JP4380437B2 - Control device and module for permanent magnet synchronous motor - Google Patents

Control device and module for permanent magnet synchronous motor Download PDF

Info

Publication number
JP4380437B2
JP4380437B2 JP2004195111A JP2004195111A JP4380437B2 JP 4380437 B2 JP4380437 B2 JP 4380437B2 JP 2004195111 A JP2004195111 A JP 2004195111A JP 2004195111 A JP2004195111 A JP 2004195111A JP 4380437 B2 JP4380437 B2 JP 4380437B2
Authority
JP
Japan
Prior art keywords
value
command value
output voltage
permanent magnet
magnet synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004195111A
Other languages
Japanese (ja)
Other versions
JP2006020411A (en
Inventor
和明 戸張
常博 遠藤
秀文 白濱
佳樹 伊藤
滋久 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004195111A priority Critical patent/JP4380437B2/en
Priority to KR1020050057564A priority patent/KR100659250B1/en
Priority to CNB2005100822384A priority patent/CN100365927C/en
Publication of JP2006020411A publication Critical patent/JP2006020411A/en
Application granted granted Critical
Publication of JP4380437B2 publication Critical patent/JP4380437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は永久磁石同期電動機の制御装置およびモジュールに係り、特に、弱め界磁域のベクトル制御に好適な永久磁石同期電動機の制御装置およびモジュールに関するThe present invention relates to a control device and a module for a permanent magnet synchronous motor , and more particularly to a control device and a module for a permanent magnet synchronous motor suitable for vector control of a field weakening region .

弱め界磁域のベクトル制御方式の従来の技術としては、特開平8−182398号公報記載のd軸電流指令値をテーブル化してd軸およびq軸の電流制御を比例演算方式にする方法や、特開2002−95300号公報記載のように、d軸およびq軸の電流制御部から電動機の端子電圧を求め、端子電圧の指令値と前記端子電圧の偏差を比例・積分演算で、前記d軸電流指令値を演算する方法がある。   As a conventional technique of the field control method of the field weakening region, there is a method of converting the d-axis current command value described in JP-A-8-182398 into a table and making the d-axis and q-axis current control a proportional calculation method, As described in JP-A-2002-95300, a terminal voltage of an electric motor is obtained from a d-axis and q-axis current control unit, and a deviation between the command value of the terminal voltage and the terminal voltage is calculated by proportional / integral calculation. There is a method for calculating the current command value.

特開平8−182398号公報JP-A-8-182398 特開2002−95300号公報JP 2002-95300 A

しかしながら、特開平8−182398号公報記載の方法では、電流制御が比例演算方式であるため、電流指令値通りの電流が発生せず、トルク精度が劣化し、特開2002−
95300号公報記載の方法では、d軸電流指令の発生が遅いことから、トルク応答が劣化する傾向がある。
However, in the method described in JP-A-8-182398, since current control is a proportional calculation method, current according to the current command value is not generated, and torque accuracy is deteriorated.
In the method described in Japanese Patent No. 95300, the torque response tends to deteriorate because the d-axis current command is generated slowly.

本発明は上述の点に鑑みなされたもので、その目的とするところは、弱め界磁域においても、高精度・高応答を実現できる永久磁石同期電動機の制御装置およびモジュールを提供することにある。 The present invention has been made in view of the above points, and an object, even in the field weakening磁域, to provide a control device and a module for a permanent magnet synchronous motor that can achieve high precision and high response is there.

本発明の永久磁石同期電動機の制御装置は、上記目的を達成するために、第1のd軸およびq軸の電流指令値と電流検出値とにより演算した第2のd軸およびq軸の電流指令値、および周波数指令値に従い、永久磁石同期電動機を駆動する電力変換器の出力電圧値を制御する永久磁石同期電動機の制御装置であって、弱め界磁域の出力電圧指令値と前記出力電圧値との偏差の積分演算値を、前記第1のd軸電流指令値とする弱め界磁指令演算部を備え、前記弱め界磁域の出力電圧指令値と出力電圧値との偏差の積分演算は、積分ゲインを周波数指令値に応じて修正することを特徴とする。In order to achieve the above object, the controller for a permanent magnet synchronous motor according to the present invention provides a second d-axis and q-axis current calculated from the first d-axis and q-axis current command values and the detected current value. A control device for a permanent magnet synchronous motor that controls an output voltage value of a power converter that drives a permanent magnet synchronous motor according to a command value and a frequency command value, wherein the output voltage command value in a field weakening region and the output voltage A field weakening command calculation unit that uses the integral calculation value of the deviation from the value as the first d-axis current command value, and integral calculation of the deviation between the output voltage command value and the output voltage value in the field weakening region Is characterized in that the integral gain is corrected according to the frequency command value.

また、本発明のモジュールは、上記目的を達成するために、上記永久磁石同期電動機の制御装置と、直流を交流に変換する電力変換器とを備えていることを特徴とする。 In order to achieve the above object, the module of the present invention includes the control device for the permanent magnet synchronous motor and a power converter that converts direct current into alternating current .

本発明によれば、弱め界磁域においても、高精度・高応答なモータトルクを実現できる永久磁石同期電動機の制御装置およびモジュールを得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the control apparatus and module of a permanent-magnet synchronous motor which can implement | achieve a highly accurate and highly responsive motor torque can be obtained even in a field- weakening region .

以下、図面を用いて本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例である永久磁石同機電動機の弱め界磁ベクトル制御装置の構成例を示す。1は永久磁石同期電動機、2は3相交流の電圧指令値Vu*,Vv*,Vw*に比例した電圧を出力する電力変換器、21は直流電源、3は3相交流電流Iu,Iv,Iwを検出できる電流検出器、4は電動機の電気角60°毎の位置検出値θiを検出できる磁極位置検出器、5は位置検出値θiから周波数指令値ω1 *を演算する周波数演算部、6は位置検出値θiと周波数指令値ω1 *から電動機の回転位相指令θc* を演算する位相演算部、7は前記3相交流電流Iu,Iv,Iwの検出値Iuc,Ivc,Iwcと回転位相指令θc* からd軸およびq軸の電流検出値Idc,Iqcを出力する座標変換部、8は弱め界磁域における出力電圧指令値V1 * ref と出力電圧値V1 *の偏差から第1のd軸電流指令値Id* を演算する弱め界磁指令演算部、9は弱め界磁指令演算部の出力である第1のd軸電流指令値Id* とd軸電流検出値Idcの偏差に応じて第2のd軸電流指令値Id**を出力するd軸電流指令演算部、10は第1のq軸電流指令値Iq* とq軸電流検出値Iqcの偏差に応じて第2のq軸電流指令値Iq**を出力するq軸電流指令演算部、11は電動機1の電気定数と第2の電流指令値Id**,Iq**および周波数指令値ω1 *に基づいて電圧指令値Vd*,Vq*を演算する電圧ベクトル演算部、12は電圧指令値
Vd*,Vq* から電力変換器の出力電圧値V1 *を演算する出力電圧演算部、13は電圧指令値Vd*,Vq*と回転位相指令θc*から3相交流の電圧指令値Vu*,Vv*,Vw*を出力する座標変換部である。
FIG. 1 shows an example of the configuration of a field-weakening vector control device for a permanent-magnet electric motor that is an embodiment of the present invention. 1 is a permanent magnet synchronous motor, 2 is a power converter that outputs a voltage proportional to the voltage command values Vu * , Vv * , and Vw * of a three-phase AC, 21 is a DC power source, 3 is a three-phase AC current Iu, Iv, A current detector capable of detecting Iw, 4 a magnetic pole position detector capable of detecting a position detection value θi for each electric angle of 60 ° of the motor, and 5 a frequency calculation unit for calculating a frequency command value ω 1 * from the position detection value θi, 6 is a phase calculation unit for calculating the rotational phase command θc * of the motor from the position detection value θi and the frequency command value ω 1 * , and 7 is the rotation of the detected values Iuc, Ivc, Iwc of the three-phase alternating currents Iu, Iv, Iw. A coordinate conversion unit for outputting the detected current values Idc and Iqc of the d-axis and the q-axis from the phase command θc * , and 8 is the first difference from the deviation between the output voltage command value V 1 * ref and the output voltage value V 1 * field weakening command operation for calculating a d-axis current command value Id * , 9 outputs a second d-axis current command value Id ** according to a difference of the first d-axis current command value Id * and the d-axis current detection value Idc, which is the output of the field weakening command calculating section d An axis current command calculation unit 10 outputs a second q axis current command value Iq ** in accordance with the deviation between the first q axis current command value Iq * and the q axis current detection value Iqc. , 11 is a voltage vector calculation unit for calculating the voltage command values Vd * , Vq * based on the electric constant of the electric motor 1, the second current command values Id ** , Iq **, and the frequency command value ω 1 * , An output voltage calculation unit for calculating the output voltage value V 1 * of the power converter from the voltage command values Vd * and Vq * , and 13 is a three-phase AC voltage command from the voltage command values Vd * and Vq * and the rotation phase command θc *. This is a coordinate conversion unit that outputs values Vu * , Vv * , and Vw * .

はじめに、本発明の特徴である弱め界磁指令演算を用いた場合におけるベクトル制御方式の電圧制御と位相制御の基本動作について説明する。   First, the basic operation of the voltage control and phase control of the vector control method when the field-weakening command calculation, which is a feature of the present invention, is used will be described.

電圧制御では、図1中の出力電圧演算部12において、数1で示すように、d軸およびq軸の電圧指令値Vd*,Vq*を用いて、出力電圧値V1 *が演算される。 In the voltage control, the output voltage calculation unit 12 in FIG. 1 calculates the output voltage value V 1 * using the d-axis and q-axis voltage command values Vd * and Vq * as shown in Equation 1 . .

Figure 0004380437
Figure 0004380437

弱め界磁指令演算部8では、前記の出力電圧値V1 *が、弱め界磁域における出力電圧指令値V1 * refに一致するように、第1のd軸電流指令値Id*を演算する。 In field weakening command calculation unit 8, the output voltage value V 1 * is, so to match the output voltage command value V 1 * ref at field weakening磁域, calculating a first d-axis current command value Id * To do.

また、電圧ベクトル演算部11では、予め数2で示す第2のd軸およびq軸の電流指令値とモータ定数を用いて、d軸およびq軸の電圧指令値Vd*,Vq*を演算し、変換器出力電圧を制御する。 In addition, the voltage vector calculation unit 11 calculates the d-axis and q-axis voltage command values Vd * and Vq * using the second d-axis and q-axis current command values and motor constants shown in advance in Expression 2 . Control the converter output voltage.

Figure 0004380437
Figure 0004380437

ここに、R1 *は、抵抗の設定値、Ld*はd軸インダクタンスの設定値、Lq*は、q軸インダクタンスの設定値、Ke*は、誘起電圧定数の設定値である。 Here, R 1 * is a resistance setting value, Ld * is a d-axis inductance setting value, Lq * is a q-axis inductance setting value, and Ke * is an induced voltage constant setting value.

一方、位相制御では、磁極位置検出器4において、電気角60度毎の磁極位置を把握することができる。この時の位置検出値θiを本実施例では、   On the other hand, in the phase control, the magnetic pole position detector 4 can grasp the magnetic pole position at every electrical angle of 60 degrees. In this embodiment, the position detection value θi at this time is

Figure 0004380437
Figure 0004380437

ここに、i=0,1,2,3,4,5としている。   Here, i = 0, 1, 2, 3, 4, and 5.

周波数演算部5においては、この位置検出値θiから、最短で60度区間における平均の回転周波数ω1 *(以下、周波数指令値)を算出する。 The frequency calculation unit 5 calculates an average rotation frequency ω 1 * (hereinafter referred to as a frequency command value) in the shortest 60 ° section from the position detection value θi.

Figure 0004380437
Figure 0004380437

ここに、Δθ=θi−θ(i−1)であり、Δtは、60度区間の位置検出信号を検出するまでの時間である。   Here, [Delta] [theta] = [theta] i- [theta] (i-1), and [Delta] t is the time until the position detection signal in the 60-degree section is detected.

また、位相演算部6では、位置検出値θiと周波数指令ω1 *を用いて、回転位相指令
θc*を数5のように演算して電動機1の基準位相を制御する。
Further, the phase calculation unit 6 controls the reference phase of the electric motor 1 by calculating the rotational phase command θc * as shown in Equation 5 using the position detection value θi and the frequency command ω 1 * .

Figure 0004380437
Figure 0004380437

以上が、電圧制御と位相制御の基本動作である。   The above is the basic operation of voltage control and phase control.

次に、図2を用いて、本発明の特徴であるフィードバック制御方式による弱め界磁指令演算部8について説明する。   Next, the field-weakening command calculation unit 8 based on the feedback control method, which is a feature of the present invention, will be described with reference to FIG.

弱め界磁指令演算部8では、弱め界磁域における出力電圧指令値V1 * ref と出力電圧値V1 *の偏差が、積分ゲインKの定数を持つ積分演算部81に入力され積分演算が行われる。その演算値は、正側を「ゼロ」に制限するリミッタ演算部82に入力され、その出力値が第1のd軸電流指令Id*となる。 In the field weakening command calculation unit 8, the deviation between the output voltage command value V 1 * ref and the output voltage value V 1 * in the field weakening field is input to the integration calculation unit 81 having a constant integral gain K, and the integral calculation is performed. Done. The calculated value is input to a limiter calculating unit 82 that limits the positive side to “zero”, and the output value becomes the first d-axis current command Id * .

