JP4371789B2 - 多層構造体 - Google Patents

多層構造体 Download PDF

Info

Publication number
JP4371789B2
JP4371789B2 JP2003403718A JP2003403718A JP4371789B2 JP 4371789 B2 JP4371789 B2 JP 4371789B2 JP 2003403718 A JP2003403718 A JP 2003403718A JP 2003403718 A JP2003403718 A JP 2003403718A JP 4371789 B2 JP4371789 B2 JP 4371789B2
Authority
JP
Japan
Prior art keywords
group
formula
carbon atoms
photocatalyst
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003403718A
Other languages
English (en)
Other versions
JP2005161680A (ja
Inventor
亮 中林
達郎 仁熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003403718A priority Critical patent/JP4371789B2/ja
Publication of JP2005161680A publication Critical patent/JP2005161680A/ja
Application granted granted Critical
Publication of JP4371789B2 publication Critical patent/JP4371789B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、複数層のナノスケール粒子含有層から構成される多層構造体に関する。特にナノスケール粒子が、光エネルギーによって物質の分解作用や表面の親水化作用を示すことから、環境浄化や防汚、防曇等の分野へ応用が知られている酸化チタンに代表される光触媒である多層構造体に関する。
物体の機能はそれを構成する微細な構造を変化させることにより制御できることが知られている。例えば光触媒体の場合、複数層のナノスケール光触媒粒子含有層から構成される多層構造体は長期の耐久性に優れた光触媒活性を有する物体として利用価値が高いが、該多層構造体を簡単な操作で製造することは非常に困難であった。
以下、光触媒多層構造体を例にとって、本発明の背景技術を説明する。
ある種の物質に、その物質の伝導帯と価電子帯との間のエネルギーギャップ(バンドギャップ)よりも大きなエネルギーを持つ光、即ちその物質のバンドギャップに対応する光よりも波長の短い光(励起光)を照射すると、光エネルギーによって価電子帯中の電子の励起(光励起)が起こり、伝導帯に電子が、価電子帯に正孔が生成する。このとき、伝導帯に生成した電子の還元力および/または価電子帯に生成した正孔の酸化力を利用して、種々の化学反応を行うことができる。
即ち、上記のような物質は、励起光照射下において触媒のように用いることができる。そのため、上記のような物質は光触媒と呼ばれており、その最も代表的な例として酸化チタンが知られている。
この光触媒によって促進される化学反応の例としては、種々の有機物の酸化分解反応を挙げることができる。従って、この光触媒を種々の基材の表面に固定化させれば、基材の表面に付着した種々の有機物を、光エネルギーを利用して酸化分解することができることになる。
一方、ある種の光触媒に光を照射すると、その光触媒の表面の親水性が高まることが知られている。従って、この光触媒を種々の基材の表面に固定化させれば、光の照射によりその基材の表面の親水性を高めることができるようになる。
近年、上記のような光触媒の特性を、環境浄化、種々の基材の表面への汚れの付着防止や曇りの防止を始めとする、種々の分野に応用するための研究が盛んになってきている。
この場合、光触媒を種々の基材の表面に固定化するための方法や光触媒を含有する光触媒体の構造が非常に重要な役割を担う。
例えば、光触媒を固定化する基材として、プラスチック成形体、フィルム、有機塗膜等の有機基材を用いた場合、光触媒は光触媒作用により該有機基材を酸化分解し、有機基材と光触媒皮膜との間の界面劣化を生じ、長期にわたる耐久性を維持できないという欠点を有している為、光触媒の有機基材への固定化が大きな課題であった。
これらの課題に対し、国際公開97−00134号公報、特開平10−315374号公報、特開平6−278241号公報、特開2000−6303号公報、特開平11−114488号公報では、光触媒の酸化分解作用に対し、難分解性化合物を用いた中間層を基材の上に形成し、その上に光触媒含有皮膜を形成することにより、優れた耐久性を発現する光触媒固定化部材を提供することを提案している。
しかし、これらの方法では有機基材との中間層の親和性の不足や、中間層自体の柔軟性不足(有機基材の温度変化による伸縮に追随できない)、さらには光触媒層と中間層の親和力の不足により、中間層と有機基材の密着性や中間層と光触媒層の密着性が不十分となり、長期の耐久性に劣る欠点があった。
上述した従来技術の種々の欠点を克服するための方法として、我々は、光触媒層と中間層を交互に積層した光触媒多層構造体とすることが有効であることを見いだしたが、該光触媒多層構造体は非常に煩雑な工程によらないと製造できないという課題があった。
国際公開97−00134号公報 特開平10−315374号公報 特開平6−278241号公報 特開2000−6303号公報 特開平11−114488号公報
本発明の課題は、簡単な操作で得られる複数層のナノスケール粒子含有層から構成される多層構造体提供することである。特に、光照射により長期にわたり、その表面が水の濡れ性(親水性、疎水性)の制御能及び/又は光触媒活性を発現する耐久性に優れた光触媒多層構造体を煩雑な工程を必要とせずに提供することである。
本発明者らは上記課題を解決すべく鋭意検討した結果、本発明に到達した。すなわち、本発明は以下の通りである。
1.自己組織化により形成されてなる複数層のナノスケール粒子含有層から構成される多層構造体。
2.式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、及びジフルオロメチレン単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる少なくとも1種の変性剤化合物(b)でナノスケール粒子(a)を変性処理することによって得られる変性ナノスケール粒子(A)と該変性ナノスケール粒子(A)より表面エネルギーが大きいバインダー成分(B)を含有する変性ナノスケール粒子組成物(C)から形成されることを特徴とする多層構造体。
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。)
−(RSiO)− (2)
(式中、Rは式(1)で定義した通りである。)
Figure 0004371789
(式中、Rは式(1)で定義した通りである。)
3.該ナノスケール粒子(a)が、光触媒粒子(a1)であることを特徴とする発明1または2の多層構造体。
4.該バインダー成分(B)が、式(4)で表されるフェニル基含有シリコーン(BP)であることを特徴とする発明2または3の多層構造体。
SiO(4−p−q−r)/2 (4)
(式中、各Rはフェニル基を表し、Rは各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。そしてp、q及びrは、0<p<4、0≦q<4、0≦r<4、及び0<(p+q+r)<4であり、そして0.05≦p/(p+q)≦1である。)
5.該変性ナノスケール粒子組成物(C)が、該変性ナノスケール粒子(A)と親和力を有するシリコーン系樹脂及びフッ素系樹脂から選ばれるバインダー成分(D)をさらに含有することを特徴とする発明2〜4のいずれかの多層構造体。
6.該バインダー成分(D)が、下式(5)で表されるアルキル基含有シリコーン(DA)であることを特徴とする発明5の多層構造体。
SiO(4−u−v)/2 (5)
(式中、Rは直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基から選ばれた1種以上からなる基を表す。Xは、式(4)で定義した通りである。0<u<4、0≦v<4、及び0<(u+v)<4である。)
7.該光触媒粒子(a1)のバンドギャップエネルギーよりも高いエネルギーの光のバンドギャップエネルギーよりも高いエネルギーの光を照射することにより光触媒活性及び/又は親水性を示すことを特徴とする発明3の多層構造体。
8.発明1〜7のいずれかの多層構造体が基材上に形成されてなる機能性複合体。
本発明の多層構造体は、機械的特性や光学的特性に優れる。特に光触媒多層構造体は、光照射により長期にわたり、その表面が水の濡れ性(親水性、疎水性)の制御能及び/又は光触媒活性を発現する耐候性に優れる。
以下、本発明を詳細に説明する。
本発明は、自己組織化により形成されてなる複数層のナノスケール粒子含有層から構成される多層構造体に関する。
本発明において、自己組織化とは人工的な力によるのではなく、物質が自ら組織化しながら構造体を形成することを意味する。
また、本発明において多層構造とは、少なくとも2層、好ましくは3層以上のナノスケール粒子含有層を有する構造を意味する。
本発明の多層構造体は、好ましくは式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、及びジフルオロメチレン単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる少なくとも1種の変性剤化合物(b)でナノスケール粒子(a)を変性処理することによって得られる変性ナノスケール粒子(A)と該変性ナノスケール粒子(A)より表面エネルギーが大きいバインダー成分(B)を含有する変性ナノスケール粒子組成物(C)から形成される。
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。)
−(RSiO)− (2)
(式中、Rは式(1)で定義した通りである。)
Figure 0004371789
(式中、Rは式(1)で定義した通りである。)
本発明に用いることができる上記変性ナノスケール粒子組成物(C)は、それから形成する構造体が変性ナノスケール粒子(A)の分布について大きな自己傾斜性を有する。
ここで自己傾斜性とは、構造体の形成過程において変性ナノスケール粒子(A)が、該構造体が接する界面の性状(特に親水/疎水性)に対応して、変性ナノスケール粒子(A)の濃度勾配を有する構造を自律的に形成することを意味し、特に構造体が空気と接するように形成される場合は、変性ナノスケール粒子(A)は空気と接する光触媒体表面に多く存在するようになる。
本発明における多層構造体は、例えば上記変性ナノスケール粒子組成物(C)を基材に塗布し、乾燥した後、所望により好ましくは20℃〜500℃、より好ましくは40℃〜250℃の熱処理や紫外線照射等を行いことにより基材上に形成させることができる。上記塗布方法としては、例えばスプレー吹き付け法、フローコーティング法、ロールコート法、刷毛塗り法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法等が挙げられる。
この際、本発明の変性ナノスケール粒子組成物(C)から形成される多層構造体の膜厚は、好ましくは0.1〜5mm、より好ましくは0.5〜500μm、さらに好ましくは1〜100μmである。
本発明の変性ナノスケール粒子組成物(C)は、無溶媒の状態(液体、固体)であっても溶媒に溶解あるいは分散した状態であっても良く、特に制限はないが、本発明の多層構造体を得るには溶媒に対し溶解あるいは分散した状態が好ましい。この際、該変性ナノスケール粒子組成物(C)中の変性ナノスケール粒子(A)とバインダー成分(B)の総量は、好ましくは0.01〜95質量%、より好ましくは0.1〜70質量%である。
この際、本発明の変性ナノスケール粒子組成物(C)に用いる溶媒としては、例えば水やエチレングリコール、イソプロパノール、n−ブタノール、エタノール、メタノール、ブチルセロソルブ、ブチルカルビトール、プロピレングリコール、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル等のブチルセロソルブ、ブチルカルビトール、プロピレングリコール、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル等のアルコール類、トルエンやキシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ヘプタン、デカン、ウンデカン、ドデカン、ソルベッソ類等の脂肪族炭化水素類、酢酸エチル、酢酸n−ブチル、セロソルブアセテート等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等が例示できる。これらの溶媒は、単独で又は組み合わせて用いられる。
本発明の多層構造体を最も好ましく得る様態は、変性ナノスケール粒子組成物(C)を用いてスプレー吹き付け法により製造する方法である。この際、変性ナノスケール粒子組成物(C)は上記溶剤を含むものを使用することが好ましい。また、基材に吹き付けられた時の該変性ナノスケール粒子組成物(C)中の溶剤含量が、5質量%以下であることが好ましく、1質量%以下であることが更に好ましい。この様な観点から、変性ナノスケール粒子組成物(C)として使用する溶剤としては、沸点が30〜150℃、好ましくは沸点が50〜120℃である比較的低沸点の溶剤が好適に使用できる。
本発明の変性ナノスケール粒子(A)は、ナノスケール粒子(a)を、後述する少なくとも1種の変性剤化合物(b)を用いて変性処理することによって得られる。
本発明において変性とは、後述する少なくとも1種の変性剤化合物(b)を、ナノスケール粒子(a)の表面に固定化することを意味する。上記の変性剤化合物のナノスケール粒子表面への固定化は、ファン・デル・ワールス力(物理吸着)または化学結合によるものと考えられる。特に、化学結合を利用した変性は、変性剤化合物とナノスケール粒子との相互作用が強く、変性剤化合物がナノスケール粒子の表面に強固に固定化されるので好ましい。
本発明に好適に使用できるナノスケール粒子(a)としては、数平均粒子径が1〜800nm、好ましくは3〜200nm、更に好ましくは3〜100nmのSiO、TiO、ZnO、SrTiO、BaTiO、KNbO、Nb、Fe、Ta、KTaSi、WO、SnO、Bi、BiVO、NiO、CuO、RuO、CeO等の酸化物、Ta等の窒化物、CdS等の硫化物、AgCl等のハロゲン化物、ポリスチレン等の有機微粒子等やそれらの複合物、混合物等を挙げることができる。
本発明において、上記ナノスケール粒子(a)として光触媒粒子(a1)を選択すると、本発明の多層構造体は光照射により光触媒活性及び/又は親水性を発現するため非常に好ましい。
ここで、光触媒活性とは、光照射によって酸化、還元反応を起こすことを言う。これらの光触媒活性は、例えば材料表面の光照射時における色素等の有機物の分解性を測定することにより判定することができる。光触媒活性を有する表面は、優れた汚染有機物質の分解活性や耐汚染性を発現する。
また、本発明において親水性とは、好ましくは20℃での水の接触角が60゜以下である場合を言うが、特に水の接触角が20゜以下の親水性を有する表面は、降雨等の水による自己浄化能(セルフクリーニング)による耐汚染性を発現するので好ましい。さらに優れた耐汚染性発現や防曇性発現の点からは表面の水の接触角は10゜以下であることが好ましく、更に好ましくは5゜以下である。
本発明において使用可能な光触媒粒子(a1)の例としては、例えば、TiO、ZnO、SrTiO、CdS、GaP、InP、GaAs、BaTiO、BaTiO、BaTi、KNbO、Nb、Fe、Ta、KTaSi、WO、SnO、Bi、BiVO、NiO、CuO、SiC、MoS、InPb、RuO、CeO、Ta等、さらにはTi、Nb、Ta、Vから選ばれた少なくとも1種の元素を有する層状酸化物(例えば特開昭62−74452号公報、特開平2−172535号公報、特開平7−24329号公報、特開平8−89799号公報、特開平8−89800号公報、特開平8−89804号公報、特開平8−198061号公報、特開平9−248465号公報、特開平10−99694号公報、特開平10−244165号公報等参照)を挙げることができる。
これらの光触媒粒子(a1)の中でTiO(酸化チタン)は無害であり、化学的安定性にも優れるため好ましい。酸化チタンとしては、アナターゼ、ルチル、ブルッカイトのいずれも使用できる。
また、本発明に使用する光触媒粒子(a1)として、可視光(例えば約400〜800nmの波長)の照射により光触媒活性及び/又は親水性を発現することが出来る可視光応答型光触媒を選択すると、本発明の光触媒組成物から形成される光触媒体は、室内等の紫外線が十分に照射されない場所等においても抗菌・防汚効果等を十分に発現することが出来るため好ましい。
上記可視光応答型光触媒は、可視光で光触媒活性及び/又は親水性を発現するものであれば全て使用することが出来るが、例えばTaON、LaTiON、CaNbON、LaTaON、CaTaON等のオキシナイトライド化合物(例えば特開2002−66333号公報参照)やSmTi等のオキシサルファイド化合物(例えば特開2002−233770号公報参照)、Ta等の窒化化合物、CaIn、SrIn、ZnGa、NaSb等のd10電子状態の金属イオンを含む酸化物(例えば特開2002−59008号公報参照)、アンモニアや尿素等の窒素含有化合物存在下でチタン酸化物前駆体(オキシ硫酸チタン、塩化チタン、アルコキシチタン等)や高表面酸化チタンを焼成して得られる窒素ドープ酸化チタン(例えば特開2002−29750号公報、特開2002−87818号公報、特開2002−154823号公報、特開2001−207082号公報参照)、チオ尿素等の硫黄化合物存在下にチタン酸化物前駆体(オキシ硫酸チタン、塩化チタン、アルコキシチタン等)を焼成して得られる硫黄ドープ酸化チタン、酸化チタンを水素プラズマ処理したり真空下で加熱処理したりすることによって得られる酸素欠陥型の酸化チタン(例えば特開2001−98219号公報参照)、さらには光触媒粒子をハロゲン化白金化合物で処理したり(例えば特開2002−239353号公報参照)、タングステンアルコキシドで処理(特開2001−286755号公報参照)することによって得られる表面処理光触媒等を好適に挙げることができる。
上記可視光応答型光触媒の中でオキシナイトライド化合物、オキシサルファイド化合物、ナイトライド化合物は可視光による光触媒活性が大きく、特に好適に使用することができる。
更に、上述した光触媒粒子(a1)は、好適にPt、Rh、Ru、Nb、Cu、Sn、Ni、Feなどの金属及び/又はこれらの酸化物を添加あるいは固定化したり、多孔質リン酸カルシウム等で被覆したり光触媒(例えば特開平10−244166号公報参照)して使用することもできる。
本発明においては、用いるナノスケール粒子(a)の性状が、本発明の変性剤化合物(b)によって変性処理されてなる変性光触媒粒子(A1)の分散安定性、成膜性、及び種々の機能の発現にとって重要な因子となる。本発明に使用される光触媒粒子(a1)としては、1次粒子と2次粒子との混合物(1次粒子、2次粒子何れかのみでも良い)の数平均分散粒子径が400nm以下の光触媒粒子が変性後の光触媒の表面特性を有効に利用できるために望ましい。特に数平均分散粒子径が100nm以下の光触媒粒子を使用した場合、生成する変性光触媒粒子(A1)と後述するバインダー成分(B)からなる光触媒組成物(C1)からは透明性に優れた多層構造体を得ることができるため非常に好ましい。より好ましくは80nm以下3nm以上、さらに好ましくは50nm以下3nm以上の光触媒粒子が好適に選択される。
光触媒粒子(a1)の形態としては粉体、分散液、ゾルのいずれでも用いることが出来る。本発明における変性剤化合物(b)による変性処理における効率性、均一性等の理由から光触媒ゾルまたは光触媒分散液を使用することが好ましい。ここで、本発明に用いる光触媒ゾルおよび光触媒分散液とは、光触媒粒子が水及び/又は有機溶媒中に0.01〜80質量%、好ましくは0.1〜50質量%で一次粒子及び/または二次粒子として分散されたものである。
