JP4371884B2 - エアロゾルデポジション装置 - Google Patents

エアロゾルデポジション装置 Download PDF

Info

Publication number
JP4371884B2
JP4371884B2 JP2004106104A JP2004106104A JP4371884B2 JP 4371884 B2 JP4371884 B2 JP 4371884B2 JP 2004106104 A JP2004106104 A JP 2004106104A JP 2004106104 A JP2004106104 A JP 2004106104A JP 4371884 B2 JP4371884 B2 JP 4371884B2
Authority
JP
Japan
Prior art keywords
aerosol
chamber
container
fine particles
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004106104A
Other languages
English (en)
Other versions
JP2005290462A (ja
Inventor
佳彦 今中
正寿 竹野内
弘美 小川
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fujitsu Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fujitsu Ltd
Priority to JP2004106104A priority Critical patent/JP4371884B2/ja
Publication of JP2005290462A publication Critical patent/JP2005290462A/ja
Application granted granted Critical
Publication of JP4371884B2 publication Critical patent/JP4371884B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明はエアロゾルデポジション装置に関する。
電子機器やこれを構成する電子部品の小型化、高性能化、多機能化が要求され、その特性を実現していくには、種々の機能をもった材料を同じ空間内に集積化して形成するのが重要になっている。これまで、回路基板や半導体素子、受動電子部品の開発の中で、樹脂材料と金属材料、セラミック材料と金属材料との組み合わせによる構造体を形成することにより、要求に見合ったデバイスの開発が行われている。
また、樹脂材料とセラミック材料との組み合わせを含む構造体が求められている。しかし、樹脂材料とセラミック材料はそれぞれのプロセス温度が大きく異なるためにその複合化に制限があり、双方の特性を十分に生かしきった構造体が存在しなかった。現在、樹脂材料とセラミック材料との組み合わせを含む構造体を得るために、樹脂中にセラミック粉末等を混ぜ合わせて複合化する方法が試みられているが、要求特性を十分に満たしていないのが現状である。例えば、高誘電率化を達成するための高誘電率セラミックスと樹脂との組み合わせにおいて、樹脂中のセラミックスの充填率が制限され、数10程度の誘電率をもった材料しか得られていない。
最近、微粒子、例えばセラミックス等の無機材料微粒子を低いプロセス温度で成膜することができるエアロデポジション法(AD法)及びそれに使用するエアロデポジション装置が開発されている(例えば、特許文献1,2,3,4,5,6参照)。
エアロデポジション装置は、ガス供給手段と、該ガス供給手段に接続され、微粒子が入っていて微粒子がガスに分散したエアロゾルを形成する容器と、該容器に接続され、エアロゾルを基板に向かって噴出するノズルを有するチャンバとを備える。
微粒子がガスに分散されたエアロゾルはノズルから基板へ向かって噴出し、基板に衝突することにより、無機材料微粒子が基板の表面に密着堆積され、無機材料の膜が基板に形成される。AD法では、セラミック膜等の無機材料の膜を常温付近で形成できるので、材料本来の特性を損なうことなく、薄い膜の形成や樹脂材料との複合が可能である。
AD法では、エアロゾルの濃度が安定しにくい問題がある。すなわち、エアロゾルは、容器に導入されたガスが微粒子を吹き散らして微粒子を舞い上がらせ、その微粒子とともに流れるものである。従って、微粒子の粒径や水分含有状態が変化したり、微粒子の舞い上がり状態が変化したり、エアロゾルの流れの状態が変化したりすると、エアロゾルの濃度が安定しにくい。
例えば、エアロゾルが基板に向かって進み、微粒子が基板に付着するが、その際に、基板から逸れるように流れるエアロゾルの量が増加すると、基板に到着するエアロゾルの量が変化し、安定した成膜を実施するのが難しくなる。また、基板に付着しなかった微粒子はチャンバ底壁に落下し、あるいはチャンバ内壁に付着し、成膜の効率が低下する。
