JP5576039B2 - Synchronous motor controller - Google Patents

Synchronous motor controller Download PDF

Info

Publication number
JP5576039B2
JP5576039B2 JP2008320712A JP2008320712A JP5576039B2 JP 5576039 B2 JP5576039 B2 JP 5576039B2 JP 2008320712 A JP2008320712 A JP 2008320712A JP 2008320712 A JP2008320712 A JP 2008320712A JP 5576039 B2 JP5576039 B2 JP 5576039B2
Authority
JP
Japan
Prior art keywords
current command
axis current
voltage
synchronous motor
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008320712A
Other languages
Japanese (ja)
Other versions
JP2010148198A (en
Inventor
正樹 杉浦
敬典 大橋
裕理 高野
豊 松本
芳弘 山口
弘一 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aida Engineering Ltd
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Aida Engineering Ltd
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aida Engineering Ltd, Hitachi Industrial Equipment Systems Co Ltd filed Critical Aida Engineering Ltd
Priority to JP2008320712A priority Critical patent/JP5576039B2/en
Priority to DE102009058579A priority patent/DE102009058579A1/en
Publication of JP2010148198A publication Critical patent/JP2010148198A/en
Application granted granted Critical
Publication of JP5576039B2 publication Critical patent/JP5576039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Description

本発明は、同期電動機制御装置に係り、特に、同期電動機の入力電流を制御する技術に関する。   The present invention relates to a synchronous motor control device, and more particularly to a technique for controlling an input current of a synchronous motor.

本発明に関連した同期電動機の制御装置において、弱め界磁制御の速度に対するd軸電流の決定の従来技術として、例えば、特開2006−20397号公報(特許文献1)、特開2000−228892号公報(特許文献2)及び特開2008−141824号公報(特許文献3)に記載されたものがある。   As a conventional technique for determining a d-axis current with respect to the speed of field-weakening control in a synchronous motor control device related to the present invention, for example, Japanese Patent Application Laid-Open No. 2006-20397 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-228892 ( Patent Document 2) and Japanese Patent Application Laid-Open No. 2008-141824 (Patent Document 3).

特開2006−20397号公報Japanese Patent Laid-Open No. 2006-20397 特開2000−228892号公報JP 2000-228892 A 特開2008−141824号公報JP 2008-141824 A

特許文献1に示される技術では、モータ実速度と無効電流を流し始める基準速度(ベース速度)との速度差に無効電流の速度依存比例係数を掛けて、速度に対するd軸電流成分を決定し、さらに、測定電圧と基準電圧の差に電圧依存比例係数を掛け、弱め界磁を開始する基準速度を変更することにより、電圧に対するd軸電流特性を変化させているが、トルクの変化に対するd軸電流の特性については一定のままである。   In the technique disclosed in Patent Document 1, the d-axis current component with respect to speed is determined by multiplying the speed difference between the actual motor speed and the reference speed (base speed) at which reactive current starts to flow by the speed-dependent proportional coefficient of reactive current, Furthermore, the d-axis current characteristic with respect to the voltage is changed by multiplying the difference between the measured voltage and the reference voltage by a voltage-dependent proportional coefficient and changing the reference speed at which the field weakening is started. The current characteristics remain constant.

特許文献2に示される技術では、電流指令値の特性を速度、トルク、電圧の全動作領域についてテーブル化して特性を決定する方式が挙げられているが、特性値をテーブル化するには、事前に全運転領域の特性解析と設定に工数を要し、さらに運転領域の設定を記憶するためのデータ領域も必要となる。   In the technique disclosed in Patent Document 2, there is a method in which the characteristics of the current command value are tabulated for all speed, torque, and voltage operation regions and the characteristics are determined. In addition, man-hours are required for characteristic analysis and setting of the entire operation area, and a data area for storing the operation area setting is also required.

また、特許文献3に第2実施例として示されるように、弱め界磁制御と最大トルク制御を組合せて使用する動作方式として、両成分を加算して使用する方法があるが、無負荷時の最大速度付近で、弱め界磁制御によりd軸電流が過大となる傾向もある。   Further, as shown in Patent Document 3 as the second embodiment, there is a method of using both components as an operation method in which the field weakening control and the maximum torque control are used in combination. In the vicinity, the d-axis current also tends to be excessive due to field-weakening control.

本発明の目的は、これらの課題を解決するため、無負荷時における、速度、電圧に対するd軸電流特性と、トルク電流に対するd軸電流特性とを組み合わせて、d軸電流特性を合成することにより、従来よりも容易に動作特性の設定が可能な同期電動機制御装置を提供することにある。   In order to solve these problems, the object of the present invention is to combine the d-axis current characteristic with respect to the speed and voltage and the d-axis current characteristic with respect to the torque current in a no-load state to synthesize the d-axis current characteristic. Another object of the present invention is to provide a synchronous motor control device capable of setting operating characteristics more easily than in the past.

前記の課題を解決するにあたり、本発明は、同期電動機の電流を検出し、この電流をd−q軸の2軸のd軸電流、q軸電流の直交成分に分けて制御する電流制御装置を備え、弱め界磁制御による高回転化を図るための、速度及び電圧に対するd軸電流指令値1と、最大トルクを発生させるためのd軸電流指令値2を合成して、最終的なd軸電流制御部のd軸電流指令値とする同期電動機制御装置において、
前記弱め界磁制御によるd軸電流特性と、前記最大トルクを発生させるためのd軸電流特性を保持する記憶部と、これら両特性に基くd軸電流指令値1と2を合成して最終的なd軸電流指令値を出力する電流指令合成処理部を備えたことを特徴とする。
In solving the above problems, the present invention provides a current control device that detects the current of a synchronous motor and controls the current by dividing the current into two d-axis d-axis currents and d-axis current orthogonal components. The d-axis current command value 1 for speed and voltage and the d-axis current command value 2 for generating the maximum torque are synthesized to achieve high rotation by field weakening control, and the final d-axis current control is performed. In the synchronous motor control device as the d-axis current command value of the part,
A d-axis current characteristic by the field-weakening control, a storage unit for holding the d-axis current characteristic for generating the maximum torque, and a d-axis current command value 1 and 2 based on both characteristics are combined to obtain a final d A current command synthesis processing unit that outputs an axis current command value is provided.