ここで、上記光触媒ゾルまたは光触媒分散液に使用される上記有機溶媒としては、例えばエチレングリコール、ブチルセロソルブ、n−プロパノール、イソプロパノール、n−ブタノール、エタノール、メタノール等のアルコール類、トルエンやキシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素類、酢酸エチル、酢酸n−ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化合物類、ジメチルスルホキシド、ニトロベンゼン等、さらにはこれらの2種以上の混合物が挙げられる。
該光触媒ゾルとして酸化チタンのゾルを例にとると、例えば実質的に水を分散媒とし、その中に酸化チタン粒子が解膠された酸化チタンヒドロゾル等を挙げることができる。(ここで、実質的に水を分散媒とするとは、分散媒中に水が80質量%程度以上含有されていることを意味する。)かかるゾルの調整は公知であり、容易に製造できる(例えば特開昭63−17221号公報、特開平7−819号公報、特開平9−165218号公報、特開平11−43327号公報等参照)。例えば、硫酸チタンや四塩化チタンの水溶液を加熱加水分解して生成したメタチタン酸をアンモニア水で中和し、析出した含水酸化チタンを濾別、洗浄、脱水させると酸化チタン粒子の凝集物が得られる。この凝集物を、硝酸、塩酸、又はアンモニア等の作用の下に解膠させ水熱処理等を行うことにより酸化チタンヒドロゾルが得られる。さらに、pHが中性付近の水溶液中においても分散安定性に優れる、粒子表面がペルオキソ基で修飾されたアナターゼ型酸化チタンゾルも例えば特開平10−67516号公報で提案された方法によって容易に得ることができる。
上述した酸化チタンヒドロゾルはチタニアゾルとして市販もされている。(例えば、石原産業株式会社製「STS−02」、田中転写株式会社製「TO−240」等)
また、例えば酸化セリウムゾル(例えば特開平8−59235号公報参照)やTi、Nb、Ta、Vよりなる群から選ばれた少なくとも1種の元素を有する層状酸化物のゾル(例えば特開平9−25123号公報、特開平9−67124号公報、特開平9−227122号公報、特開平9−227123号公報、特開平10−259023号公報等参照)等、様々な光触媒ゾルの製造方法についても酸化チタンゾルと同様に知られている。
さらに、本発明で好適に使用できる可視光応答型の光触媒ゾルも市販されている。(例えば、昭和電工(株)製「NTB−200」、住友化学工業(株)製「TSS」等)
また、実質的に有機溶媒を分散媒とし、その中に光触媒粒子が分散された光触媒オルガノゾルは、例えば上記光触媒ヒドロゾルをポリエチレングリコール類の如き相間移動活性を有する化合物(異なる第1の相と第2相との界面に第3の相を形成し、第1の相、第2の相、第3の相を相互に溶解及び/又は可溶化する化合物)で処理し有機溶媒で希釈したり(例えば特開平10−167727号公報)、ドデシルベンゼンスルホン酸ナトリウム等の陰イオン界面活性剤で水に不溶性の有機溶剤中に分散移行させてゾルを調整する方法(例えば特開昭58−29863号公報)やブチルセロソルブ等の水より高沸点のアルコール類を上記光触媒ヒドロゾルに添加した後、水を(減圧)蒸留等によって除去する方法等により得ることができる。また、実質的に有機溶媒を分散媒とし、その中に酸化チタン粒子が分散された酸化チタンオルガノゾルは市販されている(例えば、テイカ株式会社製「TKS−251」)。ここで、実質的に有機溶媒を分散媒とするとは、分散媒中に有機溶媒が80質量%程度以上含有されていることを意味する。
また、光触媒分散液は、上述した光触媒粒子(a1)の粉体を、必要に応じて分散安定剤を添加し、強力なせん断力の下で水中及び/または有機溶媒中に分散させることにより得ることができる。
本発明において、変性光触媒(A)を得るのに用いられる少なくとも1種の変性剤化合物(b)は、式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、及びフッ化メチレン(―CF−)単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる。
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す)
−(RSiO)− (2)
(式中、Rは式(1)で定義した通りである。)
Figure 0004371789
(式中、Rは式(1)で定義した通りである。)
本発明において、光触媒粒子(a1)等のナノスケール粒子(a)の変性剤化合物(b)による変性処理は、水及び/又は有機溶媒の存在、あるいは非存在下において、前述したナノスケール粒子(a)と、同じく前述した変性剤化合物(b)を好ましくは質量比(a)/(b)=1/99〜99.99/0.01、より好ましくは(a)/(b)=10/90〜99.5/0.5の割合で混合し、好ましくは0〜200℃、より好ましくは10〜80℃にて加熱したり、(減圧)蒸留等により該混合物の溶媒組成を変化させる等の操作をすることにより得ることができる。
ここで上記変性処理を行う場合、使用できる有機溶媒としては、例えばトルエンやキシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素類、酢酸エチル、酢酸n−ブチル等のエステル類、エチレングリコール、ブチルセロソルブ、イソプロパノール、n−ブタノール、エタノール、メタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化合物類、ジメチルスルホキシド、ニトロベンゼン等やこれらの2種以上の混合物が挙げられる。
本発明の変性ナノスケール粒子(A)を得るのに使用される上記変性剤化合物(b)としては、例えばSi−H基、加水分解性シリル基(アルコキシシリル基、ヒドロキシシリル基、ハロゲン化シリル基、アセトキシシリル基、アミノキシシリル基等)、エポキシ基、アセトアセチル基、チオール基、酸無水物基等のナノスケール粒子(a)と反応性を有する、ケイ素化合物、フルオロアルキル化合物、フルオロオレフィン重合体等を挙げることができる。
また、上記変性剤化合物(b)の他の例としては、例えばナノスケール粒子(a)とファン・デル・ワールス力、クーロン力等により相互作用する構造、例えばポリオキシアルキレン基、スルホン酸基、カルボキシル基等を有する、ケイ素化合物、フルオロアルキル化合物、フルオロオレフィン重合体等を挙げることができる。
本発明において、上記変性剤化合物(b)として、組成式(6)で表されるSi−H基含有ケイ素化合物(b1)を用いると、非常に効率よく光触媒粒子表面を変性することができると共に、種々の機能性基をナノスケール粒子(a)に有効に導入することもできるため好ましい。
SiO(4−x−y−z)/2 (6)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。
また、式中Qは、又は下記(あ)〜(う)からなる群より選ばれる少なくとも1つの機能性付与基を含有する基である。
(あ)カルボキシル基あるいはその塩、リン酸基あるいはその塩、スルホン酸基あるいはその塩、アミノ基あるいはその塩、ポリオキシアルキレン基からなる群から選ばれた少なくとも1つの親水性基。
(い)エポキシ基、アクリロイル基、メタアクリロイル基、(環状)酸無水物基(本発明において環状酸無水物基と非環状酸無水物基をまとめて表す)、ケト基、カルボキシル基、ヒドラジン残基、イソシアネート基、イソチオシアネート基、水酸基、アミノ基、環状カーボネート基、チオール基、エステル基からなる群から選ばれた少なくとも1つの反応性基。
(う)少なくとも1つの分光増感基。
また、0<x<4、0<y<4、0≦z<4、及び(x+y+z)≦4である。)
本発明において、ナノスケール粒子(a)の上記組成式(6)で表されるSi−H基含有ケイ素化合物(b1)による変性処理は、水及び/又は有機溶媒の存在、あるいは非存在下において、ナノスケール粒子(a)と該Si−H基含有ケイ素化合物(b1)を好ましくは質量比(a)/(b1)=1/99〜99.99/0.01、より好ましくは(a)/(b1)=10/90〜99.5/0.5の割合で、好ましくは0〜200℃にて混合することにより実施できる。この変性の操作により混合液からは水素ガスが発生すると共に、ナノスケール粒子(a)としてゾルまたは分散液を用いた場合、その平均分散粒子径の増加が観察される。また、例えばナノスケール粒子(a)として酸化チタンを用いた場合、上記変性の操作により、Ti−OH基の減少がIRスペクトルにおける3630〜3640cm−1の吸収の減少として観測される。
これらのことより、変性剤化合物(b)として上記式(6)で表されるSi−H基含有ケイ素化合物(b1)を選択した場合は、本発明の変性ナノスケール粒子(A)は、Si−H基含有ケイ素化合物(b1)とナノスケール粒子(a)との単なる混合物ではなく、両者の間には化学反応に伴う何らかの相互作用を生じていることが予測できるため非常に好ましい。実際、この様にして得られた変性ナノスケール粒子(A)は、溶媒に対する分散安定性や化学的安定性、耐久性等等において非常に優れたものとなる。
本発明の上記式(6)で表されるSi−H基含有ケイ素化合物において、Si−H基は光触媒を穏和な条件で選択性良く変性するために好ましい官能基である。これに対し、加水分解性基は、同様に光触媒の変性に利用することもできるが、副反応を抑制し、得られる変性光触媒の安定性を向上するためには、その含有量は少ない方が好ましい。
即ち、本発明で好適に利用できるSi−H基含有ケイ素化合物(b1)としては、例えば式(7)で表されるSi−H基含有ケイ素化合物を挙げることができる。
R’SiO(4−x−y−z)/2 (7)
(式中、R’は各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基を表す。また、式中Qは式(6)で定義した通りである。また、0<x<4、0<y<4、0≦z<4、及び(x+y+z)≦4である。)
また、本発明に好適に使用できる上記一般式(6)で表されるSi−H基含有ケイ素化合物(b1)としては、例えば式(8)や式(9)で表されるモノSi−H基含有化合物、式(10)で表される両末端Si−H基含有化合物、式(11)で表されるHシリコーン化合物よりなる群から選ばれる少なくとも1種のSi−H基含有ケイ素化合物を挙げることができる。