また、容器内でエアロゾルが形成される際に、ガスは一部の微粒子によく接触し、他の一部の微粒子にはよく接触しないと、エアロゾルの濃度が安定しない。また、容器からチャンバへ向かって管の中を進むエアロゾルでは、微粒子は管の壁に衝突しながらガスによって搬送される。この場合、微粒子が管の壁に衝突すると、管内のエアロゾルの流れに圧損が生じる。また、微粒子はできるだけ小さい粒径のままでガスによって搬送され、基板に衝突するのが好ましいが、微粒子同士が固まって微粒子の粒径が大きくなることがある。また、微粒子には水分が含まれており、水分の含有量が多いと、エアロゾルの濃度が安定しない。
さらに、成膜終了後、基板に付着しなかった微粒子はチャンバ内壁に付着したり、チャンバ底壁に堆積する。チャンバ内に残留した微粒子は、次の成膜時(減圧環境下)にチャンバ内で舞い上がり、チャンバ内の雰囲気を変化させ、新しく供給されたエアロゾルの濃度が安定しなくなる。場合によっては、チャンバ内に残留した微粒子は次の成膜時に汚染成分として基板に付着する。そこで、成膜を開始する前に、チャンバ内に残留する微粒子を清掃する必要がある。清掃に要する時間が長くなると、スループットが低下する。
また、成膜時には、真空ポンプでチャンバ内を排気減圧しながらエアロゾルをチャンバに導入する。従って、微粒子の一部がチャンバから真空ポンプに流れ、微粒子が真空ポンプ内に溜まると真空ポンプの能力が変動するので、チャンバに供給されるエアロゾルの濃度が安定しなくなる。また、真空ポンプのオイルに微粒子が入り、真空ポンプの排気能力が低下するので、頻繁にオイル交換を行う必要があった。
特開平11−21677号公報 特開2003−293159号公報 特開平7−150349号公報 特開2003−166076号公報 特開2003−119573号公報 特開平11−302702号公報
本発明の目的は、上記問題点を解決するために、安定したエアロゾルの濃度を維持しつつ成膜を行うことのできるエアロゾルデポジション装置を提供することである。
本発明によるエアロゾルデポジション装置は、ガス供給手段と、第一の配管を介して該ガス供給手段に接続され、微粒子が入っていて微粒子がガスに分散したエアロゾルを形成する容器と、第二の配管を介して該容器に接続され、エアロゾルを基板に向かって噴出するノズルを有するチャンバと、エアロゾルをイオン化する手段と、基板にエアロゾルのイオンとは反対符号のバイアス電圧をかける手段とを備え、前記第一の配管、前記容器、及び前記第二の配管の全て又はその少なくとも一部が前記エアロゾルのイオンと同符号の電荷を形成するようにバイアス電圧をかけられていることを特徴とする。
この構成においては、イオン化したエアロゾルが基板に向かって進み、逆の電気を帯びた基板に引き寄せられるので、基板から逸れるように流れるエアロゾルの量が減少し、より多くの微粒子が基板に向かって進み、基板に付着する。このように、基板から逸れるように流れるエアロゾルの量が減少するので、より安定した濃度のエアロゾルが基板に向かって供給される。
また、上記のエアロゾルデポジション装置は、前記容器に複数の方向から振動数を変えて振動を与えるための振動手段を更に備えたことを特徴とする。
この構成においては、容器は複数の方向から振動数を変えて振動を与えられるので、容器内において、ガスは微粒子とよく混ざり合い、より安定した濃度のエアロゾルがチャンバに導入される。
また、上記のエアロゾルデポジション装置は、前記容器は二重壁構造に構成され、微粒子は内壁の内部に配置され、ガスは内壁と外壁の間の空間に供給され、内壁は複数のガス通過孔を有することを特徴とする。
この構成においては、ガスは内壁の周囲全体から複数のガス通過孔を通って微粒子に導入されるので、ガスは微粒子とよく混ざり合い、より安定した濃度のエアロゾルがチャンバに導入される。
また、上記のエアロゾルデポジション装置は、前記容器の微粒子を予乾燥する予乾燥手段を更に備えることを特徴とする。
この構成においては、容器の微粒子を予乾燥し、ガスが粒径や水分含有量の変動の少ない状態の微粒子に導入され、より安定した濃度のエアロゾルとなってチャンバに供給される。予乾燥手段は、容器を真空引きしながら、50℃以上の温風を送る粉末乾燥機能および水分除去機能を有する。粉末乾燥および水分除去時に、容器をヒータで加熱する機能、マイクロ波で加熱する機能を有する。また、粉末乾燥および水分除去時に、容器を振動させる機能およびサイクロン気流および粉末攪拌用羽根を有する。
また、上記のエアロゾルデポジション装置は、前記チャンバを真空引きするための真空導入手段と、該チャンバに残った微粒子を集塵するための集塵装置と、該チャンバと該真空導入手段を結ぶ系及び該チャンバと該集塵装置を結ぶ系の少なくとも一方に設けられたサイクロン式の集塵器とを更に備えることを特徴とする。
