JP4811727B2 - Permanent magnet field synchronous motor controller - Google Patents

Permanent magnet field synchronous motor controller Download PDF

Info

Publication number
JP4811727B2
JP4811727B2 JP2006297629A JP2006297629A JP4811727B2 JP 4811727 B2 JP4811727 B2 JP 4811727B2 JP 2006297629 A JP2006297629 A JP 2006297629A JP 2006297629 A JP2006297629 A JP 2006297629A JP 4811727 B2 JP4811727 B2 JP 4811727B2
Authority
JP
Japan
Prior art keywords
estimated
axis
command
angular velocity
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006297629A
Other languages
Japanese (ja)
Other versions
JP2008118740A (en
Inventor
耕三 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2006297629A priority Critical patent/JP4811727B2/en
Publication of JP2008118740A publication Critical patent/JP2008118740A/en
Application granted granted Critical
Publication of JP4811727B2 publication Critical patent/JP4811727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、位置検出器、速度検出器を持たない永久磁石界磁同期電動機のセンサレス制御装置に関する。   The present invention relates to a sensorless control device for a permanent magnet field synchronous motor having no position detector and speed detector.

特許文献1に開示された従来の同期電動機のセンサレス制御装置を図9に示す。図9において、901は速度制御部、902、903はγ―δ軸電流制御部、904はベクトル制御部、905はインバータ部、906は同期電動機、907は相変換器、908はγ−δ軸電流・誘起電圧推定部、909は角速度導出部、901はずれ角導出部、911はγ―δ軸位置補正部、912はγ―δ軸電流補正部、913はδ軸電流補正部である。γ−δ軸電流・誘起電圧推定部908は、γ―δ軸電流Iγ、Iδとγ−δ軸電圧指令Vγ、Vδに基づいてγ―δ軸推定電流とγ―δ軸推定誘起電圧を生成する。角速度導出部909はγ−δ軸推定誘起電圧から推定角速度を生成する。ずれ角導出部910はγ軸推定誘起電圧と推定角速度からd−q軸とγ―δ軸のずれ角を導出する。γ―δ軸位置補正部911は、ずれ角でγ−δ軸位置を補正しで新たにγ―δ軸位置を生成する。この従来例の角速度の導出方法は、εγestとεδestの二乗和平方根を磁束で除算すして推定角速度を導出するというものである。γ―δ軸位置の推定は、εγestに任意のゲインを乗算したものを先に推定した角速度に加算し、角度誤差分を補正し、推定角速度を積分する。さらに異なる方法として非特許文献1に開示された従来例を図7に示す。、誘起電圧εγestとεδestからtan−1を計算して角度誤差を求め、その角度誤差がゼロとなるように比例積分制御し、制御器出力を推定角速度とする。
図6は特許文献1に開示された従来例の動作を示すブロック図である。図において、601は誘起電圧の振幅演算器であり、602はεδestの符号判別器であり、604は誘起電圧定数の逆数に関する係数であり、601で演算された誘起電圧の振幅値に誘起電圧定数の逆数に関する係数を乗算して角速度を推定する。602の符号判別の結果を605の乗算器で乗算して角速度の符号が決定される。また、εγestに603のゲインを乗算したものを先に推定した角速度に606の加算器にて加算し、角度誤差分を補正するようにしている。推定された角速度は7の積分器にて積分して、位置を推定するのである。これに対して、図7は非特許文献1に開示された従来例の動作を示すブロック図である。図では、701の角度誤差推定器にて誘起電圧εγestとεδestからtan−1にて角度誤差を演算し、その結果を702の比例制御器と703の積分制御器による比例積分制御により角速度を推定するようにしている。
このように、従来の永久磁石界磁同期電動機のセンサレス制御装置装置は、εγestとεδestから求まる誘起電圧振幅値、あるいは角度誤差のみに基づいて角速度と位置を推定するのである。
特許第3797508号公報(第6頁、数式5−8) 平成14年電気学会産業応用部門大会No.148「速度起電力を利用したIPMSMの速度・位置センサレス制御法の特性比較」2002年8月21日、p.579−582
FIG. 9 shows a conventional sensorless control device for a synchronous motor disclosed in Patent Document 1. As shown in FIG. In FIG. 9, 901 is a speed control unit, 902 and 903 are γ-δ axis current control units, 904 is a vector control unit, 905 is an inverter unit, 906 is a synchronous motor, 907 is a phase converter, and 908 is a γ-δ axis. A current / induced voltage estimation unit 909 is an angular velocity deriving unit, 901 is a deviation angle deriving unit, 911 is a γ-δ axis position correcting unit, 912 is a γ-δ axis current correcting unit, and 913 is a δ axis current correcting unit. The γ-δ axis current / induced voltage estimation unit 908 estimates the γ-δ axis current and γ-δ axis based on the γ-δ axis currents I γ , I δ and the γ-δ axis voltage commands V γ , V δ. Generate an induced voltage. The angular velocity deriving unit 909 generates an estimated angular velocity from the γ-δ axis estimated induced voltage. The deviation angle deriving unit 910 derives the deviation angle between the dq axis and the γ-δ axis from the γ-axis estimated induced voltage and the estimated angular velocity. The γ-δ axis position correction unit 911 corrects the γ-δ axis position with the deviation angle and newly generates a γ-δ axis position. The conventional method for deriving the angular velocity is to derive the estimated angular velocity by dividing the square sum square root of ε γest and ε δest by the magnetic flux. In estimating the γ-δ axis position, ε γest multiplied by an arbitrary gain is added to the previously estimated angular velocity, the angular error is corrected, and the estimated angular velocity is integrated. FIG. 7 shows a conventional example disclosed in Non-Patent Document 1 as a different method. Then, tan −1 is calculated from the induced voltages ε γest and ε δest to determine the angle error, and proportional-integral control is performed so that the angle error becomes zero, and the controller output is set to the estimated angular velocity.
FIG. 6 is a block diagram showing the operation of the conventional example disclosed in Patent Document 1. In FIG. In the figure, 601 is an induced voltage amplitude calculator, 602 is a sign discriminator of ε δest , 604 is a coefficient related to the reciprocal of the induced voltage constant, and the induced voltage amplitude value calculated in 601 is an induced voltage. The angular velocity is estimated by multiplying by a coefficient related to the reciprocal of the constant. The sign of angular velocity is determined by multiplying the result of the sign discrimination of 602 by the multiplier of 605. Further, the product of ε γest multiplied by the gain of 603 is added to the previously estimated angular velocity by the adder of 606 to correct the angular error. The estimated angular velocity is integrated by an integrator of 7 to estimate the position. On the other hand, FIG. 7 is a block diagram showing the operation of the conventional example disclosed in Non-Patent Document 1. In the figure, the angle error is calculated from the induced voltages ε γest and ε δest with tan −1 by the angle error estimator 701, and the result is the angular velocity by proportional integral control by the proportional controller 702 and the integral controller 703. I try to estimate.
As described above, the sensorless control device of the conventional permanent magnet field synchronous motor estimates the angular velocity and the position based only on the induced voltage amplitude value obtained from ε γest and ε δest or the angle error.
Japanese Patent No. 3797508 (page 6, formula 5-8) 2002 IEEJ Industrial Application Conference No. 148 “Characteristic comparison of speed / position sensorless control method of IPMSM using speed electromotive force”, August 21, 2002, p. 579-582