Figure 0004371789
(式中、Rは各々独立して直鎖状または分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数が1〜30個のフルオロアルキル基、炭素数2〜30のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、水酸基、もしくは式(12)で表されるシロキシ基から選ばれた1種以上からなる基を表す。
−O−(R SiO)−SiR ・・・(12)
(式中、Rはそれぞれ独立に直鎖状または分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、炭素数2〜30のアルケニル基、フェニル基から選ばれた1種以上からなる基を表す。また、nは整数であり、0≦n≦1000である。))
H−(R SiO)−SiR −Q ・・・(9)
(式中、Rは式(8)で定義した通りである。Qは式(6)で定義した通りである。mは整数であり、0≦m≦1000である。)
H−(R SiO)−SiR −H ・・・(10)
(式中、Rは式(8)で定義した通りである。mは整数であり、0≦m≦1000である。)
(RHSiO)(R SiO)(RQSiO)(R SiO1/2
・・・(12)
(式中、Rは式(8)で定義した通りであり、Qは式(6)で定義した通りである。pは1以上の整数であり、q及びrは0又は1以上の整数であり、(p+q+r)≦10000であり、そしてsは0又は2である。但し、(p+q+r)が2以上の整数であり且つs=0の場合、該Hシリコーン化合物は環状シリコーン化合物であり、s=2の場合、該Hシリコーン化合物は鎖状シリコーン化合物である。)
本発明において、上記式(8)で表されるモノSi−H基含有化合物の具体例としては、例えばビス(トリメチルシロキシ)メチルシラン、ビス(トリメチルシロキシ)エチルシラン、ビス(トリメチルシロキシ)n−プロピルシラン、ビス(トリメチルシロキシ)i−プロピルシラン、ビス(トリメチルシロキシ)n−ブチルシラン、ビス(トリメチルシロキシ)n−ヘキシルシラン、ビス(トリメチルシロキシ)シクロヘキシルシラン、ビス(トリメチルシロキシ)フェニルシラン、ビス(トリエチルシロキシ)メチルシラン、ビス(トリエチルシロキシ)エチルシラン、トリス(トリメチルシロキシ)シラン、トリス(トリエチルシロキシ)シラン、ペンタメチルジシロキサン、1,1,1,3,3,5,5−ヘプタメチルトリシロキサン、1,1,1,3,3,5,5,6,6−ノナメチルテトラシロキサン、トリメチルシラン、エチルジメチルシラン、メチルジエチルシラン、トリエチルシラン、フェニルジメチルシラン、ジフェニルメチルシラン、シクロヘキシルジメチルシラン、t−ブチルジメチルシラン、ジ−t−ブチルメチルシラン、n−オクタデシルジメチルシラン、トリ−n−プロピルシラン、トリ−i−プロピルシラン、トリ−i−ブチルシラン、トリ−n−ヘキシルシラン、トリフェニルシラン、アリルジメチルシラン、1−アリル−1,1,3,3−テトラメチルジシロキサン、クロロメチルジメチルシラン、7−オクテニルジメチルシラン等を挙げることができる。
これらのモノSi−H基含有化合物の中で、ナノスケール粒子の変性処理時におけるSi−H基の反応性(脱水素縮合反応)の良さや表面エネルギーの低さから、ビス(トリメチルシロキシ)メチルシラン、トリス(トリメチルシロキシ)シラン、ペンタメチルジシロキサン等の分子中にシロキシ基を有するものが好ましい。
本発明において、上記式(10)で表される両末端Si−H基含有化合物の具体例としては、例えば1,1,3,3−テトラメチルジシロキサン、1,1,3,3,5,5−ヘキサメチルトリシロキサン、1,1,3,3,5,5,7,7−オクタメチルテトラシロキサン等の数平均分子量50000以下のH末端ポリジメチルシロキサン類や、1,1,3,3−テトラエチルジシロキサン、1,1,3,3,5,5−ヘキサエチルトリシロキサン、1,1,3,3,5,5,7,7−オクタエチルテトラシロキサン等の数平均分子量50000以下のH末端ポリジエチルシロキサン類や、1,1,3,3−テトラフェニルジシロキサン、1,1,3,3,5,5−ヘキサフェニルトリシロキサン、1,1,3,3,5,5,7,7−オクタフェニルテトラシロキサン等の数平均分子量50000以下のH末端ポリジフェニルシロキサン類や、1,3−ジフェニル−1,3−ジメチル−ジシロキサン、1,3,5−トリメチル−1,3,5−トリフェニル−トリシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラフェニル−テトラシロキサン等の数平均分子量50000以下のH末端ポリフェニルメチルシロキサン類や、ジメチルシラン、エチルメチルシラン、ジエチルシラン、フェニルメチルシラン、ジフェニルシラン、シクロヘキシルメチルシラン、t−ブチルメチルシラン、ジ−t−ブチルシラン、n−オクタデシルメチルシラン、アリルメチルシラン等を例示することができる。
本発明に用いる上記式(10)で表される両末端Si−H基含有化合物としては、ナノスケール粒子の変性処理時における分散安定性(ナノスケール粒子の凝集の防止)の点より、数平均分子量が、好ましくは10000以下、より好ましくは2000以下、さらに好ましくは1000以下の両末端Si−H基含有化合物が好適に使用できる。
本発明に用いることができる上記式(11)で表されるHシリコーン化合物としては、ナノスケール粒子の変性処理時における分散安定性(ナノスケール粒子の凝集の防止)の点より、数平均分子量が、好ましくは10000以下、より好ましくは5000以下、さらに好ましくは2000以下のHシリコーン化合物が好適に使用できる。
また、上記一般式(6)で表されるSi−H基含有ケイ素化合物(b1)として、機能性付与基含有基(Q)を有するもの(式(9)、式(11)であってrが1以上の正数のもの等)を選択すると、本発明で得られる変性光触媒(A)に種々の機能を付与できるため好ましい。
ここで機能性付与基含有基(Q)は下式(13)で表される基であることが好ましい。
−Z−(W) ・・・(13)
(式中、Zは分子量14〜50,000のa価の有機基(当該有機基Zの珪素原子との結合以外にc価である基)を表し、Wは上記式(6)中の機能性付与基(あ)〜(う)からなる群から選ばれる少なくとも1つであり、aは1〜20の整数である。)
例えば機能性付与基含有基(Q)として、カルボキシル基あるいはその塩を含む1価の基、リン酸基あるいはその塩を含む1価の基、スルホン酸基あるいはその塩を含む1価の基、アミノ基あるいはその塩を含む1価の基、ポリオキシアルキレン基からなる群から選ばれた少なくとも1つの親水性基[式(6)中の(あ)]を有するものを選択すると、得られる変性ナノスケール粒子(A)の水に対する分散安定性が非常に良好なものとなる。
また、例えば機能性付与基含有基(Q)として、エポキシ基、アクリロイル基、メタアクリロイル基、(環状)酸無水物基、ケト基、カルボキシル基、ヒドラジン残基、イソシアネート基、イソチオシアネート基、水酸基、アミノ基、環状カーボネート基、チオール基、エステル基からなる群から選ばれた少なくとも1つの反応性基[式(6)中の(い)]を含有する基を選択すると本発明の変性ナノスケール粒子(A)は架橋性を有し、本発明の変性ナノスケール粒子組成物から形成される多層構造体の硬度や耐薬品性が向上するため好ましい。
また、例えば機能性付与基含有基(Q)として、分光増感基を有するものを選択すると、本発明の変性ナノスケール粒子(A)が変性光触媒粒子(A1)の場合は、紫外線領域だけでなく、可視光領域及び/又は赤外光領域の光の照射によっても触媒活性や光電変換機能を発現することができる。
ここで、分光増感基とは、可視光領域及び/又は赤外光領域に吸収を持つ種々の金属錯体や有機色素(即ち、増感色素)に由来する基を意味する。
増感色素としては、例えばキサンテン系色素、オキソノール系色素、シアニン系色素、メロシアニン系色素、ローダシアニン系色素、スチリル系色素、ヘミシアニン系色素、メロシアニン系色素、フタロシアニン系色素(金属錯体を含む)、ポルフィリン系色素(金属錯体を含む)、トリフェニルメタン系色素、ペリレン系色素、コロネン系色素、アゾ系色素、ニトロフェノール系色素、さらには例えば特開平1−220380号公報や特許出願公表平5−504023号公報に記載のルテニウム、オスミウム、鉄、亜鉛の錯体や、他にルテニウムレッド等の金属錯体を挙げることができる。
これらの増感色素の中で、400nm以上の波長領域で吸収を持ち、かつ最低空軌道のエネルギー準位(励起状態の酸化還元電位)が光触媒の伝導帯のエネルギー準位より高いという特徴を有するものが好ましい。このような増感色素の特徴は、赤外・可視・紫外領域における光の吸収スペクトルの測定、電気化学的方法による酸化還元電位の測定(例えばT.Tani, Photogr. Sci. Eng., 14, 72 (1970); R.W.Berriman et al., ibid., 17. 235 (1973); P.B.Gilman Jr., ibid., 18, 475 (1974)等)、分子軌道法を用いたエネルギー準位の算定(例えばT.Tani et al., Photogr. Sci. Eng., 11, 129 (1967); D.M.Sturmer et al., ibid., 17. 146 (1973); ibid., 18, 49 (1974); R.G.Selby et al., J. Opt. Soc. Am., 33, 1 (1970)等)、更には光触媒と分光増感色素によって作成したGratzel型湿式太陽電池の光照射による起電力の有無や効率等によって確認することができる。
上記の特徴を有する増感色素の例としては、9−フェニルキサンテン骨格を有する化合物、2,2−ビピリジン誘導体を配位子として含むルテニウム錯体、ペリレン骨格を有する化合物、フタロシアニン系金属錯体、ポルフィリン系金属錯体等を挙げることができる。