次に、本発明のもたらす作用効果について、本実施例により説明する。   Next, the effect which this invention brings about is demonstrated by a present Example.

図1の制御装置において、第1のd軸電流指令値Id* を「ゼロ」に制御した場合について考える(弱め界磁指令演算は行わない場合)。 Consider a case in which the first d-axis current command value Id * is controlled to “zero” in the control device of FIG. 1 (when field-weakening command calculation is not performed).

電圧ベクトル演算部11で出力されるV1 *は、数2を数1に代入すると、 V 1 * output from the voltage vector calculation unit 11 is obtained by substituting Equation 2 into Equation 1.

Figure 0004380437
Figure 0004380437

また、V1 *の飽和値をV1 * max とすると、電圧飽和域では数7の関係になる。 Also, when the saturation value of V 1 * and V 1 * max, the relation of the number 7 in the voltage saturation range.

Figure 0004380437
Figure 0004380437

ここで、数7を整理すると、周波数指令ω1 *についての二次方程式を得ることができ、 Here, by rearranging Equation 7, a quadratic equation for the frequency command ω 1 * can be obtained,

Figure 0004380437
数8より、V1 *が飽和する際のω1 *を求めることができる。
Figure 0004380437
From Equation 8, ω 1 * when V 1 * is saturated can be obtained.

Figure 0004380437
Figure 0004380437

ここで、Id**=Id*=0,Iq**=τ/KT とした場合の、モータトルクτと周波数指令ω1 *の関係を図3に示す。 Here, FIG. 3 shows the relationship between the motor torque τ and the frequency command ω 1 * when Id ** = Id * = 0 and Iq ** = τ / KT.

ここに、τは、モータトルクであり、KTはトルク係数である。   Here, τ is a motor torque, and KT is a torque coefficient.

図3に示す実線は、V1 *が飽和する境界線であり、境界線の上側が飽和域、下側が非飽和域であり、実運転可能な範囲となる。 The solid line shown in FIG. 3 is a boundary line where V 1 * is saturated. The upper side of the boundary line is a saturated region, and the lower side is a non-saturated region, which is a range where actual operation is possible.

このため、d軸電流指令値Id* を「ゼロ」に設定するベクトル制御では、高速域における運転範囲が低く制限されてしまう課題があった。 For this reason, in the vector control in which the d-axis current command value Id * is set to “zero”, there is a problem that the operation range in the high speed range is limited to be low.

そこで本実施例では、出力電圧値V1 * が、弱め界磁域における出力電圧指令値V1 * refに一致するように、第1のd軸電流指令値Id*を演算し、このId*を用いて、第2のd軸電流指令値Id**を作成し、電圧ベクトルの演算を行うようにしている。 In this embodiment, the output voltage value V 1 * is, so to match the output voltage command value V 1 * ref at weakening磁域calculates a first d-axis current command value Id *, the Id * Is used to create the second d-axis current command value Id ** and to calculate the voltage vector.

ここで、弱め界磁域の出力電圧指令値V1 * ref は、数10のように設定する。 Here, the output voltage command value V 1 * ref in the field weakening region is set as shown in Equation 10.

Figure 0004380437
Figure 0004380437

この結果、出力電圧値V1 *が飽和しない(V1 * max より小さい値になる)ように、電圧ベクトル演算部11で電圧指令値Vd*,Vq*が演算されるため、高速域においての運転範囲を拡大することができる。 As a result, the voltage command values Vd * and Vq * are calculated by the voltage vector calculation unit 11 so that the output voltage value V 1 * is not saturated (is a value smaller than V 1 * max ). The operating range can be expanded.

本発明を適用すると、電流指令値通りに電流を発生させることができるので、高精度なトルク制御を実現でき、また、図4に示すように運転範囲も拡大することができる。   When the present invention is applied, current can be generated according to the current command value, so that highly accurate torque control can be realized, and the operating range can be expanded as shown in FIG.

なお、トルク制御運転時において高トルクが要求されると、トルクに見合った大きな電流を流す必要がある。連続した時間で高トルクが要求される場合には、電動機電流による発熱により、時間と共に電動機内部の巻線抵抗値Rが増加する。すると、電圧ベクトル演算部で演算する抵抗設定値と実抵抗値が一致しなくなるため、電動機に必要な電圧を供給することができなくなり、その結果、トルク発生に必要な電流が流れず、トルク不足に陥ることが懸念される。   When high torque is required during torque control operation, it is necessary to flow a large current commensurate with the torque. When high torque is required for a continuous time, the winding resistance value R inside the motor increases with time due to heat generated by the motor current. Then, since the resistance set value calculated by the voltage vector calculation unit and the actual resistance value do not match, the voltage required for the motor cannot be supplied. As a result, the current necessary for generating torque does not flow and the torque is insufficient. There is concern about falling into

そこで、本実施例の図1のようにベクトル演算部の上流部に電流指令演算部を有することにより、電動機電流を電流指令値に一致させるように出力電圧が制御され、電動機定数の変動や、ホール素子などの取り付け誤差の影響を受けることなく、低速度域からトルク不足を生じない交流電動機の制御装置を提供できる。   Therefore, as shown in FIG. 1 of the present embodiment, by having the current command calculation unit upstream of the vector calculation unit, the output voltage is controlled so that the motor current matches the current command value, the fluctuation of the motor constant, It is possible to provide a control apparatus for an AC motor that does not cause torque shortage from a low speed range without being affected by mounting errors such as Hall elements.

図5は、本発明の他の実施例を示す。   FIG. 5 shows another embodiment of the present invention.

本実施例は、フィードバック制御方式による弱め界磁指令演算部の積分ゲインを周波数指令ω1 *で変更する方式の永久磁石同機電動機の制御装置である。 The present embodiment is a control device for a permanent magnet same-machine electric motor of a system in which the integral gain of the field weakening command calculation unit by the feedback control system is changed by the frequency command ω 1 * .

図5において、1〜7,9〜13,21は図1と同一である。8aは、周波数指令ω1 *に応じて、V1 * ref とV1 *の偏差を積分演算する際の積分ゲインを自動修正する弱め界磁指令演算部である。 In FIG. 5, 1-7, 9-13, and 21 are the same as FIG. Reference numeral 8a denotes a field weakening command calculation unit that automatically corrects an integral gain when the difference between V 1 * ref and V 1 * is integrated according to the frequency command ω 1 * .

次に、図6を用いて、本発明の特徴である弱め界磁指令演算部8aを説明する。   Next, the field weakening command calculation unit 8a, which is a feature of the present invention, will be described with reference to FIG.

弱め界磁指令演算部8aでは、弱め界磁域における出力電圧指令値V1 * ref と出力電圧値V1 の偏差が、積分ゲインKの定数を持つ積分演算部8a1に入力され、積分演算が行われる。その際、積分ゲインKは周波数ω1 により自動修正される。積分演算部8a1の出力値は、正側を「ゼロ」に制限するリミッタ演算部8a2に入力され、その出力値が、第1のd軸電流指令Id* となる。 In field weakening command calculation unit 8a, the deviation of the output voltage command value V 1 * ref and output voltage V 1 in the field weakening磁域is input to the integration unit 8a1 with constant integral gain K, the integral calculation is Done. At that time, the integral gain K is automatically corrected by the frequency ω 1 . The output value of the integral calculation unit 8a1 is input to the limiter calculation unit 8a2 that limits the positive side to “zero”, and the output value becomes the first d-axis current command Id * .

この電流指令値Id*を用いて、第2の電流指令値Id**を作成し、電圧指令値Vd*,Vq* を演算して、変換器出力電圧を制御する。 Using this current command value Id * , a second current command value Id ** is created, and voltage command values Vd * and Vq * are calculated to control the converter output voltage.

ここで、本発明のもたらす作用効果について説明をする。   Here, the effect which this invention brings about is demonstrated.

弱め界磁指令演算で用いる積分ゲインKが一定の場合、無負荷時(Iq* =0)におけるV1 * refからId*までの閉ループ伝達関数Gφ(s) は、 When the integral gain K used in the field weakening command calculation is constant, the closed loop transfer function G φ (s) from V 1 * ref to Id * at no load (Iq * = 0) is

Figure 0004380437
Figure 0004380437

ここに、sはラプラス演算子である。数11より、Id* は一次遅れで発生し、その応答時定数Tφは、数12となり、Tφは周波数指令ω1 *により変化することがわかる。 Here, s is a Laplace operator. From Equation 11, it can be seen that Id * occurs with a first-order lag, its response time constant is Equation 12, and changes with the frequency command ω 1 * .

Figure 0004380437
Figure 0004380437

そこで、8a1の積分ゲインKを、数13で示すように演算する。   Therefore, the integral gain K of 8a1 is calculated as shown in Equation 13.

Figure 0004380437
Figure 0004380437

ここに、ωc は、弱め界磁指令演算の制御応答角周波数(rad/s)である。すると、新しい伝達関数Gφ′(s) は、 Here, ω c is the control response angular frequency (rad / s) of the field weakening command calculation. Then, the new transfer function G φ ′ (s) is

Figure 0004380437
となる。ここで、新しい応答時定数Tφ′は、
Figure 0004380437
It becomes. Here, the new response time constant T φ ′ is

Figure 0004380437
である。これより、Tφ′は周波数指令ω1 *と無関係に設定することができ、より高応答の効果を得ることができる。
Figure 0004380437
It is. Thus, T φ ′ can be set regardless of the frequency command ω 1 *, and a higher response effect can be obtained.

なお、本実施例のフィードバック制御方式による弱め界磁指令演算部の積分ゲインを周波数指令ω1 *で変更する方式の永久磁石同機電動機の制御装置は、図5のような、電圧ベクトル演算部の上流部に電流指令演算部を有する制御系以外の制御系においても適用可能である。 In addition, the control device for the permanent magnet same-machine electric motor of the method of changing the integral gain of the field weakening command calculation unit by the feedback command method of the present embodiment with the frequency command ω 1 * is shown in FIG. The present invention can also be applied to a control system other than a control system having a current command calculation unit in the upstream portion.

図7は、本発明の他の実施例を示す。本実施例は、弱め界磁指令演算部にフィードフォワード方式を用いた場合の永久磁石同機電動機の弱め界磁ベクトル制御装置である。   FIG. 7 shows another embodiment of the present invention. The present embodiment is a field-weakening vector control device for a permanent-magnet same-machine electric motor when a feedforward method is used for a field-weakening command calculation unit.

図7において、構成要素の1〜7,9〜13,21は、図1のものと同一物である。   In FIG. 7, components 1 to 7, 9 to 13, and 21 are the same as those in FIG.

図8を用いて、本発明の特徴であるフィードフォワード制御方式による弱め界磁指令演算部8bを説明する。   With reference to FIG. 8, the field weakening command calculation unit 8b based on the feedforward control method, which is a feature of the present invention, will be described.

本実例外は、無負荷時に発生するd軸電流指令を予め演算により求めるものである。   This actual exception is obtained in advance by a calculation of a d-axis current command generated when there is no load.

弱め界磁指令演算部8bでは、演算部8b1において、弱め界磁域における出力電圧指令値V1 * refから誘起電圧指令値(=ω1 * Ke*)を減算し、その減算値をω1 *とLd*の乗算値により除算演算を行う。演算部8b1の出力値は、一次遅れフィルタ8b2に入力される。さらに、8b2の出力値は、正側を「ゼロ」に制限するリミッタ演算部8b2に入力され、その出力値が、第1のd軸電流指令Id*となる。 In the field weakening command calculation unit 8b, the calculation unit 8b1 subtracts the induced voltage command value (= ω 1 * Ke * ) from the output voltage command value V 1 * ref in the field weakening region, and the subtraction value is represented by ω 1. Division operation is performed by the multiplication value of * and Ld * . The output value of the arithmetic unit 8b1 is input to the first-order lag filter 8b2. Further, the output value of 8b2 is input to a limiter calculation unit 8b2 that limits the positive side to “zero”, and the output value becomes the first d-axis current command Id * .

この電流指令値Id*を用いて、第2の電流指令値Id**を作成し、電圧指令値Vd*,Vq*を演算して、変換器出力電圧を制御する。 Using this current command value Id * , a second current command value Id ** is created, and voltage command values Vd * and Vq * are calculated to control the converter output voltage.

高速域では、トルクが「ゼロ」でも、Vq* の誘起電圧指令値(=ω1 * Ke*)のみでV1 *が飽和してしまう。 In the high speed region, even if the torque is “zero”, V 1 * is saturated only by the induced voltage command value (= ω 1 * Ke * ) of Vq * .

電圧飽和域から抜け出すために必要なd軸電流指令値をId* ff0とすると、 If the d-axis current command value necessary to get out of the voltage saturation region is Id * ff0 ,

Figure 0004380437
これにより、8b2の一次遅れフィルタ時定数Tを、数(17)のように設定することで、フィードフォワード制御方式でも、実施例2と同様な効果を得ることができる。
Figure 0004380437
Thus, by setting the first-order lag filter time constant T of 8b2 as shown in the equation (17), the same effect as that of the second embodiment can be obtained even in the feedforward control method.

Figure 0004380437
Figure 0004380437

なお、本実施例の弱め界磁指令演算部にフィードフォワード方式を用いた場合の永久磁石同機電動機の弱め界磁ベクトル制御装置は、図7のような、電圧ベクトル演算部の上流部に電流指令演算部を有する制御系以外の制御系においても適用することが可能である。   Note that the field weakening vector control device for the permanent magnet same-machine electric motor when the feed-forward method is used for the field weakening command calculation unit of the present embodiment, the current command to the upstream of the voltage vector calculation unit as shown in FIG. The present invention can also be applied to a control system other than a control system having an arithmetic unit.

図9は、本発明の他の実施例を示す。本実施例は、弱め界磁指令演算部にフィードフォワード制御方式とフィードバック制御方式を用いた場合の永久磁石同機電動機の制御装置である。   FIG. 9 shows another embodiment of the present invention. The present embodiment is a control device for a permanent magnet same-machine electric motor when a feedforward control method and a feedback control method are used for a field weakening command calculation unit.

図9において、構成要素の1〜7,9〜13,21は図1のものと同一物である。図
10を用いて、本発明の特徴であるフィードフォワード制御方式とフィードバック制御方式による弱め界磁指令演算部8cを説明する。
In FIG. 9, components 1 to 7, 9 to 13, and 21 are the same as those in FIG. The field weakening command calculation unit 8c using the feedforward control method and the feedback control method, which are features of the present invention, will be described with reference to FIG.

弱め界磁指令演算部8cでは、演算部8c1において、弱め界磁域における出力電圧指令値V1 * refから誘起電圧指令値(=ω1 * Ke*)を減算し、その減算値をω1 *とLd*の乗算値で、除算演算を行う。 In the field weakening command calculation unit 8c, the calculation unit 8c1 subtracts the induced voltage command value (= ω 1 * Ke * ) from the output voltage command value V 1 * ref in the field weakening region, and the subtraction value is represented by ω 1. A division operation is performed with the product of * and Ld * .

演算部8c1の出力値は、一次遅れフィルタ8c2に入力される。さらに、8c2の出力値は、正側を「ゼロ」に制限するリミッタ演算部8c3に入力され、その出力値が
Id* ffとなる。
The output value of the calculation unit 8c1 is input to the first-order lag filter 8c2. Further, the output value of 8c2 is input to a limiter calculation unit 8c3 that limits the positive side to “zero”, and the output value becomes Id * ff .

また、同時に出力電圧指令値V1 * refと出力電圧値V1が、積分ゲインKの定数を持つ積分演算部8c4に入力され積分演算が行われる。その際、積分ゲインKは周波数ω1 により自動修正される。 At the same time, the output voltage command value V 1 * ref and the output voltage value V 1 are input to the integration calculation unit 8c4 having a constant integral gain K, and the integration calculation is performed. At that time, the integral gain K is automatically corrected by the frequency ω 1 .

積分演算部8c4の出力値は、正側を「ゼロ」に制限するリミッタ演算部8c5に入力され、その出力値がId* fbとなる。 The output value of the integral calculation unit 8c4 is input to the limiter calculation unit 8c5 that limits the positive side to “zero”, and the output value becomes Id * fb .

そこで、数(18)に示すように、フィードフォワード制御の出力値Id* ff とフィードバック制御の出力値Id* fbの加算値により、第1のd軸電流指令Id*を演算する。 Therefore, as shown in equation (18), the first d-axis current command Id * is calculated from the added value of the feedforward control output value Id * ff and the feedback control output value Id * fb .

Figure 0004380437
Figure 0004380437

この方式でも、前記実施例と同様に動作し、より高応答の効果を得ることができる。   This method also operates in the same manner as in the above-described embodiment and can obtain a higher response effect.

なお、同様に本実施例の弱め界磁指令演算部にフィードフォワード制御方式とフィードバック制御方式を用いた場合の永久磁石同機電動機の制御装置は、図9のような、電圧ベクトル演算部の上流部に電流指令演算部を有する制御系以外の制御系においても適用可能である。   Similarly, the control device for the permanent magnet same-machine motor when the feedforward control method and the feedback control method are used for the field weakening command calculation unit of the present embodiment is an upstream portion of the voltage vector calculation unit as shown in FIG. The present invention is also applicable to a control system other than a control system having a current command calculation unit.

実施例1〜実施例4までは、高価な電流検出器3で検出した3相の交流電流Iu〜Iwを検出する方式であったが、安価な電流検出を行う制御装置においても適用することができる。   In the first to fourth embodiments, the three-phase AC currents Iu to Iw detected by the expensive current detector 3 are detected. However, the present invention can also be applied to a control device that performs inexpensive current detection. it can.

図11に、この実施例を示す。図11において、構成要素の1,2,4〜7,8a,9〜13,21は、図5のものと同一物である。   FIG. 11 shows this embodiment. In FIG. 11, constituent elements 1, 2, 4 to 7, 8a, 9 to 13, and 21 are the same as those in FIG.

14は電力変換器の入力母線に流れる直流電流IDCから、電動機1に流れる3相の交流電流Iu,Iv,Iwを推定する電流推定部である。   Reference numeral 14 denotes a current estimation unit that estimates the three-phase AC currents Iu, Iv, and Iw that flow through the electric motor 1 from the DC current IDC that flows through the input bus of the power converter.

この推定電流値Iu^,Iv^,Iw^を用い、座標変換部7において、d軸及びq軸の電流検出値Idc,Iqcを演算する。   Using the estimated current values Iu ^, Iv ^, Iw ^, the coordinate conversion unit 7 calculates current detection values Idc, Iqc for the d-axis and the q-axis.

このような電流センサレス制御方式でも、Id*とIdc,Iq*とIqcが各々一致することから、前記実施例と同様に動作し、同様の効果が得られることは明らかである。 Even in such a current sensorless control method, since Id * and Idc, and Iq * and Iqc coincide with each other, it is apparent that the operation is the same as in the above-described embodiment and the same effect is obtained.

また、本実施例では、弱め界磁指令演算部に図6の方式を用いているが、図2,図8,図10の方式を用いても同様の効果が得られる。   Further, in this embodiment, the method of FIG. 6 is used for the field weakening command calculation unit, but the same effect can be obtained even if the methods of FIGS. 2, 8, and 10 are used.

図12は、本発明の他の実施例を示す。   FIG. 12 shows another embodiment of the present invention.

本実施例は、安価な電流検出を行い、磁極位置検出器を省略した制御装置に適用したものである。   This embodiment is applied to a control device that performs inexpensive current detection and omits the magnetic pole position detector.