この構成においては、サイクロン式の集塵器は、チャンバ内の不要粉末を除去し、清掃をし、あるいはチャンバの真空雰囲気を制御するために設けられる。微粒子がサイクロン式の集塵器でトラップされ、真空導入手段(真空ポンプ)や集塵装置に入るのが防止される。従って、真空導入手段(真空ポンプ)の能力が変動しなくなり、チャンバに供給されるエアロゾルの濃度が安定する。
以下本発明の実施例について図面を参照して説明する。
エアロゾルデポジション装置10は、ガスボンベ(ガス供給手段)12と、該ガスボンベ12に接続され、微粒子Pが入っていて微粒子Pがガスに分散したエアロゾルASを形成する容器14と、エアロゾルを基板36に向かって噴出するノズル16を有するチャンバ18と、チャンバ18を真空引きするための真空ポンプ(真空導入手段)20と、チャンバ18に残った微粒子を集塵するための集塵装置22とを備える。微粒子Pは例えば粒径1μm以下の微小な粉末であり、例えばセラミック等の無機材料の微粒子(粉末)である。容器14は振動付与装置24に取付けられている。
管26がガスボンベ12と容器14とを接続し、マスフローメータ28およびバルブ30が管26に配置される。管26の一端部は容器14内に突出し、微粒子Pの内部に貫入している。管32が容器14とチャンバ18を接続し、バルブ34が管32に配置される。管32の一端部は容器14内に突出し、微粒子Pの上部に開口している。管32の他端部はチャンバ18内のノズル16に接続される。
ガスボンベ12は窒素や酸素等のガスを充填されており、マスフローメータ28によって制御された流量のガスが容器14に導入される。ガスは容器14内において微粒子P内に吹き出し、微粒子Pを舞い上がらせながら微粒子Pに混ざり、微粒子Pがガスに分散したエアロゾルASが形成される。形成されたエアロゾルは管32を介してチャンバ18内のノズル16に流れる。
基板36を保持する基板ホルダ38がチャンバ18内に配置されている。基板ホルダ38はXYステージ40に取付けられる。ノズル16は基板ホルダ38に保持された基板36と対向し、基板ホルダ38に保持された基板36はXYステージ40によって少なくともXY方向に移動される。
管42がチャンバ18と真空ポンプ20とを接続し、バルブ44及びメカニカルブースタ46が管42に配置される。バイパス管48が容器14と管42を接続し、バルブ50が管48に配置される。
さらに、管52がチャンバ18と集塵装置22を接続する。バルブ54が管52に配置される。集塵装置22は真空ポンプ56に接続される。さらに、清掃装置58がチャンバ18に設けられ、清掃装置58は管60を介して清掃用流体供給装置62に接続される。ヒータ64がチャンバ18に設けられる。
以上の基本的な構成をもつエアロゾルデポジション装置10の作動について簡単に説明する。成膜プロセスに先立って、エアロゾルを形成する。バイパス管48のバルブ50を開き、バルブ30,34,44,54を閉じる。振動付与装置24を作動させて容器14を振動させながら、真空ポンプ20を作動させて容器14を排気し(真空を導入し)、微粒子Pに付着している水分を除去する。容器14にヒータが付属している場合には、ヒータも作動させる。また、このときに50℃以上のガスを流してもよい。それから、バルブ30を開き、ガスをガスボンベ12から容器14に導入する。ガスは微粒子Pの内部に吹き出し、舞い上がった微粒子Pがガスに分散しながらエアロゾルASを形成する。振動付与装置24及びヒータは適当な時期に停止する。
次に、成膜プロセスを行う。バルブ50,54を閉じ、バルブ30,34,44を開く。基板36をノズル16に対して対向配置させ、真空ポンプ20を作動させて容器14を真空に排気し、エアロゾルをノズル16から基板36に向かって噴出させる。エアロゾルは基板36に向かって進み、基板36に衝突して、エアロゾルに含まれる微粒子Pは基板36に付着、堆積する。従って、微粒子Pの材料の膜が基板36に形成される。
成膜プロセスが終了したら、バルブ30,34,44,50を閉じ、バルブ54を開く。清掃用流体供給装置62を作動させ、清掃装置58から清掃用流体を供給するとともに、ヒータ64を作動させる。それから、真空ポンプ56を作動させる。清掃用流体はチャンバ18の内部を清掃し、チャンバ18内に残留していた微粒子を集塵装置24に搬送する。
図2は本発明の一つの特徴を示す図である。図2において、エアロゾルをイオン化する手段66が管26に配置され、基板36にエアロゾルのイオンとは反対符号のバイアス電圧をかける手段68が設けられる。バイアス電圧をかける手段68は基板ホルダ38に接続される。エアロゾルをイオン化する手段66は、不平等電界を形成する高電圧装置を含み、好ましくはマグネトロンを用いてイオン濃度を高める。例えば、ガスボンベ12から容器14へ向かって管26内を流れるガスはマイナスにイオン化される。ただし、ガスをプラスにイオン化することもできる。イオン化したガスは容器14において微粒子に混合され、微粒子を搬送しつつエアロゾルとなる。こうして、イオン化したエアロゾルがチャンバ18のノズル16へ向かって進み、ノズル16から噴出する。
従って、イオン化したエアロゾルはガスの圧力及び真空ポンプ20の真空吸引力、並びに電気力によって基板36に向かって進む。より多くのエアロゾルが基板36に向かって流れ、基板36から逸れるように流れるエアロゾルの量が減少する。従って、より安定した所定の濃度のエアロゾルが基板36に衝突し、より多くの微粒子が基板36に付着する。
さらに、図2においては、管26、容器14、管32の全て又はその少なくとも一部がエアロゾルのイオンと同符号の電荷を形成するようにバイアス電圧をかけられている。従って、管26,32の中を流れるエアロゾルは管26,32の壁とは反発し、管26,32の壁に付着しなくなる。このために、管26,32の中を流れるエアロゾルの圧力損失の発生が減少する。
さらに、図1に示す振動付与装置24は容器14に複数の方向から振動数を変えて振動を与えるための振動手段として構成されている。例えば、図2に矢印A,B,C,Dで示されるように、容器14に横揺れ、縦揺れ、その他の角度をつけた振動を与え、かつ、その振動周波数を変えることができる。このように、容器14は複数の方向から振動数を変えて振動を与えられるので、容器14内において、ガスは微粒子とよく混ざり合い、より安定した濃度のエアロゾルがチャンバ18に供給される。
図3は図2の変形例を示す図である。図3においては、エアロゾルをイオン化する手段66が管32に配置され、基板36にエアロゾルのイオンとは反対符号のバイアス電圧をかける手段68が設けられる。この例の作用は図2の例の作用と同様である。さらに、エアロゾルをイオン化するとともに、エアロゾルの微粒子をさらにイオン化するように高電圧をかける手段70が設けられる。これによって、エアロゾル及び微粒子はさらに強く基板36に引き寄せられる。手段70は図2の実施例でも設けられることができる。
図4は本発明の一つの特徴を示す図である。図4において、容器14は内壁14Aと外壁14Bとからなる二重壁構造に構成され、微粒子は内壁14Aの内部に配置され、ガスは内壁14Aと外壁14Bの間の空間に供給される。内壁14Aは複数のガス通過孔14Cを有する。また、管26は複数の枝管として容器14の内壁14Aと外壁14Bの間の空間に開口する。
この構成においては、ガスは複数のガス通過孔14Cから多方向から微粒子に導入されるので、ガスは微粒子とよく混ざり合い、より安定した濃度のエアロゾルがチャンバ18に導入される。
図5は本発明の一つの特徴を示す図である。図5において、容器14には、容器14の微粒子を予乾燥する予乾燥手段が設けられている。予乾燥手段は例えばヒータ72からなる。種々のヒータ72を使用することができ、例えば電気ヒータ、赤外線ヒータ、ミリ波やマイクロ波を用いたヒータ等とすることができる。また、管26から50℃以上のガスを微粒子に導入し、微粒子の乾燥を助けることもできる。さらに、攪拌手段74が容器14内に設けられ、微粒子を攪拌してガスと微粒子の混合を助けるようにしている。このようにして、容器14の微粒子を予乾燥し、より安定した濃度のエアロゾルとなった後で、エアロゾルがチャンバ18に導入される。
図6は本発明の一つの特徴で使用されるサイクロン式の集塵器を示す図である。サイクロン式の集塵器74は、二重管状の本体部74Aと、入口74Bと、出口74Cとからなる。二重管状の本体部74Aは外管74Dと内管74Eとからなり、外管74Dの内壁に螺旋状の突条74Fが形成されている。入口74Bから入ったエアロゾルは、本体部74Aの外管74Dの内壁の突条74Fに沿って回転しながら進み、内管74Eを通って出口74Cから出る。エアロゾルが本体部74Aの内部を回転しながら進むときに、微粒子は遠心力によって半径方向外方へ押し出され、本体部74Aの外管74Dの内壁に付着、捕捉される。従って、微粒子がかなり除去されたエアロゾルが出口74Cから出る。
このサイクロン式の集塵器74は、図1のチャンバ18と集塵装置22を結ぶ系に配置される。端的には、サイクロン式の集塵器74は集塵装置22に配置される。さらに、このサイクロン式の集塵器74は、図1のチャンバ18と真空ポンプ20を結ぶ系に配置される。例えば、サイクロン式の集塵器74は、図1に74Xで示されるように、チャンバ18とメカニカルブースタ46の間に配置されることができ、あるいは、74Yで示されるように、メカニカルブースタ46と真空ポンプ20の間に配置されることができる。サイクロン式の集塵器74は、上記した位置の少なくとも一箇所に設けることができる。
この構成においては、微粒子がサイクロン式の集塵器74でトラップされ、真空ポンプ20,56に入るのが防止される。従って、真空ポンプ20,56の能力が変動しなくなり、チャンバ18に供給されるエアロゾルの濃度が安定する。