また、本発明は、上記の同期電動機制御装置において、前記電流指令合成処理部は、前記両d軸電流特性に基づくd軸電流指令値1と2の大きさを比較して、その最大値を最終的なd軸電流指令値として出力することを特徴とする。   Further, according to the present invention, in the synchronous motor control device described above, the current command synthesis processing unit compares the magnitudes of the d-axis current command values 1 and 2 based on both the d-axis current characteristics, and determines the maximum value. The final d-axis current command value is output.

また、本発明は、上記の同期電動機制御装置において、前記電流指令合成処理部は、前記両d軸電流特性に基づくd軸電流指令値1と2の大きさを加算して、最終的なd軸電流指令値として出力することを特徴とする。   Further, according to the present invention, in the synchronous motor control device described above, the current command synthesis processing unit adds the magnitudes of the d-axis current command values 1 and 2 based on the both d-axis current characteristics to obtain a final d It is output as a shaft current command value.

また、本発明は、同期電動機の電流を検出し、この電流をd−q軸の2軸のd軸電流、q軸電流の直交成分に分けて制御する電流制御装置を備え、弱め界磁制御による高回転化を図るための、速度及び電圧に対するd軸電流指令値1と、最大トルクを発生させるためのd軸電流指令値2を合成して、最終的なd軸電流制御部のd軸電流指令値とする同期電動機制御装置において、
無負荷時における速度及び電圧に対するd軸電流指令を前記d軸電流指令値1とし、前記d軸電流指令2と共に合成して最終的なd軸電流指令値を出力する電流指令合成処理部を備えた指令とすることを特徴とする。
The present invention also includes a current control device that detects the current of the synchronous motor and divides the current into two orthogonal components of the d-axis d-axis current and the q-axis current, and controls the current by high field-weakening control. The d-axis current command value 1 for speed and voltage for rotation and the d-axis current command value 2 for generating the maximum torque are synthesized, and the final d-axis current command of the d-axis current control unit is synthesized. In the synchronous motor control device as a value,
A d-axis current command value corresponding to speed and voltage at no load is set as the d-axis current command value 1 and is combined with the d-axis current command 2 to output a final d-axis current command value. It is characterized by a command.

また、本発明は、上記の同期電動機制御装置において、前記電流指令合成処理部は、前記d軸電流指令値1と2の大きさを比較して、その最大値を最終的なd軸電流指令値として出力することを特徴とする。   Further, according to the present invention, in the synchronous motor control device described above, the current command synthesis processing unit compares the magnitudes of the d-axis current command values 1 and 2 and determines the maximum value as a final d-axis current command. It is output as a value.

また、本発明は、上記の同期電動機制御装置において、前記電流指令合成処理部は、前記両d軸電流指令値1と2の大きさを加算して、最終的なd軸電流指令値として出力することを特徴とする。   In the synchronous motor control device according to the present invention, the current command synthesis processing unit adds the magnitudes of both the d-axis current command values 1 and 2, and outputs the result as a final d-axis current command value. It is characterized by doing.

また、本発明は、上記の同期電動機制御装置において、前記のd軸電流指令値1を算出の際に使用する電圧値を、トルク電流の大きさに応じて変更し、速度、電圧に対する電流特性を調整する参照電圧調整部を設けたことを特徴とする。   Further, according to the present invention, in the synchronous motor control device described above, the voltage value used when calculating the d-axis current command value 1 is changed according to the magnitude of the torque current, and current characteristics with respect to speed and voltage are changed. A reference voltage adjusting unit for adjusting the frequency is provided.

また、本発明は、上記の同期電動機制御装置において、前記参照電圧調整部は、検出電圧からトルク電流に比例した調整値を減算した値を、前記d軸電流指令値1を算出の際に使用する電圧値としたことを特徴とする。   In the synchronous motor control device according to the present invention, the reference voltage adjustment unit uses a value obtained by subtracting an adjustment value proportional to the torque current from the detected voltage when calculating the d-axis current command value 1. It is characterized by the voltage value to be used.

また、本発明は、同期電動機の電流制御において、無負荷時における速度、電圧に対するd軸電流指令を求める。例えば、電圧使用範囲内で数種類の電圧について無負荷時の電流指令特性を準備し、電圧に応じて特性を切替えることにより、検出速度、検出電圧に応じたd軸電流指令idnとする。一方、出力トルクに対しては、例えば、最大トルク制御をもとに設定した電流指令特性より、d軸電流指令idtを算出する。速度、電圧に対する電流指令idnとトルクに対する電流指令idtを組合わせることにより、最終出力となるd軸電流指令値とする。   Further, according to the present invention, in current control of a synchronous motor, a d-axis current command for speed and voltage at no load is obtained. For example, current command characteristics at no load are prepared for several types of voltages within the voltage use range, and the characteristics are switched according to the voltage to obtain the d-axis current command idn according to the detection speed and the detected voltage. On the other hand, for the output torque, for example, the d-axis current command idt is calculated from the current command characteristic set based on the maximum torque control. By combining a current command idn for speed and voltage with a current command idt for torque, a d-axis current command value as a final output is obtained.