また、本発明に使用される変性剤化合物(b)として、例えばSi−H基、加水分解性シリル基(アルコキシシリル基、ヒドロキシシリル基、ハロゲン化シリル基、アセトキシシリル基、アミノキシシリル基等)、エポキシ基、アセトアセチル基、チオール基、酸無水物基等のナノスケール粒子と化学結合の生成が期待できる反応性基やポリオキシアルキレン基、、スルホン酸基、カルボキシル基等のナノスケール粒子との親和性が期待できる親水性基を有する、炭素数1〜30のフルオロアルキル化合物や数平均分子量100〜1,000,000のフルオロアルキレン化合物等のフッ素系化合物を使用すると、得られる変性ナノスケール粒子(A)の表面エネルギーは非常に小さくなり、本発明の変性ナノスケール粒子組成物は、自己組織化能力が非常に高くなるため好ましい。
上記フッ素系化合物としては、例えば式(14)で表されるフルオロアルキル化合物、及び式(15)で表されるフルオロオレフィン重合体が挙げられる。
CF3(CF2)g−Y−(V)w (14)
(式中、gは0〜29の整数を表す。Yは分子量14〜50000のw価の有機基を表す。wは1〜20の整数である。Vは、エポキシ基、水酸基、アセトアセチル基、チオール基、環状酸無水物基、カルボキシル基、スルホン酸基、ポリオキシアルキレン基、及び下式で表される基からなる群から選ばれた少なくとも1つの官能基を表す。
−SiWxRy
(式中、Wは炭素数1〜20のアルコキシ基、水酸基、炭素数1〜20のアセトキシ基、ハロゲン原子、水素原子、炭素数1〜20のオキシム基、エノキシ基、アミノキシ基、アミド基から選ばれた少なくとも1種の基を表す。Rは、直鎖状または分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、及び置換されていないか或いは炭素数1〜20のアルキル基又は炭素数1〜20のアルコキシ基、又はハロゲン原子で置換されている炭素数6〜20のアリール基から選ばれる少なくとも1種の炭化水素基を表す。xは1以上3以下の整数であり、yは0以上2以下の整数である。また、x+y=3である。))
Figure 0004371789
(式中、A〜Aは同一でも異なっていても良く、それぞれフッ素原子、水素原子、塩素原子、炭素数1〜6のアルキル基、及び炭素数1〜6のハロ置換アルキル基から選ばれる1種を示す。Yは分子量14〜50000のw価の有機基(当該有機基Yの主鎖との結合以外にw価である基、好ましくはフッ化メチレン単位を有する基、より好ましくはパーフルオロアルキル基を有する基)を表す。Vは、エポキシ基、水酸基、アセトアセチル基、チオール基、環状酸無水物基、カルボキシル基、スルホン酸基、ポリオキシアルキレン基、加水分解性シリル基からなる群から選ばれた少なくとも1つの官能基を表す。kは0以上1000000以下の整数であり、lは1以上100000以下の整数を表す。ただし、k=0の時は、好ましくはA〜Aの少なくとも1つがフッ素原子、より好ましくはA、Aが共にフッ素原子を表す。wは1〜20の整数である。)
上記フッ素系化合物の具体的な例としては、例えば2−パーフルオロオクチルエチルトリメトキシシラン、2−パーフルオロオクチルエチルトリエトキシシラン、2−パーフルオロオクチルエチルメチルジメトキシシラン、トリフルオロメチルエチルトリメトキシシラン、トリフルオロメチルエチルトリエトキシシラン等のフルオロアルキルシラン類、ナフィオン樹脂、クロロトリフルオロエチレンやテトラフルオロエチレン等のフルオロオレフィン類とエポキシ基、水酸基、カルボキシル基、アセトアセチル基、チオール基、環状酸無水物基、スルホン酸基、ポリオキシアルキレン基等を有するモノマー類(ビニルエーテル、ビニルエステル、アリル化合物等)との共重合体等を挙げることができる。
本発明において、ナノスケール粒子(a)の上記フッ素系化合物(b2)による変性処理は、水及び/又は有機溶媒の存在、あるいは非存在下において、ナノスケール粒子(a)と該フッ素系化合物(b2)を好ましくは質量比(a)/(b2)=1/99〜99.99/0.01、より好ましくは(a)/(b2)=10/90〜99.5/0.5の割合で好ましくは0〜200℃にて混合し、好ましくは(減圧)蒸留等により該混合物の溶媒組成を変化させる等の操作をすることにより得ることができる。
本発明における変性ナノスケール粒子(A)の好ましい形態は、変性ナノスケール粒子の一次粒子と二次粒子との混合物の数平均分散粒子径が800nm以下、さらに好ましくは1nm以上400nm以下、特に好ましくは5nm以上100nm以下である。ゾルまたは分散液の状態であることが好ましい。
また、特に数平均分散粒子径が400nm以下の変性ナノスケール粒子ゾルまたは変性ナノスケール粒子分散液を本発明のナノスケール粒子組成物に用いると、それからは多層構造体が容易に形成されるため非常に好ましい。この様な変性ナノスケール粒子ゾルは、上記変性剤化合物(b)で変性処理をするナノスケール粒子(a)として前述したナノスケール粒子ゾルまたはナノスケール粒子分散液を用いることにより得ることができる。また、ナノスケール粒子粉体を変性剤化合物(b)で変性処理した場合は、変性処理後にビーズミル、ボールミル等で溶媒に分散させて本発明の変性ナノスケール粒子組成物に供するのが好ましい。
なお、従来、二酸化チタンなどで単に粒径として表示されている数値は、多くの場合一次粒子径(結晶子径)であり、凝集による二次粒子径を考慮した数値ではない。
本発明の変性ナノスケール粒子組成物は、上述した変性ナノスケール粒子(A)と該変性ナノスケール粒子(A)より表面エネルギーが大きいバインダー成分(B)を含有することを特徴とする。
本発明の変性ナノスケール粒子組成物(C)における変性ナノスケール粒子(A)とバインダー成分(B)の質量比(A)/(B)は0.1/99.9〜95/5であることが好ましく、(A)/(B)が1/99〜50/50であることがより好ましい。
本発明の変性ナノスケール粒子組成物(C)において、変性ナノスケール粒子(A)より表面エネルギーの高いバインダー成分(B)としては、例えば合成樹脂及び天然樹脂、各種単量体等が挙げられ、また光触媒体の形成後に、乾燥、加熱、吸湿、光照射等により硬化するものを特に好ましく挙げることができる。
上記合成樹脂としては、変性ナノスケール粒子(A)より表面エネルギーの高い全ての熱可塑性樹脂と硬化性樹脂(熱硬化性樹脂、光硬化性樹脂、湿気硬化性樹脂等)の使用が可能であり、例えばアクリル樹脂、メタクリル樹脂、アルキド樹脂、アミノアルキド樹脂、ビニル樹脂、ポリエステル樹脂、スチレン−ブタジエン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリケトン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリスルフォン樹脂、ポリフェニレンスルホン樹脂、ポリエーテル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、シリコン−アクリル樹脂、シリコーン樹脂、フッ素樹脂、さらには水ガラスやジルコニウム化合物、過酸化チタン等の無機系化合物等を挙げることができる。
また、上記天然高分子としては、ニトロセルロース等のセルロース系樹脂、天然ゴム等のイソプレン系樹脂、カゼイン等のタンパク質系樹脂やでんぷん等を挙げることができる。
本発明において、上記表面エネルギーや表面エネルギーの相対差は、例えばPolymer Handbook(米国 A Wiley-interscience publication 出版)等を参照したり、ぬれ張力試験(JIS K 6768)や、さらには以下の方法等で測定することにより好ましく求めることができる。
例えば、バインダー成分(B)の皮膜を有する基材を調整し、脱イオン水を滴下して20℃における接触角(θ)を測定し、下記のSellとNeumannの実験式により、表面エネルギーを求めることもできる。
Figure 0004371789
[式中、γsは脱イオン水の接触角を測定した表層部の表面エネルギー(mN/m)を表し、γlは水の表面エネルギー{72.8mN/m(20℃)}を表わす。]
本発明の変性ナノスケール粒子組成物に用いるバインダー成分(B)としては、上述した変性ナノスケール粒子(A)より、表面エネルギーが好ましくは2mN/m以上、より好ましくは5mN/m以上、更に好ましくは10mN/m以上大きいものを選択すると、上記自己組織化能力が大きくなり非常に好ましい。
本発明の変性ナノスケール粒子組成物(C)が変性光触媒粒子組成物(C1)であって、変性光触媒粒子(A1)と共に用いることができる表面エネルギーの比較的大きなバインダー成分(B)としては、例えば、下式(4)で表されるフェニル基含有シリコーン(BP)が、その骨格を成すシロキサン結合(−O−Si−)は光触媒作用による酸化分解がおこらないため、最も好適に使用できる。
SiO(4−p−q−r)/2 (4)
(式中、各Rはフェニル基を表し、Rは各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。そしてp、q及びrは、0<p<4、0≦q<4、0≦r<4、及び0<(p+q+r)<4であり、そして0.05≦p/(p+q)≦1である。)
また、上記フェニル基含有シリコーン(BP)として、下記式(16)で表されるアルキル基を含有しないフェニル基含有シリコーン(BP1)は、表面エネルギーがより高くなり、好ましい。
SiO(4−s−t)/2 (16)
(式中、Rはフェニル基を表し、Xは各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表し、s及びtは、0<s<4、0≦t<4、そして0<(s+t)<4である。)
また、バインダー成分(B)として上述したフェニル基含有シリコーン(BP)等のシリコーン樹脂を含有する場合であって、該シリコーン樹脂がヒドロキシシリル基及び/又は加水分解性シリル基を有する場合、従来公知の加水分解触媒や硬化触媒を、該シリコーン樹脂に対し、好ましくは0.01〜30質量%、より好ましくは0.1〜15質量%の割合で添加することができる。
該加水分解触媒としては、酸性のハロゲン化水素、カルボン酸、スルホン酸、酸性あるいは弱酸性の無機塩、イオン交換樹脂などの固体酸などが好ましい。また、加水分解触媒の量は、ケイ素原子上の加水分解性基1モルに対して好ましくは0.001〜5モルの範囲内であることが好ましい。