図7は本発明の一つの特徴を示す図である。図7の例は図2及び図3の例に類似している。図7においては、エアロゾルをイオン化する手段66が管60に配置されるとともに、集塵装置22の壁にエアロゾルのイオンとは反対符号のバイアス電圧をかける手段76が設けられる。従って、エアロゾルの微粒子は集塵装置22の壁により付着しやすくなる。
以上は本発明の幾つかの特徴について説明したが、それらの特徴を組み合わせて構成することができることは言うまでもない。
次に、本発明によるエアロゾルデポジション装置を使用して実施した具体的な例について説明する。
例1
前処理として、平均粒径0.5μmのBaTiO3粉末を原料粉末(微粒子P)としてエアロゾル発生容器14に入れ、容器14に全体的に超音波を加えた(超音波振動プロファイル、10kHz 1分、10kHz 30分、5kHz 1分、5kHz 30分、50kHz 5分、振動方向は水平、垂直、45度傾斜の3方向をランダムに)。約150℃で加熱しながら、30分真空脱気して、粉末表面に形成した水分を除去した。この際、容器14内には、粉末内部に3本の羽根を挿入し、回転させた。(回転数プロファイル、50rpm 1分、100rpm 30分、10rpm 1分、50rpm 30分、30rpm 5分)。容器内にガス導入口を5本設け、粉末中に送気した。(各管への送気量は5l/分)。また、粉末表面からマイクロ波で加熱した。
次に、前処理を施した原料粉末を含むエアロゾル発生容器14に、高純度窒素ガス(ガス圧2kg/cm2、ガス流量4l/分)を導入し、原料をエアロゾルASとした。このエアロゾルを管32を通して、チャンバ18のノズル16に供給した。
ノズル16は、内側に螺旋状の溝を形成したものを使用した。チャンバ18は予め真空に引き、圧力10Pa以下にする。エアロゾルをノズル16からガラス基板36に向けて20分間噴射を行った。このときのチャンバ18の中の圧力は200Paと一定であった。ガラス基板36には厚さ100μmのBaTiO3膜が形成された。膜の吸水率は0.1%以下であり、膜の基板間密着強度は5kg/mm2以上と強固であった。
従来、エアロゾルの濃度は5%とし、2%から10%の間で濃度のばらつきがあったが、本発明のように前処理を行うことにより、エアロゾルの濃度を12〜15%とすることができ、安定したエアロゾルの形成が可能になった。成膜速度も再現性よく、5±0.2μm/分を得た(従来は2±1μm/分)。膜の表面粗さは、Ra0.1μm以下であった(従来はRa0.8±0.5μm)。
例2
前処理として、平均粒径0.5μmのBaTiO3粉末を原料粉末(微粒子P)としてエアロゾル発生容器14に入れ、容器14を全体的に約150℃で加熱しながら、30分真空脱気して、粉末表面に形成した水分を除去した。
次に、前処理を施した原料粉末を含むエアロゾル発生容器14に、高純度酸素ガス(ガス圧2kg/cm2、ガス流量4l/分)を導入し、ガスをイオン化するために、高電圧を印加し、プラスイオンをアースし、マイナスイオンのみを形成した。送気する管26,32、ノズル16にはマイナス電圧を印加し、基板36にはプラス電圧を印加した。このようにして形成したエアロゾルをチャンバ18のノズル16に送り込む。
ノズル16は、内側に螺旋状の溝を形成したものを使用した。チャンバ18は予め真空に引き、圧力を10Pa以下にする。エアロゾルをノズル16からガラス基板36に向けて10分間噴射を行った。このときのチャンバ18の圧力は200Paと一定であった。ガラス基板36には厚さ100μmのBaTiO3の膜が形成された。膜の吸水率は0.1%以下であり、膜の基板間密着強度は5kg/mm2以上と強固であった。
従来、エアロゾルの濃度は5%とし、2%から10%の間で濃度のばらつきがあったが、本発明のように前処理を行うことにより、エアロゾルの濃度を15〜18%とすることができ、安定したエアロゾルの形成が可能になった。成膜速度も再現性よく、10±0.2μm/分を得た(従来は2±1μm/分)。膜の表面粗さは、Ra0.2μm以下であった(従来はRa0.8±0.5μm)。
例3
前処理として、平均粒径0.5μmのBaTiO3粉末を原料粉末(微粒子P)としてエアロゾル発生容器14に入れ、容器14を全体的に約150℃で加熱しながら、30分真空脱気して、粉末表面に形成した水分を除去した。
次に、前処理を施した原料粉末をエアロゾル発生容器に入れた。
この後、原料粉末全体に対して、高電圧を印加し、プラスに帯電させる。
次に、高純度窒素ガス(ガス圧2kg/cm2、ガス流量4l/分)を導入し、基板36には、マイナス電圧を印加した。
このガスを導入し、原料をエアロゾル化した。このようにして形成したエアロゾルを管32を通してチャンバ18のノズル16に送り込む。