従来の永久磁石界磁同期電動機のセンサレス制御装置装置では、誘起電圧振幅に基づく推定角速度および推定位置は、誘起電圧定数を推定演算に用いるため、誘起電圧定数が変化して設定値と一致しない場合、推定精度が悪化する問題がある。また、角度誤差に基づく推定角速度および推定位置は、例えば比例積分要素を含む制御器を用いて推定するため、εγestとεδestの推定処理時間に角速度と位置速度の推定処理時間が加わるため推定応答が遅れるという問題があった。また、従来例に紹介した誘起電圧振幅に基づく角速度および位置推定に加え、εγestに任意のゲインを乗算して角度誤差を補正する方法は、誘起電圧振幅値に基づく推定と角度誤差に基づく推定の利点の併用効果を期待したものであるが、εγest自体が誘起電圧定数の変化に影響を受けるため最適な手法となっていない。
本発明はこのような問題点に鑑みてなされたものであり、誘起電圧定数の変化による推定精度の悪化を防ぎ、推定角速度および推定位置の応答遅れを最小とした永久磁石界磁同期電動機制御装置を提供することを目的とする。
In the sensorless control device of a conventional permanent magnet field synchronous motor, the estimated angular velocity and estimated position based on the induced voltage amplitude use the induced voltage constant for the estimation calculation, and therefore the induced voltage constant changes and does not match the set value. There is a problem that the estimation accuracy deteriorates. In addition, since the estimated angular velocity and estimated position based on the angle error are estimated using a controller including a proportional integral element, for example, the estimation processing time of ε γest and ε δest is added to the estimation processing time of the angular velocity and the position velocity. There was a problem that the response was delayed. In addition to the angular velocity and position estimation based on the induced voltage amplitude introduced in the conventional example, the method for correcting the angle error by multiplying ε γest by an arbitrary gain includes the estimation based on the induced voltage amplitude value and the estimation based on the angle error. However, since ε γest itself is affected by changes in the induced voltage constant, it is not an optimal technique.
The present invention has been made in view of such a problem, and prevents a deterioration in estimation accuracy due to a change in an induced voltage constant, and a permanent magnet field synchronous motor control device that minimizes a response delay of an estimated angular velocity and an estimated position. The purpose is to provide.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、δ軸電流指令とδ軸推定電流に基づいてδ軸電圧指令を生成するδ軸電流制御部と、γ軸電流指令とγ軸推定電流に基づいてγ軸電圧指令を生成するγ軸電流制御部と、前記δ軸電圧指令と前記γ軸電圧指令より電圧振幅指令と電圧位相指令を生成するベクトル制御部と、前記電圧振幅指令と前記電圧位相指令より永久磁石界磁同期電動機に3相電流を供給するインバータ部と、前記3相電流をγ−δ軸電流に変換する座標変換部と、前記γ−δ軸電流と前記γ軸電圧指令とδ軸電圧指令とγ―δ軸推定位置よりγ―δ推定電流とγ―δ推定誘起電圧を推定するγ−δ軸電流・誘起電圧推定部と、を備える永久磁石界磁同期電動機制御装置において、前記δ軸推定誘起電圧を同期電動機の誘起電圧定数で除算した第1推定角速度と、前記γ軸推定誘起電圧と前記δ軸推定誘起電圧の乗算値を前記γ軸推定誘起電圧と前記δ軸推定誘起電圧の二乗和平方根で除算した位相誤差をゼロ制御して得られる第2推定角速度と、を用いて推定角速度を算出する角速度導出部と、前記推定角速度を積分して前記γ―δ軸推定位置を生成する位置推定部と、を備えることを特徴とするものである。
請求項2に記載の発明は、請求項1記載の永久磁石界磁同期電動機制御装置において、前記位置推定部は、前記推定角速度を積分して第1推定位置を生成する積分部と、前記位相誤差から第2推定位置を生成する角度誤差調整部と、第1推定位置と第2推定位置を加算して推定位置を生成する加算部と、を備えることを特徴とするものである。
請求項3に記載の発明は、請求項2記載の永久磁石界磁同期電動機制御装置において、前記位置推定部は、前記第2推定位置を所定のカットオフ周波数のローパスフィルタを通して新たな第2推定位置を生成することを特徴とするものである。
請求項4に記載の発明は、請求項3記載の永久磁石界磁同期電動機制御装置において、前記位置推定部は、第2推定位置を積分して新たな第2推定位置を生成することを特徴とするものである。
請求項5に記載の発明は、請求項1記載の永久磁石界磁同期電動機制御装置において、速度指令と前記推定角速度から前記δ軸電流指令を生成する速度制御部を備えることを特徴とするものである。
請求項6に記載の発明は、請求項1記載の永久磁石界磁同期電動機制御装置において、位置指令と前記推定位置から速度指令を生成し、前記速度指令と前記推定角速度から前記δ軸電流指令を生成する速度制御部と、を備えることを特徴とするものである。
In order to solve the above problem, the present invention is configured as follows.
The invention described in claim 1 includes a δ-axis current controller that generates a δ-axis voltage command based on the δ-axis current command and the δ-axis estimated current, and a γ-axis voltage based on the γ-axis current command and the γ-axis estimated current. A γ-axis current control unit that generates a command, a vector control unit that generates a voltage amplitude command and a voltage phase command from the δ-axis voltage command and the γ-axis voltage command, and a permanent magnet from the voltage amplitude command and the voltage phase command An inverter for supplying a three-phase current to the field synchronous motor; a coordinate converter for converting the three-phase current into a γ-δ-axis current; the γ-δ-axis current, the γ-axis voltage command, and a δ-axis voltage command. And a γ-δ axis current / induced voltage estimator for estimating a γ-δ estimated current and a γ-δ estimated induced voltage from the estimated position of the γ-δ axis. A first estimated angular velocity obtained by dividing the estimated induced voltage by the induced voltage constant of the synchronous motor; A second estimated angular velocity obtained by zero-controlling a phase error obtained by dividing the product of the γ-axis estimated induced voltage and the δ-axis estimated induced voltage by the square sum square root of the γ-axis estimated induced voltage and the δ-axis estimated induced voltage And an angular velocity deriving unit that calculates an estimated angular velocity and a position estimating unit that integrates the estimated angular velocity to generate the estimated γ-δ axis.
According to a second aspect of the present invention, in the permanent magnet field synchronous motor control device according to the first aspect, the position estimating unit integrates the estimated angular velocity to generate a first estimated position, and the phase An angle error adjusting unit that generates a second estimated position from the error, and an adding unit that generates the estimated position by adding the first estimated position and the second estimated position are provided.
According to a third aspect of the present invention, in the permanent magnet field synchronous motor control device according to the second aspect of the present invention, the position estimation unit performs a new second estimation on the second estimated position through a low-pass filter having a predetermined cutoff frequency. A position is generated.
According to a fourth aspect of the present invention, in the permanent magnet field synchronous motor control device according to the third aspect of the invention, the position estimating unit integrates the second estimated position to generate a new second estimated position. It is what.
A fifth aspect of the present invention is the permanent magnet field synchronous motor control device according to the first aspect, further comprising a speed control unit that generates the δ-axis current command from the speed command and the estimated angular velocity. It is.
According to a sixth aspect of the present invention, in the permanent magnet field synchronous motor control device according to the first aspect, a speed command is generated from the position command and the estimated position, and the δ-axis current command is calculated from the speed command and the estimated angular velocity. And a speed control unit that generates