また上記硬化触媒としては、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、酢酸ナトリウム、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムヒドロキシドのごとき塩基性化合物類;トリブチルアミン、ジアザビシクロウンデセン、エチレンジアミン、ジエチレントリアミン、エタノールアミン類、γ−アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)−アミノプロピルトリメトキシシランのごときアミン化合物;テトライソプロピルチタネート、テトラブチルチタネートのようなチタン化合物;アルミニウム−トリイソプロポキシド、アルミニウム−トリアセチルアセトナート、トリス−(エチルアセトアセトナト)アルミニウム、過塩素酸アルミニウム、塩化アルミニウムのようなアルミニウム化合物;錫アセチルアセトナート、ジブチル錫オクチレート、ジブチル錫ジラウレートのような錫化合物;ジルコニウム−テトラアセチルアセトナート、テトラ−(エチルアセトアセトナト)ジルコニウム、ジルコニウム−トリブトキシ−アセチルアセトナート、ジルコニウム−ジブトキシ−ジアセチルアセトナート、ジルコニウム−ジクロロ−ジアセチルアセトナート、テトラブチルジルコネートのようなジルコニウム化合物;コバルトオクチレート、コバルトアセチルアセトナート、鉄アセチルアセトナートのごとき含金属化合物類;リン酸、硝酸、フタル酸、p−トルエンスルホン酸、トリクロル酢酸のごとき酸性化合物類などが挙げられる。
本発明において、上記硬化触媒のうちジルコニウム化合物、好ましくはジルコニウム−テトラアセチルアセトナートを使用した光触媒組成物は、非常に貯蔵安定性が優れるだけでなく、それから形成する光触媒体は硬度、耐薬品性、耐沸騰水性、耐候性等に非常に優れたものとなるため好ましい。
また、本発明の光触媒組成物におけるバインダー成分(B)としては、水酸基及び/又は炭素数1〜20のアルコキシ基、エノキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子からなる群より選ばれる少なくとも1つの加水分解性基と結合したケイ素原子を有するシリル基を重合体分子鎖の末端及び/又は側鎖に有するアクリル重合体も、表面エネルギーが比較的高く、耐候性に優れるため好ましく用いることができる。
本発明の変性ナノスケール粒子組成物(C)において、上記変性ナノスケール粒子(A)と親和力を有するシリコーン系樹脂及びフッ素系樹脂から選ばれるバインダー成分(D)を質量比(A)/(D)=5/95〜95/5、好ましくは(A)/(D)=30/70〜90/10で含むものは、該バインダー成分(D)が変性ナノスケール粒子(A)の自己組織化機能を助長する作用を有するため、優れた自己組織化能力を有するの変性ナノスケール粒子組成物となり、非常に好ましい。
本発明の変性ナノスケール粒子組成物(C)において、バインダー成分(D)として好適に使用できるフッ素系樹脂としては、例えば2−パーフルオロオクチルエチルトリメトキシシラン、2−パーフルオロオクチルエチルトリエトキシシラン、2−パーフルオロオクチルエチルメチルジメトキシシラン、トリフルオロメチルエチルトリメトキシシラン、トリフルオロメチルエチルトリエトキシシラン等のフルオロアルキルシラン類やその重縮合体、PTFEやポリフッ化ビニリデン、さらにはナフィオン樹脂、クロロトリフルオロエチレンやテトラフルオロエチレン等のフルオロオレフィン類とモノマー類(ビニルエーテル、ビニルエステル、アリル化合物等)との共重合体等を挙げることができる。これらのフッ素系樹脂は、単独でも、2種以上を同時に用いることもできる。
また、本発明の変性ナノスケール粒子組成物(C)において、バインダー成分(D)として好適に使用できるシリコーン系樹脂としては、例えばジメチルポリシロキサン、メチルフェニルポリシロキサン、メチルハイドロジェンポリシロキサン、アルコキシ基含有シリコーンオイル、シラノール基含有シリコーンオイル、ビニル基含有シリコーンオイル、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等のシリコーンオイル類、ポリエーテル変性シリコーン、ポリグリセリン変性シリコーン、アミノ変性シリコーン、エポキシ変性シリコーン、メルカプト変性シリコーン、メタクリル変性シリコーン、カルボン酸変性シリコーン、脂肪酸エステル変性シリコーン、アルコール変性シリコーン、アルキル変性シリコーン、フロロアルキル変性シリコーン等の変性シリコーン類、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン等の(アルキル)アルコキシシランのモノマー、オリゴマー、及び重合体、ビニルトリクロルシラン、ビニルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン等のシランカップリング剤及びその反応生成物、シリコーン界面活性剤等である。これらのシリコーンは単独でも、2種以上を同時に用いることもできる。
本発明の光触媒組成物においてバインダー成分(B)として上述したフェニル基含有シリコーン(BP)を使用する場合、上記バインダー成分(D)として、下式(5)で表されるアルキル基含有シリコーン(DA)用いると、本発明の光触媒組成物から形成される光触媒体は、成膜性、硬度、耐熱性、耐汚染性、耐薬品性等の点で優れたものとなるため好ましい。
SiO(4−u−v)/2 (5)
(式中、Rは直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基から選ばれた1種以上からなる基を表す。Xは、式(4)で定義した通りである。0<u<4、0≦v<4、及び0<(u+v)<4である。)
また、本発明の変性ナノスケール粒子組成物(C)には、必要により通常、塗料や成型用樹脂に添加配合される成分、例えば、顔料、硬化触媒、架橋剤、充填剤、分散剤、光安定剤、湿潤剤、増粘剤、レオロジーコントロール剤、消泡剤、可塑剤、成膜助剤、防錆剤、染料、防腐剤等がそれぞれの目的に応じて選択、組み合わせて配合することができる。
本発明の別の態様においては、多層構造体を基材上に有する機能性複合体が提供される。
本発明の機能性複合体を得るのに用いられる基材としては、特に限定はされなく、例えば本発明で開示した用途に使用される基材は全て用いることができる。
本発明の機能性複合体を得るのに用いられる基材としては、例えば合成樹脂、天然樹脂等の有機基材や、金属、セラミックス、ガラス、石、セメント、コンクリート等の無機基材や、それらの組み合わせ等を挙げることができる。
本発明の機能性複合体においては、ナノスケール粒子(a)として光触媒粒子(a1)を用いた場合、基材として光触媒活性で分解する有機基材を用いた場合でも、耐久性は非常に優れたものとなる。すなわち、本発明の光触媒機能を有する場合の多層構造体は、耐久性の問題から従来用いることができなかった有機基材に対しても、耐久性の優れた機能性複合体を提供することができる。
本発明の機能性複合体の製造方法は、基材上に本発明の多層構造体を形成する場合に限定されない。基材と同時に成形、たとえば、一体成形してもよい。また、本発明の変性ナノスケール粒子組成物を成形後、基材の成形を行ってもよい。また、本発明の多層構造体と基材を個別に成形後、接着、融着等により機能性複合体としてもよい。上記方法で、本来の基材と接しない状態で成形する場合は別の基材を用いても良い。この場合の基材は固体に限定されず、本発明の効果を損なわない範囲で、液体、気体でも良い。
本発明の多層構造体において、ナノスケール粒子(a)が光触媒粒子(a1)の場合、それに含まれる光触媒粒子(a1)のバンドギャップエネルギーよりも高いエネルギーの光を照射することにより親水性及び/又は光触媒活性、さらには光電変換機能を示す。
この際、変性光触媒粒子(A1)が、上述した式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる少なくとも1種の変性剤化合物(b)で光触媒粒子(a1)を変性処理したものである場合、励起光照射により光触媒粒子(a1)の近傍に存在する該変性剤化合物(b)の珪素原子に結合した有機基(R)の少なくとも一部は、光触媒の分解作用により水酸基に置換される。その結果、本発明の光触媒体表面の親水性が高まると共に、生成した水酸基同士が脱水縮合反応してシロキサン結合が生成した場合には、該光触媒体の硬度が非常に高くなる。この様な状態は、本発明の様態において好ましい。
また、バインダー成分(B)として上述したシリコーン系樹脂を用いたときも同様に、励起光照射により光触媒粒子(a1)の近傍に存在するシリコーンの珪素原子に結合した有機基の少なくとも一部は、光触媒の分解作用により水酸基に置換され、本発明の光触媒体表面の親水性が高まると共に、生成した水酸基同士の脱水縮合反応が進行しシロキサン結合が生成した場合には、該光触媒体の硬度が非常に高くなる。この様な状態は、本発明の様態において好ましい。
本発明において、光触媒粒子(a1)のバンドギャップエネルギーよりも高いエネルギーの光の光源としては、太陽光や室内照明灯等の一般住宅環境下で得られる光の他、ブラックライト、キセノンランプ、水銀灯、LED等の光が利用できる。
以下の実施例、参考例及び比較例により本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
実施例、参考例及び比較例中において、各種の物性は下記の方法で測定した。
1.粒径分布及び数平均粒子径
試料中の光触媒含有量が1〜20質量%となるよう適宜溶媒を加えて希釈し、湿式粒度分析計(日機装製マイクロトラックUPA−9230)を用いて測定した。
2.重量平均分子量
ポリスチレン標品を用いて作成した検量線を用い、ゲルパーミエーションクロマトグラフィー(GPC)によって求めた。
GPCの条件は以下の通りである。
・装置:東ソー製HLC−8020 LC−3A型クロマトグラフ
・カラム:TSKgel G1000HXL、TSKgel G2000HXLおよびTSKgel G4000HXL(いずれも東ソー製)を直列に接続して用いた。
・データ処理装置:島津製作所製CR−4A型データ処理装置
・移動相:
テトラヒドロフラン(フェニル基含有シリコーンの分析に使用)
トルエン(フェニル基を含有しないシリコーンの分析に使用)
・流速:1.0ml/min.