ノズル16は、内側に螺旋状の溝を形成したものを使用した。チャンバ18は予め真空に引き、圧力を10Pa以下にする。エアロゾルをノズル16からガラス基板36に向けて10分間噴射を行った。このときのチャンバ18の圧力は200Paと一定であった。
ガラス基板36には厚さ100μmのBaTiO3の膜が形成された。膜の吸水率は0.1%以下であり、膜の基板間密着強度は5kg/mm2以上と強固であった。
従来、エアロゾルの濃度は5%とし、2%から10%の間で濃度のばらつきがあったが、本発明のように前処理を行うことにより、エアロゾルの濃度を10〜15%とすることができ、安定したエアロゾルの形成が可能になった。成膜速度も再現性よく、10±0.3μm/分を得た(従来は2±1μm/分)。膜の表面粗さは、Ra0.25μm以下であった(従来はRa0.8±0.5μm)。
以上をまとめると、下記の表1に示した結果が得られた。
Figure 0004371884
例4
集塵装置22を作動させるに際して、バルブ34,44を閉じる。清掃用流体供給装置62を作動させ、清掃装置58から清掃用流体を供給する。例えば、チャンバ18内にアルコール等の揮発性溶剤がチャンバ内壁に向かって多方向に噴射され、チャンバ18内を濡らす。それから、チャンバ内壁に温風を送気するか、チャンバ全体に装着したヒータにより内壁を乾燥させ(設定温度200℃)、溶剤を揮発させる。次にチャンバ18に設置された超音波振動子を作動させ(50kHz)、装置全体を振動させ、チャンバ内壁に付着した粉末をチャンバの内側に落とす。
集塵装置22に通じる管52のバルブ44を開く。真空ポンプ56が作動し、チャンバ内が減圧環境になり、チャンバ内の不要粉末が集塵装置22に向かう。サイクロン式の集塵器74が不要粉末を捕捉する。サイクロン式の集塵器74の内壁はテフロン(登録商標)でコートした。この一連の動作を数回連続して行う。
また、オプションとして次の動作を行う。温風ガスは予めイオン化し、チャンバ18からサイクロン式の集塵器74までの間の配管はイオン化されたガスと同符号の電荷をもたせる。そして、サイクロン式の集塵器74のイオン符号をガスと反対方向にし、引き合うようにする。また、温風ガスイオン発生部にマグネトロンを設置し、イオン密度を向上させることもできる。イオン化したガスを用いない場合、サイクロン式の集塵器74の材質に絶縁材料を用い、静電気による付着効果を加味させる。
不要粉末の収拾が容易になったために、粉末除去清掃時間が従来の1/2に短縮できた。また、不要粉末を除去せずに、続けて成膜動作を行う場合は、成膜時の圧力が不安定である。2回目の成膜時の圧力は250Paであった。この処理を行った後の成膜時の圧力は200Paと初回の成膜時の圧力と同じであった。また、圧力損失の影響のために、エアロゾルの速度の低下がみられた。(初回成膜時は200m/秒、2回目成膜時は150m/秒)。このために、成膜速度が低下し、初回と同等の100μmの膜の厚さを得るためには、40分要した。また、従来方法では、累計運転時間が1000時間程度でベース真空圧力は20Paまで上昇し、真空ポンプのオイルの全面交換及びオーバーホールが必要であった。本発明では、5倍の5000時間経過後にベース真空圧力は15Paまで上昇する現象がみられ、オイル交換まで7000時間運転が可能であった。
例5
洗浄用ガスとして酸素を用い、ボンベから送られた酸素に対し、高電圧印加で形成された電子が結合し、マイナスイオンの酸素気流をつくり出す。管、チャンバにマイナス電極を接触させて、電圧を印加させる。プラス側はアースする。集塵装置の先の部品にプラスの電圧を印加する。上記例4と同様の手順を繰り返す。
不要粉末の収拾が容易になったために、粉末除去清掃時間が従来の1/3に短縮できた。
以上をまとめると、下記の表2に示した結果が得られた。
Figure 0004371884
以上説明したように、本発明によれば、エアロゾルの濃度のばらつきを減少させ、エアロゾルの濃度を高くすることができるようになる。また、エアロゾルの濃度の再現性よく、成膜速度も速くなり、エアロゾルの速度のばらつきを小さくすることができる。さらに、膜の表面粗さの低減に効果的である。
図1は本発明の実施例のエアロゾルデポジション装置の基本的な特徴を示す図である。 図2は本発明の一つの特徴を示す図である。 図3は図2の変形例を示す図である。 図4は本発明の一つの特徴を示す図である。 図5は本発明の一つの特徴を示す図である。 図6は本発明の一つの特徴で使用されるサイクロン式の集塵器を示す図である。 図7は本発明の一つの特徴を示す図である。
符号の説明
10…エアロゾルデポジション装置
12…ガスボンベ
14…容器
16…ノズル
18…チャンバ
20…真空ポンプ
22…集塵装置
24…振動付与装置
36…基板
38…基板ホルダ
40…XYステージ
66…イオン化する手段
68…バイアス電圧をかける
72…ヒータ
74…サイクロン式の集塵器