また、d軸電流指令値idt、idnの合成の際に、加算して出力する方法の他に、idt、idnの最大値成分を出力する方法を選択可能とする。速度、電圧に対する無負荷時でのd軸電流特性と、例えば、トルクに対するd軸電流特性の設定に必要なデータ領域については、それぞれ3点で設定するため、データ数も少なく、従来よりも容易にd軸電流指令の動作特性が設定可能となる。さらに、電流指令特性で参照する電圧値をトルクに応じて変化させることにより、d軸電流指令を変化させ、高回転での無負荷時にd軸電流が過大となることを防止することを可能とする。   In addition to the method of adding and outputting the d-axis current command values idt and idn, a method of outputting the maximum value component of idt and idn can be selected. The d-axis current characteristics at no load with respect to speed and voltage, and for example, the data area necessary for setting the d-axis current characteristics with respect to torque are set at 3 points, respectively, so the number of data is small and easier than before. The operation characteristics of the d-axis current command can be set. Furthermore, by changing the voltage value referred to in the current command characteristic according to the torque, it is possible to change the d-axis current command and prevent the d-axis current from becoming excessive at no load at high rotation. To do.

本発明によれば、弱め界磁制御におけるd軸電流指令の決定の際に、速度、電圧、トルクに対するd軸電流指令の動作特性を容易に設定することができる。また、設定に必要なテーブルなどの点数を少なくできるので、装置を小型化、低価格化できる。   According to the present invention, when determining a d-axis current command in field-weakening control, it is possible to easily set operation characteristics of the d-axis current command with respect to speed, voltage, and torque. In addition, since the number of tables required for setting can be reduced, the apparatus can be reduced in size and price.

図1は、本発明を実施するためのd軸電流制御装置の主要な電流制御ブロックである電流指令変換器100の構成例である。弱め界磁制御を用いたd軸電流演算部1により、現在速度Nおよび電圧Vdcに対するd軸電流指令idn*(d軸電流指令値1)を求め、最大トルク制御をもとに設定した電流指令特性のd軸電流演算部2により、q軸電流指令値iq*に対するd軸電流指令idt*(d軸電流指令値2)を求めた後、電流指令合成処理部3を介して最終的なd軸電流指令id*を出力する。 FIG. 1 is a configuration example of a current command converter 100 which is a main current control block of a d-axis current control apparatus for carrying out the present invention. The d-axis current calculation unit 1 using field weakening control obtains the d-axis current command idn * (d-axis current command value 1) for the current speed N and the voltage Vdc, and the current command characteristic set based on the maximum torque control is obtained. After obtaining the d-axis current command idt * (d-axis current command value 2) for the q-axis current command value iq * by the d-axis current calculation unit 2, the final d-axis current is obtained via the current command synthesis processing unit 3. Outputs command id *.

図2は、同期電動機制御装置において、本発明を実施するための速度制御系の構成例である。   FIG. 2 is a configuration example of a speed control system for carrying out the present invention in the synchronous motor control device.

101は永久磁石同期電動機、102は、電動機101のロータ(図示せず)の回転位置を検出する位置検出器、103は、位置検出器102の出力から同期電動機のロータの回転速度Nを演算する速度演算器、104は、速度演算器103から得られた上記ロータの現在の回転速度Nと、予め設定した速度指令値N*との偏差からq軸電流指令値iq*を演算して出力する速度制御演算器、100は、上記q軸電流指令値iq*に基き、d軸電流指令値id*およびq軸電流指令値iq*が算出される電流指令変換器、106は、電流検出器105によって検出されたU相電流値Iu、V相電流値Iv、W相電流値Iwを入力し、q軸電流値Iqとd軸電流値Idに変換するU-V-W/d−q変換器、107は、d軸電流指令値id*からd軸電流値Idを減算した電流値を入力しd軸の電圧を算出するd軸電流制御演算器、108は、q軸電流指令値Iq*からq軸電流値Iqを減算した電流値を入力しq軸の電圧を算出するq軸電流制御演算器、109は、d軸とq軸の電圧を三相交流電圧に変換するd-q/U-V-W変換器、110は、上記三相交流電圧をPWM波形に変換するPWM変換器である。 101 is a permanent magnet synchronous motor, 102 is a position detector that detects the rotational position of a rotor (not shown) of the motor 101, and 103 is a rotational speed N of the rotor of the synchronous motor from the output of the position detector 102. A speed calculator 104 calculates and outputs a q-axis current command value iq * from a deviation between the current rotational speed N of the rotor obtained from the speed calculator 103 and a preset speed command value N *. speed control calculator, 100 is based on the q-axis current command value iq *, d-axis current command value id * and the q-axis current command value current command converter iq * is calculated, is 106, the current detector 105 UVW / d-q converter 107 that inputs U-phase current value Iu, V-phase current value Iv, and W-phase current value Iw detected by, and converts them into q-axis current value Iq and d-axis current value Id, d-axis current that calculates the d-axis voltage by inputting the current value obtained by subtracting the d-axis current value Id from the d-axis current command value id * The control unit 108 receives a current value obtained by subtracting the q-axis current value Iq from the q-axis current command value Iq *, and calculates a q-axis voltage. 109 includes a d-axis and a q-axis. A dq / UVW converter 110 for converting the voltage of the three-phase AC voltage into a three-phase AC voltage, 110 is a PWM converter for converting the three-phase AC voltage into a PWM waveform.

112は、商用の三相交流電圧111を直流電圧Vdcに変換する整流回路、113は、前記PWM変換器110からのPWM波形の電圧指令により駆動され、三相交流を出力するインバータで、この三相交流は永久磁石同期電動機101に供給される。   Reference numeral 112 denotes a rectifier circuit that converts a commercial three-phase AC voltage 111 into a DC voltage Vdc. Reference numeral 113 denotes an inverter that is driven by a PWM waveform voltage command from the PWM converter 110 and outputs a three-phase AC. The phase alternating current is supplied to the permanent magnet synchronous motor 101.

上記構成において、動作は次の通りである。   In the above configuration, the operation is as follows.

永久磁石同期電動機の現在速度Nと速度指令値N*との偏差から、速度制御演算器104によりq軸電流指令値iq*が算出される。次いでこのq軸電流指令値iq*と現在速度Nから、電流指令変換器100によりd軸電流指令値id*、およびq軸電流指令値iq*が得られる。三相分の各電流検出器105によって検出されたU相電流値Iu、V相電流値Iv、W相電流値Iwが、U-V-W/d−q変換器106に入力され、この変換器106でd軸電流値Idとq軸電流値Iqが得られる。前記d軸電流指令値Id*からこのd軸電流値Idを減算し、その減算結果が前記d軸電流制御演算器107に入力される。一方、q軸電流指令値iq*からq軸電流値Iqを減算し、その減算結果が前記q軸電流制御演算器108に入力される。 The q-axis current command value iq * is calculated by the speed control calculator 104 from the deviation between the current speed N of the permanent magnet synchronous motor and the speed command value N *. Then from this q-axis current command value iq * and the current speed N, d-axis current command value id * by the current command converter 100, and the q-axis current command value iq * is obtained. The U-phase current value Iu, the V-phase current value Iv, and the W-phase current value Iw detected by the current detectors 105 for the three phases are input to the UVW / d-q converter 106, where d An axis current value Id and a q axis current value Iq are obtained. This d-axis current value Id is subtracted from the d-axis current command value Id *, and the subtraction result is input to the d-axis current control calculator 107. On the other hand, the q-axis current value Iq is subtracted from the q-axis current command value iq *, and the subtraction result is input to the q-axis current control calculator 108.

ここで、U-V-W/d−q変換器106に、3相の電流検出器105から検出した電流値を入力しているが、これを2相の例えばU相、W相のみの電流を検出して、前記V相電流値IvをIv=-Iu-Iwと演算してもよい。   Here, the current value detected from the three-phase current detector 105 is inputted to the UVW / d-q converter 106, and this is detected by detecting only the current of only two phases, for example, the U phase and the W phase. The V-phase current value Iv may be calculated as Iv = −Iu−Iw.

前記d電流制御演算器107、q電流制御演算器108で算出された電圧の演算結果は、d-q/U-V-W変換器109において三相交流電圧に変換され、さらにPWM変換器110によりPWM波の電圧指令に変換され、インバータ113に供給される。一方、整流回路112において三相交流電圧111から変換された直流電圧Vdcは電源としてインバータ113に供給され、インバータ113は、前記PWM波の電圧指令に基ずいて三相交流を出力し、前記永久磁石同期電動機101に供給する。   The calculation result of the voltage calculated by the d current control calculator 107 and the q current control calculator 108 is converted into a three-phase AC voltage by the dq / UVW converter 109, and further, a PWM wave voltage command is output by the PWM converter 110. And supplied to the inverter 113. On the other hand, the DC voltage Vdc converted from the three-phase AC voltage 111 in the rectifier circuit 112 is supplied to the inverter 113 as a power source. The inverter 113 outputs a three-phase AC based on the voltage command of the PWM wave, and the permanent voltage The magnet synchronous motor 101 is supplied.

次に、d軸電流制御ブロックである電流指令変換器100の具体的な構成例を、図5に示す。弱め界磁制御の電流演算部4(図1で1に相当)は、複数の電圧(Vdc)における無負荷(トルク0)時の電流指令特性、すなわち電流指令特性5〜7が3通りに設定されたmap(テーブル)1〜map3を記憶部として備えている。また、検出電圧Vdcを参照して使用する上記電流指令特性を切換選択する主回路電圧比較部8と、検出電圧Vdcに基いて選択された2種類の電流指令特性を2点間の電圧と検出電圧との電圧比により補間演算して、検出速度N、検出電圧Vdcに対する無負荷時のd軸電流指令idn(d軸電流指令値1)を算出する補間処理部9を備えている。図5で、主回路電圧比較部8は接点8aに接続されており、電流指令特性5と6が選択され、補間処理部9で両特性と検出電圧から電圧2点間との電圧比を基に補間演算して、無負荷時のd軸電流指令idnが算出される。 Next, a specific configuration example of the current command converter 100 which is a d-axis current control block is shown in FIG. The current calculation unit 4 (corresponding to 1 in FIG. 1) for field weakening control has three current command characteristics at the time of no load (torque 0) at a plurality of voltages (Vdc), that is, current command characteristics 5-7. Map (table) 1 to map 3 are provided as storage units. In addition, the main circuit voltage comparison unit 8 that switches and selects the current command characteristic to be used with reference to the detection voltage Vdc, and two types of current command characteristics selected based on the detection voltage Vdc are detected as a voltage between two points. An interpolation processing unit 9 is provided that calculates an d-axis current command idn * (d-axis current command value 1) when there is no load with respect to the detection speed N and the detection voltage Vdc by performing an interpolation calculation based on a voltage ratio to the voltage. In FIG. 5, the main circuit voltage comparison unit 8 is connected to the contact 8a, the current command characteristics 5 and 6 are selected, and the interpolation processing unit 9 determines the voltage ratio between the two voltages from the two characteristics and the detected voltage. To calculate the d-axis current command idn * when there is no load.

電流指令特性5〜7にあたるmap1(id、N)、map2(id、N)、map3(id、N)は、具体的にはそれぞれ主回路電圧がVdc1、Vdc2、Vdc3の場合の特性として、それぞれ、図6(1)、図6(2)、図6(3)に示されるd軸電流特性を準備する。なお、電流指令特性の種類数は、必ずしも3通りである必要はない。   Specifically, map1 (id, N), map2 (id, N), and map3 (id, N) corresponding to the current command characteristics 5 to 7 are the characteristics when the main circuit voltages are Vdc1, Vdc2, and Vdc3, respectively. 6 (1), FIG. 6 (2), and FIG. 6 (3) are prepared. Note that the number of types of current command characteristics is not necessarily three.

また、q軸電流指令値iqを参照し、出力トルクに対するd軸電流指令idt(d軸電流指令値2)を出力するd軸電流指令特性10(図1の2に相当)のmap(id、iq)を備えている。例えば、電流指令特性10の設定を最大トルク制御を満たす条件として、文献3のように直線近似により設定した場合、トルク電流に対するd軸電流指令idtの特性は、図7のように示される。 Further, with reference to the q-axis current command value iq * , a map () of a d-axis current command characteristic 10 (corresponding to 2 in FIG. 1) that outputs a d-axis current command idt * (d-axis current command value 2) with respect to the output torque. id, iq). For example, when the setting of the current command characteristic 10 is set as a condition satisfying the maximum torque control by linear approximation as in Document 3, the characteristic of the d-axis current command idt * with respect to the torque current is shown as in FIG.

これらの速度Nおよび電圧Vdcに対する電流指令idn、トルクに対する電流指令idtは、電流指令合成処理部11(図1の3に相当)において、加算されることによりd軸電流指令値Idを決定する。この加算の機能を果たす電流指令合成処理部は、図3に3aとして示される。上記により、速度N、トルクTに対する全領域の特性を得ることができる。 Current command idn for these speed N and the voltage Vdc *, the current command idt * is with respect to the torque, the current command synthesis processing unit 11 (corresponding to 3 in FIG. 1), the d-axis current command value Id * by being added decide. The current command synthesis processor that performs this addition function is shown as 3a in FIG. As described above, the characteristics of the entire region with respect to the speed N and the torque T can be obtained.

上記図3の電流指令合成処理部3aで加算合成されて得られる特性は、図6と図7の加算合成として図8にd軸電流指令特性として示される。図8では、縦軸が電圧に対する電流指令とトルクに対する電流指令との加算値Id(idn+idt)を示し、横軸が速度(N)を示している。 The characteristic obtained by the addition synthesis in the current command synthesis processing unit 3a of FIG. 3 is shown as the d-axis current command characteristic in FIG. 8 as the addition synthesis of FIGS. In FIG. 8, the vertical axis represents the added value Id * (idn + idt) of the current command for the voltage and the current command for the torque, and the horizontal axis represents the speed (N).

次に実施例2について説明する。本実施例では、図5の電流制御ブロック図において、先の実施例1と同様に、電流指令特性5〜7、主回路電圧比較部8および補間処理部9を介してd軸電流指令idnを算出し、d軸電流指令特性10よりd軸電流指令idtを同様に算出する。 Next, Example 2 will be described. In the present embodiment, in the current control block diagram of FIG. 5, the d-axis current command idn * is passed through the current command characteristics 5 to 7, the main circuit voltage comparison unit 8 and the interpolation processing unit 9 as in the first embodiment . And the d-axis current command idt * is similarly calculated from the d-axis current command characteristic 10.

実施例1と異なる点は、電流指令合成処理部11が図4に3bで示すように構成されていることである。図4の合成処理部3bは、d軸電流指令idn、idtの大小を比較して、指令値の大きい成分を選択することにより、出力に使用するd軸電流指令idを決定する。図9に実施例2の場合の図6と図7の合成後のd軸電流指令特性の一例を示す。この場合、idn、idtを加算する場合よりも、高速域でのd軸電流値を抑えられる。 The difference from the first embodiment is that the current command synthesis processing unit 11 is configured as indicated by 3b in FIG. The composite processing unit 3b in FIG. 4 determines the d-axis current command id * used for output by comparing the magnitudes of the d-axis current commands idn * and idt * and selecting a component having a large command value. FIG. 9 shows an example of the d-axis current command characteristic after the combination of FIGS. 6 and 7 in the case of the second embodiment. In this case, the d-axis current value in the high speed region can be suppressed as compared with the case of adding idn * and idt * .

次に実施例3について説明する。実施例1のように、速度に対するd軸電流特性は、弱め界磁制御により設定された電流特性を基に動作しており、主回路電圧が一定で動作している限りでは、無負荷時の基準特性の折点にあたる速度は、図8のように、負荷状態によらず一定となる。このため、高負荷領域における特性に合わせて設定をした場合、高速かつ低トルクとなる領域では、モータの特性に対してd軸電流指令が必要以上に大きくなる傾向となる。   Next, Example 3 will be described. As in the first embodiment, the d-axis current characteristic with respect to the speed operates based on the current characteristic set by the field weakening control, and as long as the main circuit voltage operates at a constant level, the reference characteristic at no load is obtained. As shown in FIG. 8, the speed corresponding to the break point is constant regardless of the load state. For this reason, when it is set according to the characteristics in the high load region, the d-axis current command tends to be larger than necessary with respect to the motor characteristics in the region where the torque is high and the torque is low.