請求項1に記載の発明によると、誘起電圧定数の変化による推定精度の悪化を防止することができ、角速度の推定応答を速くした永久磁石界磁同期電動機制御装置を提供できる。
請求項2に記載の発明によると、誘起電圧定数の変化による推定精度の悪化を防止することができ、角速度および位置の推定応答を速くした永久磁石界磁同期電動機制御装置を提供できる。
請求項3に記載の発明によると、誘起電圧定数の変化による推定精度の悪化を防止することができ、角速度の推定応答を速くすることができ、位置の推定応答を調整しながら速くした永久磁石界磁同期電動機制御装置を提供できる。
請求項4に記載の発明によると、誘起電圧定数の変化による推定精度の悪化を防止することができ、角速度の推定応答を速くすることができ、さらに位置の推定応答も角度誤差調整にともなうリプル成分を除去しながら、速くした永久磁石界磁同期電動機制御装置を提供できる。
請求項5に記載の発明によると、誘起電圧定数の変化による推定精度の悪化を防止することができ、角速度の推定応答を速くすることができる速度制御型の永久磁石界磁同期電動機制御装置を提供できる。
請求項6に記載の発明によると、誘起電圧定数の変化による推定精度の悪化を防止することができ、角速度の推定応答を速くすることができる位置制御型の永久磁石界磁同期電動機制御装置を提供できる。
According to the first aspect of the present invention, it is possible to provide a permanent magnet field synchronous motor control device that can prevent the estimation accuracy from deteriorating due to a change in the induced voltage constant and increase the angular velocity estimation response.
According to the second aspect of the present invention, it is possible to provide a permanent magnet field synchronous motor control device that can prevent the estimation accuracy from deteriorating due to a change in the induced voltage constant and that has a fast angular velocity and position estimation response.
According to the third aspect of the present invention, it is possible to prevent the estimation accuracy from deteriorating due to a change in the induced voltage constant, to increase the angular velocity estimation response, and to increase the position estimation response while adjusting the position of the permanent magnet. A field synchronous motor control apparatus can be provided.
According to the fourth aspect of the present invention, it is possible to prevent the estimation accuracy from deteriorating due to a change in the induced voltage constant, to increase the angular velocity estimation response, and to further improve the position estimation response with the angular error adjustment. It is possible to provide a permanent magnet field synchronous motor control device that is accelerated while removing components.
According to the fifth aspect of the present invention, there is provided a speed control type permanent magnet field synchronous motor control device capable of preventing deterioration in estimation accuracy due to a change in induced voltage constant and speeding up an angular velocity estimation response. Can be provided.
According to the sixth aspect of the present invention, there is provided a position control type permanent magnet field synchronous motor control device capable of preventing deterioration in estimation accuracy due to a change in induced voltage constant and speeding up an angular velocity estimation response. Can be provided.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図8は本発明の永久磁石界磁同期電動機制御装置の構成を示すブロック図である。図8は速度制御型の例で、801は速度制御部、802はδ軸電流制御部、803はγ軸電流制御部、804はベクトル制御部、805はインバータ、806は永久磁石界磁同期電動機、807は座標変換器、808はγ−δ軸電流・誘起電圧推定部、809は角速度導出部、810は位置推定部である。速度制御部801は速度指令と推定角速度からδ軸電流指令を生成する。δ軸電流制御部802はδ軸電流指令とδ軸推定電流からδ軸電圧指令を生成し、γ軸電流制御部803はγ軸電流指令とγ軸推定電流からγ軸電圧指令を生成する。ベクトル制御部804はγ軸電圧指令とδ軸電圧指令と推定位置から電圧振幅指令と電圧位相指令を生成する。インバータ805は電圧振幅指令と電圧位相指令と推定位置から3相電圧指令を生成し、さらにPWM信号に変換し、電力変換を行って永久磁石界磁同期電動機を駆動する。相変換器807は3相電流と推定位置からγ軸電流とδ軸推流を生成する。γ−δ軸電流・誘起電圧推定部908は、γ―δ軸電流Iγ、Iδとγ−δ軸電圧指令Vγ、Vδに基づいてγ―δ軸推定電流とγ―δ軸推定誘起電圧を生成する。角速度導出部909はγ−δ軸推定誘起電圧から推定角速度を生成する。位置指令と推定位置から速度指令を生成する位置制御部を追加すれば位置制御型になる。
図1は、本発明の永久磁石界磁同期電動機の制御装置の角速度と位置を推定する制御ブロック図である。図において、εδestを4の誘起電圧定数の逆数と乗算し、その結果を第1推定角速度としている。また、角度誤差推定器1は、εγestとεδestの乗算値をεγestの2乗値にεδestの2乗値を加算した値の平方根で除算し、その結果を比例制御器2と積分制御器3による比例積分制御により第2推定角速度を生成する。第1推定角速度と第2推定角速度を加算器6で加算し、推定角速度とする。推定位置は推定角速度を積分して生成する。
本発明が従来技術と異なる部分は、εδestを誘起電圧定数の逆数と乗算して第1推定角速度を生成し、tan−1演算を用いずにεγestとεδestから演算した角度誤差をゼロに制御して第2推定角速度を生成し、第1推定角速度と第2推定角速度を加算して角速度を生成することである。つぎに本発明の導出過程を説明する。導出において、式(1)の永久磁石界磁電動機のモデル式を用いた。
FIG. 8 is a block diagram showing the configuration of the permanent magnet field synchronous motor control device of the present invention. FIG. 8 shows an example of a speed control type. 801 is a speed control unit, 802 is a δ-axis current control unit, 803 is a γ-axis current control unit, 804 is a vector control unit, 805 is an inverter, and 806 is a permanent magnet field synchronous motor. 807 is a coordinate converter, 808 is a γ-δ axis current / induced voltage estimating unit, 809 is an angular velocity deriving unit, and 810 is a position estimating unit. The speed control unit 801 generates a δ-axis current command from the speed command and the estimated angular velocity. The δ-axis current control unit 802 generates a δ-axis voltage command from the δ-axis current command and the δ-axis estimated current, and the γ-axis current control unit 803 generates a γ-axis voltage command from the γ-axis current command and the γ-axis estimated current. The vector control unit 804 generates a voltage amplitude command and a voltage phase command from the γ-axis voltage command, the δ-axis voltage command, and the estimated position. The inverter 805 generates a three-phase voltage command from the voltage amplitude command, the voltage phase command, and the estimated position, further converts it into a PWM signal, performs power conversion, and drives the permanent magnet field synchronous motor. The phase converter 807 generates a γ-axis current and a δ-axis thrust from the three-phase current and the estimated position. The γ-δ axis current / induced voltage estimation unit 908 estimates the γ-δ axis current and γ-δ axis based on the γ-δ axis currents I γ , I δ and the γ-δ axis voltage commands V γ , V δ. Generate an induced voltage. The angular velocity deriving unit 909 generates an estimated angular velocity from the γ-δ axis estimated induced voltage. If a position control unit that generates a speed command from the position command and the estimated position is added, a position control type is obtained.
FIG. 1 is a control block diagram for estimating an angular velocity and a position of a controller for a permanent magnet field synchronous motor according to the present invention. In the figure, ε δest is multiplied by the reciprocal of the induced voltage constant of 4, and the result is taken as the first estimated angular velocity. The angle error estimator 1, epsilon multiplication value of Ganmaest and epsilon Derutaest divided by the square root of the value obtained by adding the squared values of epsilon Derutaest the square value of epsilon Ganmaest, the result with proportional controller 2 integration A second estimated angular velocity is generated by proportional-integral control by the controller 3. The first estimated angular velocity and the second estimated angular velocity are added by the adder 6 to obtain an estimated angular velocity. The estimated position is generated by integrating the estimated angular velocity.
The present invention is different from the prior art in that the first estimated angular velocity is generated by multiplying ε δest by the reciprocal of the induced voltage constant, and the angle error calculated from ε γest and ε δest without using the tan −1 operation is zero. To generate a second estimated angular velocity and add the first estimated angular velocity and the second estimated angular velocity to generate an angular velocity. Next, the derivation process of the present invention will be described. In the derivation, the model formula of the permanent magnet field motor of formula (1) was used.

ここで、Rsは1次抵抗、Ldはd軸インダクタンス、Lqはq軸インダクタンス、ωは回転子角速度、φmagは誘起電圧定数、θerrはγ−δ座標軸と実際の磁極軸(d−q座標軸)との角度誤差である。図5に座標軸の定義を示す。
右辺第3項は誘起電圧に関する項であり、誘起電圧を式(2)のように定義する。
Here, Rs is a primary resistance, Ld is a d-axis inductance, Lq is a q-axis inductance, ω is a rotor angular velocity, φ mag is an induced voltage constant, θ err is a γ-δ coordinate axis and an actual magnetic pole axis (d-q Angle error with respect to the coordinate axis. FIG. 5 shows the definition of coordinate axes.
The third term on the right-hand side is a term related to the induced voltage, and the induced voltage is defined as in Expression (2).


式(1)、式(2)より電流と誘起電圧を推定する電流・誘起電圧推定器は、式(3)のように構成することができる。

The current / induced voltage estimator for estimating the current and the induced voltage from the expressions (1) and (2) can be configured as the expression (3).


ここで、Kは推定器のフィードバックゲイン行列であり、添字の「est」は推定値を示している。電流・誘起電圧推定器は実装するにあたり、離散値系に展開し、式(4)の形で実装する。

Here, K is a feedback gain matrix of the estimator, and the subscript “est” indicates an estimated value. When mounting the current / induced voltage estimator, the current / induced voltage estimator is expanded to a discrete value system and mounted in the form of equation (4).


式(4)で時間(k+1)Ts秒時の電流推定値Iγest(k+1)、Iδest(k+1)、誘起電圧推定値εγest(k+1)とεδest(k+1)を求め、その結果を用いて角速度と位置を推定している。図1は説明を容易にするために連続系で表しているが実装時には離散値系へ展開している。図1において、誘起電圧振幅値に基づく、第1の角速度推定値ω(k+1)は、式(5)で推定する。

The current estimated values I γest (k + 1), I δest (k + 1), the induced voltage estimated values ε γest (k + 1) and ε δest (k + 1) at time (k + 1) Ts seconds are obtained by Expression (4), and the results are used. To estimate the angular velocity and position. Although FIG. 1 shows a continuous system for ease of explanation, it is expanded to a discrete value system at the time of mounting. In FIG. 1, the first angular velocity estimated value ω 1 (k + 1) based on the induced voltage amplitude value is estimated by Expression (5).


電流・誘起電圧推定器は1サンプル先である(k+1)Ts秒時の値を推定するため、ここでの遅れ時間はない。しかしながら、誘起電圧定数φmagが設定値より変化した場合、推定精度は悪化することになる。そこで、推定精度が悪化した場合の補正手段として、角度誤差に基づく第2の角速度推定値ω(k+1)が必要となる。まず角度誤差θerr(k+1)を式(6)で推定する。

Since the current / induced voltage estimator estimates the value at (k + 1) Ts seconds, which is one sample ahead, there is no delay time here. However, when the induced voltage constant φ mag is changed from the set value, the estimation accuracy is deteriorated. Therefore, the second angular velocity estimated value ω 2 (k + 1) based on the angle error is required as a correction means when the estimation accuracy deteriorates. First, the angle error θ err (k + 1) is estimated by Expression (6).


式(6)の演算では、式(2)のωφmagの値が分母分子でキャンセルされるため、誘起電圧定数の影響がないことがわかる。また、デジタル演算において多くの演算ステップを有するtan−1の計算が不要のため、制御演算量を削減できる。従来例に引用した非特許文献1では演算に使用しているεγestとεδestが純粋な誘起電圧ではなく、拡張誘起電圧あり、その振幅にd軸インダクタンスとq軸インダクタンスの偏差で生じる固定子磁束の変化分を含んでいる。固定子電流が変化する場合、拡張誘起電圧の振幅も変化するため瞬時に振幅変化を除去し、角度誤差を求めることができるtan−1の計算を必要としたのである。
つぎに(6)でえられた角度誤差推定値をゼロにするように比例積分制御を実施し、その制御出力を第2の角速度推定値としている。

The operation of equation (6), the value of Omegafai mag of formula (2) is canceled by the denominator and numerator, it can be seen that there is no influence of the induced voltage constant. In addition, since it is not necessary to calculate tan −1 having many calculation steps in digital calculation, the amount of control calculation can be reduced. In Non-Patent Document 1 cited in the conventional example, ε γest and ε δest used in the calculation are not purely induced voltages, but are expanded induced voltages, and the stator is generated by the deviation between the d-axis inductance and the q-axis inductance in the amplitude. Includes changes in magnetic flux. When the stator current changes, the amplitude of the expansion induced voltage also changes. Therefore, it is necessary to calculate tan −1 that can instantaneously remove the amplitude change and obtain the angle error.
Next, proportional-integral control is performed so that the angular error estimated value obtained in (6) becomes zero, and the control output is set as the second angular velocity estimated value.


ここでは、比例積分制御(PI制御)を実施したが、微分項を加えたPID制御やその他IP制御なども有効である。
式(5)、式(7)で推定された第1推定角速度と第2推定角速度とを加算して推定角速度を求める。

Here, proportional-integral control (PI control) is performed, but PID control with addition of a differential term and other IP control are also effective.
The estimated angular velocity is obtained by adding the first estimated angular velocity and the second estimated angular velocity estimated by the equations (5) and (7).


また、推定角速度を積分して、推定位置を生成する。

Also, the estimated angular velocity is integrated to generate an estimated position.


このように本発明によると、第1推定角速度は応答遅れなく生成され、誘起電圧定数の変化による角度誤差を第2推定角速度により補正することにより、従来の課題を解決できる。

Thus, according to the present invention, the first estimated angular velocity is generated without a response delay, and the conventional problem can be solved by correcting the angular error due to the change of the induced voltage constant with the second estimated angular velocity.

図2は第2実施例の構成を示す図である。第1の実施例に加え1の角度誤差推定器でえられる推定角度誤差に基づいて208の角度誤差調整器においてγ軸とd軸との角度誤差調整値を決め、その結果を用いて209の加算器にて式(9)でえられる位置推定値を調整する。角度誤差調整器を例えばK3を1に設定した場合、すなわち100%に設定した場合、第2推定角速度の角度誤差を補正する機能が低下するが、そのかわり位置推定応答は速くなる。したがって、K3の調整は、負荷が急変した場合などでシステムをすばやく安定化したい場合などに値を1に近づけ、負荷が安定している場合は値を0に近づけるなどの調整を実施する。これにより角速度推定応答と独立して、位置推定応答を調整することができるようになる。   FIG. 2 is a diagram showing the configuration of the second embodiment. Based on the estimated angle error obtained by the angle error estimator 1 in addition to the first embodiment, an angle error adjustment value between the γ-axis and the d-axis is determined in 208 angle error adjusters. The position estimated value obtained by Expression (9) is adjusted by the adder. When K3 is set to 1, for example, when the angle error adjuster is set to 100%, that is, when the angle error adjuster is set to 100%, the function of correcting the angle error of the second estimated angular velocity is reduced, but the position estimation response is faster. Therefore, the adjustment of K3 is performed such that the value is brought close to 1 when the system is to be stabilized quickly when the load suddenly changes, and the value is brought close to 0 when the load is stable. As a result, the position estimation response can be adjusted independently of the angular velocity estimation response.

図3は第3実施例の構成を示す図である。これは第2の実施例をより実用化するために308の角度誤差調整器に310のローパスフィルタを付加したものである。308の角度誤差調整器で補正される角度誤差は遅れがないため、ときには補正値が過大でγ軸がd軸より進んでしまうことがある。γ軸がd軸を追い越した場合、制御は不安定となり電動機が脱調する危険もあるため、調整応答を調整するためにローパスフィルタを付加したのである。   FIG. 3 is a diagram showing the configuration of the third embodiment. This is obtained by adding 310 low-pass filters to 308 angle error adjusters in order to make the second embodiment more practical. Since there is no delay in the angle error corrected by the angle error adjuster 308, sometimes the correction value is excessive and the γ-axis may advance from the d-axis. When the γ-axis passes the d-axis, the control becomes unstable and there is a risk that the motor will step out. Therefore, a low-pass filter is added to adjust the adjustment response.

図4は第4実施例の構成を示す図である。第3実施例に、角度誤差調整にともなうリプル成分を除去するために412の微分器、411の積分器を付加したものである。式(10)のように角度誤差推定器1でえられる推定角度誤差を微分する。   FIG. 4 is a diagram showing the configuration of the fourth embodiment. In the third embodiment, a differentiator 412 and an integrator 411 are added in order to remove the ripple component accompanying the angle error adjustment. The estimated angle error obtained by the angle error estimator 1 is differentiated as shown in equation (10).


微分結果Δθerrは、誤差角度があっても一定の場合ゼロとなる。したがって、γ軸とd軸がある一定の角度誤差で制御が安定している場合は不用意に調整しないようにする。微分結果にもとづき、角度誤差調整器408で調整量を決め、ローパスフィルタ410を通す。ローパスフィルタ410は角度誤差が激しく急変した場合に調整量を制限する役目がある。ローパスフィルタ410の出力を積分することによって角度誤差調整値の次元をもとの角度へもどしている。

The differential result Δθ err is zero when there is a certain error angle. Therefore, when the control is stable with a certain angle error with respect to the γ axis and the d axis, careless adjustment is not performed. Based on the differentiation result, an adjustment amount is determined by the angle error adjuster 408 and passed through the low-pass filter 410. The low-pass filter 410 serves to limit the amount of adjustment when the angular error changes drastically. By integrating the output of the low-pass filter 410, the dimension of the angle error adjustment value is returned to the original angle.

このように実施例1では誘起電圧定数の変化による推定精度の悪化を防止することができ、角速度の推定応答を速くすることができる。また、実施例2では、誘起電圧定数の変化による推定精度の悪化を防止することができ、角速度および位置の推定応答を速くすることができる。また、実施例3では、角速度の推定応答と位置の推定応答を調整しながら速くすることができる。また、実施例4では、角速度の推定応答を速くすることができ、さらに位置の推定応答も角度誤差調整にともなうリプル成分を除去しながら、速くすることができる。   As described above, in the first embodiment, it is possible to prevent the estimation accuracy from deteriorating due to the change in the induced voltage constant, and to increase the angular velocity estimation response. Further, in the second embodiment, it is possible to prevent the estimation accuracy from deteriorating due to the change of the induced voltage constant, and to increase the angular velocity and position estimation response. In the third embodiment, the angular velocity estimation response and the position estimation response can be adjusted to be faster. In the fourth embodiment, the angular velocity estimation response can be increased, and the position estimation response can be increased while removing the ripple component accompanying the angular error adjustment.

本発明の第1実施例を示す制御ブロック図Control block diagram showing a first embodiment of the present invention 本発明の第2実施例を示す制御ブロック図Control block diagram showing a second embodiment of the present invention 本発明の第3実施例を示す制御ブロック図Control block diagram showing a third embodiment of the present invention 本発明の第4実施例を示す制御ブロック図Control block diagram showing a fourth embodiment of the present invention. 座標軸の定義を示す説明図Explanatory drawing showing the definition of coordinate axes 従来の誘起電圧振幅値にもとづく角速度および位置推定の制御ブロック図Control block diagram of angular velocity and position estimation based on conventional induced voltage amplitude value 従来の角度誤差にもとづく角速度および位置推定の制御ブロック図Control block diagram of angular velocity and position estimation based on conventional angular error 本発明の永久磁石界磁同期電動機制御装置の構成を示すブロック図The block diagram which shows the structure of the permanent magnet field synchronous motor control apparatus of this invention 従来の永久磁石界磁同期電動機制御装置の構成を示すブロック図Block diagram showing the configuration of a conventional permanent magnet field synchronous motor control device

符号の説明Explanation of symbols

1 角度誤差推定器
2 比例制御器
3 積分制御器
4 誘起電圧定数の逆数
5、6、309、409 加算器
7、411 積分器
208、308、408 角度誤差調整器
412 微分器
310、410 ローパスフィルタ
801 速度制御部
802 δ軸電流制御部
803 γ軸電流制御部
804 ベクトル制御部
805 インバータ
806 永久磁石界磁同期電動機
807 座標変換器
808 γ−δ軸電流・誘起電圧推定部
809 角速度導出部
810 位置推定部
DESCRIPTION OF SYMBOLS 1 Angle error estimator 2 Proportional controller 3 Integration controller 4 Reciprocal of induced voltage constant 5, 6, 309, 409 Adder 7, 411 Integrator 208, 308, 408 Angle error adjuster
412 Differentiator 310, 410 Low-pass filter 801 Speed controller 802 δ-axis current controller 803 γ-axis current controller 804 Vector controller 805 Inverter 806 Permanent magnet field synchronous motor 807 Coordinate converter 808 γ-δ-axis current / induced voltage Estimating unit 809 Angular velocity deriving unit 810 Position estimating unit

Claims (6)