Claims (5)

  1. ガス供給手段と、第一の配管を介して該ガス供給手段に接続され、微粒子が入っていて微粒子がガスに分散したエアロゾルを形成する容器と、第二の配管を介して該容器に接続され、エアロゾルを基板に向かって噴出するノズルを有するチャンバと、エアロゾルをイオン化する手段と、基板にエアロゾルのイオンとは反対符号のバイアス電圧をかける手段とを備え、前記第一の配管、前記容器、及び前記第二の配管の全て又はその少なくとも一部が前記エアロゾルのイオンと同符号の電荷を形成するようにバイアス電圧をかけられていることを特徴とするエアロゾルデポジション装置。
  2. 前記容器に複数の方向から振動数を変えて振動を与えるための振動手段とを備えたことを特徴とする請求項1に記載のエアロゾルデポジション装置。
  3. 前記容器は二重壁構造に構成され、微粒子は内壁の内部に配置され、ガスは内壁と外壁の間の空間に供給され、内壁は複数のガス通過孔を有することを特徴とする請求項1に記載のエアロゾルデポジション装置。
  4. 前記容器の微粒子を予乾燥する予乾燥手段とを備えることを特徴とする請求項1に記載のエアロゾルデポジション装置。
  5. 前記チャンバを真空引きするための真空導入手段と、該チャンバに残った微粒子を集塵するための集塵装置と、該チャンバと該真空導入手段を結ぶ系及び該チャンバと該集塵装置を結ぶ系の少なくとも一方に設けられたサイクロン式の集塵器とを備えることを特徴とする請求項1に記載のエアロゾルデポジション装置。
JP2004106104A 2004-03-31 2004-03-31 エアロゾルデポジション装置 Expired - Lifetime JP4371884B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106104A JP4371884B2 (ja) 2004-03-31 2004-03-31 エアロゾルデポジション装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106104A JP4371884B2 (ja) 2004-03-31 2004-03-31 エアロゾルデポジション装置

Publications (2)

Publication Number Publication Date
JP2005290462A JP2005290462A (ja) 2005-10-20
JP4371884B2 true JP4371884B2 (ja) 2009-11-25

Family

ID=35323729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106104A Expired - Lifetime JP4371884B2 (ja) 2004-03-31 2004-03-31 エアロゾルデポジション装置

Country Status (1)

Country Link
JP (1) JP4371884B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816198B2 (en) 2012-03-13 2017-11-14 Ngk Insulators, Ltd. Method for producing zinc oxide single crystal

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186739A (ja) * 2006-01-11 2007-07-26 Fujifilm Corp 成膜装置
JP2008088451A (ja) * 2006-09-29 2008-04-17 Fujifilm Corp 成膜方法及び成膜装置
JP2008298528A (ja) * 2007-05-30 2008-12-11 Nec Corp 光学式膜厚モニター及びそれを用いた成膜装置
JP5649023B2 (ja) * 2009-10-16 2015-01-07 有限会社 渕田ナノ技研 ジルコニア膜の成膜方法
KR101497854B1 (ko) * 2010-12-15 2015-03-04 유겐가이샤 후치타 나노 기켄 성막 방법
JP6002888B2 (ja) 2012-06-28 2016-10-05 有限会社 渕田ナノ技研 成膜方法
CN115032123B (zh) * 2022-03-21 2024-06-25 哈尔滨工程大学 一种研究不同热工条件下管道内气溶胶沉积特性的实验装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816198B2 (en) 2012-03-13 2017-11-14 Ngk Insulators, Ltd. Method for producing zinc oxide single crystal

Also Published As

Publication number Publication date
JP2005290462A (ja) 2005-10-20

Similar Documents

Publication Publication Date Title
US8727708B2 (en) Reflecting device, communicating pipe, exhausting pump, exhaust system, method for cleaning the system, storage medium storing program for implementing the method, substrate processing apparatus, and particle capturing component
US5916640A (en) Method and apparatus for controlled particle deposition on surfaces
JP4371884B2 (ja) エアロゾルデポジション装置
US9079209B2 (en) Apparatus for power coating
JPH09181063A (ja) Cvdシステムの真空ラインのクリーニング方法及び装置
JP7043774B2 (ja) エアロゾル成膜装置、及びエアロゾル成膜方法
KR101497854B1 (ko) 성막 방법
JP2001181859A (ja) 複合構造物の作製方法および作製装置
TW526527B (en) Method and apparatus for critical flow particle removal
KR101671097B1 (ko) 성막 방법, 성막 장치 및 구조체
JPH11176557A (ja) イオン発生装置用放電電極
KR100846148B1 (ko) 고상 파우더를 이용한 증착박막 형성방법 및 장치
JP3893512B2 (ja) 複合構造物作製装置
JP4075716B2 (ja) 複合構造物作製装置
JP4590594B2 (ja) エアロゾルデポジッション成膜装置
KR100988175B1 (ko) 세라믹 코팅막 형성 장치
Raoux et al. Growth, trapping and abatement of dielectric particles in PECVD systems
JP2010138447A (ja) 成膜方法及びその成膜装置
WO2020179100A1 (ja) 粉体のコーティング装置およびコーティング方法、粉体分散装置ならびに粉体分散方法
JP2008285743A (ja) 被膜形成装置
JP2008101253A (ja) 被膜形成装置
WO2016135989A1 (ja) 真空式洗浄装置及び真空式洗浄方法
KR101230242B1 (ko) 세라믹 분말 에어로졸 증착 방법
JP4086627B2 (ja) 成膜方法
JP2019199629A (ja) 溶射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4371884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term