図12において、構成要素の1,2,7,8a,9〜13,21は、図5のものと同一物である。   In FIG. 12, constituent elements 1, 2, 7, 8a, 9 to 13, 21 are the same as those in FIG.

6′は周波数指令ω1 *を積分して、回転位相指令θc* を演算する位相演算部である。 Reference numeral 6 'denotes a phase calculation unit that integrates the frequency command ω 1 * to calculate the rotation phase command θc * .

14は電力変換器の入力母線に流れる直流電流IDCから、同期電動機に流れる3相の交流電流Iu,Iv,Iwを推定する電流推定部である。   Reference numeral 14 denotes a current estimation unit that estimates three-phase AC currents Iu, Iv, and Iw that flow through the synchronous motor from a DC current IDC that flows through the input bus of the power converter.

この推定電流値Iu^,Iv^,Iw^を用い、座標変換部7において、d軸及びq軸の電流検出値Idc,Iqcを演算する。   Using the estimated current values Iu ^, Iv ^, Iw ^, the coordinate conversion unit 7 calculates current detection values Idc, Iqc for the d-axis and the q-axis.

また、15は電圧指令値Vd*,Vq*と電流検出値Idc,Iqcに基づいて、回転位相指令θc*と電動機1の回転位相θの偏差である位相誤差Δθc(=θc*−θ)を推定する位相誤差演算部である。 Reference numeral 15 denotes a phase error Δθc (= θc * −θ) which is a deviation between the rotational phase command θc * and the rotational phase θ of the electric motor 1 based on the voltage command values Vd * and Vq * and the current detection values Idc and Iqc. It is a phase error calculation part to estimate.

16は、位相誤差Δθcを「ゼロ」にするように、ω1 ** を演算する周波数推定部である。このような位置、電流センサレス制御方式でも前記実施例と同様に動作し、同様の効果が得られることは明らかである。 Reference numeral 16 denotes a frequency estimation unit that calculates ω 1 ** so that the phase error Δθc is set to “zero”. It is clear that even such a position and current sensorless control system operates in the same manner as in the above-described embodiment, and the same effect can be obtained.

また、本実施例では、弱め界磁指令演算部に図6の方式を用いているが、図2,図8,図10の方式を用いても同様の効果が得られる。   Further, in this embodiment, the method of FIG. 6 is used for the field weakening command calculation unit, but the same effect can be obtained even if the methods of FIGS. 2, 8, and 10 are used.

図13を用いて本発明をモジュールに適用した例について説明する。本実施例は、実施例1の実施形態を示すものである。ここで、周波数演算部5,位相演算部6,座標変換部7,弱め界磁指令演算部8,d軸電流指令演算部9,q軸電流指令演算部10,電圧ベクトル演算部11,出力電圧演算部12,座標変換部13は1チップマイコンを用いて構成している。また、前記1チップマイコンと電力変換器は、同一基板上で構成される1モジュール内に納められている形態となっている。ここでいうモジュールとは「規格化された構成単位」という意味であり、分離可能なハードウェア/ソフトウェアの部品から構成されているものである。尚、製造上、同一基板上で構成されていることが好ましいが、同一基板に限定はされない。これより、同一筐体に内蔵された複数の回路基板上に構成されても良い。他の実施例においても同様の形態構成をとることができる。   An example in which the present invention is applied to a module will be described with reference to FIG. The present example shows an embodiment of the first example. Here, the frequency calculation unit 5, the phase calculation unit 6, the coordinate conversion unit 7, the field weakening command calculation unit 8, the d-axis current command calculation unit 9, the q-axis current command calculation unit 10, the voltage vector calculation unit 11, the output voltage The calculation unit 12 and the coordinate conversion unit 13 are configured using a one-chip microcomputer. Further, the one-chip microcomputer and the power converter are housed in one module configured on the same substrate. The module here means “standardized structural unit” and is composed of separable hardware / software components. In addition, although it is preferable to comprise on the same board | substrate on manufacture, it is not limited to the same board | substrate. Thus, the circuit board may be configured on a plurality of circuit boards built in the same housing. In other embodiments, the same configuration can be adopted.

以上のように、本発明によれば、弱め界磁域においても、高精度,高応答なモータトルクを実現することができ、また、安価な電流検出を行うシステムや、磁極位置検出器を省略したシステムにおいても、共通に適用可能な永久磁石同期電動機の弱め界磁ベクトル制御装置を提供できる。   As described above, according to the present invention, a highly accurate and highly responsive motor torque can be realized even in a weak field region, and an inexpensive current detection system and a magnetic pole position detector are omitted. Even in such a system, it is possible to provide a field-weakening vector control device for a permanent magnet synchronous motor that can be applied in common.

本発明の一実施例を示す永久磁石同期電動機の弱め界磁ベクトル制御装置の構成図。The block diagram of the field-weakening vector control apparatus of the permanent-magnet synchronous motor which shows one Example of this invention. 図1の制御装置における弱め界磁指令演算部8の説明図。Explanatory drawing of the field weakening command calculating part 8 in the control apparatus of FIG. 弱め界磁指令演算部8がない場合の電圧飽和特性図の一例。An example of a voltage saturation characteristic diagram when the field weakening command calculation unit 8 is not provided. 弱め界磁指令演算部8を入れた場合の電圧飽和特性図の一例。An example of a voltage saturation characteristic diagram when the field weakening command calculation unit 8 is inserted. 本発明の他の実施例を示す永久磁石同期電動機の弱め界磁ベクトル制御装置の構成図。The block diagram of the field-weakening vector control apparatus of the permanent-magnet synchronous motor which shows the other Example of this invention. 図5の制御装置における弱め界磁指令演算部8aの説明図の一例。FIG. 6 is an example of an explanatory diagram of a field weakening command calculation unit 8a in the control device of FIG. 5. 本発明の他の実施例を示す永久磁石同期電動機の弱め界磁ベクトル制御装置の構成図。The block diagram of the field-weakening vector control apparatus of the permanent-magnet synchronous motor which shows the other Example of this invention. 図7の制御装置における弱め界磁指令演算部8bの説明図の一例。FIG. 8 is an example of an explanatory diagram of a field weakening command calculation unit 8b in the control device of FIG. 本発明の他の実施例を示す永久磁石同期電動機の弱め界磁ベクトル制御装置の構成図。The block diagram of the field-weakening vector control apparatus of the permanent-magnet synchronous motor which shows the other Example of this invention. 図9の制御装置における弱め界磁指令演算部8cの説明図の一例。FIG. 10 is an example of an explanatory diagram of a field weakening command calculation unit 8c in the control device of FIG. 9; 本発明の他の実施例を示す永久磁石同期電動機の弱め界磁ベクトル制御装置の構成図。The block diagram of the field-weakening vector control apparatus of the permanent-magnet synchronous motor which shows the other Example of this invention. 本発明の他の実施例を示す永久磁石同期電動機の弱め界磁ベクトル制御装置の構成図。The block diagram of the field-weakening vector control apparatus of the permanent-magnet synchronous motor which shows the other Example of this invention. 本発明の実施例をモジュールに適用した場合の構成図。The block diagram at the time of applying the Example of this invention to a module.

符号の説明Explanation of symbols

1…永久磁石同期電動機、2…電力変換器、3…電流検出器、4…磁極位置検出器、5…周波数演算部、6…位相演算部、7,13…座標変換部、8,8a,8b,8c…弱め界磁指令演算部、9…d軸電流指令演算部、10…q軸電流指令演算部、11…電圧ベクトル演算部、12…出力電圧演算部、14…電流推定部、15…位相誤差演算部、21…直流電源、IDC…入力直流母線電流検出値、Id* …第1のd軸電流指令値、Id**…第2のd軸電流指令値、Iq* …第1のq軸電流指令値、Iq**…第2のq軸電流指令値、V1 * ref…弱め界磁域における出力電圧指令値、V1 *…出力電圧値、θc*…回転位相指令、ω1 *…周波数指令。
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet synchronous motor, 2 ... Power converter, 3 ... Current detector, 4 ... Magnetic pole position detector, 5 ... Frequency calculating part, 6 ... Phase calculating part, 7, 13 ... Coordinate converting part, 8, 8a, 8b, 8c ... field weakening command calculation unit, 9 ... d-axis current command calculation unit, 10 ... q-axis current command calculation unit, 11 ... voltage vector calculation unit, 12 ... output voltage calculation unit, 14 ... current estimation unit, 15 ... Phase error calculation unit, 21 ... DC power supply, IDC ... Input DC bus current detection value, Id * ... First d-axis current command value, Id ** ... Second d-axis current command value, Iq * ... First the q-axis current command value, Iq ** ... second q-axis current command value, V 1 * ref ... field weakening output voltage command value at磁域, V 1 * ... output voltage value, .theta.c * ... rotational phase command, ω 1 * … Frequency command.

Claims (7)

第1のd軸およびq軸の電流指令値と電流検出値とにより演算した第2のd軸およびq軸の電流指令値、および周波数指令値に従い、永久磁石同期電動機を駆動する電力変換器の出力電圧値を制御する永久磁石同期電動機の制御装置であって、
弱め界磁域の出力電圧指令値と前記出力電圧値との偏差の積分演算値を、前記第1のd軸電流指令値とする弱め界磁指令演算部を備え
前記弱め界磁域の出力電圧指令値と出力電圧値との偏差の積分演算は、積分ゲインを周波数指令値に応じて修正することを特徴とする永久磁石同期電動機の制御装置。
In accordance with the second d-axis and q-axis current command values calculated from the first d-axis and q-axis current command values and the detected current value, and the frequency command value, the power converter for driving the permanent magnet synchronous motor A control device for a permanent magnet synchronous motor for controlling an output voltage value,
Weakening the output voltage command value磁域 and the integral calculation value of the difference between the output voltage value, it comprises a field weakening command calculation unit to the first d-axis current command value,
The control device for a permanent magnet synchronous motor , wherein the integral calculation of the deviation between the output voltage command value and the output voltage value in the field weakening region corrects the integral gain according to the frequency command value .
d軸およびq軸の電流指令値、および周波数指令値に従い、永久磁石同期電動機を駆動する電力変換器の出力電圧値を制御する永久磁石同期電動機の制御装置であって、
弱め界磁域の出力電圧指令値と前記出力電圧値との偏差の積分演算値を、d軸電流指令値とする弱め界磁指令演算部を備え、
前記弱め界磁域の出力電圧指令値と出力電圧値との偏差の積分演算は、積分ゲインを周波数指令値に応じて修正することを特徴とする永久磁石同期電動機の制御装置。
A control device for a permanent magnet synchronous motor that controls an output voltage value of a power converter that drives a permanent magnet synchronous motor according to a current command value and a frequency command value of a d-axis and a q-axis,
A field weakening command calculation unit having an integral calculation value of a deviation between the output voltage command value in the field weakening field and the output voltage value as a d-axis current command value;
The control device for a permanent magnet synchronous motor , wherein the integral calculation of the deviation between the output voltage command value and the output voltage value in the field weakening region corrects the integral gain according to the frequency command value .
d軸およびq軸の電流指令値、および周波数指令値に従い、永久磁石同期電動機を駆動する電力変換器の出力電圧値を制御する永久磁石同期電動機の制御装置であって、
弱め界磁域の出力電圧指令値と前記周波数指令値およびモータ定数により、d軸電流指令値が演算されると共に、
前記弱め界磁域の出力電圧指令値と出力電圧値との偏差の積分演算値と、前記弱め界磁域の出力電圧指令値と前記周波数指令値およびモータ定数とにより演算された値との加算値を、d軸電流指令値とすることを特徴とする永久磁石同期電動機の制御装置。
A control device for a permanent magnet synchronous motor that controls an output voltage value of a power converter that drives a permanent magnet synchronous motor according to a current command value and a frequency command value of a d-axis and a q-axis,
The d-axis current command value is calculated from the output voltage command value in the field weakening region, the frequency command value, and the motor constant,
Addition of the integral calculation value of the deviation between the output voltage command value and the output voltage value of the field weakening region and the value calculated by the output voltage command value of the field weakening region, the frequency command value and the motor constant A control device for a permanent magnet synchronous motor , wherein the value is a d-axis current command value .
請求項3において、
前記弱め界磁域の出力電圧指令値と出力電圧値との偏差の積分演算は、積分ゲインを周波数指令値に応じて修正することを特徴とする永久磁石同期電動機の制御装置。
In claim 3,
The control device for a permanent magnet synchronous motor , wherein the integral calculation of the deviation between the output voltage command value and the output voltage value in the field weakening region corrects the integral gain according to the frequency command value .
請求項において、
前記弱め界磁域の出力電圧指令値と周波数指令値およびモータ定数による演算は、前記弱め界磁域の出力電圧指令値から電動機の誘起電圧指令値を減算し、その減算値を周波数指令値とd軸インダクタンスの乗算値で除算演算することを特徴とする永久磁石同期電動機の制御装置。
In claim 3 ,
In the calculation based on the output voltage command value and frequency command value of the field weakening region and the motor constant, the induced voltage command value of the motor is subtracted from the output voltage command value of the field weakening region, and the subtraction value is used as the frequency command value. A control device for a permanent magnet synchronous motor , wherein a division operation is performed by a multiplication value of d-axis inductance .
請求項において、
前記電流検出値は、前記電力変換器の入力直流母線電流検出値から電動機電流を再現し
た電流であることを特徴とする永久磁石同期電動機の制御装置。
In claim 1 ,
The current detection value reproduces the motor current from the input DC bus current detection value of the power converter.
A control device for a permanent magnet synchronous motor, wherein
請求項1乃至請求項6の何れかに記載の永久磁石同期電動機の制御装置と、直流を交流に変換する電力変換器とを備えていることを特徴とするモジュール A module comprising: the permanent magnet synchronous motor control device according to any one of claims 1 to 6; and a power converter that converts direct current into alternating current .
JP2004195111A 2004-07-01 2004-07-01 Control device and module for permanent magnet synchronous motor Active JP4380437B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004195111A JP4380437B2 (en) 2004-07-01 2004-07-01 Control device and module for permanent magnet synchronous motor
KR1020050057564A KR100659250B1 (en) 2004-07-01 2005-06-30 Control apparatus and module of permanent magnet synchronous motor
CNB2005100822384A CN100365927C (en) 2004-07-01 2005-07-01 Control device and module for permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195111A JP4380437B2 (en) 2004-07-01 2004-07-01 Control device and module for permanent magnet synchronous motor

Publications (2)

Publication Number Publication Date
JP2006020411A JP2006020411A (en) 2006-01-19
JP4380437B2 true JP4380437B2 (en) 2009-12-09

Family

ID=35794139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195111A Active JP4380437B2 (en) 2004-07-01 2004-07-01 Control device and module for permanent magnet synchronous motor

Country Status (3)

Country Link
JP (1) JP4380437B2 (en)
KR (1) KR100659250B1 (en)
CN (1) CN100365927C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11936309B2 (en) 2020-05-22 2024-03-19 Mitsubishi Electric Corporation Permanent-magnet-synchronous electric motor control device and electric power steering device provided with same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634321B2 (en) * 2006-02-28 2011-02-16 日立オートモティブシステムズ株式会社 Control device for electric four-wheel drive vehicle
CN101507101B (en) * 2006-09-26 2012-06-27 三菱电机株式会社 Permanent magnet synchronization motor vector control device
CN100413207C (en) * 2006-11-17 2008-08-20 清华大学 Vector control system of alien frequencies power supplied permanent magnet synchronous motor
JP4654217B2 (en) * 2007-04-25 2011-03-16 日立オートモティブシステムズ株式会社 Field weakening control device for permanent magnet motor and electric power steering using the same
JP4194645B1 (en) * 2008-03-28 2008-12-10 日立アプライアンス株式会社 Refrigeration equipment
JP5576039B2 (en) * 2008-12-17 2014-08-20 株式会社日立産機システム Synchronous motor controller
KR101522285B1 (en) * 2009-01-16 2015-05-21 삼성테크윈 주식회사 Apparatus for controlling motor
JP5948613B2 (en) * 2011-08-10 2016-07-06 パナソニックIpマネジメント株式会社 Motor control device
JP5509167B2 (en) 2011-09-08 2014-06-04 株式会社日立産機システム Synchronous motor control system
JP5575176B2 (en) * 2012-04-23 2014-08-20 三菱電機株式会社 Control device for rotating electrical machine
JP5633551B2 (en) * 2012-11-05 2014-12-03 株式会社安川電機 AC motor control device
CN105024604B (en) * 2014-04-28 2017-09-29 青岛海信日立空调系统有限公司 A kind of method and a device for controlling weak magnetism of permagnetic synchronous motor
CN105337548A (en) * 2015-11-23 2016-02-17 南京金龙新能源汽车研究院有限公司 Permanent magnet synchronous motor controller based on vector control and control method
US10008967B2 (en) * 2016-10-25 2018-06-26 Microchip Technology Inc. Closed loop flux weakening for permanent magnet synchronous motors
CN107086544B (en) * 2017-05-10 2019-03-08 广东美的暖通设备有限公司 Overvoltage crowbar, three-phase drive motor and air conditioner
CN111404437A (en) * 2020-03-17 2020-07-10 美的集团股份有限公司 Boost-buck driving method and device, air conditioner and computer readable storage medium
WO2022130571A1 (en) * 2020-12-17 2022-06-23 三菱電機株式会社 Electric motor drive device, refrigeration cycle device, and air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284771A (en) * 1992-03-31 1993-10-29 Meidensha Corp Automatic tuning method for pi controller
JPH08182398A (en) * 1994-12-27 1996-07-12 Fuji Electric Co Ltd Driving device for permanent magnet-type synchronous motor
JP3366854B2 (en) 1997-03-27 2003-01-14 松下電器産業株式会社 Motor control device
JP2000245199A (en) 1999-02-24 2000-09-08 Matsushita Electric Ind Co Ltd Motor controller
JP2002095300A (en) 2000-09-19 2002-03-29 Meidensha Corp Method of controlling permanent magnet synchronous motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11936309B2 (en) 2020-05-22 2024-03-19 Mitsubishi Electric Corporation Permanent-magnet-synchronous electric motor control device and electric power steering device provided with same

Also Published As

Publication number Publication date
JP2006020411A (en) 2006-01-19
CN100365927C (en) 2008-01-30
KR100659250B1 (en) 2006-12-19
CN1716758A (en) 2006-01-04
KR20060048738A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
CN100365927C (en) Control device and module for permanent magnet synchronous motor
JP4677852B2 (en) Vector controller for permanent magnet synchronous motor
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
JP4881635B2 (en) Vector controller for permanent magnet motor
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
JP4655871B2 (en) Field weakening vector control device and module for permanent magnet synchronous motor
EP1630949B1 (en) Position-sensorless control circuit
JP2008167566A (en) High-response control device of permanent magnet motor
JP2010213512A (en) Torque controller for permanent-magnet synchronous motor
JP3771544B2 (en) Method and apparatus for controlling permanent magnet type synchronous motor
JP2008092657A (en) Inductance identifying controller of permanent magnet motor and inverter module
JP2006087152A (en) Controller and module of permanent magnet synchronous motor
JP5499965B2 (en) AC rotating machine control device
JP4583257B2 (en) AC rotating machine control device
JP2009060688A (en) Controller for synchronous motors
JP5150366B2 (en) Vector control equipment
JP2005229717A (en) Current sensorless-control method and device of synchronous motor
JP5641774B2 (en) Method and apparatus for estimating rotor position and speed of stepping motor
JP4811727B2 (en) Permanent magnet field synchronous motor controller
JP2005160199A (en) Apparatus and method for controlling three-phase ac motor
JP2010022189A (en) Position sensorless control circuit for motor
JP6695497B2 (en) Motor controller
JP7226211B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP2010142047A (en) Device for estimating position of magnetic pole in motor
JP2005184988A (en) Speed controller for permanent magnet type ac motor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4380437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350