δ軸電流指令とδ軸推定電流に基づいてδ軸電圧指令を生成するδ軸電流制御部と、γ軸電流指令とγ軸推定電流に基づいてγ軸電圧指令を生成するγ軸電流制御部と、前記δ軸電圧指令と前記γ軸電圧指令より電圧振幅指令と電圧位相指令を生成するベクトル制御部と、前記電圧振幅指令と前記電圧位相指令より永久磁石界磁同期電動機に3相電流を供給するインバータ部と、前記3相電流をγ−δ軸電流に変換する座標変換部と、前記γ−δ軸電流と前記γ軸電圧指令とδ軸電圧指令とγ―δ軸推定位置よりγ―δ推定電流とγ―δ推定誘起電圧を推定するγ−δ軸電流・誘起電圧推定部と、を備える永久磁石界磁同期電動機制御装置において、
前記δ軸推定誘起電圧を同期電動機の誘起電圧定数で除算した第1推定角速度と、前記γ軸推定誘起電圧と前記δ軸推定誘起電圧の乗算値を前記γ軸推定誘起電圧と前記δ軸推定誘起電圧の二乗和平方根で除算した位相誤差をゼロ制御して得られる第2推定角速度と、を用いて推定角速度を算出する角速度導出部と、
前記推定角速度を積分して前記γ―δ軸推定位置を生成する位置推定部と、
を備えることを特徴とする永久磁石界磁同期電動機制御装置。
A δ-axis current control unit that generates a δ-axis voltage command based on the δ-axis current command and the δ-axis estimated current, and a γ-axis current control unit that generates a γ-axis voltage command based on the γ-axis current command and the γ-axis estimated current A vector control unit that generates a voltage amplitude command and a voltage phase command from the δ-axis voltage command and the γ-axis voltage command, and a three-phase current to a permanent magnet field synchronous motor from the voltage amplitude command and the voltage phase command. From the inverter unit to be supplied, the coordinate conversion unit that converts the three-phase current into a γ-δ axis current, the γ-δ axis current, the γ axis voltage command, the δ axis voltage command, and the γ-δ axis estimated position In a permanent magnet field synchronous motor control device comprising a δ estimated current and a γ-δ axis current / induced voltage estimating unit for estimating a γ-δ estimated induced voltage,
A first estimated angular velocity obtained by dividing the δ-axis estimated induced voltage by the induced voltage constant of the synchronous motor, and a multiplication value of the γ-axis estimated induced voltage and the δ-axis estimated induced voltage are used as the γ-axis estimated induced voltage and the δ-axis estimated. An angular velocity deriving unit that calculates an estimated angular velocity using a second estimated angular velocity obtained by performing zero control on the phase error divided by the square root of the square of the induced voltage;
A position estimator that integrates the estimated angular velocity to generate the γ-δ axis estimated position;
A permanent magnet field synchronous motor control device comprising:
前記位置推定部は、前記推定角速度を積分して第1推定位置を生成する積分部と、前記位相誤差から第2推定位置を生成する角度誤差調整部と、第1推定位置と第2推定位置を加算して推定位置を生成する加算部と、を備えることを特徴とする請求項1記載の永久磁石界磁同期電動機制御装置。   The position estimation unit includes an integration unit that integrates the estimated angular velocity to generate a first estimated position, an angle error adjustment unit that generates a second estimated position from the phase error, a first estimated position, and a second estimated position. The permanent magnet field synchronous motor control device according to claim 1, further comprising: an adding unit that adds the two to generate an estimated position. 前記位置推定部は、前記第2推定位置を所定のカットオフ周波数のローパスフィルタを通して新たな第2推定位置を生成することを特徴とする請求項2記載の永久磁石界磁同期電動機制御装置。 3. The permanent magnet field synchronous motor control device according to claim 2, wherein the position estimation unit generates a new second estimated position through the low-pass filter having a predetermined cutoff frequency for the second estimated position. 前記位置推定部は、第2推定位置を積分して新たな第2推定位置を生成することを特徴とする請求項3記載の永久磁石界磁同期電動機制御装置。 The said position estimation part integrates a 2nd estimated position, and produces | generates a new 2nd estimated position, The permanent magnet field synchronous motor control apparatus of Claim 3 characterized by the above-mentioned. 速度指令と前記推定角速度から前記δ軸電流指令を生成する速度制御部を備えることを特徴とする請求項1記載の永久磁石界磁同期電動機制御装置。   The permanent magnet field synchronous motor control device according to claim 1, further comprising a speed control unit that generates the δ-axis current command from a speed command and the estimated angular velocity. 位置指令と前記推定位置から速度指令を生成し、前記速度指令と前記推定角速度から前記δ軸電流指令を生成する速度制御部と、を備えることを特徴とする請求項1記載の永久磁石界磁同期電動機制御装置。   The permanent magnet field according to claim 1, further comprising: a speed control unit that generates a speed command from the position command and the estimated position, and generates the δ-axis current command from the speed command and the estimated angular velocity. Synchronous motor control device.
JP2006297629A 2006-11-01 2006-11-01 Permanent magnet field synchronous motor controller Active JP4811727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006297629A JP4811727B2 (en) 2006-11-01 2006-11-01 Permanent magnet field synchronous motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006297629A JP4811727B2 (en) 2006-11-01 2006-11-01 Permanent magnet field synchronous motor controller

Publications (2)

Publication Number Publication Date
JP2008118740A JP2008118740A (en) 2008-05-22
JP4811727B2 true JP4811727B2 (en) 2011-11-09

Family

ID=39504229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006297629A Active JP4811727B2 (en) 2006-11-01 2006-11-01 Permanent magnet field synchronous motor controller

Country Status (1)

Country Link
JP (1) JP4811727B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943383B2 (en) * 2008-06-19 2012-05-30 本田技研工業株式会社 Brushless motor control device and electric steering device
JP4361598B1 (en) * 2009-03-09 2009-11-11 山洋電気株式会社 Sensorless AC motor control device
JP5641299B2 (en) * 2009-10-28 2014-12-17 株式会社ジェイテクト Motor control device and vehicle steering device
JP7261755B2 (en) * 2020-02-04 2023-04-20 株式会社日立産機システム motor controller

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764002B2 (en) * 1993-12-24 1998-06-11 株式会社ミツトヨ Position control system
JP3797508B2 (en) * 1997-06-24 2006-07-19 株式会社安川電機 Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof
JP3411878B2 (en) * 2000-03-06 2003-06-03 株式会社日立製作所 Method for estimating rotor position of synchronous motor, control method without position sensor, and control device
JP4273775B2 (en) * 2003-01-28 2009-06-03 株式会社安川電機 Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
JP4230276B2 (en) * 2003-05-19 2009-02-25 本田技研工業株式会社 Brushless DC motor control device

Also Published As

Publication number Publication date
JP2008118740A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
US7504797B2 (en) Motor control device
JP6367332B2 (en) Inverter control device and motor drive system
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
KR100659250B1 (en) Control apparatus and module of permanent magnet synchronous motor
CN1741367B (en) Position-sensorless control circuit
JP2003061386A (en) Synchronous motor drive system
JP2009124811A (en) Control device of permanent magnet type synchronous motor
JP2007252052A (en) Vector controller of permanent magnet motor
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JP2010011564A (en) Controller for permanent magnet synchronous motor and motor control system
JP2009124871A (en) V/f control system of synchronous electric motor
JP6248847B2 (en) Control device for permanent magnet type synchronous motor
JP4811727B2 (en) Permanent magnet field synchronous motor controller
JP2001268974A (en) Controller for permanent magnet synchronous motor
JP5278326B2 (en) Inverter control device and control method thereof
JP6626309B2 (en) Control device for compensating iron loss of AC motor
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP2009284684A (en) Vector controller
JP2010081726A (en) Controller of ac motor and control method thereof
JP2008048570A (en) Ac motor controller and its control method
JP4760064B2 (en) Induction motor control method
CN110635737A (en) Motor drive device
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
WO2022029911A1 (en) Motor iron-loss calculation device and motor control device comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R150 Certificate of patent or registration of utility model

Ref document number: 4811727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3