・サンプル調製法
移動相に使用する溶媒で希釈(濃度は0.5〜2重量%の範囲で適宜調節した)して分析に供した。
3.赤外線吸収スペクトル
日本分光製FT/IR−5300型赤外分光計を用いて測定した。
4.29Si核磁気共鳴の測定
日本電子製JNM−LA400を用いて測定した。
5.皮膜硬度
JIS−K5400に準じ、鉛筆硬度(皮膜のすり傷)として求めた。
6.紫外線照射後の皮膜硬度
皮膜表面に、東芝ライテック製FL20S BLB型ブラックライトの光を7日間照射後、上記の方法(5)にて測定した。
なおこのとき、日本国トプコン製UVR−2型紫外線強度計{受光部として、日本国トプコン製UD−36型受光部(波長310〜400nmの光に対応)を使用}を用いて測定した紫外線強度が1mW/cmとなるよう調整した。
7.皮膜表面に対する水の接触角
皮膜の表面に脱イオン水の滴を乗せ、20℃で1分間放置した後、協和界面科学製CA−X150型接触角計を用いて測定した。
皮膜に対する水の接触角が小さいほど、皮膜表面は親水性が高い。
8.紫外線照射前後の、皮膜表面の親水性(疎水性)の変化
皮膜の表面に、上記6の方法で紫外線を7日間照射した後、上記7の方法にて水の接触角を測定した。
9.光触媒活性
皮膜表面にメチレンブルーの5質量%エタノール溶液を塗布した後、上記6の方法にて紫外線を5日間照射した。
その後、光触媒の作用によるメチレンブルーの分解の程度(皮膜表面の退色の程度に基づき、目視で評価)に基づき、光触媒の活性を以下の3段階で評価した。
◎:メチレンブルーが完全に分解。
△:メチレンブルーの青色がわずかに残る。
×:メチレンブルーの分解はほとんど観測されず。
10.耐候性(光沢保持率)
スガ試験器製DPWL−5R型デューパネル光コントロールウェザーメーターを使用して曝露試験(照射:60℃4時間、暗黒・湿潤:40℃4時間)を行った。曝露1000時間後の60°−60°鏡面反射率を最終的な光沢値として測定し、これを初期光沢値で割り、この値を光沢保持率として算出した。また、色差計でL値を測定し、初期L値との差から△Lを求めて外観変化の尺度とした。(△Lが小さいほど外観の変化は少ない)
11.耐候性試験後のテープ剥離試験
耐候性試験(上記10)後の皮膜にセロハン粘着テープ(JIS Z1522)を貼り付けた後、一気に剥がして皮膜の目視観察を行い、以下の3段階で評価した。
◎:外観は全く変化せず。
△:若干の剥がれが生じる。
×:皮膜表層が全て剥がれる。
12.耐汚染性
試験板を一般道路(トラック通行量500〜1000台/日程度)に面したフェンスに3ケ月間張りつけた後、試験板表面を水洗し、汚染の度合いを目視にて評価した。
13.多層構造の評価
アクリルウレタン系のベースコート層を有するアルミ板上に形成させた皮膜の観察は、試料をDISCOエンジニアリングサービス製DAD321型ダイシングソーで粗切断した後、FIB(Focused Ion Beam)加工を行い、TEMによる皮膜断面の観察を実施した。
FIB加工条件は以下の通りである。
使用機器:日立製FB2000型
加工条件:加速電圧(30kV)
イオン源:Ga
また、TEM観察の条件は以下の通りである。
・装置:日立製HF2000型
・加速電圧:200kV
また、光触媒酸化チタンの存在場所は、Ti元素のEDX分析により解析した。
[参考例1]
フェニル基含有シリコーン(BP)の合成。
還流冷却器、温度計および撹拌装置を有する反応器にいれたジオキサン78gにフェニルトリクロロシラン26.0gを添加した後、室温にて約10分間撹拌した。これに水3.2gとジオキサン12.9gからなる混合液を、反応液を10〜15℃に保ちながら約30分かけて滴下した後、さらに10〜15℃で約30分撹拌し、続いて反応液を60℃に昇温させ3時間撹拌した。得られた反応液を25〜30℃に降温させ、392gのトルエンを約30分かけて滴下した後、再度反応液を60℃に昇温させ2時間撹拌した。
得られた反応液を10〜15℃に降温させ、メタノール19.2gを約30分かけて添加した。その後さらに25〜30℃にて約2時間撹拌を続行し、続いて反応液を60℃に昇温させ2時間撹拌した。得られた反応液から60℃で減圧下に溶媒を溜去することにより重量平均分子量2600のラダ−骨格を有するフェニル基含有シリコーン(CP)を得た。(得られたフェニル基含有シリコーン(CP)には、IRスペクトルにおけるラダ−骨格の伸縮振動に由来する吸収(1130cm−1及び1037cm−1)が観測された。)
また、29Si核磁気共鳴の測定結果より求めた上記フェニル基含有シリコーン(CP)の式は、(Ph)(OCH0.58SiO1.21であった。(ここでPhはフェニル基を表す。)
[参考例2]
アルキル基含有シリコーン(DA)の合成。
還流冷却器、温度計および撹拌装置を有する反応器に入れたメタノール300gにメチルトリメトキシシラン136g(1モル)、及びジメチルジメトキシシラン120g(1モル)を添加した後、室温にて約10分間撹拌した。これに氷冷下で、0.05Nの塩酸水溶液12.6g(0.7モル)とメタノール63gからなる混合液を、約40分かけて滴下し、加水分解を行った。滴下終了後、さらに10℃以下で約20分、室温で6時間それぞれ撹拌した。
その後、得られた反応液から60℃で減圧下に溶媒を溜去することにより重量平均分子量3600のアルキル基含有シリコーン(DA)を得た。得られたアルキル基含有シリコーン(DA)の構造を29Si核磁気共鳴によって測定したところ、T構造とD構造を示すシグナルが確認され、その比率はT構造:D構造=1:1であった。
また、29Si核磁気共鳴の測定結果より求めた上記アルキル基含有シリコーン(DA)の平均組成式は、(CH1.5(OCH0.27SiO1.12であった。
[参考例3]
変性光触媒粒子(A1)の合成。
還流冷却器、温度計および撹拌装置を有する反応器にいれたTKS−251{酸化チタンオルガノゾルの商品名(テイカ製)、分散媒:トルエンとイソプロパノールの混合溶媒、TiO濃度20質量%、平均結晶子径6nm(カタログ値)}40gにビス(トリメチルシロキシ)メチルシラン8gを40℃にて約5分かけて添加し、さらに40℃で12時間撹拌を続けることにより、非常に分散性の良好な変性光触媒オルガノゾル(A)を得た。この時、ビス(トリメチルシロキシ)メチルシランの反応に伴い生成した水素ガス量は23℃において718mlであった。また、得られた変性酸化チタンオルガノゾルをKBr板上にコーティングしIRスペクトルを測定したところ、Ti−OH基の吸収(3630〜3640cm−1)の消失が観測された。
また、変性光触媒オルガノゾル(A)の粒径分布は単一分散(数平均粒子径は17nm)であり、さらに変性処理前のTKS251の単一分散(数平均粒子径は12nm)の粒径分布が大きな粒径側に平行移動していることが確認できた。
[実施例1]
参考例1で合成したフェニル基含有シリコーン(BP)3.1gと参考例2で合成したアルキル基含有シリコーン(DA)3.1gを混合したものに、トルエン30.7g、イソプロパノール13.8gを添加し、室温で撹拌した後、1.7gのX−1044{テトラキス(アセチルアセトナト)ジルコニウムの20質量%溶液(質量比がトルエン/メタンール=5/1)の商品名(松本製薬製)}を添加した。これに参考例で調整した変性光触媒オルガノゾル(A1)7.8gを室温にて撹拌下において添加して変性光触媒組成物(C1)を得た。
白色のアクリルウレタン塗装を行ったアルミ板に上記変性光触媒組成物(C1)を膜厚が3μmとなるようにスプレー塗布した後、室温で30分乾燥し、150℃で30分加熱する事により試験板(G1)を得た。
得られた試験板(G1)をFIB加工し、TEMによる皮膜断面の観察を行った結果を図1(a)の写真に示す。また、図1(a)の写真のイラストレーションが図1(b)である。光触媒粒子含有層(図1(b)中の参照番号3で示す)を含む光触媒含有皮膜(図1(b)中の参照番号1で示す)と、基材である、顔料酸化チタン(図1(b)中の参照番号5で示す)を含むアクリルウレタン皮膜(図1(b)中の参照番号2で示す)との界面には変性光触媒粒子は存在せず、光触媒含有皮膜中には複数層の光触媒粒子含有層が存在することが観察される。即ち、得られた光触媒含有皮膜は多層構造体であることが観察された。
得られた光触媒含有皮膜(多層構造体)を有する試験板(G1)の鉛筆硬度はHであり、水との平均接触角は105゜であった。
得られた試験板(G1)の紫外線(ブラックライト)照射後の鉛筆硬度は3Hであり、水の接触角は0゜であった。さらに光触媒活性評価の結果も全て非常に良好(◎)であった。
また、得られた試験板(G1)の耐汚染性評価の結果は、表面に全く汚れは見受けられず、非常に良好な耐汚染性を示した。
さらに、デューパネル光コントロールウェザーメーターによる曝露試験(1000時間後)による光沢保持率は92%であり、外観変化もなく(△Lは0.1)非常に良好な耐候性を示した。
本発明の多層構造体又は機能性複合体であって、有機物分解等の光触媒活性を有するものは、抗菌、防汚、防臭、NOx分解等の様々な機能を発現し、大気、水等の環境浄化等の用途に使用することができる。
本発明の多層構造体又は機能性複合体であって、光照射により20℃における水との接触角が60゜以下(好ましくは10゜以下)となった親水性のもの(親水性膜、及び該親水性膜で被覆された基材等)は、鏡やガラスの曇りを防止する防曇技術、さらには建築外装等に対する防汚技術や帯電防止技術等への応用が可能である。
本発明の光触媒活性を有する多層構造体又は機能性複合体の防汚技術分野への応用例としては、例えば建材、建物外装、建物内装、窓枠、窓ガラス、構造部材、住宅等建築設備、特に便器、浴槽、洗面台、照明器具、照明カバー、台所用品、食器、食器洗浄器、食器乾燥器、流し、調理レンジ、キッチンフード、換気扇等、また、乗物の外装および塗装、用途によってはその内装にも使用でき、車両用照明灯のカバー、窓ガラス、計器、表示盤等透明性が要求される部材での使用に効果があり、また、機械装置や物品の外装、防塵カバーおよび塗装、表示機器、そのカバー、交通標識、各種表示装置、広告塔等の表示物、道路用、鉄道用等の遮音壁、橋梁、ガードレールの外装および塗装、トンネル内装および塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー等外部で使用される電子、電気機器の外装部、特に透明部材、ビニールハウス、温室等の外装、特に透明部材、また、室内にあっても汚染のおそれのある環境、たとえば医療用や体育用の施設、装置等の用途を挙げることができる。
本発明の光触媒活性を有する多層構造体又は機能性複合体の防曇技術分野への応用例としては、例えば鏡(車両用後方確認ミラー、浴室用鏡、洗面所用鏡、歯科用鏡、道路鏡等)、レンズ(眼鏡レンズ、光学レンズ、照明用レンズ、半導体用レンズ、複写機用レンズ、車両用後方確認カメラレンズ等)、プリズム、建物や環視塔の窓ガラス、乗物の窓ガラス(自動車、鉄道車両、航空機、船舶、潜水艇、雪上車、ロープウェイのゴンドラ、遊園地のゴンドラ、宇宙船等)、乗物の風防ガラス(自動車、オートバイ、鉄道車両、航空機、船舶、潜水艇、雪上車、スノーモービル、ロープウェイのゴンドラ、遊園地のゴンドラ、宇宙船等)、防護用ゴーグル、スポーツ用ゴーグル、防護用マスクのシールド、スポーツ用マスクのシールド、ヘルメットのシールド、冷凍食品陳列ケースのガラス、保温食品の陳列ケースのガラス、計測機器のカバー、車両用後方確認カメラレンズのカバー、レーザー歯科治療器等の集束レンズ、車間距離センサー等のレーザー光検知用センサーのカバー、赤外線センサーのカバー、カメラ用フィルター等の用途を挙げることができる。