これに対応するため、図10に示すように、主回路電圧比較部8の前段に参照電圧調整部12を設け、q軸電流指令値iqと主回路検出電圧Vdcを基に、参照電圧調整部12において、参照される電圧値Vdc1を算出した後に、電流指令特性5〜7を使用することにより、d軸電流指令idの特性をトルクに応じて可変とし、高速、低負荷時におけるd軸電流指令の低減を可能とする。 In order to cope with this, as shown in FIG. 10, a reference voltage adjustment unit 12 is provided before the main circuit voltage comparison unit 8, and the reference voltage adjustment is performed based on the q-axis current command value iq * and the main circuit detection voltage Vdc. After calculating the reference voltage value Vdc1 in the unit 12, the characteristics of the d-axis current command id * are made variable according to the torque by using the current command characteristics 5 to 7, and d at high speed and low load. The shaft current command can be reduced.

すなわち、d軸電流指令idを算出の際に使用する電圧値を、トルク電流の大きさに応じて変更し、同一電圧値でもトルク電流の増加とともに、速度、電圧に対する電流特性を調整することを特徴とする。 That is, the voltage value used when calculating the d-axis current command id * is changed according to the magnitude of the torque current, and the current characteristics with respect to speed and voltage are adjusted as the torque current increases even with the same voltage value. It is characterized by.

図10の電圧検出値調整部12では、主回路電圧Vdcとq軸電流指令iqをもとに、トルクに対する比例係数Kvを使用し、
Vdc1=Vdc−Kv×iq ・・・(式1)
により、電圧検出値Vdcを低減した電圧検出値Vdc1を計算する。主回路電圧比較部8では電圧Vdc1を参照し、電流指令特性5〜7、補間処理部9を介してd軸電流指令idnを求める。すなわち、電圧値の変更に際し検出電圧からトルク電流に比例した調整値を減算することにより、前記d軸電流指令idを算出の際に使用する電圧値を算出して電流特性を調整することを特徴とする。
The voltage detection value adjustment unit 12 in FIG. 10 uses a proportional coefficient Kv for torque based on the main circuit voltage Vdc and the q-axis current command value iq * ,
Vdc1 = Vdc−Kv × iq *・ ・ ・ (Formula 1)
Thus, the voltage detection value Vdc1 obtained by reducing the voltage detection value Vdc is calculated. The main circuit voltage comparison unit 8 refers to the voltage Vdc1 and obtains the d-axis current command idn * via the current command characteristics 5 to 7 and the interpolation processing unit 9. That is, by subtracting the adjustment value proportional to the torque current from the detected voltage when changing the voltage value, the voltage value used in calculating the d-axis current command id * is calculated to adjust the current characteristics. Features.

これ以降は、実施例1と同様にトルクに対するd軸電流idtを求めておき、d軸電流指令idnとd軸電流idtを合成処理部11において加算処理することにより、制御演算に使用するd軸電流指令idを算出する。図11に実施例3の場合の合成後のd軸電流特性の一例を示す。 Thereafter, the d-axis current idt * with respect to the torque is obtained in the same manner as in the first embodiment, and the d-axis current command idn * and the d-axis current idt * are added in the synthesis processing unit 11 and used for the control calculation. D-axis current command id * to be calculated. FIG. 11 shows an example of the d-axis current characteristic after synthesis in the case of the third embodiment.

以上説明したように本発明は、無負荷トルクにおける、速度、電圧に対する基準特性を設定し、最大トルク制御と組合わせることによりトルク成分を決定することにより、d軸電流指令値の設定と演算を簡素化する。最大トルク制御成分と弱め界磁制御成分の加算による合成、および各成分の最大値を使用することを選択可能とし、d軸電流指令値を求める。また、電流指令特性を参照する際の電圧値を出力トルクにより可変とすることで、d軸電流指令の弱め界磁成分idwに最大トルク成分idtを加算した場合よりも、高速低トルク時のd軸電流を低減することを可能とする。   As described above, the present invention sets the reference characteristics for the speed and voltage in the no-load torque, and determines the torque component by combining with the maximum torque control, thereby setting and calculating the d-axis current command value. Simplify. The combination of the maximum torque control component and the field weakening control component and the use of the maximum value of each component can be selected, and the d-axis current command value is obtained. Also, by making the voltage value when referring to the current command characteristic variable according to the output torque, the d value at high speed and low torque is higher than when the maximum torque component idt is added to the field weakening component idw of the d-axis current command. It is possible to reduce the shaft current.

本発明実施例の電流指令変換器の構成図。The block diagram of the current command converter of an Example of this invention. 同じく同期電動機制御装置の構成図。The block diagram of a synchronous motor control apparatus similarly. 同じくd軸電流特性の合成処理部の説明図。Explanatory drawing of the synthetic | combination process part of d-axis current characteristic similarly. 同じくd軸電流特性の合成処理部の説明図。Explanatory drawing of the synthetic | combination process part of d-axis current characteristic similarly. 本発明実施例1の電流指令変換器のブロック図。The block diagram of the current command converter of Example 1 of the present invention. 同じく無負荷時における、速度、電圧に対するd軸電流指令特性の説明図。Explanatory drawing of d-axis current command characteristics with respect to speed and voltage when no load is applied. 同じくトルク電流に対するd軸電流指令特性の説明図。Explanatory drawing of the d-axis current command characteristic with respect to torque current. 同じく特性を合成したd軸電流指令特性の説明図。Explanatory drawing of the d-axis current command characteristic which similarly synthesize | combined the characteristic. 本発明実施例2の特性を合成したd軸電流指令特性の説明図。Explanatory drawing of the d-axis current command characteristic which synthesize | combined the characteristic of this invention Example 2. FIG. 本発明実施例3の参照電圧調整部を追加した電流指令変換器のブロック図。The block diagram of the electric current command converter which added the reference voltage adjustment part of this invention Example 3. FIG. 同じくd軸電流指令特性の説明図。Explanatory drawing of d-axis current command characteristic similarly.

符号の説明Explanation of symbols

1…弱め界磁制御によるd軸電流演算部、2…トルク成分に対するd軸電流演算部、3…電流指令合成処理部、3a…電流指令合成処理部(加算処理の場合)、3b…電流指令合成処理部(最大値成分選択の場合)、4…弱め界磁制御の電流演算部、5…電圧Vdc1における速度に対するd軸電流指令特性、6…電圧Vdc2における速度に対するd軸電流指令特性、7…電圧Vdc3における速度に対するd軸電流指令特性、8…主回路電圧比較部、9…電流指令値補間処理部、10…トルクに対するd軸電流指令特性、11…電流指令合成処理部、12…参照電圧調整部、100…電流指令変換器、101…永久磁石同期電動機、102…位置検出器、103…速度演算器、104…速度制御演算器、105…電流検出器、106…U-V-W/d-q変換器、107…d軸電流制御演算器、108…q軸電流制御演算器、109…d-q/U-V-W変換器、110…PWM変換器、111…三相交流電圧、112…整流回路、113…インバータ部、map、map1〜3…記憶部。   DESCRIPTION OF SYMBOLS 1 ... d-axis current calculation part by field weakening control, 2 ... d-axis current calculation part with respect to a torque component, 3 ... Current command synthetic | combination process part, 3a ... Current command synthetic | combination process part (in the case of addition process), 3b ... Current command synthetic | combination process 4 (current value calculation unit for field weakening control) 5 ... d-axis current command characteristic for speed at voltage Vdc1, 6 ... d-axis current command characteristic for speed at voltage Vdc2, 7 ... at voltage Vdc3 D-axis current command characteristic for speed, 8 ... main circuit voltage comparison unit, 9 ... current command value interpolation processing unit, 10 ... d-axis current command characteristic for torque, 11 ... current command synthesis processing unit, 12 ... reference voltage adjustment unit, DESCRIPTION OF SYMBOLS 100 ... Current command converter, 101 ... Permanent magnet synchronous motor, 102 ... Position detector, 103 ... Speed calculator, 104 ... Speed control calculator, 105 ... Current detector, 106 ... UVW / dq converter, 10 ... d-axis current control calculator 108 ... q-axis current control calculator 109 ... dq / UVW converter 110 ... PWM converter 111 ... three-phase AC voltage 112 ... rectifier circuit 113 ... inverter unit map map 1-3... storage unit.

Claims (5)

インバータにより駆動される同期電動機の電流を検出し、この電流をd−q軸の2軸のd軸電流、q軸電流の直交成分に分けて制御する電流制御装置を備え、弱め界磁制御による高回転化を図るための、速度及び電圧に対するd軸電流指令値1と、最大トルクを発生させるためのd軸電流指令値2を合成して、最終的なd軸電流制御部のd軸電流指令値とする同期電動機制御装置において、
複数の電圧に対する無負荷時の電流指令特性のテーブル1を備えて、前記インバータの入力直流電圧の検出値である検出直流電圧(Vdc)に基づいて、前記テーブル1から2つのテーブルを選択し、複数のテーブル(map1〜3)を規定する各直流電圧(Vdc1〜3)であって、前記選択された2つのテーブルを規定する各直流電圧の間の電圧と、前記検出直流電圧との電圧比により補間演算して、検出速度、検出直流電圧に対する無負荷時の前記d軸電流指令値1を算出し、
q軸電流指令値から得る電流指令特性のテーブル2を備えて、q軸電流指令値に応じて前記テーブル2から選択された電流指令特性により前記d軸電流指令値2を算出し、
前記d軸電流指令値1とd軸電流指令値2を合成して最終的なd軸電流指令値を出力する電流指令合成処理部を備えたことを特徴とする同期電動機制御装置。
It has a current control device that detects the current of the synchronous motor driven by the inverter and controls this current by dividing the current into two d-axis currents of the dq axis and the orthogonal component of the q-axis current. The d-axis current command value 1 for speed and voltage and the d-axis current command value 2 for generating the maximum torque are combined to achieve the final d-axis current command value of the d-axis current control unit. In the synchronous motor control device
A table 1 of no-load current command characteristics for a plurality of voltages is selected, and two tables are selected from the table 1 based on a detected DC voltage (Vdc) that is a detected value of an input DC voltage of the inverter , Each DC voltage (Vdc1 to 3) that defines a plurality of tables (map1 to 3), and a voltage ratio between a voltage between each DC voltage that defines the two selected tables and the detected DC voltage To calculate the d-axis current command value 1 when there is no load with respect to the detection speed and the detection DC voltage,
a current command characteristic table 2 obtained from the q-axis current command value, and the d-axis current command value 2 is calculated from the current command characteristic selected from the table 2 according to the q-axis current command value;
A synchronous motor control device comprising a current command synthesis processing unit that synthesizes the d-axis current command value 1 and the d-axis current command value 2 and outputs a final d-axis current command value.
請求項1記載の同期電動機制御装置において、
前記電流指令合成処理部は、前記d軸電流指令値1と2の大きさを比較して、その最大値を最終的なd軸電流指令値として出力することを特徴とする同期電動機制御装置。
In the synchronous motor control device according to claim 1,
The synchronous motor control device, wherein the current command synthesis processing unit compares the magnitudes of the d-axis current command values 1 and 2 and outputs the maximum value as a final d-axis current command value.
請求項1記載の同期電動機制御装置において、
前記電流指令合成処理部は、前記両d軸電流指令値1と2の大きさを加算して、最終的なd軸電流指令値として出力することを特徴とする同期電動機制御装置。
In the synchronous motor control device according to claim 1,
The synchronous motor control device, wherein the current command synthesis processing unit adds the magnitudes of the two d-axis current command values 1 and 2 and outputs the result as a final d-axis current command value.
請求項1〜3のいずれか一項に記載の同期電動機制御装置において、
前記q軸電流指令値の大きさに応じて前記検出直流電圧を変更し、速度、電圧に対する電流特性を調整する参照電圧調整部を設けたことを特徴とする同期電動機制御装置。
In the synchronous motor control device according to any one of claims 1 to 3,
The detected DC voltage and change the speed, voltage synchronous motor control device is characterized by providing a reference voltage adjusting unit for adjusting the current characteristics for according to the magnitude of the q-axis current command value.
請求項4に記載の同期電動機制御装置において、
前記参照電圧調整部は、前記変更を、前記検出直流電圧からq軸電流指令値に比例した調整値を減算することにより行うことを特徴とする同期電動機制御装置。
In the synchronous motor control device according to claim 4,
The synchronous motor control device, wherein the reference voltage adjustment unit performs the change by subtracting an adjustment value proportional to a q-axis current command value from the detected DC voltage.
JP2008320712A 2008-12-17 2008-12-17 Synchronous motor controller Active JP5576039B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008320712A JP5576039B2 (en) 2008-12-17 2008-12-17 Synchronous motor controller
DE102009058579A DE102009058579A1 (en) 2008-12-17 2009-12-17 Controller for synchronous motor, has current-preset value-connection unit for combining two d-axis-current-preset values associated to characteristic values and outputting definite d-axis-current-preset value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320712A JP5576039B2 (en) 2008-12-17 2008-12-17 Synchronous motor controller

Publications (2)

Publication Number Publication Date
JP2010148198A JP2010148198A (en) 2010-07-01
JP5576039B2 true JP5576039B2 (en) 2014-08-20

Family

ID=42194370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320712A Active JP5576039B2 (en) 2008-12-17 2008-12-17 Synchronous motor controller

Country Status (2)

Country Link
JP (1) JP5576039B2 (en)
DE (1) DE102009058579A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736467B1 (en) * 2012-04-04 2017-05-16 한화테크윈 주식회사 Apparatus for controlling alternative-current motor wherein command current-value is limited by actual drive current-value
JP5920067B2 (en) * 2012-07-06 2016-05-18 株式会社島津製作所 Motor control device
JP6216215B2 (en) * 2013-10-30 2017-10-18 アイダエンジニアリング株式会社 Control device for synchronous motor
JP2015119565A (en) * 2013-12-18 2015-06-25 株式会社東芝 Inverter device and inverter control method
CN103840732B (en) * 2014-03-31 2016-03-02 长城汽车股份有限公司 Drive motors field weakening control method
KR101652061B1 (en) * 2015-06-12 2016-08-30 주식회사 에이디티 Motor control apparatus for compressor and its method
CN111756302B (en) * 2019-03-29 2022-06-17 安川电机(中国)有限公司 Method, device and equipment for controlling output voltage of frequency converter and vacuum system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396440B2 (en) 1999-02-08 2003-04-14 株式会社日立製作所 Control device for synchronous motor
JP2005117818A (en) * 2003-10-09 2005-04-28 Yaskawa Electric Corp Control unit of permanent-magnet synchronous motor
JP4116595B2 (en) 2004-06-30 2008-07-09 ファナック株式会社 Motor control device
JP4380437B2 (en) * 2004-07-01 2009-12-09 株式会社日立製作所 Control device and module for permanent magnet synchronous motor
JP2006025583A (en) * 2004-07-07 2006-01-26 C & S Kokusai Kenkyusho:Kk Vector control method and apparatus for synchronous motor
JP4810410B2 (en) * 2006-11-30 2011-11-09 株式会社日立産機システム Synchronous motor controller

Also Published As

Publication number Publication date
JP2010148198A (en) 2010-07-01
DE102009058579A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP4455075B2 (en) Motor control device
JP5576039B2 (en) Synchronous motor controller
WO2008047438A1 (en) Vector controller of permanent magnet synchronous motor
EP2372894B1 (en) Direct-current to three-phase alternating-current inverter system
WO2016121237A1 (en) Inverter control device and motor drive system
JP7270391B2 (en) Power converter control device and motor drive system
KR101514391B1 (en) Vector controller and motor controller using the same, air-conditioner
US20110241587A1 (en) Direct-current to three-phase alternating-current inverter system
JP2010246260A (en) Motor control device and method
JP2009189146A (en) Control unit for electric motor
JP2019170095A (en) Motor controller
CN111758215A (en) Motor control method and motor control device
JP2013141345A (en) Motor control device and air conditioner
JP2010130844A (en) Driving device for compressor motor and method of controlling inverter
KR101878090B1 (en) Method and system for controlling motor
JP6682313B2 (en) Motor control device
JP2017205017A (en) Motor control device of air conditioner, and air conditioner
JP2013172550A (en) Motor controller and three-phase voltage command generating method of motor
JP2013038947A (en) Control unit for rotary machine
JP5325556B2 (en) Motor control device
JP6680104B2 (en) Motor control device and control method
JP6601343B2 (en) Control device
JP6582393B2 (en) Control device for motor drive device
JP2019170089A (en) Motor controller
JP7205660B2 (en) MOTOR CONTROL METHOD AND MOTOR CONTROL DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140703

R150 Certificate of patent or registration of utility model

Ref document number: 5576039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150