JP4360566B2 - Insulated wire and method of manufacturing coil using the same - Google Patents

Insulated wire and method of manufacturing coil using the same Download PDF

Info

Publication number
JP4360566B2
JP4360566B2 JP17161498A JP17161498A JP4360566B2 JP 4360566 B2 JP4360566 B2 JP 4360566B2 JP 17161498 A JP17161498 A JP 17161498A JP 17161498 A JP17161498 A JP 17161498A JP 4360566 B2 JP4360566 B2 JP 4360566B2
Authority
JP
Japan
Prior art keywords
resin
lubricant
insulated wire
varnish
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17161498A
Other languages
Japanese (ja)
Other versions
JP2000011763A (en
JP2000011763A5 (en
Inventor
義伯 立松
正和 目崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP17161498A priority Critical patent/JP4360566B2/en
Publication of JP2000011763A publication Critical patent/JP2000011763A/en
Publication of JP2000011763A5 publication Critical patent/JP2000011763A5/ja
Application granted granted Critical
Publication of JP4360566B2 publication Critical patent/JP4360566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、モーターや発電機などのコイルとして使用される絶縁電線に関するものである。さらに詳しくは本発明は、コイル加工性と含浸ワニス塗着性がともに良好な絶縁電線、及びそれを用いたコイルの製造方法に関する。
【0002】
【従来の技術】
電気絶縁物で被覆された絶縁電線は各種の電気機器に組み込まれたコイルの用途に大量に使用されている。近年、この絶縁電線のコイル巻線加工工程における高速化、合理化が進められ、コイル巻き作業も従来の手巻きから自動コイル巻線機による加工に移行されている。
しかし、この自動コイル巻線加工を行う場合、絶縁電線に大きな張力が加わり、かつ、高速で作業が行われるので被膜のストレスが大きく、必然的に絶縁電線は損傷を受けやすくなる。このため、レヤーショート、アース不良等、コイルの絶縁不良が起こりやすくなる。
【0003】
また、コイルを形成する際、コイルにおけるステータスロット内の絶縁電線の占積率をできるかぎり大きくすることが結果として機器全体の小型化、コスト低下につながることから、電線外径の細径化が要望されている。近年、この細径化の中で、さらに機器のパワーアップを意図して導体径の据え置きないしは増大が求められ、絶縁被膜の薄肉化が必要となってきた。
しかし絶縁被膜の薄肉化は、上記のコイル加工(コイル巻き作業及びステータスロット内への挿入作業)時の被膜損傷の頻度を増大させ、コイルの絶縁不良の発生率を高めることになってしまう。
上記の問題の解決には、電線同士、あるいは電線と接触する物体(金属棒・相間紙等)との摩擦係数の低下と、被膜強度の向上が考えられる。摩擦係数が低いほどコイル巻き作業が容易になり、被膜強度が強いほどコイル加工の際の損傷が少なくなる。
【0004】
従来から行われている摩擦係数低下の手段としては、電線表面に潤滑剤を塗布する方法、または絶縁塗料中に潤滑剤を添加して塗布焼付けする方法がある。
被膜強度向上の手法としては、通常、ポリアミドイミド塗料を塗布焼付けした絶縁電線が使用される。この電線は他の樹脂( ポリエステル、ポリウレタン、ポリエステルイミド、ポリエステルアミドイミド、ポリイミド) と比べて機械的強度が高く、耐摩耗性に優れているため、コイル加工の条件が厳しい場合に多く使用されていた。
【0005】
したがって厳しい条件でコイル巻き加工を行う場合には、絶縁層として上記のポリアミドイミド塗料を塗布焼付けした被膜を有し、さらに表面層に潤滑処理を施したエナメル線が広く使用されている。この潤滑処理には近年、大幅な摩擦係数の低下と耐耗性の向上が望めることから、ワックスと熱硬化性樹脂を水中に分散せしめた潤滑塗料(減摩剤)が使用されるようになってきた。
【0006】
しかし、この減摩剤を用いたエナメル線は、ワックス及び熱硬化性樹脂が電線表面に焼き付けられているため、含浸ワニス処理(コイル状にエナメル線を巻いた後、線間を埋めてエナメル線を一体化するため、全体をワニスで固める処理)を行うと、ワニスの種類によっては電線の表面がワニスをはじいてしまうという問題があった。含浸ワニス処理を行うとモーターなどの振動で線がばらけなくなり、また、コイル加工で生じたエナメル線の傷を封じることもできるが、電線表面がワニスをはじくとエナメル線に対する固着力が低下して線がばらけやすくなり、エナメル線の傷も封じにくくなるため、絶縁不良を生じやすくなる。また、モーターや発電機などの製造においては、電線をスロット中に押し込む工程で電線に傷がつくが、ワニスが表面にしっかり着いていない電線ではこの傷が封じられないためピンホールが多数生ずることとなる。このような電線表面がワニスをはじくことがモーターや発電機の製造において問題となっている。
この問題は溶剤型ワニス、無溶剤型ワニスのいずれを用いた場合も起こるが、特に無溶剤型の粉体エポキシ樹脂系ワニスがはじかれやすい。また、この現象はエナメル線上への減摩剤の焼付け条件によっても変化することが判明しており、一般に高温高速で焼付けるほど電線表面はワニスをはじきやすくなる。したがって、生産性の高い方法で潤滑処理を施し、かつ、ワニスをはじかない電線表面とすることは困難であった。
【0007】
【発明が解決しようとする課題】
したがって本発明の目的は、自己潤滑性を有し、コイル加工性に優れるとともに含浸ワニス塗着性が高く、絶縁被膜を薄肉化しても厳しい条件でのコイル加工が可能で、かつ、良好に含浸ワニス処理が行える絶縁電線を提供することにある。
また本発明の目的は、自己潤滑性の絶縁電線を用いて含浸ワニス処理が良好に行えるコイルの製造方法に関する。
【0008】
【課題を解決するための手段】
本発明者らは上記課題に鑑み鋭意検討した結果、表面の潤滑処理に用いる減摩剤にロジン系樹脂又はマレイン酸系樹脂を所定量含有させることにより含浸ワニス塗着性が向上した、ワニスをはじかない表面を有する絶縁電線とすることができることを見出し、この知見に基づき本発明をなすに至った。
すなわち本発明は、
(1)導体上に、絶縁塗料を塗布焼付けして形成した少なくとも1層の絶縁層と、前記絶縁層を有する被覆層の表面層に減摩剤を塗布焼付けして形成した減摩剤層を有する絶縁電線であって、前記減摩剤はワックス及び熱硬化性樹脂を含有し、ロジン系樹脂及びマレイン酸系樹脂を除く減摩剤固形分100重量部に対して、ロジン系樹脂又はマレイン酸系樹脂を3〜20重量部含んでなることを特徴とする絶縁電線、
(2)絶縁層を形成する絶縁塗料がポリアミドイミド系樹脂を含んでなることを特徴とする(1)項記載の絶縁電線、及び
(3)(1)項に記載の絶縁電線をコイル巻きし、含浸ワニス処理することを特徴とするコイルの製造方法
を提供するものである。
【0009】
【発明の実施の形態】
本発明の絶縁電線は、導体上に少なくとも1層の絶縁層と、減摩剤層を有する。導体としては、特に制限はなく、通常用いられるものをあげることができる。本発明において絶縁層は、絶縁塗料を通常の方法で塗布焼付けして形成することができる。絶縁塗料は通常使用されるものを用いることができ、具体的には例えばポリビニルホルマール、ポリウレタン、ポリエステル、ポリエステルイミド、ポリエステルアミドイミド、ポリアミドイミド、ポリイミド等から選ばれる1種以上を含んでなる。絶縁層は、単独で1層としても、2種以上の塗料を組み合わせて2層以上としてもよい。
【0010】
本発明においては、絶縁層の被膜強度を向上させるうえで、絶縁塗料にポリアミドイミド系樹脂塗料を用いることが好ましい。このときのポリアミドイミド系樹脂塗料のベース樹脂は、特に制限はなく、常法により、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート類を直接反応させて得たもの、あるいは、極性溶媒中でトリカルボン酸無水物にジアミン類を先に反応させて、まずイミド結合を導入し、ついでジイソシアネート類でアミド化して得たものを用いることができる。
【0011】
この樹脂の調製に用いるトリカルボン酸無水物としては、通常、トリメリット酸無水物を用いる。この場合、トリカルボン酸無水物の一部量をテトラカルボン酸無水物に置き換えて反応させてもよい。このときのテトラカルボン酸無水物としては例えばピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物などが用いられる。また、トリカルボン酸無水物の一部量を他の酸または酸無水物、例えばトリメリット酸、イソフタル酸、テレフタル酸などに置き換えてもよい。一方、トリカルボン酸無水物と反応させるジイソシアネート類としては、例えば、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアネート等の芳香族ジイソシアネート類が挙げられ、ジアミン類としてはm−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノベンゾフェノン等の芳香族ジアミン類が挙げられる。また、極性溶媒としては好ましくはN−メチル−2−ピロリドンを用いることができる。
【0012】
また、絶縁層と導体の密着性を向上させるため、このポリアミドイミド系樹脂塗料にトリアルキルアミンやアルコキシ化メラミン樹脂を含有させることもできる。トリアルキルアミンとしては、好ましくはトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の低級アルキルのトリアルキルアミンが使用できる。この中でも可とう性および密着性の点でトリメチルアミン、トリエチルアミンが最も好ましい。また、アルコキシ化メラミン樹脂としては、例えばブトキシ化メラミン樹脂、メトキシ化メラミン樹脂等の低級アルコキシ基で置換されたメラミン樹脂を用いることができ、樹脂の相溶性の点でメトキシ化メラミン樹脂が好ましい。
このような導体との密着性の高い絶縁層を最下層として、さらに別の組成の絶縁層を形成したり、外部からの応力を最下層に伝えないようにする中間層を形成した上に絶縁層を設けたりしてもよい。
【0013】
本発明の絶縁電線において、絶縁層の厚さは特に制限はないが、通常20〜40μm、好ましくは25〜35μmである。
また、絶縁塗料の焼付け処理は当業者に自明の処理であり、温度などの条件は用いる絶縁塗料の種類、絶縁層の厚さなどに応じて適宜定めることができ、例えばポリアミドイミド系樹脂塗料を用いた場合、焼付け温度400〜500℃が好ましい条件として採用できる。
【0014】
本発明の絶縁電線は、上記した少なくとも1層の絶縁層を有する被覆層の表面層に、減摩剤層を有する。この減摩剤層は、ワックス、熱硬化性樹脂などとともにロジン系樹脂又はマレイン酸系樹脂を含んでなる減摩剤を、塗布焼付けして形成することができる。
減摩剤調製は通常ワックスの水分散物と熱硬化性樹脂のアルカリ水溶液を混合して行われ、本発明においてはさらに、ロジン系樹脂又はマレイン酸系樹脂を例えばアルコール溶液又はアルカリ水溶液として混合する。
【0015】
この減摩剤において、通常減摩剤に用いられるワックスを特に制限なく用いることができ、例えばカルナバワックス、みつろう、キャデリラワックス、ライスワックス等の天然ワックス、パラフィンワックス、ポリエチレンワックス、モンタンワックス等の合成ワックスがあげられる。絶縁電線の耐摩耗性、滑り性の点からは、できるだけ高硬度のワックスを用いることが好ましい。減摩剤中のワックスと熱硬化性樹脂の比率は特に制限はないが、ワックス/樹脂が重量比で30/70〜70/30であることが好ましい。
熱硬化性樹脂は、減摩剤を焼付けたときにワックスを固着させる作用を有する。本発明においては通常減摩剤に用いられる熱硬化性樹脂を用いることができ、例えば、セラック樹脂、フェノール樹脂が好適に使用できる。
【0016】
本発明においては上記減摩剤に対してさらにロジン系樹脂又はマレイン酸系樹脂を含有させる。本発明で用いることのできるロジン系樹脂又はマレイン酸系樹脂としては、例えば、ロジン、ロジン変性マレイン酸樹脂、スチレン−マレイン酸樹脂などがあげられる。ロジン系樹脂、マレイン酸系樹脂は、酸価が80以上のものが好ましい。酸価の低すぎるものは樹脂がアルコールに不溶となり、また、アルカリ水溶液が調製できなくなるので、減摩剤に混合するのが困難になることがある。
本発明においてロジン系樹脂又はマレイン酸系樹脂の添加量は、ロジン系樹脂及びマレイン酸系樹脂を除く通常の減摩剤の固形分100重量部に対し、通常、3〜20重量部、好ましくは5〜15重量部である。ロジン系樹脂又はマレイン酸系樹脂が3重量部未満では、含浸ワニス塗着性が十分向上せず、20重量部を越えると減摩剤の塗料安定性が損なわれる。
本発明では、減摩剤層にロジン系樹脂又はマレイン酸系樹脂を所定量添加することにより、減摩剤自体の熱硬化性樹脂の硬化が抑制され減摩剤層の固着が適度に弱まると考えられ、含浸ワニス塗着性が高く、含浸ワニス処理において粉体型ワニスも良好に塗着する平滑な表面の絶縁電線とすることができる。
【0017】
本発明の絶縁電線において、減摩剤層の厚さは特に制限はないが、1〜2μmが好ましい。また、全被膜厚さも特に制限はないが、25〜35μmが好ましい。
減摩剤塗料の焼付け処理も当業者に自明の処理であり、温度などの条件は線速などに応じて適宜定められるが、300〜500℃の範囲の温度で行うことが好ましい。
【0018】
本発明のコイルの製造方法において、コイル巻きの方法は特に制限はなく、通常行われている自動コイル巻線加工などにより行うことができる。本発明方法において用いる本発明の絶縁電線はコイル加工性に優れるので、条件の厳しい自動コイル巻線加工も可能である。コイルの形状、種類は特に制限はない。
本発明の絶縁電線を含浸ワニス処理する場合、液状ワニスを用いる方法でも、粉体型ワニスを用いる方法でも、良好に行うことができる。例えば従来、潤滑処理した電線にはじかれやすかった粉体エポキシ樹脂系ワニスを用いても、電線が十分に固着し、線がばらけるなどの問題を生じない。
【0019】
【実施例】
次に、本発明を実施例に基づいてさらに詳細に説明する。
なお、各実施例及び比較例における絶縁塗料の焼付けは500℃で、減摩剤塗料の焼付けは500℃で行った。
実施例1
市販の減摩剤塗料 TEC9601(商品名、東芝ケミカル社製、カルナバワックスとセラック樹脂からなる)にロジン変性マレイン酸樹脂(酸価300、マルキード33(商品名、荒川化学工業社製))を、TEC9601の全固形分100重量部に対し5重量部添加し、常温で攪拌して減摩剤塗料No.1を得た。
1.0mmφの銅線上に市販のポリアミドイミド樹脂塗料 HI406(商品名、日立化成工業社製)を炉長8mの縦形熱風焼付け機を用いて複数回塗布焼付けし、被膜厚さ30μmの下層絶縁層を形成した。この上に減摩剤塗料No.1を1回塗布焼付けして被膜厚さ2.0μmの減摩剤層を形成し、全被膜厚さ32μmの絶縁電線を得た。
【0020】
実施例2
ロジン変性マレイン酸樹脂の添加量をTEC9601の全固形分100重量部に対し10重量部とした以外は実施例1と全く同様にして減摩剤塗料No.1’を得た。
実施例1と同様にして銅線上に絶縁層を形成し、この上に減摩剤塗料No.1’を1回塗布焼付けして全被膜厚さ32μm(絶縁層30μm、減摩剤層2.0μm)の絶縁電線を得た。
【0021】
実施例3
ロジン変性マレイン酸樹脂に代えてスチレンマレイン酸樹脂(酸価200、アラスター700(商品名、荒川化学工業社製))を、TEC9601の全固形分100重量部に対し5重量部用いた以外は実施例1と全く同様にして減摩剤塗料No.2を得た。
実施例1と同様にして銅線上に絶縁層を形成し、この上に減摩剤塗料No.2を1回塗布焼付けして全被膜厚さ32μm(絶縁層30μm、減摩剤層2.0μm)の絶縁電線を得た。
【0022】
実施例4
ロジン変性マレイン酸樹脂に代えて実施例3と同じスチレンマレイン酸樹脂を、TEC9601の全固形分100重量部に対し10重量部用いた以外は実施例1と全く同様にして減摩剤塗料No.2’を得た。
実施例1と同様にして銅線上に絶縁層を形成し、この上に減摩剤塗料No.2’を1回塗布焼付けして全被膜厚さ32μm(絶縁層30μm、減摩剤層2.0μm)の絶縁電線を得た。
【0023】
実施例5
ロジン変性マレイン酸樹脂に代えてロジン樹脂(中国ロジン(商品名、荒川化学工業社製))を、TEC9601の全固形分100重量部に対し5重量部用いた以外は実施例1と全く同様にして減摩剤塗料No.3を得た。
実施例1と同様にして銅線上に絶縁層を形成し、この上に減摩剤塗料No.3を1回塗布焼付けして全被膜厚さ32μm(絶縁層30μm、減摩剤層2.0μm)の絶縁電線を得た。
【0024】
実施例6
ロジン変性マレイン酸樹脂に代えて実施例5と同じロジン樹脂を、TEC9601の全固形分100重量部に対し10重量部用いた以外は実施例1と全く同様にして減摩剤塗料No.3’を得た。
実施例1と同様にして銅線上に絶縁層を形成し、この上に減摩剤塗料No.3’を1回塗布焼付けして全被膜厚さ32μm(絶縁層30μm、減摩剤層2.0μm)の絶縁電線を得た。
【0025】
実施例7
1.0mmφの銅線上に市販の密着製改良型ポリアミドイミド樹脂塗料 HI406A(商品名、日立化成工業社製)を炉長8mの縦形熱風焼付け機を用いて複数回塗布焼付けし、被膜厚さ30μmの下層絶縁層を形成した。この上に実施例1と同じ減摩剤塗料No.1を1回塗布焼付けして被膜厚さ2.0μmの減摩剤層を形成し、全被膜厚さ32μmの絶縁電線を得た。
【0026】
比較例1
実施例1と同様にして銅線上に絶縁層を形成し、この上に市販の減摩剤塗料TEC9601を1回塗布焼付けして全被膜厚さ32μm(絶縁層30μm、減摩剤層2.0μm)の絶縁電線を得た。
比較例2
市販の減摩剤塗料 TEC9601に実施例1で用いたのと同じロジン変性マレイン酸樹脂を、TEC9601の全固形分100重量部に対し2重量部添加し、常温で攪拌して減摩剤塗料No.4を得た。
実施例1と同様にして銅線上に絶縁層を形成し、この上に減摩剤塗料No.4を1回塗布焼付けして全被膜厚さ32μm(絶縁層30μm、減摩剤層2.0μm)の絶縁電線を得た。
【0027】
比較例3
市販の減摩剤塗料 TEC9601に実施例1で用いたのと同じロジン変性マレイン酸樹脂を、TEC9601の全固形分100重量部に対し25重量部添加し、常温で攪拌して減摩剤塗料No.5を得た。
実施例1と同様にして銅線上に絶縁層を形成し、この上に減摩剤塗料No.5を1回塗布焼付けして全被膜厚さ32μm(絶縁層30μm、減摩剤層2.0μm)の絶縁電線を得た。
【0028】
実施例8
実施例1〜7及び比較例1〜3で得られた絶縁電線について、以下に示す試験を行った。結果を表1に示した。
▲1▼塗料安定性
実施例1〜7及び比較例1〜3で用いた各減摩剤塗料を室温で7日間放置し、沈殿の発生の有無により評価した。
○:沈殿の発生なし
×:沈殿発生
▲2▼静摩擦係数
JIS K 7125の試験法により測定した。
▲3▼耐摩耗性(往復式)
旧JIS C 3003の試験法により測定した。
▲4▼含浸ワニス塗着性
絶縁電線を6.5mmのマンドレルに緊密に巻き付けて長さ75mmのヘリカルコイルを作製し、これを190℃で予熱後、エポキシ樹脂系粉体ワニス(エピフォームF290(商品名、ソマール社製))中に浸漬させた後引き上げて、180℃で熱硬化させた。このコイルの外観を目視で観察し、下記のように評価した。
○:ワニスが均一に付着し、表面が平滑である。
△:ワニスがはじかれている部分があり、表面に凹凸のあるところと平滑なところが混在する。
×:ワニスがはじかれ、表面全体が凹凸している。
▲5▼ワニス塗膜接着力
上記▲3▼と同様にしてヘリカルコイルを作製し、これを190℃で予熱後、エポキシ樹脂系粉体ワニス中に浸漬させた後引き上げて、180℃で熱硬化させた。このコイルについて、ASTM−D−2519に準拠した方法で常温でのワニス塗膜の接着力を測定した。
【0029】
【表1】

Figure 0004360566
【0030】
表1の結果より明らかなように、実施例1〜7で得られた絶縁電線は耐摩耗性が良好でコイル加工性に優れ、かつ、コイルを粉体エポキシ樹脂系ワニスで処理したときにワニスが表面に均一に付着しており、ワニス塗膜の接着力も高かった。本発明方法により得られたコイルはコイル巻きでの被膜損傷が少なく、かつ、電線同士がワニスで十分に固着されていた。
これに対し比較例1及び2の絶縁電線は、コイルの含浸ワニス処理において表面がワニスをはじく現象がみられ、ワニス塗膜の接着力が低かった。比較例3の絶縁電線では部分的にワニスがはじかれずに付着したが、接着力は実施例のものより低く、十分ではなかった。また、比較例3で用いた減摩剤塗料No.5は安定性が悪く、作製後7日で沈殿が生じた。
【0031】
【発明の効果】
本発明の絶縁電線は、厳しいコイル加工条件にも耐えうる自己潤滑性を有し、かつ、含浸ワニス塗着性に優れる。したがって本発明の絶縁電線は、従来含浸ワニス処理が不十分ないしは困難であった自己潤滑性のエナメル線の含浸ワニス処理を可能にする。したがって、このような絶縁電線を用いてコイル巻き後、含浸ワニス処理を行うコイル加工を行えば、耐摩耗性、コイル加工性に優れ、ワニスによる固着性の優れたコイルが得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulated wire used as a coil of a motor or a generator. More particularly, the present invention relates to an insulated wire having good coil workability and impregnating varnish coating properties, and a method for producing a coil using the same.
[0002]
[Prior art]
Insulated wires coated with an electrical insulator are used in large quantities for applications of coils incorporated in various electrical devices. In recent years, speeding up and rationalization in the coil winding process of this insulated wire have been promoted, and the coil winding operation has been shifted from conventional manual winding to processing by an automatic coil winding machine.
However, when this automatic coil winding process is performed, a large tension is applied to the insulated wire and the work is performed at a high speed, so that the stress of the coating is large, and the insulated wire is apt to be damaged. For this reason, coil insulation defects such as layer shorts and ground defects tend to occur.
[0003]
Also, when forming the coil, increasing the space factor of the insulated wire in the status lot in the coil as much as possible results in downsizing of the entire device and cost reduction. It is requested. In recent years, with this reduction in diameter, there has been a demand for deferring or increasing the conductor diameter with the intention of increasing the power of equipment, and it has become necessary to reduce the thickness of the insulating coating.
However, the thinning of the insulating coating increases the frequency of coating damage during the coil processing (coil winding operation and insertion into the status lot), and increases the incidence of coil insulation failure.
In order to solve the above problems, it is conceivable to reduce the friction coefficient between the electric wires or the objects (metal rod, interphase paper, etc.) in contact with the electric wires and to improve the coating strength. The lower the coefficient of friction, the easier the coil winding work, and the stronger the coating strength, the less damage is generated during coil processing.
[0004]
Conventional means for reducing the friction coefficient include a method of applying a lubricant to the surface of an electric wire, or a method of applying and baking a lubricant in an insulating paint.
As a technique for improving the film strength, an insulated wire coated with a polyamide-imide paint and baked is usually used. This wire has high mechanical strength and excellent wear resistance compared to other resins (polyester, polyurethane, polyesterimide, polyesteramideimide, polyimide), so it is often used when the coil processing conditions are severe. It was.
[0005]
Accordingly, when coil winding is performed under severe conditions, enameled wires having a coating film obtained by applying and baking the above-described polyamide-imide paint as an insulating layer and further having a surface layer subjected to lubrication are widely used. In recent years, this lubrication treatment can be expected to greatly reduce the coefficient of friction and improve the wear resistance. Therefore, a lubricating paint (friction agent) in which wax and a thermosetting resin are dispersed in water has come to be used. I came.
[0006]
However, the enameled wire using this lubricant has an impregnated varnish treatment (was enameled wire after winding the enameled wire in a coil shape, because the wax and thermosetting resin are baked on the surface of the wire. In order to integrate the varnish, there is a problem that depending on the type of varnish, the surface of the electric wire repels the varnish. When the impregnating varnish treatment is performed, the wires will not be separated by vibration of the motor, etc., and the enameled wire scratches caused by coil processing can be sealed, but if the wire surface repels the varnish, the adhesion to the enameled wire will decrease. As a result, the wires are easily broken and the flaws on the enameled wire are difficult to seal, which tends to cause insulation failure. In addition, in the manufacture of motors and generators, the wire is scratched during the process of pushing the wire into the slot. However, if the wire is not firmly attached to the surface of the varnish, the scratch cannot be sealed, resulting in many pinholes. It becomes. Such a wire surface repels varnish, which is a problem in the manufacture of motors and generators.
This problem occurs when either a solvent varnish or a solventless varnish is used, but a solventless powder epoxy resin varnish is particularly easily repelled. It has also been found that this phenomenon varies depending on the baking conditions of the lubricant on the enamel wire. Generally, the higher the temperature and the higher the speed, the easier the surface of the electric wire will repel the varnish. Therefore, it has been difficult to provide a surface of the electric wire that is lubricated by a highly productive method and does not repel varnish.
[0007]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to have self-lubricating properties, excellent coil workability and high impregnating varnish coatability, and can be coiled under severe conditions even if the insulating coating is thinned, and is well impregnated. It is providing the insulated wire which can perform a varnish process.
Moreover, the objective of this invention is related with the manufacturing method of the coil which can perform an impregnation varnish process favorably using a self-lubricating insulated wire.
[0008]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventors have obtained a varnish having improved impregnating varnish coatability by containing a predetermined amount of a rosin-based resin or a maleic acid-based resin in a lubricant used for surface lubrication. The present inventors have found that an insulated wire having a non-repellent surface can be obtained, and have reached the present invention based on this finding.
That is, the present invention
(1) At least one insulating layer formed by applying and baking an insulating paint on the conductor, and a lubricant layer formed by applying and baking a lubricant to the surface layer of the coating layer having the insulating layer. The anti-friction agent contains a wax and a thermosetting resin, and the rosin resin or maleic acid with respect to 100 parts by weight of the anti-friction agent solid content excluding the rosin resin and the maleic acid resin. Insulated wires comprising 3 to 20 parts by weight of a resin,
(2) The insulated paint forming the insulating layer comprises a polyamide-imide resin, and the insulated wire according to (1) and (3) (1) are coiled. The present invention provides a method for producing a coil, characterized by performing an impregnation varnish treatment.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The insulated wire of the present invention has at least one insulating layer and a lubricant layer on the conductor. There is no restriction | limiting in particular as a conductor, The thing used normally can be mention | raise | lifted. In the present invention, the insulating layer can be formed by applying and baking an insulating paint by a usual method. As the insulating paint, those usually used can be used. Specifically, for example, it comprises one or more selected from polyvinyl formal, polyurethane, polyester, polyesterimide, polyesteramideimide, polyamideimide, polyimide and the like. The insulating layer may be a single layer or a combination of two or more kinds of paints.
[0010]
In the present invention, in order to improve the coating strength of the insulating layer, it is preferable to use a polyamide-imide resin paint as the insulating paint. The base resin of the polyamideimide resin coating at this time is not particularly limited. For example, the base resin obtained by directly reacting tricarboxylic acid anhydride and diisocyanate in a polar solvent, or tricarboxylic acid in a polar solvent. A product obtained by first reacting a diamine with an acid anhydride, first introducing an imide bond, and then amidating with a diisocyanate can be used.
[0011]
As the tricarboxylic acid anhydride used for preparing the resin, trimellitic acid anhydride is usually used. In this case, a part of the tricarboxylic acid anhydride may be replaced with a tetracarboxylic acid anhydride for the reaction. Examples of the tetracarboxylic acid anhydride used here include pyromellitic dianhydride and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride. In addition, a part of the tricarboxylic acid anhydride may be replaced with another acid or acid anhydride such as trimellitic acid, isophthalic acid, terephthalic acid, or the like. On the other hand, examples of the diisocyanates to be reacted with the tricarboxylic acid anhydride include aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate, and examples of the diamine include m-phenylenediamine and 4,4 ′. -Aromatic diamines such as diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 4,4′-diaminobenzophenone. As the polar solvent, N-methyl-2-pyrrolidone can be preferably used.
[0012]
Moreover, in order to improve the adhesiveness of an insulating layer and a conductor, this polyamidoimide type resin coating material can also contain a trialkylamine and alkoxylated melamine resin. The trialkylamine is preferably a lower alkyl trialkylamine such as trimethylamine, triethylamine, tripropylamine or tributylamine. Among these, trimethylamine and triethylamine are most preferable in terms of flexibility and adhesion. In addition, as the alkoxylated melamine resin, for example, a melamine resin substituted with a lower alkoxy group such as a butoxylated melamine resin or a methoxylated melamine resin can be used, and a methoxylated melamine resin is preferable in terms of compatibility of the resin.
An insulating layer with a high adhesion to such a conductor is used as the lowermost layer, an insulating layer of another composition is formed, or an intermediate layer is formed that prevents external stress from being transmitted to the lowermost layer. A layer may be provided.
[0013]
In the insulated wire of the present invention, the thickness of the insulating layer is not particularly limited, but is usually 20 to 40 μm, preferably 25 to 35 μm.
In addition, the baking treatment of the insulating paint is obvious to those skilled in the art, and the conditions such as temperature can be appropriately determined according to the type of insulating paint used, the thickness of the insulating layer, etc. When used, a baking temperature of 400 to 500 ° C. can be adopted as a preferable condition.
[0014]
The insulated wire of the present invention has a lubricant layer on the surface layer of the covering layer having at least one insulating layer. This lubricant layer can be formed by applying and baking a lubricant containing a rosin resin or a maleic resin together with wax, thermosetting resin, or the like.
Lubricant preparations is usually carried out by mixing the alkaline aqueous solution in the aqueous dispersion and a thermosetting resin of the wax, in the present invention further mixing rosin resin or maleic acid-based resins such as an alcohol solution or an aqueous alkaline solution To do.
[0015]
In this anti-friction agent, the wax usually used for the anti-friction agent can be used without particular limitation, for example, natural wax such as carnauba wax, beeswax, cadilla wax, rice wax, paraffin wax, polyethylene wax, montan wax, etc. Examples include synthetic waxes. From the viewpoint of wear resistance and slipperiness of the insulated wire, it is preferable to use a wax having a hardness as high as possible. The ratio of the wax to the thermosetting resin in the lubricant is not particularly limited, but the wax / resin is preferably 30/70 to 70/30 by weight.
The thermosetting resin has an action of fixing the wax when the lubricant is baked. In the present invention, a thermosetting resin usually used as a lubricant can be used. For example, shellac resin and phenol resin can be preferably used.
[0016]
In the present invention, a rosin resin or a maleic resin is further added to the lubricant. Examples of the rosin resin or maleic resin that can be used in the present invention include rosin, rosin-modified maleic resin, and styrene-maleic resin. The rosin resin and maleic acid resin preferably have an acid value of 80 or more. If the acid value is too low, the resin becomes insoluble in alcohol, and an alkaline aqueous solution cannot be prepared, which may make it difficult to mix with a lubricant.
In the present invention, the addition amount of the rosin resin or maleic resin is usually 3 to 20 parts by weight, preferably 100 parts by weight of the solid content of a normal lubricant excluding the rosin resin and maleic resin. 5 to 15 parts by weight. If the rosin resin or maleic resin is less than 3 parts by weight, the impregnating varnish coatability is not sufficiently improved, and if it exceeds 20 parts by weight, the paint stability of the lubricant is impaired.
In the present invention, when a predetermined amount of rosin resin or maleic resin is added to the lubricant layer, the curing of the thermosetting resin of the lubricant itself is suppressed, and the adhesion of the lubricant layer is moderately weakened. It is conceivable that an insulated wire having a smooth surface can be obtained, which has high coatability for impregnating varnish and can be applied well with powder type varnish in the impregnating varnish treatment.
[0017]
In the insulated wire of the present invention, the thickness of the lubricant layer is not particularly limited, but is preferably 1 to 2 μm. The total film thickness is not particularly limited, but is preferably 25 to 35 μm.
The baking treatment of the lubricant paint is also obvious to those skilled in the art, and conditions such as temperature are appropriately determined according to the linear velocity and the like, but are preferably performed at a temperature in the range of 300 to 500 ° C.
[0018]
In the coil manufacturing method of the present invention, the coil winding method is not particularly limited, and can be performed by a normal automatic coil winding process or the like. Since the insulated wire of the present invention used in the method of the present invention is excellent in coil workability, automatic coil winding processing with severe conditions is also possible. The shape and type of the coil are not particularly limited.
When the insulated wire of the present invention is treated with an impregnating varnish, it can be satisfactorily performed by either a method using a liquid varnish or a method using a powder varnish. For example, even when a powder epoxy resin varnish that has been easily repelled by a lubricated electric wire is used, there is no problem such that the electric wire is sufficiently fixed and the wire is separated.
[0019]
【Example】
Next, the present invention will be described in more detail based on examples.
In each example and comparative example, the insulating paint was baked at 500 ° C., and the lubricant coating was baked at 500 ° C.
Example 1
Commercially available anti-friction coating TEC9601 (trade name, manufactured by Toshiba Chemical Co., consisting of carnauba wax and shellac resin) and rosin-modified maleic acid resin (acid value 300, Marquide 33 (trade name, manufactured by Arakawa Chemical Industries)) 5 parts by weight was added to 100 parts by weight of the total solid content of TEC 9601 and stirred at room temperature to obtain a lubricant coating No. 1.
A commercially available polyamideimide resin coating HI406 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is applied and baked several times on a 1.0 mmφ copper wire using a vertical hot air baking machine with a furnace length of 8 m, and a lower insulating layer with a film thickness of 30 μm. Formed. On this, the lubricant paint No. 1 was applied and baked once to form a lubricant film layer having a film thickness of 2.0 μm to obtain an insulated wire having a total film thickness of 32 μm.
[0020]
Example 2
A lubricant coating No. 1 ′ was obtained in exactly the same manner as in Example 1 except that the amount of the rosin-modified maleic resin added was 10 parts by weight with respect to 100 parts by weight of the total solid content of TEC9601.
In the same manner as in Example 1, an insulating layer was formed on a copper wire, and a lubricant coating No. 1 ′ was applied and baked once thereon, and the total film thickness was 32 μm (insulating layer 30 μm, lubricant layer 2. 0 μm) of insulated wire was obtained.
[0021]
Example 3
Implemented except that 5 parts by weight of styrene maleic acid resin (acid value 200, Alastor 700 (trade name, manufactured by Arakawa Chemical Industries)) was used in place of rosin-modified maleic resin with respect to 100 parts by weight of the total solid content of TEC9601. A lubricant coating No. 2 was obtained in exactly the same manner as in Example 1.
In the same manner as in Example 1, an insulating layer was formed on the copper wire, and the lubricant coating No. 2 was applied and baked once thereon, and the total coating thickness was 32 μm (insulating layer 30 μm, lubricant layer 2.0 μm). ) Insulated wire was obtained.
[0022]
Example 4
In place of the rosin-modified maleic resin, the same styrene maleic resin as in Example 3 was used in the same manner as in Example 1 except that 10 parts by weight of 100 parts by weight of the total solid content of TEC 9601 was used. 2 'was obtained.
In the same manner as in Example 1, an insulating layer was formed on a copper wire, and a lubricant coating No. 2 ′ was applied and baked once thereon, and the total film thickness was 32 μm (insulating layer 30 μm, lubricant layer 2. 0 μm) of insulated wire was obtained.
[0023]
Example 5
A rosin resin (Chinese rosin (trade name, manufactured by Arakawa Chemical Industry Co., Ltd.)) instead of the rosin-modified maleic resin was used in exactly the same manner as in Example 1 except that 5 parts by weight was used with respect to 100 parts by weight of the total solid content of TEC9601. Thus, a lubricant coating No. 3 was obtained.
In the same manner as in Example 1, an insulating layer was formed on the copper wire, and the lubricant coating No. 3 was applied and baked once thereon, and the total film thickness was 32 μm (insulating layer 30 μm, lubricant layer 2.0 μm). ) Insulated wire was obtained.
[0024]
Example 6
The lubricant coating No. 3 ′ was used in exactly the same manner as in Example 1 except that 10 parts by weight of the same rosin resin as in Example 5 was used instead of rosin-modified maleic acid resin based on 100 parts by weight of the total solid content of TEC9601. Got.
In the same manner as in Example 1, an insulating layer was formed on the copper wire, and the lubricant coating No. 3 ′ was applied and baked once thereon, and the total film thickness was 32 μm (insulating layer 30 μm, lubricant layer 2. 0 μm) of insulated wire was obtained.
[0025]
Example 7
A commercially available improved polyamideimide resin paint HI406A (trade name, manufactured by Hitachi Chemical Co., Ltd.) is applied and baked several times on a 1.0 mmφ copper wire using a vertical hot air baking machine having a furnace length of 8 m, and the film thickness is 30 μm. The lower insulating layer was formed. On top of this, the same lubricant coating No. 1 as in Example 1 was applied and baked once to form a lubricant layer having a film thickness of 2.0 μm to obtain an insulated wire having a total film thickness of 32 μm.
[0026]
Comparative Example 1
In the same manner as in Example 1, an insulating layer was formed on a copper wire, and a commercially available anti-friction coating TEC9601 was applied and baked once thereon to a total film thickness of 32 μm (insulating layer 30 μm, anti-friction agent layer 2.0 μm). ) Insulated wire was obtained.
Comparative Example 2
2 parts by weight of the same rosin-modified maleic acid resin as used in Example 1 was added to TEC 9601 based on 100 parts by weight of the total solid content of TEC 9601, and the mixture was stirred at room temperature to give the lubricant coating No. .4 was obtained.
In the same manner as in Example 1, an insulating layer was formed on the copper wire, and the lubricant coating No. 4 was applied and baked once thereon, and the total film thickness was 32 μm (insulating layer 30 μm, lubricant layer 2.0 μm). ) Insulated wire was obtained.
[0027]
Comparative Example 3
25 parts by weight of the same rosin-modified maleic acid resin as used in Example 1 was added to TEC 9601 in 100 parts by weight of the total solid content of TEC 9601 and stirred at room temperature to reduce the lubricant coating No. .5 was obtained.
In the same manner as in Example 1, an insulating layer was formed on the copper wire, and the lubricant coating No. 5 was applied and baked once thereon, and the total coating thickness was 32 μm (insulating layer 30 μm, lubricant layer 2.0 μm). ) Insulated wire was obtained.
[0028]
Example 8
The test shown below was done about the insulated wire obtained in Examples 1-7 and Comparative Examples 1-3. The results are shown in Table 1.
{Circle around (1)} Paint Stability Each lubricant coating used in Examples 1 to 7 and Comparative Examples 1 to 3 was allowed to stand at room temperature for 7 days and evaluated by the presence or absence of precipitation.
○: No precipitation occurred ×: Precipitation occurred (2) Coefficient of static friction Measured by the test method of JIS K 7125.
(3) Wear resistance (reciprocating type)
It was measured by the old JIS C 3003 test method.
(4) An impregnated varnish-coated insulated wire was tightly wound around a 6.5 mm mandrel to prepare a helical coil having a length of 75 mm. After preheating at 190 ° C., an epoxy resin powder varnish (Epiform F290 ( The product was soaked in a product name, manufactured by Somar Inc.) and then pulled up and thermally cured at 180 ° C. The appearance of this coil was visually observed and evaluated as follows.
○: The varnish adheres uniformly and the surface is smooth.
(Triangle | delta): There exists a part in which the varnish is repelled, and the place with an unevenness | corrugation on the surface and a smooth place are mixed.
X: The varnish is repelled and the entire surface is uneven.
(5) Adhesive strength of varnish coating film A helical coil was prepared in the same manner as in (3) above, preheated at 190 ° C, immersed in an epoxy resin powder varnish, pulled up, and cured at 180 ° C. I let you. About this coil, the adhesive force of the varnish coating film at normal temperature was measured by the method based on ASTM-D-2519.
[0029]
[Table 1]
Figure 0004360566
[0030]
As is clear from the results in Table 1, the insulated wires obtained in Examples 1 to 7 have good wear resistance and excellent coil workability, and the varnish when the coil is treated with a powder epoxy resin varnish. Was evenly adhered to the surface, and the adhesion of the varnish coating was also high. The coil obtained by the method of the present invention had little film damage due to coil winding, and the electric wires were sufficiently fixed with varnish.
On the other hand, in the insulated wires of Comparative Examples 1 and 2, a phenomenon that the surface repels the varnish in the impregnation varnish treatment of the coil was observed, and the adhesive force of the varnish coating film was low. In the insulated wire of Comparative Example 3, the varnish was partially attached without being repelled, but the adhesive force was lower than that of the Example and was not sufficient. Further, the lubricant paint No. 5 used in Comparative Example 3 had poor stability, and precipitation occurred 7 days after production.
[0031]
【The invention's effect】
The insulated wire of the present invention has a self-lubricating property that can withstand severe coil processing conditions and is excellent in impregnating varnish coatability. Therefore, the insulated wire of the present invention enables the impregnating varnish treatment of the self-lubricating enameled wire which has been insufficient or difficult in the past. Therefore, if the coil processing which performs an impregnation varnish process after coiling using such an insulated wire is performed, a coil having excellent wear resistance and coil workability and excellent adhesion by varnish can be obtained.

Claims (3)

導体上に、絶縁塗料を塗布焼付けして形成した少なくとも1層の絶縁層と、前記絶縁層を有する被覆層の表面層に減摩剤を塗布焼付けして形成した減摩剤層を有する絶縁電線であって、前記減摩剤はワックス及び熱硬化性樹脂を含有し、ロジン系樹脂及びマレイン酸系樹脂を除く減摩剤固形分100重量部に対して、ロジン系樹脂又はマレイン酸系樹脂を3〜20重量部含んでなることを特徴とする絶縁電線。An insulated wire having at least one insulating layer formed by applying and baking an insulating paint on a conductor, and a lubricant layer formed by applying and baking a lubricant to the surface layer of the coating layer having the insulating layer. The antifriction agent contains a wax and a thermosetting resin, and rosin resin or maleic resin is added to 100 parts by weight of the lubricant solid content excluding rosin resin and maleic resin. An insulated wire comprising 3 to 20 parts by weight. 絶縁層を形成する絶縁塗料がポリアミドイミド系樹脂を含んでなることを特徴とする請求項1記載の絶縁電線。  The insulated wire according to claim 1, wherein the insulating coating forming the insulating layer comprises a polyamideimide resin. 請求項1に記載の絶縁電線をコイル巻きし、含浸ワニス処理することを特徴とするコイルの製造方法。  A method for producing a coil, wherein the insulated wire according to claim 1 is coiled and subjected to an impregnation varnish treatment.
JP17161498A 1998-06-18 1998-06-18 Insulated wire and method of manufacturing coil using the same Expired - Lifetime JP4360566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17161498A JP4360566B2 (en) 1998-06-18 1998-06-18 Insulated wire and method of manufacturing coil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17161498A JP4360566B2 (en) 1998-06-18 1998-06-18 Insulated wire and method of manufacturing coil using the same

Publications (3)

Publication Number Publication Date
JP2000011763A JP2000011763A (en) 2000-01-14
JP2000011763A5 JP2000011763A5 (en) 2005-10-06
JP4360566B2 true JP4360566B2 (en) 2009-11-11

Family

ID=15926445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17161498A Expired - Lifetime JP4360566B2 (en) 1998-06-18 1998-06-18 Insulated wire and method of manufacturing coil using the same

Country Status (1)

Country Link
JP (1) JP4360566B2 (en)

Also Published As

Publication number Publication date
JP2000011763A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP5626530B2 (en) Insulating paint, method for producing the same, insulated wire using the same, and method for producing the same
JP5609732B2 (en) Insulating paint and insulated wire using the same
US5965263A (en) Insulated wire
JP5561589B2 (en) Insulating paint, insulated wire, and coil using the same
JP2007270074A (en) Processing resistant polyamide-imide resin vanish and electrical insulating wire
JP3717297B2 (en) Insulated wire
JP5351011B2 (en) Insulated wire, electric coil and motor
US3822147A (en) Insulated electrical conductor and coils formed thereof
WO2013150991A1 (en) Insulated electric wire and method for manufacturing same
JP4360566B2 (en) Insulated wire and method of manufacturing coil using the same
JP4190589B2 (en) Insulated wire
JP2001155551A (en) Insulated wire
JP3724922B2 (en) Polyimide-based insulating paint and insulated wire
JP2002124132A (en) Enameled wire with self-lubrication property
JP2011159578A (en) Insulation wire, and electric coil and motor using the same
JP2936895B2 (en) Insulated wire
JP5329121B2 (en) Insulated wire
JP4934624B2 (en) Insulated wire
JP2001319526A (en) Insulated cable
JP3674200B2 (en) Insulated wire with surface lubricity
JP3490895B2 (en) Insulated wire
JP3035154B2 (en) Enamelled copper wire with enhanced adhesion to copper conductors
KR102060672B1 (en) Self-bondable Top Coating Material for Coil Composed of Thermosetting Epoxy Resin and Heat-resistive Thermoplastic Polymer and a Method of Manufacturing the same
JP2003045238A (en) Self-lubricating insulating cable
JP3364007B2 (en) Self-fusing insulated wire and rotating electric machine using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080704

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

EXPY Cancellation because of completion of term