本発明の光触媒活性を有する多層構造体又は機能性複合体の帯電防止技術分野への応用例としては、例えばブラウン管、磁気記録メディア、光記録メディア、光磁気記録メディア、オーディオテープ、ビデオテープ、アナログレコード、家庭用電気製品のハウジングや部品や外装および塗装、OA機器製品のハウジングや部品や外装および塗装、建材、建物外装、建物内装、窓枠、窓ガラス、構造部材、乗物の外装および塗装、機械装置や物品の外装、防塵カバーおよび塗装等の用途を挙げることができる。
本発明の光触媒活性を有する多層構造体又は機能性複合体の抗菌、防カビ技術分野への応用例としては、例えば建材、建物外装、建物内装、窓枠、構造部材、住宅等建築設備、特に便器、浴槽、洗面台、照明器具、照明カバー、台所用品、食器、食器洗浄器、食器乾燥器、流し、調理レンジ、キッチンフード、換気扇、食器棚、飾り棚、浴室や洗面所の壁、天井、ドアノブ、さらには医療用や公共施設等、例えば病院内の部材、救急車の各種部材あるいは食品・医薬品工場、学校・体育館・駅などの公共施設、公衆浴場、公衆トイレ、旅館、ホテル、その他における衛生管理のために、壁面、床面や天井面、各所の什器、備品、ドアノブなどの用途を挙げることができる。特に、院内感染防止方法として病院内の部材に広範囲に用いることが可能である。該病院内の部材としては、例えば病室、診察室、廊下、階段、エレベーター、待合室、洗面所等、不特定多数のものが接触する場所における床、壁、天井、手すり、ドア把手、水道蛇口、各種診療機器等が挙げられる。また、病院内に限らず、救急車や食品保管室、食品調理室等の衛生を必要とする場所の各種部材に対しても効果的に抗菌性や防カビ性を付与することができる。
本発明によって提供される光触媒活性を有する多層構造体又は機能性複合体であって、光照射により20℃における水との接触角が70゜以上(好ましくは90゜以上)となった疎水性のもの(疎水性の成形体や疎水性膜、及び該疎水性膜で被覆された基材等)は、防滴性や水切れ性の付与、水系汚れの付着防止や流水洗浄性を利用した防汚技術、さらには着氷雪防止技術等への応用が可能であり、窓ガラス、風防ガラス、鏡、レンズ、ゴーグル、カバー、碍子、建材、建物外装、建物内装、構造部材、乗物の外装及び塗装、機械装置や物品の外装、各種表示装置、照明装置、住宅設備、食器、台所用品、家庭用電気製品、屋根材、アンテナ、送電線、氷雪滑走具等の用途に使用することができる。
本発明によって提供される上記光触媒体又は機能性複合体であって光電変換機能を有するものは、太陽エネルギーの電力変換等の機能を発現することが可能であり、(湿式)太陽電池等に用いる光半導体電極等の用途に使用することができる。
また、本発明によって提供される、光照射によって水との濡れ性が変化(疎水性から親水性への変化、あるいは親水性から疎水性への変化)する部材は、オフセット印刷用原版等への応用に対し非常に有用である。
図1(a)は、実施例1で得られた光触媒含有皮膜を有する試験板(G1)の断面のTEM写真である。 図1(b)は、図1(a)のイラストレーションである。
符号の説明
1 光触媒含有皮膜
2 アクリルウレタン皮膜
3 光触媒粒子含有層
4 バインダー成分
5 顔料酸化チタン

Claims (5)

  1. 自己組織化により形成されてなる複数層の光触媒粒子含有層から構成される多層構造体であって、
    以下の式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、及びジフルオロメチレン単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる少なくとも1種の変性剤化合物(b)で光触媒粒子(a)を変性処理することによって得られる変性光触媒粒子(A)と
    Si− (1)
    (式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭
    素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフル
    オロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニ
    ル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。)
    −(RSiO)− (2)
    (式中、Rは式(1)で定義した通りである。)
    Figure 0004371789
    (式中、Rは式(1)で定義した通りである。)
    該変性光触媒粒子(A)より表面エネルギーが大きい、以下の式(4)で表されるフェニル基含有シリコーン(BP)からなるバインダー成分(B)と、
    SiO (4−p−q−r)/2 (4)
    (式中、各R はフェニル基を表し、R は各々独立に直鎖状または分岐状の炭素
    数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または
    分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水
    酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキ
    シ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。そしてp、q及びr
    は、0<p<4、0≦q<4、0≦r<4、及び0<(p+q+r)<4であり、
    そして0.05≦p/(p+q)≦1である。)
    該変性光触媒粒子(A)と親和力を有する、以下の式(5)で表されるアルキル基含有シリコーン(DA)からな るバインダー成分(D)
    SiO (4−u−v)/2 (5)
    (式中、R は直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜
    20のシクロアルキル基から選ばれた1種以上からなる基を表す。Xは、式(4)
    で定義した通りである。0<u<4、0≦v<4、及び0<(u+v)<4であ
    る。)
    とを含有する変性光触媒粒子組成物(C)から自己組織化により形成されることを特徴とする多層構造体。
  2. 光触媒粒子(a)と変性剤化合物(b)との質量比(a)/(b)が10/90〜99.5/0.5、であり、変性光触媒粒子(A)とバインダー成分(B)及び(D)との質量比(A)/(B)が1/99〜50/50、(A)/(D)が30/70〜90/10であることを特徴とする請求項1に記載の多層構造体。
  3. フェニル基含有シリコーン(BP)が、アルキル基を含有しないフェニル基含有シリコーン(BP1)であることを特徴とする請求項1または2に記載の多層構造体。
  4. 該光触媒粒子(a1)のバンドギャップエネルギーよりも高いエネルギーの光を照射することにより光触媒活性及び/又は親水性を示すことを特徴とする請求項1〜3のいずれかに記載の多層構造体。
  5. 請求項1〜のいずれかに記載の多層構造体が基材上に形成されてなる機能性複合体。
JP2003403718A 2003-12-02 2003-12-02 多層構造体 Expired - Fee Related JP4371789B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003403718A JP4371789B2 (ja) 2003-12-02 2003-12-02 多層構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003403718A JP4371789B2 (ja) 2003-12-02 2003-12-02 多層構造体

Publications (2)

Publication Number Publication Date
JP2005161680A JP2005161680A (ja) 2005-06-23
JP4371789B2 true JP4371789B2 (ja) 2009-11-25

Family

ID=34726941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403718A Expired - Fee Related JP4371789B2 (ja) 2003-12-02 2003-12-02 多層構造体

Country Status (1)

Country Link
JP (1) JP4371789B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338291A (ja) 2005-06-01 2006-12-14 Toshiba Corp 電子機器およびアクセス管理用プログラム
CN116060274B (zh) * 2021-10-29 2023-12-19 佛山市思博睿科技有限公司 等离子化学气相沉积自修复疏水纳米膜的制备方法

Also Published As

Publication number Publication date
JP2005161680A (ja) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4282597B2 (ja) 光触媒組成物
JP4716776B2 (ja) 光触媒体
JP2003275597A (ja) 変性光触媒、及びそれを用いた光触媒組成物
JP4817596B2 (ja) 光触媒組成物、それから形成される光触媒体
JP2002273233A (ja) 変性光触媒、それを用いた光触媒組成物
JP4771574B2 (ja) 光触媒組成物
JP4397161B2 (ja) 光触媒組成物、それから形成される光触媒体
JP4169557B2 (ja) 光触媒体
JP4371789B2 (ja) 多層構造体
JP4428994B2 (ja) 光触媒組成物
JP4342919B2 (ja) 光触媒組成物、それから形成される光触媒体及び機能性複合体
JP4169558B2 (ja) 光触媒坦持構造体
JP2006136758A (ja) 光触媒組成物、および光触媒部材
JP4203288B2 (ja) 光触媒フィルム、および該光触媒フィルムが貼付された部材
JP2005066481A (ja) 貼付用光触媒
JP4672292B2 (ja) 光触媒組成物
JP2004344688A (ja) 塗布用シ−ト
JP2004209345A (ja) 光触媒組成物、及びそれから形成される光触媒体
JP2006136782A (ja) 光触媒アルミニウム部材
JP2006122844A (ja) 光触媒材料
JP2004209344A (ja) 光触媒組成物、およびそれから形成される光触媒体
JP4102625B2 (ja) 光触媒表層部を有する樹脂板
JP2004292810A (ja) 防曇被覆用組成物
JP4397013B2 (ja) 光触媒組成物
JP4102622B2 (ja) 防汚性テント地キャンバス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees