルキレートと呼ばれている。得られた接触分解アルキレートは、加工処理、通常、分留塔による分留処理によって、ドライガス、LPG、ガソリン、軽油、重油などのものに分留される。そのうち、分留によって得られるガソリン、軽油は、マーケットにおけるガソリン、軽油供給量の70%以上を占めている。
しかしながら、環境保全に対する規制がますます厳しくなってきたことに伴なって、ガソリン、軽油に対する基準も上昇してきたことから、従来の接触分解アルキレートを分留塔によって分留する加工処理方法に存在する以下の欠点が目立ってきた。一つは、その処理方法で製造されたガソリンと軽油の品質向上の問題である。つまり、ガソリンについては、オレフィン含有量が高く、オクタン価が低いこと、及び軽油につてはセタン価が低く、安定性が低いことが挙げられる。もう一つの問題は、上記処理方法では、仕様の異なるガソリンを同時に製造できず、製品の種類が単純であること。そして、製造された軽油・ガソリンの分解比率は市場の需要に対応できず、軽油が供給不足であり、ガソリンが供給過剰の状態が続いている。
ガソリン製品の品質に影響を及ばす要因としては、ガソリンのオレフィン含有量及びガソリンのオクタン価が挙げられる。現状において、石油精製会社で採用しているガソリンのオクタン価を向上させる方法として、(1)高オクタン価ガソリンの調和(ブレンド)成分を増加させること、例えば、改質生成油、アルキレーション、エーテル化生成油、異性化生成油など、(2)新型触媒を採用すること、(3)接触分解の操作条件を調整すること、(4)ガソリンの分留範囲を調整すること、が挙げられる。
しかし、前述方法には以下の問題がある。(1)巨額の建設工事費を必要とするうえ、ランニングコストが高いことと、規模が原料からの制限を受けやすいこと。そして、資源の利用が不合理である。例えば、改質生成油はポリエステルを製造する主要原料であり、改質生成油を高オクタン価のガソリン調和成分に大量に使用されると、もともと供給不足のポリエステル原料の供給逼迫度合いを激化することになる。(2)新型触媒の採用はガソリンのオクタン価を増加することができるかわりに、ガソリン中のオレフィン含有量を大幅に増加することになり、軽油・ガソリンの分解比率が低くなる。(3)接触分解の操作条件の調整によるガソリンのオクタン価を増加する方法は、同じくガソリン中のオレフィン含有量を大幅に増加することになり、軽油・ガソリンの分解比率が低くなる。(4)ガソリンの分留範囲を調整することにより、ガソリンのオクタン価を増加する方法は調整の余地が限られているほか、ガソリン中のオレフィン含有量を増加することになる。したがって、オレフィンの増加によってガソリンのオクタン価を増加させるすべての方法は新規導入されたガソリン基準に矛盾することとなる。
溶剤抽出塔の中で芳香族成分と非芳香族成分を抽出分離する時に使用する溶剤は循環使用されるものであり、水と相溶できるため、その溶剤が長期にわたって装置中を循環運行するので、一部の溶剤が酸化されて、酸性物質を発生する。それを除去するには、抗酸化性物質を添加しなければならない。前述の加工工程では、加工過程において、微量のオレフィンが原料に混入する恐れがある。また、装置及び配管には機械性雑物質が発生することによって、循環溶剤の色が濃くなり、ハイポリマーと酸性物質が蓄積されるため、次第に前述の工程の操作に影響が出てくる。ひどい場合は、前述工程の製品品質及び収率をも影響することがある。したがって、循環溶剤の再生処理を行なわなければならない。
現有の溶剤再生方法には、常圧または減圧ストリッピング再生法、常圧または減圧蒸留再生法、吸着再生法及び濾過再生法がある。ストリッピング再生法はストリッピングガス量の制限を受けられるため、再生処理量が少ない。蒸留再生法は操作が面倒くさいうえ、溶剤のロスが多く、エネルギーの消耗が高く、再生塔の再沸器にコークス付着がひどい。吸着再生法は、通常イオン交換樹脂が使用されるが、例えば、米国特許第4919816号で提案されたスルホラン抽出システム循環水の再生方法である。当該方法は循環水中の酸性物質を効果的に除去でき、装置の腐食を低減できる一方、溶剤システムの汚染物を除去できず、アルカリ溶液の使用を必要とする。中国の特許文献CN1062007C号で公開された芳香族抽出溶剤の再生方法では、システムに循環水を入れて、次いで濾過と吸着脱色により実現されるのであるが、次の欠点がある。一つはシステム内の水量が限られているので、処理能力に限界がある。もう一つは、水を入れた後、溶剤中にある雑物質が分離されないままで吸着床層に入るので、吸着床層がよく塞がれる。三番目は、吸着床層の吸着量が限られているため、ある程度までなると、吸着床は失効となるので、吸着剤の交換または再生が必要になってくる。四番目は、樹脂を再生する時に酸アルカリ処理を必要とするため、操作が複雑であり、コストが高い。
本発明は、高品質のガソリンと軽油を製造するための接触分解アルキレートの改質処理方法を提供することを目的の一つとする。
本発明は、溶剤のロスが低く、処理量が多く、酸アルカリ処理を必要とせず、再生後の溶剤品質が高い水溶性溶剤再生システムの接触分解アルキレートの改質処理方法を提供することをもう一つ目的とする。
本発明は、接触分解アルキレートの改質により、製品品種が増加できる仕様の異なるガソリンと軽油を当時に製造できることをもう一つの目的とする。
本発明は、市場の需要を満足するための、軽油・ガソリンの分解比率を向上することをもうまたもう一つの目的とする。
本発明は、前述の目的を実現するには、下記の技術手段を採用する。
本発明の接触分解アルキレートの改質処理方法は、接触分解アルキレートを分留塔1により分留し、ガソリン留分の分留と軽油留分の分留が含まれるものであり、ガソリン留分と軽油留分のリコンストラクションを行ない、前述ガソリン留分と軽油留分から中間留分を抽出してから、前述中間留分を溶剤抽出塔により抽出分離を行い、芳香族成分と非芳香族成分を分離することを特徴とする。
実施の形態。分留塔1の中部に一つまたは複数の塔側切口を増加することによって中間留分を分留する。分留塔1の塔頂部の温度を65〜95℃、軽油出口の温度を190〜280℃、塔側切口の温度を120〜260℃、塔底の温度を340〜385℃、分留塔1の塔頂部の圧力を0.11〜0.28MPA、塔底の圧力を0.12〜0.30MPAにそれぞれ設定する。前述のガソリン分留と軽油分留及び中間分留は前述の分留塔1内で完成される。前述のガソリン留分の分留範囲を35〜110℃±30℃に、前述の軽油留分の分留範囲を210±30℃〜355±30℃に、前述の中間留分の分留範囲を120±30℃〜210℃±30℃にそれぞれ制御する。
実施の形態。前述の分留は二段階に分けて分留を行なう。先ず、第一段階では、分留塔1の温度を10℃〜50℃上げて、ガソリン留分と軽油留分を分留した後に、前述のガソリン留分の分留範囲を35〜210℃±30℃に、軽油留分の分留範囲を210±30〜355±30℃に制御して、前述のガソリン留分を分留塔2に送り込み、第二段階分留を行なって、前述の分留塔2の底部から分留範囲が110±30℃〜210℃±30℃の中間留分を分離し、その頂部分から分留範囲が35〜110±30℃のガソリン留分を分離することを特徴とする。
実施の形態。前述の分留は二段階に分けて分留を行なう。先ず、第一段階では、分留塔1の温度を10〜40℃下げて、ガソリン留分と軽油留分を分留した後に、前述のガソリン留分の分留範囲を35〜110℃±30℃に、軽油留分の分留範囲を110±30℃〜355±30℃に制御して、前述の軽油留分を分留塔5に送り込み、第二段階分留を行なって、前述の分留塔5の底部から分留範囲が210±30℃〜355±30℃の軽油留分を分離し、その頂部から分留範囲が110±30℃〜210℃±30℃の中間留分を分離することを特徴とする。
実施の形態。前述の芳香族成分を分留塔3で分留を行なう。前述の分留塔3の頂部から高オクタン価のガソリン成分を分離し、その底部から重芳香族成分を分離することによって、得られた高オクタン価のガソリン成分と分留範囲が35〜110℃±30℃のガソリン留分を調和することを特徴とする。
実施の形態。前述の高オクタン価のガソリン成分は、前述の分留範囲が35〜110℃±30℃のガソリン留分と全部調和することができることを特徴とする。
実施の形態。前述の高オクタン価のガソリン成分は、前述の分留範囲が35〜110℃±30℃のガソリン留分と、設定値の違いにより調和することによって、仕様の異なるガソリンが得られることを特徴とする。例えば、90#ガソリン、93#ガソリン、97#ガソリンなど。
実施の形態。前述の第一段階の分留過程では、分留塔1の中間留分から1〜4個の塔側切口を引き出し、中間留分を1〜4個の分留範囲を分けることができることを特徴とする。
実施の形態。前述の非芳香族成分を分留塔4で分留を行なうことを特徴とする。前述の分留塔4の底部から軽油成分を分離して、得られたものを前述の分留範囲が210±30℃〜380℃の軽油留分とを調和することにより、軽油のセタン価を向上することができる。そして、マーケットのニーズに基づいて、一種類または数種類の低凝固軽油を調和することもできる。前述の分留塔4の頂部から軽非芳香族を分離でき、この軽非芳香族は化工軽油に使用することもできるし、ガソリン留分と調和することもできる。
接触分解アルキレートの改質処理方法。接触分解アルキレートを分留塔1により分留し、ガソリン留分の分留と軽油留分の分留が含まれるもの。ガソリン留分と軽油留分のリコンストラクションを行ない、前述のガソリン留分と軽油留分から中間留分を抽出する。前述の中間留分とガソリン留分を溶剤抽出装置に送り込み、抽出分離を行なうことによって、芳香族成分と非芳香族成分を分離することを特徴とする。
実施の形態。分留塔1の中部に塔側採取口を一つまたは複数増加することによって、中間留分を分留することを特徴とする。分留塔1の塔頂部の温度を65〜130℃、軽油出口の温度を170〜250℃、塔側採取口の温度を120〜240℃、塔底の温度を330〜385℃、分留塔1の塔頂部の圧力を0.15〜0.28MPA、塔底の圧力を0.12〜0.30MPA、に設定し、前述のガソリン留分と軽油留分及び中間留分を前述の分留塔1内で完成され、前述のガソリン留分の分留範囲を35〜150℃に制御し、前述の軽油留分の分留範囲を170〜395℃に、前述の中間留分の分留範囲を70〜250℃に制御することを特徴とする。
実施の形態。前述の分留は二段階分留である。第一段階では、先ずガソリン留分と軽油留分を分留する。分留塔1の頂部及び軽油採取口の温度を10〜50℃上げて、前述のガソリン留分の分留範囲を35〜250℃に、軽油留分の分留範囲を170〜395℃に制御して、前述のガソリン留分を分留塔2に送り込み、二次分留を行なった。前述の分留塔2の下部塔側から分留範囲が70℃〜250℃の中間留分を分離し、その頂部から分留範囲が35〜150℃のガソリン留分を分留する。前述の中間留分と前述の分留範囲が35〜150℃のガソリン留分が共同で溶剤抽出装置の中で抽出分離され、芳香族成分と非芳香族成分を分離することを特徴とする。
実施の形態。前述の分留は二段階分留である。第一段階では、先ずガソリン留分と軽油留分を分留する。分留塔1の頂部及び軽油採取口の温度を10〜50℃下げる。前述のガソリン留分の分留範囲を35〜150℃に、軽油留分の分留範囲を70〜395℃に制御する。前述の軽油留分を分留塔5に送り込み、二次分留を行なった。前述の分留塔5の下部塔側から分留範囲が170〜395℃の軽油留分を採取し、その頂部から分留範囲が70〜250℃の中間留分を分留する。前述の中間留分と前述の分留範囲が170〜395℃の軽油留分を共同で溶剤抽出装置に送られ、抽出分離され、芳香族成分と非芳香族成分を分離することを特徴とする。
実施の形態。前述の第一段階の分留の過程では、分留塔1から1〜4つの塔側採取口を引き出し、中間留分を1〜4つの物流に分けられることを特徴とする。
実施の形態。前述の芳香族成分と溶剤を分留塔3に送り、分留を行なう。前述の分留塔3の頂部から高オクタン価のガソリン成分を分留し、その下部塔側から重芳香族成分を採取することを特徴とする。
実施の形態。前述の非芳香族成分を分留塔4に送り、分留を行なう。前述の分留塔4の塔頂部からの分留物がガス軽油成分であり、塔側採取口から軽非芳香族を採取し、塔底の留出物が軽油成分であることを特徴とする。
前述の軽油留分と前述の分留範囲が170〜380℃の軽油留分をブレンドすることにより、軽油のセタン価を向上することができる。そして、マーケットのニーズに基づいて、一種類または数種類の低凝固軽油及び非低凝固軽油をブレンドすることができる。この軽油成分は水素化精製により処理された後、エチレンの原料として使用できる。
前述の軽非芳香族はガス軽油成分とブレンドすることができ、化工軽油として、単独で使用することもできる。そして、得られた化工軽油は芳香族の含有量が低く、水素化精製により処理された後、エチレン分解の良質な原料として使用することもできる。
前述の高オクタン価のガソリン成分は前述のガス軽油成分とブレンドすることができる。
前述の高オクタン価のガソリン成分と前述のガス軽油成分は設定値の違いによりブレンドされ、仕様の異なるガソリンが得られる。例えば、90#ガソリン、93#ガソリン、97#ガソリンなど。
前述の芳香族成分は直接高品質ガソリンとしても使用することができる。
抽出に使う溶剤としては、スルフォン類、例えばスルホラン、グリコール類、例えばテトラエチレングリコールとペンタエチレングリコール、ピロリドン類、例えばN-メチル-2-ピロリドン、アミド類及びアミン類などが挙げられ、若しくは、二種類または二種類以上の溶剤を混合して使用することもできる。
接触分解アルキレートの改質処理方法。接触分解アルキレートは分留塔により分留され、その中にガソリン留分と軽油留分の分留が含まれ、ガソリン留分と軽油留分をリコンストラクションする。前述のガソリン留分と軽油留分から中間留分を抽出し、前述の中間留分または前述の中間留分とガソリン留分を混合した後、溶剤抽出塔で抽出分離を行ない、芳香族成分と非芳香族成分を分離する。前述の抽出分離時に使用する溶剤は循環使用するものであり、前述の溶剤を再生する具体的手順は以下の通りであることを特徴とする。
1.水溶性溶剤と水との混合。前述の水と水溶性溶剤の重量比を0.1−10とする。
2.前述手順の混合物を沈殿分離させて、三相位を発生する。上部が油相位であり、中部が水溶性溶剤と水の混合相位であり、下部が不溶物である。
3.手順2の中部混合相位を常圧または減圧条件において、廃熱によって蒸留分離させ、良質な再生水溶性溶剤と水が得られる。
4.前述手順3の再生水溶性溶剤を排出して、分離した水を冷却させる。
5.手順4で冷却された後の水を油水の再分離を行ない、回収水を排出してから、再度手順1の水溶性溶剤と混合して循環使用する。
実施の形態。前述の手順3の中部混合相位を先に濾過分離してから、蒸留分離を行なう。
前述の水と水溶性溶剤の重量比は0.5−3を推奨し、1−2が望ましい。
実施の形態。前述の濾過分離可分を一次濾過分離、二次濾過分離または三次濾過分離などに分けられることを特徴とする。各濾過分離は直列、並列または直列・並列の同時使用はできる。
濾過分離に使用するろ材はフィルターエレメントまたは濾過クッションを使用することができる。フィルターエレメントに使用する材料はの材料包括金属粉末冶金、セラミック、金属網、各種織物などを含む一定の開孔サイズの材料を使用する。使用する濾過クッションは活性炭または処理後の活性炭、白土、シリカゲル、酸化アルミ、酸化ケイ素、分子ふるい、各種砂土などの無機物、各種陰陽イオン交換樹脂が挙げられる。
以下、本発明を更に詳しく説明するため、実施例を挙げる。なお、これは本発明に対する保護範囲を制限することを表すものではない。
比較例1-A
パラフィン基触媒原料と再生油は、蘭州触媒工場製のLCS触媒の触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートは接触分解ろう油である。それを分留塔1に入れて、分割分留を行なう。分留塔1の塔頂部の温度を110℃に、軽油出口の温度を190℃に、塔底の温度を370℃に、塔頂部の圧力を0.11MPAに、塔底の圧力を0.12MPAに、それぞれ設定し、分留によってドライガス、LPG、ガソリン、軽油、重油留分などが得られた。
実施例1-A
図1-Aに示したように、パラフィン基触媒原料と再生油は、蘭州触媒工場製のLCS触媒の触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートは接触分解ろう油である。それを分留塔1に入れて、分割分留を行なう。分留塔1の塔頂部の温度を80℃に、軽油出口の温度を240℃に、塔底の温度を370℃に、塔頂部の圧力を0.1MPAに、塔底の圧力を0.12MPAにそれぞれ設定し、分留塔1の中部に中間留分を分割用の塔側切口を一つ増やす。塔側切口の温度を190℃に、中間留分の分留範囲を120〜210℃に設定し、得られた中間留分を抽出塔に送り、溶剤の抽出分離を行なった。溶剤にスルホランを使用した。抽出温度が80℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が4.8で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分は中間部位から分留塔3に入り、蒸留分離を行なった。分留温度が120〜165℃、分留圧力が0.04〜0.20MPA。下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた高オクタン価成分を全部ガソリン留分と調和することによって、得られた非芳香族成分が中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPA、塔頂部の分留物が軽非芳香族、塔底の留出物が軽油成分。得られた軽油成分を全部軽油留分と調和し、得られた軽非芳香族とガソリン留分を調和した。
実施例2-A
中間基残渣重油触媒原料と再生油は、蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートが接触分解重油であり、それを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度を80℃に、軽油出口の温度を240℃に、塔底の温度を370℃に、塔頂部の圧力を0.1MPAに、塔底の圧力を0.12MPAに設定。分留塔1の中部に中間留分を分割するための塔側切口を三つ増やした。三つの塔側切口の温度は上から下への順に、それぞれ170、180、190℃であり、中間留分の分留範囲はそれぞれ80〜120℃、120〜165℃、165〜220℃。得られた三つの分留範囲の中間留分を三つの同じ抽出塔に送り、溶剤の抽出分離を行なった。使用した溶剤はテトラエチレングリコールである。抽出温度が85℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が3.1で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分は混合後、中間部位から分留塔3に入り、蒸留分離を行なった。分留温度が120〜180℃、分留圧力が0.04〜0.20MPA。下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた高オクタン価成分は全部ガソリン留分と調和した。得られた非芳香族成分は混合後、中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPA。塔頂部の分留物が軽非芳香族であり、塔底の留出物が軽油成分である。得られた軽油成分の全部を軽油留分と調和し、得られた軽非芳香族をガソリン留分と調和した。
実施例3-A
ナフテン基重油触媒原料と再生油は、蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートはナフテン基接触分解重油である。それを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。分留塔1の中部に中間留分を分割するための塔側切口を増やした。上から下への順で、二つの塔側切口の温度がそれぞれ180、190℃。中間留分の分留範囲がそれぞれ80〜165℃、165〜220℃。得られた二つの分留範囲の中間留分を二つ同じ抽出塔に送り込み、溶剤の抽出分離を行なった。溶剤にN-FORMYLMORPHOLIENEを使用した 。抽出温度が85℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が3.1。芳香族成分と非芳香族成分を分離した。得られた芳香族成分が混合された後、中間部位から分留塔3に入り、蒸留分離を行なった。分留温度が120〜180℃、分留圧力が0.04〜0.20MPA。下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた高オクタン価成分は全部ガソリン留分と調和した。得られた非芳香族成分は混合後、中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPA。塔頂部の分留物が軽非芳香族であり、塔底の留出物が軽油成分である。得られた軽油成分の全部を軽油留分と調和した。得られた軽非芳香族は、化工軽油として使用できる。
実施例4-A
図3-Aに示したように、パラフィン基重油接触分解原料と再生油が蘭州触媒工場製のLBO−16触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートはナフテン基接触分解重油である。それを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が50℃、軽油出口の温度が210℃、塔底の温度が340℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。前述のガソリン留分の分留範囲を35〜120℃に、軽油留分1の分留範囲を120〜355℃に制御した。前述の軽油留分1を分留塔2に送り込み、二次分留を行なった。分留塔2の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。前述の分留塔2の頂部から分留範囲が80℃〜240℃の中間留分を分離し、その底部から分留範囲が240〜380℃のガソリン留分を分離した。中間留分を抽出塔に送り込み、溶剤の抽出分離を行なった。溶剤にN-メチル-2-ピロリドンを使用した。抽出温度を66℃。抽出圧力を0.4MPA。溶剤の重量比(溶剤/原料)を3.3。芳香族成分と非芳香族成分を分離した。得られた芳香族成分は中間部位から分留塔3に入り、蒸留分離を行なった。分留温度が120〜180℃、分留圧力が0.04〜0.20MPA。下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた高オクタン価成分は全部ガソリン留分と調和した。得られた非芳香族成分は中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜150℃、圧力が0.15〜0.25MPA。塔頂部の分留物が軽非芳香族であり、塔底の留出物が軽油成分である。得られた軽油成分の全部を軽油留分と調和した。得られた軽非芳香族は、化工軽油として使用できる。
実施例5-A
図2-Aに示したように、ナフテン基重油接触分解原料と再生油は蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートはナフテン基接触分解重油である。それを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が120℃、軽油出口の温度が270℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。前述のガソリン留分1の分留範囲を35〜240℃に、軽油留分の分留範囲を240〜385℃に制御した。前述のガソリン留分1を分留塔2に送り込み、二次分留を行なった。分留塔2の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力を0.12MPA。前述の分留塔2の底部から分留範囲が110℃〜210℃の中間留分を分留し、その頂部から分留範囲が35〜110℃のガソリン留分を分離した。中間留分を抽出塔に送り込み、溶剤の抽出分離を行なった。溶剤に50%のN-メチル-2-ピロリドンと50%のテトラエチレングリコールを使用した。抽出温度を80℃に、抽出圧力を0.4MPAに、溶剤の重量比(溶剤/原料)を3.3に制御し、芳香族成分と非芳香族成分を分離した。得られた芳香族成分は中間部位から分留塔3に入り、蒸留分離を行なった。分留温度を120〜180℃に、分留圧力を0.04〜0.20MPAに制御し、下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた高オクタン価成分とガソリン留分を93#ガソリンに調和した。得られた非芳香族成分は中間部位から分留塔4に入り、蒸留分離を行なった。分留温度を100〜135℃に、圧力を0.15〜0.25MPAに制御した。塔頂部の分留物が軽非芳香族であり、塔底の留出物が軽油成分である。得られた軽油成分と軽油留分を5#軽油に調和した。得られた軽非芳香族は、化工軽油として使用できる。
実施例6-A
パラフィン基触媒原料と再生油は、蘭州触媒工場製のLCS触媒の触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートは接触分解ろう油である。それを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。分留塔1の中部に中間留分を分割するための塔側切口を増やした。塔側切口の温度が180℃、中間留分の分留範囲が140〜240℃で、得られた中間留分を抽出塔に送り、溶剤の抽出分離を行なった。溶剤にペンタエチレングリコールを使用した。抽出温度が100℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が2.9で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分は直接高品質ガソリンとして使用する。得られた非芳香族成分は中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜150℃、圧力が0.15〜0.25MPAで、塔頂部の分留物が軽非芳香族であり、塔底の留出物が軽油成分である。得られた軽油成分の全部を軽油留分と調和して、得られた軽非芳香族は、化工軽油として使用できる。
以下は、比較例により得られた製品と実施例により得られた製品の収率と性能の比較結果を下表に示した。
Figure 0004399454
Figure 0004399454
表1-A、表2-Aから分かるように、本発明の方法によれば、軽油・ガソリンの分解比率を明らかに改善でき、化工軽油の製品を得ることもできる。
Figure 0004399454
Figure 0004399454
軽油中の芳香族含有量はGB11132−2002に基づき測定した。ガソリンのオクタン価はGB/T5487に基づき測定した。ガソリンの密度はGB/T1884−1885に基づき測定した。ガソリンの分留範囲はGB/T6536に基づき測定した。ガソリンオレフィン含有量はGB11132−2002に基づき測定した。軽油中の芳香族含有量はGB11132−2002に基づき測定した。軽油のセタン価はGB/T386に基づき測定した。軽油の密度はGB/T1884−1885に基づき測定した。軽油の分留範囲はGB/T6536に基づき測定した。軽油の引火点はGB/T 261に基づき測定した。化工軽油の分留範囲はGB/T6536に基づき測定した。化工軽油の密度はGB/T1884−1885に基づき測定した。化工軽油中の芳香族含有量はGB11132−2002に基づき測定した。化工軽油中のオレフィン含有量はGB11132−2002に基づき測定した。
表3-A、表4-Aに示したように、本発明の方法によれば、ガソリンのオクタン価を向上できたと同時に、ガソリンの芳香族含有量も向上できたので、軽油のセタン価も改善されたことが分かった。すなわち、ガソリンと軽油の品質が改善されたのである。
比較例1-B
パラフィン基触媒原料と再生油は、蘭州触媒工場製のLCS触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が110℃、軽油出口の温度が190℃、塔底の温度が370℃、塔頂部の圧力が0.11MPA、塔底の圧力が0.12MPAで、分留によって、ドライガス、LPG、ガソリン、軽油、重油留分などを得られた。
実施例1-B
図1-Bに示したように、パラフィン基触媒原料と再生油は、蘭州触媒工場製のLCS触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。分留塔1の中部に中間留分を分割するための塔側採取口を一つ増やした。塔側採取口の温度が190℃、中間留分の分留範囲が120〜210℃。得られた中間留分と得られたガソリン留分を抽出装置に送り込み、溶剤の抽出分離を行なった。溶剤にスルホランを使用した。抽出温度が80℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が4.8で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分と溶剤は中間部位から分留塔3に入り、蒸留分離を行なった。分留温度が120〜165℃、分留圧力が0.04〜0.20MPA。下部からストリッピング水を入れて、塔頂部留分は高オクタン価のガソリン成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた非芳香族成分は中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPAで、塔頂部の分留物はガス軽油成分である。塔側採取口から軽非芳香族を採取した。塔底の留出物は軽油成分である。得られた軽油成分の全部を軽油留分とブレンドする。得られた軽非芳香族の50%を化工軽油として使用する。軽非芳香族の残りの50%は得られた全部の高オクタン価のガソリン成分及びガス軽油成分とブレンドする。
比較例2-B
中間基残渣重油触媒原料と再生油は、蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が110℃、軽油出口の温度が190℃、塔底の温度が370℃、塔頂部の圧力が0.11MPA、塔底の圧力を0.12MPAで、分留によってドライガス、LPG、ガソリン、軽油、重油留分などを得られた。
実施例2-B
中間基残渣重油触媒原料と再生油は、蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。分留塔1の中部に中間留分を分割するための三つの塔側採取口を増やした。上から下への順で、三つの塔側採取口の温度はそれぞれ170、180、190℃であり、中間留分の分留範囲がそれぞれ80〜120℃、120〜165℃、165〜220℃であり、得られた三つの分留範囲の中間留分とガソリン留分三つの同じ抽出装置に送り込み、溶剤の抽出分離を行なった。溶剤にテトラエチレングリコールを使用した。抽出温度が85℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が3.1で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分が混合された後、溶剤と共に中間部位から分留塔3に入り、蒸留分離を行なった。分留温度が120〜180℃、分留圧力が0.04〜0.20MPAで、下部からストリッピング水を入れた。塔頂部留分は高オクタン価のガソリン成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた非芳香族成分は混合後、中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPAで、塔頂部の分留物はガス軽油成分である。塔側採取口から軽非芳香族を採取した。塔底の留出物は軽油成分である。得られた軽油成分は水素化精製により処理された後、エチレン原料とする。得られた軽非芳香族はガス軽油成分とブレンドする。得られた高オクタン価のガソリン成分の全部はガス軽油成分とブレンドする。
比較例3-B
ナフテン基重油触媒原料と再生油は、蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が110℃、軽油出口の温度が190℃、塔底の温度が370℃、塔頂部の圧力が0.11MPA、塔底の圧力を0.12MPAで、分留によって、ドライガス、LPG、ガソリン、軽油、重油留分などを得られた。
実施例3-B
ナフテン基重油触媒原料と再生油は、蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.18MPA、塔底の圧力が0.25MPA。分留塔1の中部に中間留分を分割するための二つの塔側採取口を増やした。上から下への順で、二つの塔側採取口の温度はそれぞれ180℃、190℃。中間留分の分留範囲がそれぞれ80〜165℃、165〜220℃。得られた二つの分留範囲の中間留分はそれぞれガソリン留分と混合後、二つの同じ抽出装置に送り込み、溶剤の抽出分離を行なった。溶剤にN-FORMYLMORPHOLIENEを使用した 。抽出温度が85℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が3.1で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分が混合された後、中間部位から分留塔3に入り、蒸留分離を行なった。分留温度が120〜180℃、分留圧力が0.04〜0.20MPA、下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた非芳香族成分は混合後、溶剤と中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPAで、塔頂部の分留物はガス軽油成分である。塔側採取口から軽非芳香族を採取した。塔底の留出物は軽油成分である。得られた軽油成分の全部は軽油留分とブレンドする。得られた軽非芳香族は、化工軽油として使用できる。得られた高オクタン価のガソリン成分はガス軽油成分とブレンドする。得られた重芳香族成分は得られた軽油留分と調和する。
比較例4-B
50%のパラフィン基重油と50%の中間基重油触媒原料と再生油は蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が110℃、軽油出口の温度が190℃、塔底の温度が370℃、塔頂部の圧力が0.11MPA、塔底の圧力を0.12MPAで、分留によってドライガス、LPG、ガソリン、軽油、重油留分などを得られた。
実施例4-B
図2-Bに示したように、ナフテン基重油接触分解原料と再生油は蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が140℃、軽油出口の温度が220℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。前述のガソリン留分1の分留範囲を35〜240℃に、軽油留分の分留範囲を240〜385℃に制御した。前述のガソリン留分1を分留塔2に送り込み、二次分留を行なった。分留塔2の塔頂部の温度が80℃、中間留分出口温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPAで、前述の分留塔2の底部から分留範囲が110℃〜210℃の中間留分を分留し、その頂部から分留範囲が35〜110℃のガソリン留分を分離した。中間留分とガソリン留分を一緒に抽出装置塔に送り込み、溶剤の抽出分離を行なった。溶剤に50%のN-メチル-2-ピロリドンと50%のテトラエチレングリコールを使用した。抽出温度が80℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が3.3で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分と溶剤は中間部位から分留塔3に入り、蒸留分離を行なった。分留温度が120〜180℃、分留圧力が0.04〜0.20MPA、下部からストリッピング水を入れて、塔頂部留分は高オクタン価のガソリン成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた非芳香族成分は中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPAで、塔頂部の分留物はガス軽油成分であり、塔側採取口から軽非芳香族を採取した。塔底の留出物は軽油成分である。得られた高オクタン価のガソリン成分とガス軽油成分を93#ガソリンにブレンドする。得られた軽油成分と軽油留分を5#軽油にブレンドする。得られた軽非芳香族は、化工軽油として使用できる。
比較例5-B
パラフィン基重油触媒原料と再生油は、蘭州触媒工場製のLBO−16触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が110℃、軽油出口の温度が190℃、塔底の温度が370℃、塔頂部の圧力が0.11MPA、塔底の圧力を0.12MPAで、分留によって、ドライガス、LPG、ガソリン、軽油、重油留分などを得られた。
実施例5-B
図3-Bに示したように、パラフィン基重油接触分解原料と再生油は蘭州触媒工場製のLBO−16触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が90℃、軽油出口の温度が180℃、塔底の温度が340℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。前述のガソリン留分の分留範囲を35〜120℃に、軽油留分1の分留範囲を120〜355℃に制御した。前述のガソリン留分1を分留塔5に送り込み、二次分留を行なった。分留塔5の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPAで、前述の分留塔5の頂部から分留範囲が80℃〜240℃の中間留分を分離し、その底部から分留範囲が240〜380℃の軽油留分を分離した。得られた中間留分と得られたガソリン留分は抽出塔に送り込み、溶剤の抽出分離を行なった。溶剤にN-メチル-2-ピロリドンを使用した。抽出温度が66℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が3.3で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分と溶剤中間部位から分留塔3に入り、蒸留分離を行なった。分留温度が120〜180℃、分留圧力が0.04〜0.20MPAで、下部からストリッピング水を入れた。塔頂部留分は高オクタン価のガソリン成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた非芳香族成分は中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜150℃、圧力が0.15〜0.25MPAで、塔頂部分留物はガス軽油成分である。塔側採取口から軽非芳香族を採取した。塔底の留出物は軽油成分である。得られた軽油成分は水素化精製により処理された後、エチレン原料とする。得られた高オクタン価のガソリン成分とガス軽油成分ブレンドする。得られた軽非芳香族は、化工軽油として使用できる。
比較例6-B
残渣配合比率が60のパラフィン基重油触媒原料と再生油蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が110℃、軽油出口の温度が190℃、塔底の温度が370℃、塔頂部の圧力が0.11MPA、塔底の圧力を0.12MPAで、分留によって、ドライガス、LPG、ガソリン、軽油、重油留分などを得られた。
実施例6-B
残渣配合比率が60のパラフィン基重油触媒原料と再生油は、蘭州触媒工場製のLCS触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートを分留塔1に入れて、分割分留を行なった。分留塔1の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃。塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。分留塔1の中部に中間留分を分割するための一つの塔側採取口を増やした。塔側採取口の温度が180℃、中間留分の分留範囲が140〜240℃で、得られた中間留分と得られたガソリン留分を抽出装置に送り込み、溶剤の抽出分離を行なった。溶剤にペンタエチレングリコールを使用した。抽出温度が100℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が2.9で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分は直接高品質ガソリンとして使用する。得られた非芳香族成分は中間部位から分留塔4に入り、蒸留分離を行なった。分留温度が100〜150℃、圧力が0.15〜0.25MPAで、塔頂部の分留物は軽非芳香族であり、塔底の留出物は軽油成分である。得られた軽油成分の全部を軽油留分とブレンドする。得られた軽非芳香族は、化工軽油として使用できる。
比較例により得られた製品と実施例により得られた製品の収率及び性能比較結果を下表に示した。
Figure 0004399454
Figure 0004399454
Figure 0004399454
Figure 0004399454
Figure 0004399454
Figure 0004399454
Figure 0004399454
Figure 0004399454
Figure 0004399454
Figure 0004399454
Figure 0004399454
Figure 0004399454
軽油中の芳香族含有量は、GB11132−2002に基づき測定した。ガソリンのオクタン価は、GB/T5487に基づき測定した。ガソリンの密度は、GB/T1884−1885に基づき測定した。ガソリンの分留範囲は、GB/T6536に基づき測定した。ガソリンオレフィン含有量は、GB11132−2002に基づき測定した。軽油中のオレフィン含有量は、GB11132−2002に基づき測定した。軽油のセタン価は、GB/T386に基づき測定した。軽油の密度は、GB/T1884−1885に基づき測定した。軽油の分留範囲は、GB/T6536に基づき測定した。軽油の引火点は、GB/T 261に基づき測定した。化工軽油(軽非芳香族)分留範囲は、GB/T6536に基づき測定した。化工軽油の密度は、GB/T1884−1885に基づき測定した。化工軽油中の芳香族含有量は、GB11132−2002に基づき測定した。化工軽油中のオレフィン含有量は、GB11132−2002に基づき測定した。
比較実施例1-C
パラフィン基触媒原料と再生油は、蘭州触媒工場製のLCS触媒の触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートは接触分解ろう油である。それを分留塔に入れて、分割分留を行なった。分留塔の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。分留塔の中部に中間留分を分割するための一つの塔側切口を増やした。塔側切口の温度が190℃、中間留分の分留範囲が120〜210℃。得られた中間留分を板式塔に送り、水洗いを行なった後に、抽出塔に送り込み、溶剤の抽出分離を行なった。溶剤にスルホランを使用した。抽出温度が80℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が4.8で、スルホランはストリッピング再生法により再生して、芳香族成分と非芳香族成分を分離した。得られた芳香族成分は、中間部位から別の留塔中に入り、蒸留分離を行なった。分留温度が120〜165℃、分留圧力が0.04〜0.20MPAで、下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた高オクタン価成分は全部ガソリン留分と調和した。得られた非芳香族成分は、中間部位から次の分留塔に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPAで、塔頂部の分留物は軽非芳香族であり、塔底の留出物は軽油成分である。得られた軽油成分の全部を軽油留分と調和し、得られた軽非芳香族をガソリン留分と調和した。
実施例1-C
図1-Cに示したように、パラフィン基触媒原料と再生油は、蘭州触媒工場製のLCS触媒の触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートは接触分解ろう油である。それを分留塔に入れて、分割分留を行なった。分留塔の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。分留塔の中部に中間留分を分割するための一つの塔側切口を増やした。塔側切口の温度が190℃、中間留分の分留範囲が120〜210℃。得られた中間留分を抽出塔に送り、溶剤の抽出分離を行なった。溶剤にスルホランを使用した。抽出温度が80℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が4.8で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分は、中間部位から別の留塔中に入り、蒸留分離を行なった。分留温度が120〜180℃、分留圧力が0.04〜0.20MPAで、下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた高オクタン価成分とガソリン留分を93#ガソリンに調和した。得られた非芳香族成分は、中間部位から次の分留塔に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPAで、塔頂部の分留物が軽非芳香族であり、塔底の留出物が軽油成分である。得られた軽油成分と軽油留分を5#軽油に調和する。得られた軽非芳香族は、化工軽油として使用できる。
芳香族から抽出した溶剤のスルホランと循環水とを混合器1で十分混合し、水とスルホランの重量比は5.0である。混合された混合物が溶剤再生器2の沈殿区3に入る。沈殿区3の下部に隔離板32が付けられている。沈殿区3は操作温度が30℃、圧力が0.3MPAである。混合物は沈殿区に三つの層を形成した。上層は油層であり、排出口より排出され、下層は不溶物であり、残渣排出口より排出され、中部は水溶性溶剤と水との混合相位であり、スポート31を経由して、一次濾過区4に入る。沈殿区3は一次濾過区と隔離板32により隔てられる。濾過区4の下部に隔離板42と43が付けられている。隔離板42にフィルターエレメント41をつけた。フィルターエレメント41の中には、多孔質の金属網材料を充填した。多孔質の金属網材料は孔径が50μm、操作温度が40℃、圧力が0.2MPAである。濾過区4により処理されたろ出物は二次濾過区5に入る。濾過区5の下部に隔離板52と53が付けられている。隔離板52にフィルターエレメント51をつけた。フィルターエレメント51には、多孔質の金属粉末冶金材料を充填した。多孔質の金属網材料は孔径が20μmである。操作温度は40℃、圧力は0.1MPAである。濾過区5により処理されたのろ出物は蒸留区6に入り、スルホランと水気体-液体との分離を行なった。蒸留区6の上部にトレイ61が付けられている。下部には、再沸器62が付いている。蒸留区6の上部温度は85℃であり、下部温度は150℃である。再沸器の温度は200℃である。蒸留区の圧力は0.08MPAである。水蒸気は冷凝器7に流されて、冷却してから、回収水タンク8に入り、油水分離を行なった。得られた水は混合器1に入る。再生溶剤は蒸留区の下部から排出される。得られた再生溶剤と溶剤の性質分析結果は表1-Cに示した。
Figure 0004399454
実施例2-C
図2-Cに示したように、ナフテン基重油接触分解原料と再生油は、蘭州触媒工場製のLANET−35触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートはナフテン基接触分解重油である。それを分留塔に入れて、分割分留を行なった。分留塔の塔頂部の温度が120℃、軽油出口の温度が270℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。前述のガソリン留分1の分留範囲を35〜240℃に、軽油留分の分留範囲を240〜385℃に制御した。前述のガソリン留分1別の分留塔に送り込み、二次分留を行なった。当該分留塔の塔頂部温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。当該分留塔の底部から分留範囲が110℃〜210℃の中間留分を分離し、その頂部から分留範囲が35〜110℃のガソリン留分を分離した。得られた中間留分は溶剤の抽出分離を行なった。溶剤に50%のN-メチル-2-ピロリドンと50%のテトラエチレングリコールを使用した。抽出温度が80℃、抽出圧力が0.4MPAで、溶剤の重量比(溶剤/原料)が3.3で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分は、中間部位から次の分留塔に入り、蒸留分離を行なった。分留温度が120〜180℃、分留圧力が0.04〜0.20MPAで、下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた高オクタン価成分とガソリン留分を93#ガソリンに調和した。得られた非芳香族成分は中間部位から最後の分留塔に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPAで、塔頂部の分留物が軽非芳香族であり、塔底の留出物が軽油成分である。得られた軽油成分と軽油留分を5#軽油に調和する。得られた軽非芳香族は、化工軽油として使用できる。
その他は実施例1-Cに同じではあるが、以下の点で違う。前述の水溶性溶剤は芳香族から抽出した溶剤のテトラエチレングリコールであり、水とテトラエチレングリコールの重量比は0.2である。沈殿区3と濾過区4及び濾過区5の間にバルブV1、V2、V3を設けられており、沈殿区3にあるろ出物を直接濾過区5に排出できる。濾過区4と濾過区5及び蒸留区6の間にバルブV4、V5、V6、V7が設けられており、沈殿区3または濾過区4または5にあるろ出物を直接蒸留区6に排出できる。そして、V8とV9が設けられており、沈殿区3または濾過区4または5または蒸留区6にあるろ出物を直接排出できることによって、再生溶剤が得られる。混合器1と回収水缶8の間にバルブV10が設けられており、ろ出物が蒸留区6を流れない時、バルブV10が閉まる。V2、V5、V8が閉まった時、その他すべてのバルブは開かれて、ろ出物はそれぞれ沈殿区3、濾過区4、濾過区5及び蒸留区6を通過する。得られた再生溶剤と溶剤の性質分析結果は表2-Cに示した。
Figure 0004399454
実施例3-C
図3-Cに示したように、パラフィン基重油接触分解原料と再生油は、蘭州触媒工場製のLBO−16触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートは、ナフテン基接触分解重油である。それを分留塔に入れて、分割分留を行なった。分留塔の塔頂部の温度が50℃、軽油出口の温度が210℃、塔底の温度が340℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。前述のガソリン留分の分留範囲を35〜120℃に、軽油留分1の分留範囲を120〜355℃に制御した。前述の軽油留分1を別の分留塔に送り込み、二次分留を行なった。当該分留塔の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。当該分留塔頂部から分留範囲が80℃〜240℃の中間留分を分離し、その底部から分留範囲が240〜380℃のガソリン留分を分離した。得られた中間留分を抽出塔に送り、溶剤の抽出分離を行なった。溶剤にN-メチル-2-ピロリドンを使用した。抽出温度が66℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が3.3で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分は、中間部位から次の分留塔に入り、蒸留分離を行なった。分留温度が120〜180℃、分留圧力が0.04〜0.20MPAで、下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた高オクタン価成分は全部ガソリン留分と調和した。得られた非芳香族成分中間部位から最後の分留塔に入り、蒸留分離を行なった。分留温度が100〜150℃、圧力が0.15〜0.25MPAで、塔頂部の分留物が軽非芳香族であり、塔底の留出物が軽油成分である。得られた軽油成分の全部を軽油留分と調和する。得られた軽非芳香族は、化工軽油として使用できる。
その他は実施例1-Aに同じではあるが、以下の点で違う。溶剤は芳香族から抽出した蒸留のN-メチル-2-ピロリドンである。濾過区4と濾過区5を取り除いた。水と溶剤の重量比は9.0である。得られた再生溶剤と溶剤の性質分析結果は表3-Cに示した。
Figure 0004399454
実施例4-C
図4-Cに示したように、パラフィン基触媒原料と再生油は、蘭州触媒工場製のLCS触媒の触媒作用により、接触分解アルキレートを発生した。得られた接触分解アルキレートは接触分解ろう油である。それを分留塔に入れて、分割分留を行なった。分留塔の塔頂部の温度が80℃、軽油出口の温度が240℃、塔底の温度が370℃、塔頂部の圧力が0.1MPA、塔底の圧力が0.12MPA。分留塔の中部に中間留分を分割するための一つの塔側切口を増やした。塔側切口の温度が190℃、中間留分の分留範囲が120〜210℃。得られた中間留分を抽出塔に送り、溶剤の抽出分離を行なった。溶剤にスルホランを使用した。抽出温度が80℃、抽出圧力が0.4MPA、溶剤の重量比(溶剤/原料)が4.8で、芳香族成分と非芳香族成分を分離した。得られた芳香族成分は、中間部位から別の留塔中に入り、蒸留分離を行なった。分留温度が120〜165℃、分留圧力が0.04〜0.20MPAで、下部からストリッピング水を入れた。塔頂部の留分は高オクタン価成分であり、下部の塔側採取口は重芳香族成分であり、塔底の留出物は循環溶剤として使用する。得られた高オクタン価成分は全部ガソリン留分と調和した。得られた非芳香族成分は、中間部位から次の分留塔に入り、蒸留分離を行なった。分留温度が100〜135℃、圧力が0.15〜0.25MPAで、塔頂部の分留物は軽非芳香族であり、塔底の留出物は軽油成分である。得られた軽油成分の全部を軽油留分と調和し、得られた軽非芳香族をガソリン留分と調和した。
芳香族を抽出蒸留の処理をした溶剤N-FORMYLMORPHOLIENEと循環水とを混合器1で充分混合した。水とN-FORMYLMORPHOLIENEの重量比は2.0である。混合された混合物は沈殿器9に入る。沈殿器9は操作温度が90℃、圧力が10MPAである。混合された混合物は沈殿器で三つの層を形成した。上層は油層であり、排出口より排出され、下層は不溶物であり、残渣排出口より排出され、中部は水溶性溶剤と水との混合相であり、一次フィルター10に入る。前述のフィルター10の下部に隔離板42が設けられており、隔離板42にフィルターエレメント41が付けられている。フィルターエレメント41には、セラミックフィルターエレメントが入っている。セラミックフィルターエレメントは孔径が40μmである。操作温度は50℃であり、圧力は0.9MPAである。フィルター10により処理されたろ出物は二次フィルター11に入る。フィルター11の下部に隔離板52が設けられており、隔離板52にフィルターエレメント51が付けられている。フィルターエレメント51には、多孔質の金属粉末冶金材料が入っている。多孔質の金属粉末冶金材料は孔径が20μmである。操作温度は50℃であり、圧力は0.8MPAである。フィルター11により処理されたろ出物は蒸留器12に入り、気体-液体分離を行なった。蒸留器12の上部にトレイ61が設けられており、下部には再沸器62が設けられている。蒸留器12の上部温度は85℃であり、下部温度は162℃である。再沸器の温度は200℃であり、蒸留器12の圧力は0.08 MPAである。水蒸気を冷凝器7に排出し、冷却してから、回収水タンク8に戻して、油水分離を行なった。得られた水は混合器1に戻る。再生溶剤は蒸留器12の下部より排出される。得られた再生溶剤と溶剤との性質分析結果は表4-Cに示した。
Figure 0004399454
実施例5-C
図5-Cに示したように、その他は実施例1-Cと同様ではあるが、以下の点で異なる。溶剤は吸収の過程中に使用されたジメチルスルフォキシドである。水とジメチルスルフォキシドとの重量比を1.0とする。沈殿区3とろ過区4及びろ過区5の間にバルブV1、V2、V3、V4、V5、V6が設けられている。もし、バルブV2とV5だけを閉じて、その他のバルブを開けると、沈殿区3にある水溶性溶剤と水の混合相位は、それぞれろ過区4とろ過区5を経由して、ろ過区5の排出口から再生溶剤が直接排出される。もし、V2だけを閉じて、その他のバルブを開けると、沈殿区3にある水溶性溶剤と水の混合相位は、必ずろ過区4を経由しなければならず、または再度ろ過区5を経由しなければならない。またはろ過区4の排出口から再生溶剤を直接排出される。バルブV2、V5を全部閉じた場合に得られた再生溶剤と溶剤物性の分析結果を表5-Cに示した。
Figure 0004399454
本発明を利用するメリットは下記の通りである。つまり、本発明の方法により精製する製品はすべて接触分解による分留塔からのガソリンと軽油の留分のみであり、その他の調和成分が一切入っていないため、ガソリンの分解率を低減できるので、ガソリン中の芳香族含有量を向上できる効果がある。それによって、ガソリンについては、研究法オクタン価が3〜5単位を向上させ、ガソリンの分留範囲が35〜190℃から35〜203℃へと広くなる。軽油については、収率が5〜7単位を向上させ、軽油・ガソリンの分解比率が0.4〜0.8を向上できる。軽油の芳香族含有量が降下できるため、そのセタン価が5〜7単位を向上させることにより、軽油の分留範囲が180〜365℃から165〜365℃へと広くなる。軽油の引火点が75℃から56℃に下げられ、良質の化工軽油製品と重芳香族製品を増加できる。ガス軽油の中間留分である芳香族、非芳香族出来、芳香族成分の高オクタン価成分とガソリン留分とを調和することにより、比率の異なる90#、93#及び97#ガソリンを調和できるので、製油所はマーケットの実情に合わせて、柔軟的対応できる。本発明によれば、分解されたガソリンは高オクタン価成分による調和を必要とせず、直接出荷できるので、高オクタン価成分の節約につながる。とりわけ、改質生成油が軽芳香族の主な源泉である。他の方法に比べれば、本発明による方法は、既存の接触分解アルキレート装置に、一つの抽出塔及びいくつかの分留塔だけを増設すれば、ガソリンと軽油の品質向上ができると共に、仕様の異なるガソリンと軽油の同時製造もできるので、建設工費が少なく、工事期間が短かく、操作が簡単であり、ランニングコストが安いという特徴があり、比較的短かい期間で、軽油・ガソリンの分解比率の需要を満足できない現状を改善できる。
本発明に係わる再生システムは濾過再生に比べると、濾過再生工程では、雑質とコロイドによる濾過システムの目詰まりが存在するため、常時処置を必要とする上、再生後の溶剤は品質が悪いという問題がある。それに対して、本発明による再生工程では、濾過処理を受ける前に、静止沈殿により、溶剤中の雑質を分離されてから、溶剤中のコロイドを濾過により効果的に分離するので、再生した溶剤は品質が良いのである。
本発明の実施例1-Aに係わり、その工程を示すフローチャートである。 本発明の実施例5-Aに係わり、その工程を示すフローチャートである。 本発明の実施例4-Aに係わり、その工程を示すフローチャートである。 本発明の実施例1-Bに係わり、その工程を示すフローチャートである。 本発明の実施例4-Bに係わり、その工程を示すフローチャートである。 本発明の実施例5-Bに係わり、その工程を示すフローチャートである。 本発明の実施例1-Cに係わり、その工程を示すフローチャートである。 本発明の実施例2-Cに係わり、その工程を示すフローチャートである。 本発明の実施例3-Cに係わり、その工程を示すフローチャートである。 本発明の実施例4-Cに係わり、その工程を示すフローチャートである。 本発明の実施例5-Cに係わり、その工程を示すフローチャートである。

Claims (30)

  1. 接触分解アルキレートを分留塔(1)によって分留し、ガソリン留分と軽油留分への分留を含む接触分解アルキレートの改質処理方法において、
    前記ガソリン留分と軽油留分のリコンストラクションにより、前記ガソリン留分と軽油留分の間の中間留分を抽出し、得られた中間留分を溶剤抽出塔で抽出分離することにより、芳香族成分と非芳香族成分を分離する接触分解アルキレートの改質処理方法であって、
    前記芳香族成分を分留塔(3)によって分留し、前記分留塔(3)の頂部から高オクタン価のガソリン成分を分離し、底部から重質芳香族成分を分離し、得られた高オクタン価のガソリン成分と前記ガソリン留分とをブレンドし、得られた重質芳香族成分と前記軽油留分とをブレンドすることを特徴とする接触分解アルキレートの改質処理方法
  2. 前記分留塔(1)の中部に一つまたは複数の塔側採取口を増やして、中間留分を分留し、前記ガソリン分留と軽油分留及び中間分留を前記分留塔(1)内で生成し前記ガソリン留分の分留範囲を35〜110℃±30℃に制御し、前記軽油留分の分留範囲を210±30℃〜355±30℃に制御し、前記中間留分の分留範囲を120±30℃〜210℃±30℃に制御することを特徴とする請求項1に記載の接触分解アルキレートの改質処理方法。
  3. 前記分留塔(1)の塔頂部の温度が65〜95℃、軽油出口の温度が190〜280℃、塔側採取口の温度が120〜260℃、塔底の温度が340〜385℃、分留塔(1)の塔頂部の圧力が0.11〜0.28MPA、塔底の圧力が0.12〜0.30MPAであることを特徴とする請求項2に記載の接触分解アルキレートの改質処理方法。
  4. 前記分留は二段階分留であり、第一段階では、先ずガソリン留分と軽油留分を分留し、前記分留塔(1)の温度を10〜50℃上げることにより、前記ガソリン留分の分留範囲を35〜210℃±30℃に制御し、軽油留分の分留範囲を210±30℃〜355±30℃に制御し、前記ガソリン留分を分留塔(2)に送り込み、二次分留を行ない、前記分留塔(2)の底部から分留範囲が110±30℃〜210℃±30℃の中間留分を分離し、その頂部から分留範囲が35〜110±30℃のガソリン留分を分離することを特徴とする請求項1に記載の接触分解アルキレートの改質処理方法。
  5. 接触分解アルキレートを分留塔(1)によって分留し、ガソリン留分と軽油留分への分留を含み、前記ガソリン留分と軽油留分のリコンストラクションにより、前記ガソリン留分と軽油留分の間の中間留分を抽出する接触分解アルキレートの改質処理方法において、
    前記中間留分とガソリン留分を溶剤抽出装置に送り、抽出分離を行い、芳香族成分と非芳香族成分を分離する接触分解アルキレートの改質処理方法であって、
    前記非芳香族成分を分留塔(4)によって分留し、前記分留塔(4)の底部から軽油成分を分離し、それを前記軽油留分とブレンドすることにより、軽油のセタン価を向上させ、若しくは1種類又は数種類の低凝固軽油を加え、前記分留塔(4)の頂部から軽質非芳香族成分を分離し、この軽質非芳香族成分を軽油として使用するか、又は前記ガソリン留分とブレンドすることを特徴とする接触分解アルキレートの改質処理方法。
  6. 前記分留塔(1)の中部に、一つまたは複数の塔側採取口を増やすことによって、中間留分を分離し、前記ガソリン分留と軽油分留及び中間分留を前記分留塔(1)内で生成し、前記ガソリン留分の分留範囲を35〜110℃±30℃に、前記軽油留分の分留範囲を210±30℃〜355±30℃に、前記中間留分の分留範囲を120±30℃〜210℃±30℃にそれぞれ制御することを特徴とする請求項5に記載の接触分解アルキレートの改質処理方法。
  7. 前記分留塔(1)の中部に、一つまたは複数の塔側採取口を増やすことによって、中間留分を分離し、分留塔(1)の塔頂部の温度を65〜95℃、軽油出口の温度を190〜280℃、塔側採取口の温度を120〜260℃、塔底の温度を340〜385℃、分留塔(1)の塔頂部の圧力を0.11〜0.28MPa、塔底の圧力を0.12〜0.30MPaにそれぞれ設定し、前記ガソリン留分、軽油留分及び中間留分を前記分留塔(1)内で生成することを特徴とする請求項5に記載の接触分解アルキレートの改質処理方法。
  8. 前記分留は二段階分留であり、第一段階では、先ずガソリン留分と軽油留分を分留し、前記分留塔(1)の温度を10〜50℃上げることにより、前記ガソリン留分の分留範囲を35〜210℃±30℃に制御し、軽油留分の分留範囲を210±30℃〜355±30℃に制御し、前記ガソリン留分を分留塔(2)に送り込み、二次分留を行ない、前記分留塔(2)の底部から分留範囲が110℃±30℃〜210±30℃の中間留分を分離し、その頂部から分留範囲が35〜110℃±30℃のガソリン留分を分離することを特徴とする請求項5に記載の接触分解アルキレートの改質処理方法。
  9. 接触分解アルキレートを分留塔(1)によって分留し、ガソリン留分と軽油留分への分留を含み、前記ガソリン留分と軽油留分のリコンストラクションにより、前記ガソリン留分と軽油留分の間の中間留分を抽出する接触分解アルキレートの改質処理方法において、
    前記中間留分とガソリン留分を溶剤抽出装置に送り、抽出分離を行い、芳香族成分と非芳香族成分を分離する接触分解アルキレートの改質処理方法であって、
    前記芳香族成分を分留塔(3)によって分留し、前記分留塔(3)の頂部から高オクタン価のガソリン成分を分離し、底部から重質芳香族成分を分離し、前記非芳香族成分を分留塔(4)によって分留し、前記分留塔(4)の塔頂部の留出物はガス軽油成分であり、塔側から軽質非芳香族成分を採取し、塔底の留出物は軽油成分であることを特徴とする接触分解アルキレート改質処理方法。
  10. 前記分留塔(1)の中部に、一つまたは複数の塔側採取口を増やすことによって、中間留分を分離し、前記ガソリン分留と軽油分留及び中間分留は前記分留塔(1)内で生成し、前記ガソリン留分の分留範囲を35〜150℃に制御し、前記軽油留分の分留範囲を170〜395℃に制御し、前記中間留分の分留範囲を70〜250℃に制御することを特徴とする請求項9に記載の接触分解アルキレート改質処理方法。
  11. 前記分留塔(1)の中部から2〜4の塔側採取口を引き出すことによって、中間留分を2〜4の物流に分けることを特徴とする請求項9に記載の接触分解アルキレート改質処理方法。
  12. 前記分留塔(1)の塔頂部の温度が65〜130℃、軽油出口の温度が170〜250℃、前記塔側採取口の温度が120〜240℃、前記分留塔(1)の塔底の温度が330〜385℃、前記分留塔(1)の塔頂部の圧力が0.15〜0.28MPA、前記分留塔(1)の塔底の圧力が0.12〜0.30MPAであることを特徴とする請求項9に記載の接触分解アルキレート改質処理方法。
  13. 前記分留は二段階分留であり、第一段階では、先ずガソリン留分と軽油留分を分留し、分留塔(1)の頂部及び軽油採取口の温度を10〜50℃上げることによって、前記ガソリン留分の分留範囲を35〜250℃に制御し、軽油留分の分留範囲を170〜395℃に制御し、前記ガソリン留分を分留塔(2)に送り込み、二次分留を行ない、前記分留塔(2)の下部塔側から分留範囲が70℃〜250℃の中間留分を分離し、その頂部から分留範囲が35〜150℃のガソリン留分を分離し、前記中間留分と前記分留範囲が35〜150℃のガソリン留分を溶剤抽出装置に送り込み、抽出分離を行ない、芳香族成分と非芳香族成分を分離することを特徴とする請求項9に記載の接触分解アルキレート改質理方法。
  14. 前記分留は二段階分留であり、第一段階では、先ずガソリン留分と軽油留分を分留し、分留塔(1)の頂部及び軽油採取口の温度を10〜50℃下げることによって、前記ガソリン留分の分留範囲を35〜150℃に制御し、軽油留分の分留範囲を70〜395℃に制御し、前記軽油留分を分留塔(5)に送り込み、二次分留を行ない、前記分留塔(5)の下部塔側から分留範囲が170〜395℃の軽油留分を採取し、その頂部から分留範囲が70〜250℃の中間留分を分離し、前記中間留分と前記分留範囲が170〜395℃の軽油留分を溶剤抽出装置に送り込み、抽出分離を行ない、芳香族成分と非芳香族成分を分離することを特徴とする請求項9に記載の接触分解アルキレート改質処理方法。
  15. 前記芳香族成分は直接高品質のガソリンとして使用できることを特徴とする請求項9ないし14のいずれかに記載の接触分解アルキレート改質処理方法。
  16. 前記高オクタン価のガソリン成分と前記ガス軽油成分をブレンドすることを特徴とする請求項15に記載の接触分解アルキレート改質処理方法。
  17. 前記重芳香族成分と前記軽油留分をブレンドすることを特徴とする請求項15に記載の接触分解アルキレート改質処理方法。
  18. 前記軽油成分と前記軽油留分をブレンドすることを特徴とする請求項15に記載の接触分解アルキレート改質処理方法。
  19. 前記軽非芳香族と前記ガソリン成分をブレンドすることを特徴とする請求項15に記載の接触分解アルキレート改質処理方法。
  20. 前記重芳香族成分は単独製品として使用でき、前記軽油成分は水素化精製により処理された後、エチレン原料として使用でき、前記軽質芳香族成分は軽油用として使用できることを特徴とする請求項15に記載の接触分解アルキレート改質処理方法。
  21. 前記高オクタン価のガソリン成分と前記ガス軽油成分及び前記軽質芳香族成分とをブレンドすることを特徴とする請求項15に記載の接触分解アルキレート改質処理方法。
  22. 前記抽出分離時に用いる水溶性溶剤は循環使用され前記水溶性溶剤の再生方法は以下の通りであり、(1)水溶性溶剤を水と混合し、前記水と水溶性溶剤の重量比は0.1−10であり、(2)前記手順での混合物を沈殿分離させて、三つの相を形成し、上部は油相であり、中部は水溶性溶剤と水との混合相であり、下部は不溶物相であり、(3)前記手順(2)での中部混合相は常圧または減圧条件において、廃熱によって、蒸留分離を施され、綺麗に再生された水溶性溶剤と水が得られ、(4)前記手順(3)で綺麗に再生された水溶性溶剤を排出して、分離した水を冷却させ、(5)前記手順(4)で冷却された水を再度油水分離し、回収水を排出させてから、手順(1)での水溶性溶剤を混合して循環使用することを特徴とする請求項1または9に記載の接触分解アルキレート改質処理方法。
  23. 前記手順(3)での前記中部混合相をさきに濾過分離を行なってから、蒸留分離を行なうことを特徴とする請求項22に記載の接触分解アルキレート改質処理方法。
  24. 前記水と水溶性溶剤の重量比は0.5−3であることを特徴とする請求項22に記載の接触分解アルキレート改質処理方法。
  25. 前記水と水溶性溶剤の重量比は1−2であることを特徴とする請求項22に記載の接触分解アルキレート改質処理方法。
  26. 前記水溶性溶剤は二種類または二種類以上の水溶性溶剤の混合溶剤を含むことを特徴とする請求項22に記載の接触分解アルキレート改質処理方法。
  27. 前記手順(3)での前記中部混合相をさきに一回以上の濾過分離を行なってから、蒸留分離を行なうことを特徴とする請求項22に記載の接触分解アルキレート改質処理方法。
  28. 前記濾過分離は二次濾過分離であることを特徴とする請求項27に記載の接触分解アルキレート改質処理方法。
  29. 前記濾過分離は三次濾過分離であることを特徴とする請求項27に記載の接触分解アルキレート改質処理方法。
  30. 前記濾過分離は直列であることを特徴とする請求項28または29に記載の接触分解アルキレート改質処理方法。
JP2006515639A 2003-07-04 2004-07-02 接触分解アルキレートの改質処理方法 Expired - Fee Related JP4399454B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNB031481817A CN1295302C (zh) 2003-07-04 2003-07-04 一种催化烃重组处理方法
CNB2003101035419A CN100378197C (zh) 2003-11-07 2003-11-07 一种催化烃重组处理方法
CNB2003101035404A CN1309802C (zh) 2003-11-07 2003-11-07 一种催化烃重组处理方法
PCT/CN2004/000723 WO2005003261A1 (fr) 2003-07-04 2004-07-02 Procede de recombinaison d'hydrocarbures catalytiques

Publications (2)

Publication Number Publication Date
JP2007506808A JP2007506808A (ja) 2007-03-22
JP4399454B2 true JP4399454B2 (ja) 2010-01-13

Family

ID=33568103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006515639A Expired - Fee Related JP4399454B2 (ja) 2003-07-04 2004-07-02 接触分解アルキレートの改質処理方法

Country Status (7)

Country Link
US (1) US7867383B2 (ja)
EP (1) EP1650287B1 (ja)
JP (1) JP4399454B2 (ja)
AT (1) ATE551413T1 (ja)
CA (1) CA2528631C (ja)
EA (1) EA008121B1 (ja)
WO (1) WO2005003261A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080134571A1 (en) 2006-12-12 2008-06-12 Jorg Landschof Unleaded fuel compositions
EP2233550B1 (en) * 2007-11-09 2014-04-30 Ranfeng Ding A system and a process for recombining catalytic hydrocarbon to produce high quality gasoline
EP2236583A4 (en) * 2007-11-09 2013-01-30 Ranfeng Ding SYSTEM AND METHOD FOR PRODUCING HIGH QUALITY PETROL BY CATALYTIC RECOMBINATION OF HYDROCARBONS
BR122021014783B1 (pt) 2008-12-19 2023-03-14 Baxalta GmbH Peptídeo que se liga a tfpi, uso do peptídeo, composição farmacêutica e método para purificação de tfpi
EP2390303B1 (en) * 2009-01-21 2017-07-26 Beijing Grand Golden-Bright Engineering & Technologies Co., Ltd. Process for producing high quality gasoline by recombination and subsequent hydrogenation of catalytic hydrocarbons
US20120130142A1 (en) * 2010-11-24 2012-05-24 Uop, Llc Automatically measuring color changes in a stream
CN102839021A (zh) * 2011-06-22 2012-12-26 北京金伟晖工程技术有限公司 一种低成本制造低硫高辛烷值汽油的装置及其方法
CA2797163A1 (en) 2011-12-01 2013-06-01 Shell Internationale Research Maatschappij B.V. Balanced unleaded fuel compositions
CN102659758A (zh) * 2012-06-01 2012-09-12 唐山中润煤化工有限公司 粗苯加氢精制中环丁砜的再生提纯方法
TWI804511B (zh) * 2017-09-26 2023-06-11 大陸商中國石油化工科技開發有限公司 一種增產低烯烴和高辛烷值汽油的催化裂解方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2773006A (en) * 1955-03-04 1956-12-04 Union Oil Co Separation of hydrocarbons
US3044950A (en) * 1958-12-15 1962-07-17 Gulf Research Development Co Process for upgrading catalytically cracked gasoline
US3793192A (en) * 1972-04-14 1974-02-19 Exxon Research Engineering Co Catalytic cracking process
US3985644A (en) * 1975-01-30 1976-10-12 Exxon Research And Engineering Company Use of water/methanol mixtures as solvents for aromatics extraction
FR2635112B1 (fr) * 1988-08-02 1990-09-28 Inst Francais Du Petrole Procede de fractionnement et d'extraction d'hydrocarbures permettant l'obtention d'une essence a indice d'octane ameliore et d'un kerosene a point de fumee ameliore
FR2704232B1 (fr) * 1993-04-23 1995-06-16 Inst Francais Du Petrole Procede d'amelioration des qualites d'une charge hydrocarbonee par extraction et hydrodesulfuration et le gazole obtenu.
CN1163879A (zh) * 1996-02-03 1997-11-05 克鲁普犹德有限公司 由重整汽油生产纯芳烃的方法和实现该方法的装置
ZA972966B (en) * 1996-05-21 1997-11-21 Glitsch Int Inc Recovery of styrene from purolysis gasoline by extractive distillation.
CN1062007C (zh) * 1997-11-11 2001-02-14 中国石油化工总公司 一种芳烃抽提溶剂的再生方法

Also Published As

Publication number Publication date
EP1650287A1 (en) 2006-04-26
EP1650287B1 (en) 2012-03-28
EA200600180A1 (ru) 2006-10-27
JP2007506808A (ja) 2007-03-22
CA2528631C (en) 2010-06-08
US20070175800A1 (en) 2007-08-02
US7867383B2 (en) 2011-01-11
ATE551413T1 (de) 2012-04-15
EP1650287A4 (en) 2009-12-16
CA2528631A1 (en) 2005-01-13
EA008121B1 (ru) 2007-04-27
WO2005003261A1 (fr) 2005-01-13

Similar Documents

Publication Publication Date Title
RU2104294C1 (ru) Способ получения исходного сырья для высококачественных смазочных базовых масел
EP2084244B1 (en) Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent
KR101895091B1 (ko) 피드/버텀 처리를 갖는 수소화 분해 공정
CN109097100B (zh) 一种催化裂化油浆固含物的脱除方法
CN111954654B (zh) 萃取精馏分离芳烃的方法
JP4399454B2 (ja) 接触分解アルキレートの改質処理方法
JP3036822B2 (ja) 潤滑油の溶剤抽出
CN108085060A (zh) 废润滑油加氢精制方法及加氢精制系统
JP2835175B2 (ja) 潤滑油の溶剤抽出
US20160194566A1 (en) Catalytic and solvent processing for base oil production
CN110229692B (zh) 从石脑油中分离出环烷烃和芳烃的复配溶剂及其制备方法和应用
CN109988645B (zh) 一种劣质柴油加氢改质和加氢精制组合工艺
CN109777495B (zh) 一种炼厂气体组合加工方法
KR101186726B1 (ko) 수지 제거를 포함하는 탄화수소 공급원료의 처리 방법
CN111205885A (zh) 一种环保轮胎橡胶油及其制备方法
CN108329946B (zh) 一种对汽油馏分进行分离的方法和汽油脱硫方法
US20040168955A1 (en) Co-extraction of a hydrocarbon material and extract obtained by solvent extraction of a second hydrotreated material
CN108424786B (zh) 一种汽油馏分的分离方法和汽油脱硫方法
CN100378197C (zh) 一种催化烃重组处理方法
CN108504382B (zh) 从石脑油中分离环烷烃和芳烃的复配溶剂及其制备方法和应用
RU2785840C2 (ru) Способ разделения ароматических углеводородов с применением экстракционной дистилляции
RU2341550C2 (ru) Способ получения дистиллятов и смазочных масел
CN109513260B (zh) 芳烃抽提溶剂的净化方法
CN116948685A (zh) 从石脑油中同时分离环烷烃和芳烃的复合溶剂、方法和装置
CN106281407A (zh) 一种煤焦油的预处理方法和燃料油的生产方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090511

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees