WO2013150991A1 - Insulated electric wire and method for manufacturing same - Google Patents

Insulated electric wire and method for manufacturing same Download PDF

Info

Publication number
WO2013150991A1
WO2013150991A1 PCT/JP2013/059751 JP2013059751W WO2013150991A1 WO 2013150991 A1 WO2013150991 A1 WO 2013150991A1 JP 2013059751 W JP2013059751 W JP 2013059751W WO 2013150991 A1 WO2013150991 A1 WO 2013150991A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
peripheral surface
insulated wire
insulating layer
resin
Prior art date
Application number
PCT/JP2013/059751
Other languages
French (fr)
Japanese (ja)
Inventor
晃 溝口
清水 亨
菅原 潤
槙弥 太田
秀昭 伊藤
孝之 佐伯
雄貴 山本
Original Assignee
住友電気工業株式会社
住友電工ウインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ウインテック株式会社 filed Critical 住友電気工業株式会社
Priority to CN201380018055.9A priority Critical patent/CN104246914B/en
Publication of WO2013150991A1 publication Critical patent/WO2013150991A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides

Definitions

  • the present invention relates to an insulated wire and a method for manufacturing the same.
  • a coil formed by winding an insulated wire around a constituent element of a general household electric appliance, an automobile, or the like, for example, a motor, an alternator, or an ignition is used.
  • the insulated wire forming such a coil is generally composed of a conductive metal conductor and a resin insulating layer covering the conductive conductor.
  • copper or copper alloy is mainly used because of its high conductivity.
  • aluminum or an aluminum alloy is slightly inferior in conductivity to a copper-based conductor, but is excellent in light weight, and is partially used as a conductor of an insulated wire (see JP 2011-162826 A).
  • insulated wires using aluminum-based conductors generally have lower adhesion between the conductor and the insulating layer than those using copper-based conductors, and therefore have poor wear resistance (scratch resistance) and insulation characteristics. ing. For this reason, in conventional insulated wires using aluminum as a conductor, restrictions on the range of use, processing conditions for coils, and the like are not sufficiently removed.
  • the present invention has been made based on the above-described circumstances, and an object thereof is to provide an insulated wire excellent in adhesion, scratch resistance, and insulation characteristics while using aluminum or an aluminum alloy as a conductor.
  • An insulated wire comprising a conductor mainly composed of aluminum or an aluminum alloy and an insulating layer covering the peripheral surface of the conductor,
  • the average number of twists until the insulating layer is peeled in the peel test is 50 or more.
  • the insulated wire since the average number of twists until the insulating layer is peeled is equal to or more than the lower limit, the aluminum conductor using aluminum or aluminum alloy and the insulating layer are difficult to peel off and have high adhesion. Due to the high adhesion between the aluminum conductor and the insulating layer, the insulated wire is excellent in scratch resistance and insulating properties.
  • the average value of the dielectric breakdown voltage per unit thickness of the insulating layer in the glycerin solution is preferably 0.15 kV / ⁇ m or more.
  • the carbon concentration of the conductor peripheral surface is preferably 10% by mass or less.
  • the wire-drawing lubricant components oil, surfactant, pH adjuster, etc.
  • the adhesion between the conductor peripheral surface and the insulating layer can be effectively improved.
  • the conductor peripheral surface is carbon-reduced.
  • a wire drawing lubricant component is reduced and the high adhesive force of the above-mentioned conductor surrounding surface and an insulating layer is achieved.
  • a washing treatment using a liquid is preferable.
  • the wire drawing lubricant component adhering to the conductor peripheral surface can be effectively reduced, and the adhesion between the conductor peripheral surface and the insulating layer can be further improved.
  • the insulating layer has a primer layer which is laminated on the peripheral surface of the conductor and contains a phenoxy resin as a main component and a biphenyl-containing polyamideimide layer which contains a biphenyl-containing polyamideimide resin as a main component.
  • a primer layer containing phenoxy resin as a main component
  • adhesion between the conductor and the insulating layer can be improved, and scratch resistance can be improved.
  • a biphenyl-containing polyamideimide layer containing a biphenyl-containing polyamideimide resin as a main component
  • the mechanical strength of the insulating layer can be improved, and scratch resistance is further improved. Can do.
  • the average thickness of the primer layer is preferably 0.5 ⁇ m or more and 5 ⁇ m or less. Even if the average thickness of the primer layer exceeds 5 ⁇ m, no decrease in adhesion is observed, but the primer layer mainly composed of phenoxy resin generally has a low heat softening temperature, so that mechanical properties and heat softening properties may be reduced. There is sex.
  • the insulating layer has the primer layer and the biphenyl-containing polyamideimide layer, and the average thickness of the primer layer is within the above range, thereby further improving the adhesion between the conductor and the insulating layer. The strength of the insulating layer can be improved.
  • the above-mentioned biphenyl-containing polyamide-imide resin may contain a biphenyl-containing diisocyanate compound as an amide-imide raw material.
  • strength of the insulating layer which has a biphenyl containing polyamideimide layer can be improved easily and reliably by synthesize
  • the insulating layer may further include another resin layer, and the other resin layer may contain a polyesterimide resin, a polyamideimide resin, or a polyimide resin as a main component.
  • the cost can be reduced while maintaining the function of the insulating layer of the insulated wire.
  • the peripheral surface of the insulating layer may further include a surface lubricating layer mainly composed of a polyamideimide resin containing a lubricant.
  • a method for producing an insulated wire comprising a conductor mainly composed of aluminum or an aluminum alloy and an insulating layer covering a peripheral surface of the conductor, Obtaining the conductor, It has the process of performing a carbon reduction process with respect to the said conductor surrounding surface, and the process of coat
  • the above manufacturing method can improve the adhesion between the conductor peripheral surface and the insulating layer because the wire lubricant component that inhibits the adhesion between the conductor peripheral surface and the insulating layer is reduced by the carbon reduction treatment. As a result, the obtained insulated wire is excellent in adhesion, scratch resistance and insulating properties.
  • the average number of twists until the insulation layer is peeled off in the peel test means the average value (number of samples: 3) of the values measured in accordance with the “peel test” defined in 5.4 of JIS-C3216-3 It is. However, when the nominal conductor diameter is less than 1 mm, the test load (tension) is 10N. “Average value of dielectric breakdown voltage per unit thickness of the insulating layer in the glycerin solution” means that a part of the insulated wire is immersed in a glycerin solution in which glycerin and saturated saline are mixed at a mass ratio of 17: 3.
  • Carbon concentration is a value measured using energy dispersive X-ray analysis (EDX).
  • the insulated wire of the present invention has high scratch resistance and insulating properties while using aluminum or an aluminum alloy as a conductor. Moreover, the manufacturing method of the insulated wire of this invention can manufacture the insulated wire excellent in adhesiveness, scratch resistance, and an insulation characteristic easily and reliably.
  • the insulated wire includes a linear conductor and an insulating layer covering the peripheral surface of the conductor.
  • the conductor is mainly composed of aluminum or an aluminum alloy.
  • the aluminum alloy is not particularly limited, and a known aluminum alloy used for an insulated wire can be used.
  • a zirconium-containing alloy or an iron-containing alloy having high strength and excellent heat resistance can be used.
  • the cross-sectional shape of the conductor is not particularly limited, and various shapes such as a circle, a rectangle, and a rectangle can be adopted. Further, the size of the cross section of the conductor is not particularly limited. In the case of a round wire, one having a diameter of 100 ⁇ m to 5 mm is generally used, and in the case of a flat wire, one having a side length of 500 ⁇ m to 5 mm is generally used.
  • the conductor is subjected to a treatment for reducing carbon on the peripheral surface before the insulating layer is laminated.
  • a treatment for reducing carbon on the peripheral surface before the insulating layer is laminated for example, organic substances such as a lubricant adhering during the wire drawing process can be removed, and the carbon component that inhibits the adhesion between the conductor and the insulating layer can be reduced.
  • the upper limit of the carbon concentration of the conductor peripheral surface is preferably 10% by mass, more preferably 7% by mass, and particularly preferably 5% by mass.
  • the carbon concentration of the conductor peripheral surface exceeds the above upper limit, the adhesion with the insulating layer may be reduced.
  • the mass ratio of carbon to the mass of aluminum on the conductor peripheral surface is preferably 0.1 or less, and more preferably 0.06 or less. If the carbon concentration on the conductor peripheral surface or the mass ratio of aluminum is less than the above upper limit, the adhesion between the conductor and the insulating layer is improved, so the scratch resistance and flexibility of the insulated wire are also improved, and the processability to the coil is improved. Can be improved.
  • the insulating layer is laminated on the peripheral surface of the conductor so as to cover the conductor.
  • the insulating layer may be a single layer or a multilayer structure of two or more layers. When insulating materials (resins) having different characteristics are combined as a multilayer structure, different characteristics can be imparted to the inner layer, the outer layer, and the like.
  • the insulating layer of the insulated wire is preferably laminated on the peripheral surface of the conductor, for example, and the insulating layer is preferably laminated on the peripheral surface of the conductor and has a primer layer containing a flexible component such as phenoxy resin as a main component. . Furthermore, it is preferable to have a biphenyl-containing polyamideimide layer containing a biphenyl-containing polyamideimide resin as a main component in addition to the primer layer.
  • the primer layer contains a flexible component such as phenoxy resin or polyamideimide as a main component, and is formed by heat-treating a phenoxy resin varnish and a varnish containing the curing agent (this is a primer layer varnish). .
  • the phenoxy resin used as the main component of the primer layer varnish is a resin having a large molecular weight among epoxy resins produced from a bisphenol compound and epihalohydrin, and usually has a weight average molecular weight (measured by GPC) of 30000- An epoxy resin of 100,000, preferably 50,000 to 80,000 is applicable.
  • bisphenol compounds examples include 2,2-bis (p-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”), 2,2-bis (p-hydroxyphenyl) sulfone (hereinafter referred to as “bisphenol S”). , Bisphenol F, or a combination thereof.
  • the heat resistance of the phenoxy resin having a bisphenol A skeleton (bisphenol A type phenoxy resin), the phenoxy resin having a bisphenol F skeleton (bisphenol F type phenoxy resin), and the bisphenol A type phenoxy resin
  • a phenoxy resin having a bisphenol S skeleton using 2,2-bis (p-hydroxyphenyl) sulfone (hereinafter referred to as “bisphenol S”) as a part of the bisphenol-based compound can be obtained.
  • bisphenol type phenoxy resins may be used alone or in combination of two or more.
  • bisphenol type phenoxy resin Commercially available products may be used as the bisphenol type phenoxy resin as described above.
  • Commercially available products of bisphenol A type phenoxy resin include, for example, manufactured by Toto Kasei Co., Ltd., product numbers YP-50, YP50S, YP-55, Epicoat manufactured by Japan Epoxy Resin Co., Ltd., Epicron manufactured by Dainippon Ink & Chemicals, Inc. PKHC, PKHH, PKHJ, etc. manufactured by Union Carbide Corporation are listed.
  • PKHC, PKHH, PKHJ, etc. manufactured by Union Carbide Corporation As a commercial item of bisphenol S type phenoxy resin, the Toto Kasei Co., Ltd. product number YPS007A30A etc. are mentioned, for example.
  • bisphenol F type phenoxy resin examples include FX-316 manufactured by Toto Kasei Co., Ltd., 4010P, 4110, 4210 manufactured by Japan Epoxy Resin Co., Ltd. Furthermore, as commercial products of bisphenol A-type phenoxy resin and bisphenol F-type phenoxy resin or copolymer products, YP70 and ZX-1356-2 manufactured by Tohto Kasei Co., Ltd., 4250 and 4275 of Japan Epoxy Resin Co., Ltd. Etc.
  • a phenoxy resin obtained by reacting a hydroxyl group of dihydroxybiphenyl with epichlorohydrin to increase the molecular weight and having a biphenyl skeleton in the molecule can also be used.
  • phenoxy resin Since phenoxy resin has highly reactive epoxy groups and hydroxyl groups in the skeleton, insulation with excellent film strength and adhesion can be obtained by coexisting a curing agent that can react with these to form a crosslinked structure.
  • a primer layer is formed from which a layer can be obtained.
  • the curing agent include melamine compounds and isocyanate compounds, and these may be used alone or in combination.
  • melamine compound examples include methylated melamine, butylated melamine, methylolated melamine, butyrolated melamine, and the like. These may be used alone or in combination of two or more. .
  • the isocyanate compound a blocked isocyanate in which an isocyanate group is protected with a blocking agent is preferably used.
  • the blocked isocyanate compound is stable at room temperature, but regenerates a free isocyanate group when heated above its dissociation temperature.
  • the dissociation temperature of the isocyanate depends on the type of the blocking agent, but is preferably 80 to 160 ° C, more preferably 90 to 130 ° C.
  • isocyanate compound examples include aromatic diisocyanates such as tolylene diisocyanate (TDI), p-phenylene diisocyanate, and naphthalene diisocyanate; carbon numbers such as hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, and lysine diisocyanate.
  • aromatic diisocyanates such as tolylene diisocyanate (TDI), p-phenylene diisocyanate, and naphthalene diisocyanate
  • carbon numbers such as hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, and lysine diisocyanate.
  • 1,4-cyclohexane diisocyanate CDI
  • isophorone diisocyanate IPDI
  • 4,4′-dicyclohexylmethane diisocyanate hydrogenated MDI
  • methylcyclohexane diisocyanate isopropylidene dicyclohexyl-4
  • 4′-diisocyanate 1,3-diisocyanatomerylcyclohexane
  • hydrogenated TDI 2,5-bis (isocyanate)
  • a cycloaliphatic diisocyanate having 5 to 18 carbon atoms such as til) -bicyclo [2.2.1] heptane, 2,6-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane
  • (XDI) aliphatic diisocyanates having an aromatic ring such as tetramethylxylylene diiso
  • Examples of the blocking agent that blocks the isocyanate group of these isocyanate compounds include alcohols such as methanol, ethanol, propanol, butanol, benzyl alcohol, and cyclohexanol, phenols, ⁇ -caprolactam, and butyl cellosolves.
  • CT stable BL-3175, TPLS-2759, BL-4165 manufactured by Sumika Bayer Urethane Co., Ltd., MS- manufactured by Nippon Polyurethane Industry Co., Ltd. 50 or the like can be used.
  • the curing agent as described above is used in a proportion of 3 to 60 parts by mass, preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass per 100 parts by mass of the phenoxy resin from the viewpoint of improving the adhesion.
  • the primer layer varnish contains a flexible component such as the above phenoxy resin, or contains a curing agent, and further, an epoxy resin, a polyesterimide resin, a polyamide, as necessary, as long as the object of the present invention is not hindered.
  • resins such as imide resins; fillers such as silica, alumina, magnesium oxide, beryllium oxide, silicon carbide, titanium carbide, tungsten carbide, boron nitride, silicon nitride; to improve the curability and fluidity of varnish, for example , Tetraisopropyl titanate, tetrabutyl titanate, tetrahexyl titanate and other titanium compounds such as zinc naphthenates and zinc octenoates; antioxidants; anticorrosives; adhesion improvers; curability improvers; leveling agents; A resin composition containing additives such as auxiliaries is dissolved in an organic solvent. It is prepared.
  • organic solvent examples include polar organics such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphoric triamide, and ⁇ -butyrolactone.
  • polar organics such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphoric triamide, and ⁇ -butyrolactone.
  • Solvents ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate; diethyl esters, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, ethylene glycol Ethers such as monobutyl ether (butyl cellosolve), diethylene glycol methyl ether, tetrahydrofuran; hexane, heptane, benzene, toluene, xylene Hydrocarbon compounds such as dichloromethane and chlorobenzene; phenols such as cresol and chlorophenol; tertiary amines such as pyridine and the like. These organic solvents may be used alone or in combination of two or more. It can be used by mixing.
  • a primer layer can be formed by directly applying a varnish for a primer layer having the above composition to an aluminum conductor and baking it.
  • the baking temperature is preferably a temperature at which the phenoxy resin can be thermally cured by reacting with a curing agent, and is usually about 200 to 600 ° C.
  • coating and baking of a varnish may be performed only once and may be performed twice or more.
  • the average thickness of the primer layer formed as described above is preferably 0.5 ⁇ m to 5 ⁇ m, and more preferably 1 ⁇ m to 3 ⁇ m.
  • the average thickness of the primer layer is less than the above lower limit, the effect of forming the primer layer may be difficult to obtain.
  • the ratio of the maximum thickness to the minimum thickness in the circumferential direction and the longitudinal direction also increases in manufacturing the winding, which may cause variations in various characteristics.
  • a flexible primer such as phenoxy resin generally has a low heat softening temperature, so mechanical properties and heat softening properties may be reduced. There is sex. Moreover, there exists a possibility that it may become disadvantageous in cost.
  • the biphenyl-containing polyamide-imide layer refers to a cured product layer formed using a polyamide-imide varnish using a biphenyl-containing diisocyanate as part of an isocyanate compound that is an amide imide raw material. Since a biphenyl group derived from a biphenyl-containing diisocyanate is contained, the strength is improved as compared with a cured product of a polyamideimide varnish (a general-purpose polyamideimide varnish) that does not use a biphenyl-containing compound as a raw material.
  • an amine compound is further used when synthesizing a polyamide-imide by reacting an isocyanate compound and a carboxylic acid, or an imide dicarboxylic acid, which is a reaction product of an amine compound and an acid, with an isocyanate. It is done.
  • the varnish for biphenyl-containing polyamideimide layer is characterized in that biphenyl-containing diisocyanate is used as a part of the isocyanate compound used as a raw material.
  • biphenyl-containing diisocyanate compound typically 3,3′-dimethylbiphenyl-4,4′-diisocyanate is preferably used.
  • biphenyl-4,4′-diisocyanate, biphenyl-3,3′-diisocyanate are used.
  • a diisocyanate compound as used in a normal polyamide-imide varnish can be used, and diphenylmethane-4,4′-diisocyanate, diphenylmethane-3,3′-diisocyanate, diphenylmethane-3 , 4'-diisocyanate, diphenyl ether-4,4'-diisocyanate, benzophenone-4,4'-diisocyanate, diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, Aromatic diisocyanates such as naphthylene-1,5-diisocyanate, m-xylylene diisocyanate, and p-xylylene diisocyanate are preferably used.
  • a polyfunctional polyisocyanate compound can be used as a part of the isocyanate compound as an amideimide raw material.
  • polyfunctional polyisocyanates include polyisocyanates that are trimers of triphenylmethane triisocyanate, diphenyl ether triisocyanate, and diisocyanate compounds (trade names Desmodur L, Desmodur AP, etc. from Sumika Bayer Urethane Co., Ltd.), polymethylene poly Examples thereof include phenyl isocyanate.
  • the content ratio of the biphenyl-containing diisocyanate compound is preferably 10 to 80 mol%. If it is less than 10 mol%, the effect of increasing the strength of the resulting biphenyl-containing polyamideimide film will be insufficient.
  • carboxylic acids include trimellitic anhydride, trimellitic acid chloride, and trimellitic acid anhydrides such as tribasic acids; tetracarboxylic acid anhydrides and dibasic acids such as pyromellitic dianhydride , Biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, diphenylsulfonetetracarboxylic dianhydride, terephthalic acid, isophthalic acid, sulfoterephthalic acid, dicitric acid, 2,5-thiophenedicarboxylic acid, 4, Dicarboxylic acids such as 5-phenanthenedicarboxylic acid, benzophenone-4,4'-dicarboxylic acid, phthaldiimide dicarboxylic acid, biphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic
  • a polyfunctional polyisocyanate or polyfunctional carboxylic acid containing three or more isocyanate groups or carboxyl groups is preferable from the viewpoint of heat resistance because it can increase the crosslinking density of the polyamideimide film.
  • the content of the polyfunctional polyisocyanate and the polyfunctional carboxylic acid is such that the total content of the polyisocyanate compound and / or the polycarboxylic acid compound is 0.5 to 8 mol% with respect to the total amount of the isocyanate component and the acid component. Is preferably 0.5 to 3 mol%. If it is less than 0.5 mol%, a sufficient crosslinked structure cannot be obtained, and if it exceeds 8 mol%, the crosslinking density is too high and the flexibility of the insulating layer tends to be inferior.
  • an approximately equimolar amount of an isocyanate component and an acid component containing the polyisocyanate compound and / or the polycarboxylic acid compound in the above proportions are added in an appropriate organic solvent at a temperature of 0 to 180 ° C. More specifically, after 24 hours, more specifically, heating at a temperature of less than 140 ° C. for a certain period of time, then raising the temperature and further reacting by heating for a certain period of time, it is a copolymer of an isocyanate component and an acid component.
  • a polyamideimide varnish in which polyamideimide is dissolved or dispersed in an organic solvent is obtained.
  • a polyamide-imide varnish obtained by reacting an amine component and an acid component to obtain an imide dicarboxylic acid and reacting the imide dicarboxylic acid and an isocyanate component, in addition to the acids and diisocyanate compounds listed above as amine amide raw materials, an amine Ingredients included.
  • the polycarboxylic acid and / or the polyisocyanate is adjusted so that the total content of the polycarboxylic acid compound and the polyisocyanate compound is 0.5 to 8 mol% with respect to the total amount of the amine component, the acid component, and the isocyanate component. Is contained.
  • an aromatic diamine having an aromatic ring in the structure is particularly preferably used.
  • the aromatic diamine include 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodibenzophenone, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylhexafluoropropane, 4,4 '-[bis (4-aminophenoxy )] Biphenyl, 4,4 '-[bis (4-aminophenoxy)] diphenyl ether, 4,4'-[bis (4-aminophenoxy)] diphenyl ether, 4,4'
  • benzidine 3-methyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,3'-dimethyl-4,4'-diaminobiphenyl, 2,2 '-Dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-3,4'-diaminobiphenyl, 3,3'-dimethyl-3,3'-diaminobiphenyl, 3,3'-diethyl-4 , 4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-diethoxy-4,4'-diaminobiphenyl, 3,3'-dichloro-4,4'-diamino Biphenyl, 3,3′-dibromo-4,4′-diaminobiphenyl, and the like can also be mixed and used.
  • biphenyl By reacting an amine component and an acid component as described above in an approximately stoichiometric amount in an organic solvent to form imidodicarboxylic acid, and copolymerizing it with an approximately stoichiometric amount of an isocyanate component, biphenyl is obtained.
  • a containing polyamideimide resin can be produced. More specifically, when an acid component and an amine component of about 1/2 mole amount thereof are reacted in a suitable organic solvent at a temperature of 0 to 150 ° C. for 1 to 24 hours, the reaction between the amine component and the acid component is performed. The product, imidodicarboxylic acid, is generated in the reaction solution.
  • the biphenyl-containing polyamide-imide varnish may contain various additives as mentioned in the primer layer varnish, if necessary.
  • the organic solvent as mentioned in the varnish for primer layers can be used.
  • polyamide-imide varnish for forming the biphenyl-containing polyamide-imide layer as described above for example, a polyamide-imide varnish as disclosed in Japanese Patent No. 3497525 can be used.
  • the biphenyl-containing polyamideimide layer is composed of a cured product of the polyamideimide varnish as described above, and may be formed on the primer layer, or on the other resin layer via the other resin layer on the primer layer. It may be formed.
  • a biphenyl-containing polyamideimide layer is formed by applying and baking a biphenyl-containing polyamideimide varnish. The baking temperature is usually about 200 to 600 ° C. Moreover, application
  • the thickness of the biphenyl-containing polyamideimide layer may be at least 0.5 ⁇ m, and is appropriately selected within a range of about 50 ⁇ m at the maximum depending on the presence of other resin layers and the size of the insulated wire.
  • the insulating layer of the insulated wire may have a resin layer other than the primer layer and the biphenyl-containing polyamideimide layer.
  • the other resin layer is interposed between the primer layer and the biphenyl-containing polyamideimide layer.
  • a biphenyl-containing polyamideimide layer may be formed on the primer layer
  • another resin layer may be formed on the biphenyl-containing polyamideimide layer
  • biphenyl-containing polyamide may be formed between two other resin layers.
  • An insulating layer having a structure in which an imide layer is interposed may be used.
  • the varnish used for forming the other resin layers is not particularly limited, and is a general-purpose type polyamideimide resin, polyesterimide resin, polyimide resin, polyurethane resin, polyester conventionally used as a coating for insulated wires. It is possible to use a varnish mainly composed of a resin, a polyamide resin, an epoxy resin or the like. By applying and baking these varnishes by a conventionally known method, depending on the type of varnish, a general-purpose type polyamideimide layer, polyesterimide layer, polyimide layer, polyester layer, polyamide layer, epoxy resin layer, etc. A resin layer is formed.
  • the thickness ratio of the other resin layers in the insulating layer is preferably about 0 to 80%, more preferably about 0 to 50% with respect to the thickness of the insulating layer. If it exceeds 80%, the ratio of the biphenyl-containing polyamideimide layer decreases, so that it is difficult to obtain the effect (improvement of mechanical strength).
  • the insulated wire may further have a coating (surface lubricating layer) having lubricity on the peripheral surface of the insulating layer from the viewpoint of reducing the friction of the winding.
  • the resin constituting the surface lubrication layer may be any resin having lubricity, for example, paraffins such as liquid paraffin and solid paraffin, various waxes, polyethylene, fluororesin, silicone resin and other lubricants with a binder resin. There may be mentioned a bound one.
  • a polyamide-imide resin imparted with lubricity by adding paraffin or wax is used.
  • the thickness of the surface lubrication layer is not particularly limited, but may be any thickness that is necessary and sufficient to reduce friction and wear with surrounding insulated wires and coil forming jigs when it is a coil. Is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m.
  • the whole insulating layer can be 20 micrometers or more and 100 micrometers or less.
  • the insulated wire has an average number of twists of 50 or more until peeling of the insulating layer in the peel strength test.
  • the lower limit of the average number of twists until the insulating layer is peeled is more preferably 60 times. When the average number of twists until peeling is less than the above lower limit, the adhesion between the conductor and the insulating layer is not sufficient, so that the scratch resistance of the insulated wire cannot be obtained.
  • the lower limit of the average value of the dielectric breakdown voltage per unit thickness of the insulating layer in the glycerin solution of the insulated wire is preferably 0.15 kV / ⁇ m, and more preferably 0.20 kV / ⁇ m.
  • the upper limit of the average value of the dielectric breakdown voltage per unit thickness of the insulating layer is preferably 0.27 kV / ⁇ m.
  • the lower limit of the scratching load of the insulated wire is preferably 3.5 kgf, more preferably 4.0 kgf, and particularly preferably 3.8 kgf.
  • the scratching load is a load when a pinhole is generated in the insulating layer when a piano wire is overlapped at right angles to the insulated wire and the insulated wire is pulled out with the load applied to the intersection.
  • the insulated wire can be easily and reliably manufactured by a manufacturing method having the following steps. (1) Conductor manufacturing process for obtaining a conductor (2) Carbon reduction process for performing carbon reduction treatment on the conductor peripheral surface (3) Coating process for covering the peripheral surface of the conductor with an insulating layer
  • ⁇ (1) Conductor manufacturing process In the conductor manufacturing process, first, aluminum or an aluminum alloy as a raw material for a conductor is cast and rolled to obtain a rolled material. Next, this rolled material is subjected to wire drawing to form a wire drawing material having an arbitrary cross-sectional shape and wire diameter (short side width).
  • a method of wire drawing for example, by using a wire drawing device equipped with a plurality of wire drawing dies, a rolled material coated with a lubricant is inserted into the wire drawing dies, thereby obtaining a desired cross-sectional shape and wire diameter (short side width).
  • the wire drawing die a wire drawing die, a roller die, or the like can be used.
  • the lubricant water-soluble and water-insoluble ones containing an oil component can be used. Note that the cross-sectional processing can be performed separately after softening.
  • the wire drawing material is softened by heating. Since the crystal of the wire drawing material is recrystallized by performing the softening treatment, the toughness of the conductor can be improved.
  • heating temperature in a softening process it can be set as 250 degreeC or more, for example.
  • the softening treatment can be performed in an air atmosphere, but is preferably performed in a non-oxidizing atmosphere with a low oxygen content.
  • a non-oxidizing atmosphere with a low oxygen content.
  • the non-oxidizing atmosphere include a vacuum atmosphere, an inert gas atmosphere such as nitrogen and argon, and a reducing gas atmosphere such as a hydrogen-containing gas and a carbon dioxide-containing gas.
  • Softening treatment can be continuous or batch.
  • a continuous method for example, a furnace type in which a wire drawing material is introduced into a heating container such as a pipe furnace and heated by heat conduction, a direct current method in which a wire drawing material is energized and heated by resistance heat, and the wire drawing material is subjected to high-frequency electromagnetic waves. And an indirect energization method in which heating is performed.
  • a furnace type that allows easy temperature control is preferable.
  • Examples of the batch method include a method in which a wire drawing material is enclosed in a heating container such as a box furnace and heated.
  • the heating time of the batch method can be set to 0.5 hours or more and 6 hours or less.
  • the structure can be further refined by rapid cooling at a cooling rate of 50 ° C./sec or more after heating.
  • Carbon reduction process In the carbon reduction step, a carbon reduction treatment is performed on the peripheral surface of the conductor obtained in the conductor manufacturing step. By performing the carbon reduction treatment in this manner, organic substances such as a lubricant attached during the wire drawing process can be removed, and the adhesion between the conductor and the insulating layer can be improved.
  • Specific examples of the carbon reduction treatment include a cleaning method, a decomposition method, and a physical removal method.
  • Neutral liquids such as solutions in which agents are dissolved; acidic liquids such as aqueous solutions of inorganic acids (hydrochloric acid, nitric acid, sulfuric acid, chromic acid, etc.), aqueous solutions of organic acids (formic acid, acetic acid, etc.); inorganic alkalis (sodium hydroxide, carbonic acid, etc.) Examples thereof include alkaline liquids such as aqueous solutions of sodium hydrogen and the like, and aqueous solutions of organic alkalis (such as ethanolamine).
  • an ultraviolet irradiation method for example, an ultraviolet irradiation method, a plasma treatment method, a baking method, or the like can be used.
  • the physical removal method for example, wiping, brushing, centrifugation, vibration, air washing, or the like can be used.
  • electrolytic cleaning using acidic liquid or alkaline liquid causes deterioration of adhesion, deterioration of electrical characteristics, linear fluctuation, etc. due to precipitation of impurities on the peripheral surface.
  • the suitability for mass production may be reduced.
  • a wire drawing lubricant containing a large amount of mineral oil is used in the wire drawing process of the aluminum conductor, it is difficult to obtain a sufficient effect with a single cleaning. Therefore, it is preferable to perform a plurality of washings using a neutral liquid.
  • the peripheral surface of the aluminum conductor after the wire drawing step is further performed by immersion cleaning using water, ultrasonic cleaning using water, or both.
  • the lubricant containing a lot of mineral oil adhering to the surface can be effectively removed, and the carbon removal effect can be enhanced.
  • the carbon removal effect can be enhanced by high-temperature cleaning or long-time cleaning. Since these cleaning methods can be continuously performed in-line in the manufacturing process of the insulated wire, they contribute to the improvement of the productivity of the insulated wire.
  • an insulated wire is obtained by laminating an insulating layer on the conductor subjected to the carbon reduction treatment.
  • the insulating layer is formed by applying a paint (varnish) obtained by dissolving a resin for forming the insulating layer in an organic solvent to the peripheral surface of the conductor and baking it.
  • a method of applying the varnish to the conductor peripheral surface for example, a method using a coating apparatus including a varnish tank storing the varnish and a coating die can be used. According to this coating apparatus, the varnish adheres to the peripheral surface of the conductor as the conductor passes through the varnish tank, and then the varnish is applied to a substantially uniform thickness by passing through the coating die.
  • a coating apparatus including a varnish tank storing the varnish and a coating die.
  • the varnish adheres to the peripheral surface of the conductor as the conductor passes through the varnish tank, and then the varnish is applied to a substantially uniform thickness by passing through the coating die.
  • content of the resin in a varnish 10 to 50 mass% is preferable.
  • a method of heating and baking the varnish for example, a method of indirectly heating the conductor using a cylindrical heating furnace long in the running direction of the conductor can be used.
  • this heating method is not specifically limited, It can carry out by well-known methods, such as hot air heating, infrared heating, induction heating.
  • the solvent contained in the varnish applied to the conductor peripheral surface is vaporized, and the conductor peripheral surface is coated with the resin.
  • the heating temperature is appropriately selected depending on the type of resin used for the insulating layer.
  • the coating and baking can be repeated a plurality of times to increase the thickness of the resin film.
  • the hole diameter of the coating die is adjusted to gradually increase as necessary according to the number of repetitions.
  • an insulating layer composed of a plurality of layers having different main components can be formed by changing the resin component contained in the varnish and continuing the coating process.
  • coating and baking for each layer can be selected suitably, 2 to 20 times is suitable.
  • the said insulated wire uses aluminum or aluminum alloy as a conductor, it is excellent in lightweight property, and also as mentioned above, it is excellent in scratch resistance and insulation characteristics. Therefore, the coil which can be used suitably for various uses can be obtained by winding the said insulated wire.
  • each measured value in a present Example is a value measured with the following method.
  • a test piece (length 120 mm, twist number 18) in which two insulated wires were twisted was produced. A part of this test piece was immersed in a test solution in which glycerin and saturated saline were mixed at a mass ratio of 17: 3, and an alternating voltage was applied between one end of the test piece and the test solution. The voltage when the AC voltage is boosted at a rate of 1 V / sec and shorted is measured as the breakdown voltage, and the average breakdown voltage of the 10 test pieces is divided by the average thickness of the insulating layer of the insulated wire. The calculated value was calculated.
  • the carbon concentration of the conductor peripheral surface before laminating the insulating layer was measured by energy dispersive X-ray analysis (EDX).
  • EDX energy dispersive X-ray analysis
  • the measurement conditions were an acceleration voltage of 5 kV, an emission current of 100 to 120 ⁇ A, an analysis area of 0.4224 mm ⁇ 0.3300 mm, and a full-scale count (CPS) of about 1000.
  • Example 1 Aluminum was cast, drawn, drawn and softened to obtain a conductor having a circular cross section and a diameter of 1 mm. This conductor is immersed in a cleaning liquid storage tank A storing a cleaning liquid containing a surfactant (“Exemlite DS-336” manufactured by Kyoeisha Chemical Co., Ltd., cleaning agent A in the table), and then distilled water storing distilled water. It was immersed in the storage tank B, and further ultrasonic cleaning was performed in an ultrasonic tank C storing distilled water to reduce carbon on the conductor peripheral surface. The peripheral surface carbon concentration of this conductor was 3.5% by mass, and the mass ratio of carbon to the mass of aluminum on the peripheral surface of the conductor was 0.04. As a lubricant at the time of wire drawing, Farbest Kasei Co., Ltd. “Super Draw 450” was used.
  • an insulating layer was coated by applying and baking a resin varnish on the peripheral surface of the conductor to obtain an insulated wire of Example 1.
  • the insulating layer is made of polyesterimide (“Isomid40SM-45” manufactured by Hitachi Chemical Co., Ltd., “general purpose EsI” in the table) and 29.5 ⁇ m thick innermost layer, and general purpose polyamideimide (“general purpose AI” in the table). ) And an outer layer having a thickness of 4.5 ⁇ m and formed from a highly lubricious polyamideimide (“Lubrication AI” in the table).
  • the elastic modulus of the resin obtained by baking the general-purpose EsI varnish in the coating step was 1.9 GPa at 50 ° C. and 0.46 GPa at 200 ° C.
  • the general-purpose polyamideimide used for the intermediate layer was prepared by the following method. First, anhydrous Trimerit while flowing 150 mL of nitrogen gas from a nitrogen blowing tube into a 1 L flask equipped with a thermometer, a cooling tube, a calcium chloride filling tube, a stirrer and a nitrogen blowing tube. 143.6 g of acid and 193.8 g of 4,4′-diphenylmethane diisocyanate (“Cosmonate PH” manufactured by Mitsui Takeda Chemical Co., Ltd.) were added. Next, 536 g of N-methyl-2-pyrrolidone was added as a solvent in the flask, and the mixture was heated at 80 ° C.
  • the highly lubricious polyamideimide used for the outermost layer was prepared by the following method.
  • a highly lubricious polyamideimide resin varnish was obtained by mixing polyethylene wax in a ratio of 1.5 parts by mass with 100 parts by mass of the solid content of the general-purpose polyamideimide in the general-purpose polyamideimide prepared by the above method.
  • Example 2 After obtaining an aluminum conductor by the same process as in Example 1 and immersing this conductor in the cleaning liquid storage tank A, the immersion cleaning in the distilled water storage tank B is not performed, but the ultrasonic cleaning is performed in the ultrasonic tank C as it is. Went.
  • the peripheral surface carbon concentration of this conductor was 4.5% by mass, and the mass ratio of carbon to aluminum on the peripheral surface of the conductor was 0.05.
  • the insulating layer similar to Example 1 was laminated
  • Example 3 An aluminum conductor was obtained by the same process as in Example 1, and this conductor was immersed in the cleaning liquid storage tank A and then immersed in the distilled water storage tank B. The ultrasonic cleaning in the ultrasonic tank C was not performed. The peripheral surface carbon concentration of this conductor was 6.3% by mass, and the mass ratio of carbon to aluminum on the peripheral surface of the conductor was 0.07. The insulating layer similar to Example 1 was laminated
  • Example 4 An aluminum conductor was obtained by the same process as in Example 1, and the conductor peripheral surface was formed in the same procedure as in Example 1 except that “Cerfa-Kleen 5395” (cleaning agent B in the table) manufactured by Horton Co., Ltd. was used as the surfactant. Washed. The circumferential surface carbon concentration of this conductor was 4.5% by mass. The insulating layer similar to Example 1 was laminated
  • Example 5 An aluminum conductor was obtained by the same process as in Example 1, and the peripheral surface of the conductor was formed in the same procedure as in Example 3 except that “Cerfa-Kleen 5395” (cleaning agent B in the table) manufactured by Horton Co., Ltd. was used as the surfactant. Washed. The peripheral surface carbon concentration of this conductor was 9.6% by mass.
  • the insulating layer similar to Example 1 was laminated
  • Example 6 An aluminum conductor was obtained by the same process as in Example 1, and the same procedure as in Example 3 was used except that “NS Clean 200” (cleaning agent C in the table) manufactured by JX Nippon Oil & Energy was used as the surfactant. The conductor peripheral surface was cleaned. The circumferential surface carbon concentration of this conductor was 4.3% by mass. The insulating layer similar to Example 1 was laminated
  • Example 7 An aluminum conductor is obtained by the same process as in Example 1, and this conductor is a cleaning liquid storage tank A in which a cleaning liquid containing a surfactant (“NS Clean 200” manufactured by JX Nippon Mining & Energy Co., Ltd., cleaning agent C in the table) is stored. Soaked. The immersion in the distilled water storage tank B and the ultrasonic cleaning in the ultrasonic tank C were not performed. The circumferential surface carbon concentration of this conductor was 4.4% by mass. The insulating layer similar to Example 1 was laminated
  • a surfactant (“NS Clean 200” manufactured by JX Nippon Mining & Energy Co., Ltd., cleaning agent C in the table)
  • Example 1 An aluminum conductor was obtained by the same process as in Example 1, but the peripheral surface cleaning (carbon reduction treatment) was not performed on this conductor.
  • the peripheral surface carbon concentration of this conductor was 13.0% by mass, and the mass ratio of carbon to aluminum on the peripheral surface of the conductor was 0.15.
  • the insulating layer similar to Example 1 was laminated
  • Example 2 An aluminum conductor was obtained by the same process as in Example 1, and this conductor was immersed in the distilled water storage tank B. The immersion in the cleaning liquid storage tank A and the ultrasonic cleaning in the ultrasonic tank C were not performed. The peripheral surface carbon concentration of this conductor was 12.9% by mass, and the mass ratio of carbon to aluminum on the peripheral surface of the conductor was 0.18. The insulating layer similar to Example 1 was laminated
  • Example 3 An aluminum conductor was obtained by the same process as in Example 1, and this conductor was immersed in the cleaning liquid storage tank A. The immersion in the distilled water storage tank B and the ultrasonic cleaning in the ultrasonic tank C were not performed. The peripheral surface carbon concentration of this conductor was 11.5% by mass, and the mass ratio of carbon to aluminum on the peripheral surface of the conductor was 0.13. The insulating layer similar to Example 1 was laminated
  • Example 4 An aluminum conductor was obtained by the same process as in Example 1, and this conductor was subjected to ultrasonic cleaning in the ultrasonic bath C. The immersion in the cleaning liquid storage tank A and the distilled water storage tank B was not performed. The peripheral surface carbon concentration of this conductor was 12.5% by mass. The insulating layer similar to Example 1 was laminated
  • Example 8 to 13 An aluminum conductor was obtained by the same process as in Example 1, and this conductor was treated with water vapor at the temperature shown in Table 2 for the time shown in Table 2 to clean the surface. The peripheral carbon concentrations of these conductors were the values shown in Table 2, respectively. An insulating layer similar to that of Example 1 was laminated on these conductor peripheral surfaces to obtain insulated wires of Examples 8 to 13.
  • Example 5 An aluminum conductor was obtained by the same process as in Example 1, and the surface was immersed in water at 26 ° C. for 4 seconds to clean the surface. The peripheral carbon concentration of this conductor was 13.2% by mass. The insulating layer similar to Example 1 was laminated
  • Example 14 to 23 An aluminum conductor was obtained by the same process as in Example 1, and the conductor peripheral surface was washed in the same procedure as in Example 1. An insulating layer having the configuration shown in Table 3 was laminated on the circumferential surface of the conductor to obtain insulated wires of Examples 14 to 23.
  • Examples 24-32 After obtaining an aluminum conductor by the same process as in Example 1 and immersing this conductor in a cleaning liquid storage tank A storing a cleaning liquid containing a surfactant (“Exemlite DS-336” manufactured by Kyoeisha Chemical Co., Ltd.), The conductor peripheral surface was cleaned by immersing in distilled water storage tank B storing distilled water, and further performing ultrasonic cleaning in ultrasonic tank C storing distilled water. The circumferential surface carbon concentration of this conductor was 3.4% by mass. An insulating layer having the structure shown in Table 3 was laminated on the peripheral surface of the conductor to obtain insulated wires of Examples 24 to 32.
  • Phenoxy 1 in the table means bisphenol A-modified phenoxy resin, and a varnish was obtained by the following procedure. “Toyo Kasei Co., Ltd.“ YP-50 ”(epoxy equivalent 87600 g / eq based on JIS K7236, weight average molecular weight 60000-80000 by GPC, glass transition point 84 ° C. by DSC method (10 ° C./min increase)) / A solution (solid content: 27% by mass) dissolved in cyclohexanone was used.
  • a varnish for a primer layer was prepared by mixing 20 parts by mass of MS50 (manufactured by Nippon Polyurethane Industry) as a blocked isocyanate with 100 parts by mass of a bisphenol A-modified phenoxy resin.
  • the solid content in the varnish is 27% by mass.
  • the elastic modulus of the resin obtained by baking this resin varnish in the coating step was 1.6 GPa at 50 ° C. and 0.017 GPa at 200 ° C.
  • Phenoxy 2 in the table means bisphenol A-modified phenoxy resin, and a varnish was obtained by the following procedure. “Toyo Kasei Co., Ltd.“ YP-50 ”(epoxy equivalent 87600 g / eq based on JIS K7236, weight average molecular weight 60000-80000 by GPC, glass transition point 84 ° C. by DSC method (10 ° C./min increase)) / Dissolved in cyclohexanone to obtain a primer layer varnish. The solid content in the varnish is 27% by mass.
  • Phenoxy 3 in the table means a copolymer-modified phenoxy resin of bisphenol A type and bisphenol F type, and a varnish was obtained by the following procedure.
  • ZX-1356-2 GPS weight average molecular weight 60000-80000, glass transition point 72 ° C. by DSC method (10 ° C./min increase) of Toto Kasei Co., Ltd.
  • a varnish for a primer layer was prepared by mixing 20 parts by mass of MS50 (manufactured by Nippon Polyurethane Industry Co., Ltd.) as a blocked isocyanate with 100 parts by mass of a copolymer-modified phenoxy resin of a type and a bisphenol F type.
  • the solid content in the varnish is 27% by mass.
  • the elastic modulus of the resin obtained by baking the resin varnish in the coating step was 1.7 GPa at 50 ° C. and 0.015 GPa at 200 ° C.
  • “High strength AI” in the table means biphenyl-containing polyamideimide, and varnish was obtained by the following procedure.
  • trimellitic anhydride (TMA) 108 was flowed through a flask equipped with a thermometer, a cooling device, a calcium chloride filled tube, a stirrer, and a nitrogen blowing tube while flowing 150 ml of nitrogen gas from the nitrogen blowing tube per minute.
  • TMA trimellitic anhydride
  • TODI 3,3′-dimethylbiphenyl-4,4′-diisocyanate
  • MDI diphenylmethane-4,4′-diisocyanate
  • N-methyl-2-pyrrolidone 637 g was placed in the flask, heated at 80 ° C. for 3 hours while stirring with a stirrer, and further heated to 140 ° C. over 3 hours. Heated at 0 ° C. for 1 hour. Then, when 1 hour had passed, heating was stopped and the mixture was allowed to cool to obtain a varnish for a biphenyl-containing polyamideimide layer having a concentration of 25% by mass.
  • “General-purpose PI” in the table means general-purpose polyimide, and varnish was obtained by the following procedure. First, 4,4'-diaminodiphenyl ether (ODA) was dissolved in N-methylpyrrolidone, pyromellitic dianhydride (PMDA) was added, and the mixture was stirred at room temperature for 1 hour in a nitrogen atmosphere. Thereafter, the mixture was stirred at 60 ° C. for 20 hours to finish the reaction, and cooled to room temperature to obtain a polyimide resin varnish. The blending ratio (molar ratio) of ODA and PMDA was 100: 100.
  • “Flexible AI” in the table refers to Voltatex 9100 (manufactured by DuPont).
  • the elastic modulus of the resin obtained by baking this resin varnish in the coating step was 2.2 GPa at 50 ° C. and 0.025 GPa at 200 ° C.
  • a copper conductor was obtained by using copper instead of aluminum.
  • a general wire drawing lubricant was used as the lubricant during wire drawing.
  • the peripheral carbon concentration of this conductor was as shown in Table 3.
  • An insulating layer having the configuration shown in Table 3 was laminated on the peripheral surface of the conductor to obtain an insulated wire of a reference example.
  • the insulated wires of Examples 1 to 32 have high scratching load, high scratch resistance, and the insulated wires of Reference Example using copper conductors. Equivalent or better performance.
  • the dielectric breakdown voltage is high, the insulation characteristics are also excellent.
  • the comparative example 2 seems to be inferior in the twist frequency and the dielectric breakdown voltage compared with the comparative example 1 which has not performed the carbon concentration reduction process (cleaning process with water), the comparative example 1 and the comparative example 2 The difference between these values is considered to be within the measurement error.
  • the insulated wire of the present invention has high adhesion, scratch resistance, and insulating properties while using aluminum or an aluminum alloy as a conductor. Therefore, the said insulated wire can be used suitably for a motor, an alternator, an ignition etc., for example.

Abstract

This insulated electric wire is provided with a conductor having aluminum or aluminum alloy as a primary component thereof, and an insulation layer for covering the peripheral surface of the conductor, and is characterized in that the average number of torsions until delamination of the insulation layer in a delamination test is 50 or more. In the present invention, the average value of the dielectric breakdown voltage per unit thickness of the insulation layer in a glycerin solution is preferably at least 0.15 kV/µm. The carbon concentration on the peripheral surface of the conductor is preferably 10 mass% or less. The peripheral surface of the conductor may be processed to reduce carbon. This carbon reduction process may be a washing process using a liquid. The insulation layer may have a primer layer containing a phenoxy resin as a primary component thereof, and a biphenyl-containing polyamide imide layer containing a biphenyl-containing polyamide imide resin as a primary component thereof layered on the peripheral surface of the conductor.

Description

絶縁電線及びその製造方法Insulated wire and manufacturing method thereof
 本発明は、絶縁電線及びその製造方法に関する。 The present invention relates to an insulated wire and a method for manufacturing the same.
 一般家庭用電気機器、自動車等の構成要素、例えばモータ、オルタネータ、イグニッション等に、絶縁電線を巻回してなるコイルが用いられている。このようなコイルを形成する絶縁電線は、導電性を有する金属製の導体と、これを被覆する樹脂製の絶縁層とから構成されるものが一般的である。 A coil formed by winding an insulated wire around a constituent element of a general household electric appliance, an automobile, or the like, for example, a motor, an alternator, or an ignition is used. The insulated wire forming such a coil is generally composed of a conductive metal conductor and a resin insulating layer covering the conductive conductor.
 上記の絶縁電線の導体として、その導電性の高さから、主として銅又は銅合金が使用される。一方、アルミニウム又はアルミニウム合金は、銅系導体よりも導電性がやや劣るものの、軽量性に優れており、一部絶縁電線の導体として使用されている(特開2011-162826号公報参照)。 As the conductor of the above insulated wire, copper or copper alloy is mainly used because of its high conductivity. On the other hand, aluminum or an aluminum alloy is slightly inferior in conductivity to a copper-based conductor, but is excellent in light weight, and is partially used as a conductor of an insulated wire (see JP 2011-162826 A).
 しかしながら、アルミニウム系導体を用いた絶縁電線は、一般的に導体と絶縁層との密着力が銅系導体を用いたものに比べて低く、そのため、耐摩耗性(耐傷性)や絶縁特性が劣っている。そのため、従来のアルミニウムを導体に用いた絶縁電線においては、使用範囲やコイルへの加工条件等の制限が十分に取り払われていない。 However, insulated wires using aluminum-based conductors generally have lower adhesion between the conductor and the insulating layer than those using copper-based conductors, and therefore have poor wear resistance (scratch resistance) and insulation characteristics. ing. For this reason, in conventional insulated wires using aluminum as a conductor, restrictions on the range of use, processing conditions for coils, and the like are not sufficiently removed.
特開2011-162826号公報JP 2011-162826 A
 本発明は、上述のような事情に基づいてなされたものであり、アルミニウム又はアルミニウム合金を導体に用いつつ、密着性、耐傷性及び絶縁特性に優れる絶縁電線を提供することを目的とする。 The present invention has been made based on the above-described circumstances, and an object thereof is to provide an insulated wire excellent in adhesion, scratch resistance, and insulation characteristics while using aluminum or an aluminum alloy as a conductor.
 上記課題を解決するためになされた発明は、
 アルミニウム又はアルミニウム合金を主成分とする導体及びこの導体の周面を被覆する絶縁層を備える絶縁電線であって、
 剥離試験における上記絶縁層剥離までの平均捻り回数が50回以上であることを特徴とする。
The invention made to solve the above problems is
An insulated wire comprising a conductor mainly composed of aluminum or an aluminum alloy and an insulating layer covering the peripheral surface of the conductor,
The average number of twists until the insulating layer is peeled in the peel test is 50 or more.
 当該絶縁電線は、絶縁層の剥離までの平均捻り回数が上記下限以上であるため、アルミニウム又はアルミニウム合金を用いたアルミニウム導体と絶縁層とが剥離しにくく、高い密着力を有する。このアルミニウム導体と絶縁層との高い密着性に起因して、当該絶縁電線は、耐傷性及び絶縁特性に優れる。 In the insulated wire, since the average number of twists until the insulating layer is peeled is equal to or more than the lower limit, the aluminum conductor using aluminum or aluminum alloy and the insulating layer are difficult to peel off and have high adhesion. Due to the high adhesion between the aluminum conductor and the insulating layer, the insulated wire is excellent in scratch resistance and insulating properties.
 グリセリン溶液中における上記絶縁層の単位厚み当たりの絶縁破壊電圧の平均値としては0.15kV/μm以上が好ましい。このように単位厚み当たりの絶縁破壊電圧を上記下限以上とすることによって、絶縁層を過度に厚くすることなく、高い絶縁特性を発揮することができる。 The average value of the dielectric breakdown voltage per unit thickness of the insulating layer in the glycerin solution is preferably 0.15 kV / μm or more. Thus, by setting the dielectric breakdown voltage per unit thickness to the above lower limit or more, high insulating characteristics can be exhibited without excessively thickening the insulating layer.
 上記導体周面の炭素濃度としては10質量%以下が好ましい。このように導体周面の炭素濃度を上記下限以上とすることで、導体周面と絶縁層との密着を阻害する伸線潤滑剤成分(油分、界面活性剤、pH調整剤等)が減少するため、導体周面と絶縁層との密着力を効果的に向上させることができる。 The carbon concentration of the conductor peripheral surface is preferably 10% by mass or less. Thus, by making the carbon concentration of the conductor peripheral surface equal to or more than the above lower limit, the wire-drawing lubricant components (oil, surfactant, pH adjuster, etc.) that inhibit the adhesion between the conductor peripheral surface and the insulating layer are reduced. Therefore, the adhesion between the conductor peripheral surface and the insulating layer can be effectively improved.
 上記導体周面が炭素低減処理されているとよい。このように導体周面に対して炭素低減処理を施すことで、伸線潤滑剤成分が低減され、上述の導体周面と絶縁層との高い密着力が達成される。 It is preferable that the conductor peripheral surface is carbon-reduced. Thus, by performing a carbon reduction process with respect to a conductor surrounding surface, a wire drawing lubricant component is reduced and the high adhesive force of the above-mentioned conductor surrounding surface and an insulating layer is achieved.
 上記炭素低減処理としては液体を用いた洗浄処理が好ましい。洗浄を導体に対して行うことによって、導体周面に付着した伸線潤滑剤成分を効果的に低減することができ、導体周面と絶縁層との密着力をさらに向上させることができる。 As the carbon reduction treatment, a washing treatment using a liquid is preferable. By performing washing on the conductor, the wire drawing lubricant component adhering to the conductor peripheral surface can be effectively reduced, and the adhesion between the conductor peripheral surface and the insulating layer can be further improved.
 上記絶縁層が、導体の周面に積層され、フェノキシ樹脂を主成分として含有するプライマー層と、ビフェニル含有ポリアミドイミド樹脂を主成分として含有するビフェニル含有ポリアミドイミド層とを有することが好ましい。フェノキシ樹脂を主成分とするプライマー層を形成することで、導体と絶縁層との密着力を向上させ、耐傷性も向上させることができる。さらに、上記プライマー層に加えて、ビフェニル含有ポリアミドイミド樹脂を主成分として含有するビフェニル含有ポリアミドイミド層を形成することで、絶縁層の機械強度を向上させることができ、耐傷性をさらに向上させることができる。上記プライマー層の平均厚みとしては0.5μm以上5μm以下が好ましい。上記プライマー層の平均厚みが5μmを超えても密着力の低下は見られないが、フェノキシ樹脂を主成分とするプライマー層は一般に熱軟化温度が低いため、機械特性や熱軟化特性が低下する可能性がある。このように絶縁層が上記プライマー層とビフェニル含有ポリアミドイミド層とを有し、プライマー層の平均厚みを上記範囲内とすることで、導体と絶縁層との密着力をさらに向上させることができるとともに、絶縁層の強度を向上させることができる。 It is preferable that the insulating layer has a primer layer which is laminated on the peripheral surface of the conductor and contains a phenoxy resin as a main component and a biphenyl-containing polyamideimide layer which contains a biphenyl-containing polyamideimide resin as a main component. By forming a primer layer containing phenoxy resin as a main component, adhesion between the conductor and the insulating layer can be improved, and scratch resistance can be improved. Furthermore, in addition to the primer layer, by forming a biphenyl-containing polyamideimide layer containing a biphenyl-containing polyamideimide resin as a main component, the mechanical strength of the insulating layer can be improved, and scratch resistance is further improved. Can do. The average thickness of the primer layer is preferably 0.5 μm or more and 5 μm or less. Even if the average thickness of the primer layer exceeds 5 μm, no decrease in adhesion is observed, but the primer layer mainly composed of phenoxy resin generally has a low heat softening temperature, so that mechanical properties and heat softening properties may be reduced. There is sex. As described above, the insulating layer has the primer layer and the biphenyl-containing polyamideimide layer, and the average thickness of the primer layer is within the above range, thereby further improving the adhesion between the conductor and the insulating layer. The strength of the insulating layer can be improved.
 上記ビフェニル含有ポリアミドイミド樹脂が、上記ビフェニル含有ポリアミドイミド樹脂を形成するイソシアネート成分が、アミドイミド原料としてビフェニル含有ジイソシアネート化合物を含むとよい。このようにビフェニル含有ジイソシアネート化合物を用いてビフェニル含有ポリアミドイミド樹脂を合成することで、容易かつ確実にビフェニル含有ポリアミドイミド層を有する絶縁層の強度を向上させることができる。 The above-mentioned biphenyl-containing polyamide-imide resin may contain a biphenyl-containing diisocyanate compound as an amide-imide raw material. Thus, the intensity | strength of the insulating layer which has a biphenyl containing polyamideimide layer can be improved easily and reliably by synthesize | combining a biphenyl containing polyamideimide resin using a biphenyl containing diisocyanate compound.
 上記絶縁層が、他の樹脂層をさらに有し、上記他の樹脂層が、ポリエステルイミド樹脂、ポリアミドイミド樹脂、又はポリイミド樹脂を主成分として含有するとよい。絶縁層がこのような他の樹脂層を有することで、当該絶縁電線の絶縁層の機能を維持しつつ、コストを低減することができる。 The insulating layer may further include another resin layer, and the other resin layer may contain a polyesterimide resin, a polyamideimide resin, or a polyimide resin as a main component. When the insulating layer has such another resin layer, the cost can be reduced while maintaining the function of the insulating layer of the insulated wire.
 上記絶縁層の周面に、潤滑剤を含有したポリアミドイミド樹脂を主成分とする表面潤滑層をさらに備えてもよい。このような表面潤滑層をさらに備えることで、当該絶縁電線の摩擦係数を低減することができる。その結果、コイル形状によってはコイル作製時の傷発生が抑制され、コイル作製時の捲き線性も良好となる。 The peripheral surface of the insulating layer may further include a surface lubricating layer mainly composed of a polyamideimide resin containing a lubricant. By further providing such a surface lubricating layer, the friction coefficient of the insulated wire can be reduced. As a result, depending on the coil shape, the occurrence of scratches during coil production is suppressed, and the lineability during coil production is improved.
 また、上記課題を解決するためになされた別の発明は、
 アルミニウム又はアルミニウム合金を主成分とする導体及びこの導体の周面を被覆する絶縁層を備える絶縁電線の製造方法であって、
 上記導体を得る工程、
 上記導体周面に対して炭素低減処理を行う工程、及び
 上記導体の周面に絶縁層を被覆する工程
 を有することを特徴とする。
Moreover, another invention made in order to solve the said subject is:
A method for producing an insulated wire comprising a conductor mainly composed of aluminum or an aluminum alloy and an insulating layer covering a peripheral surface of the conductor,
Obtaining the conductor,
It has the process of performing a carbon reduction process with respect to the said conductor surrounding surface, and the process of coat | covering an insulating layer on the surrounding surface of the said conductor.
 上記製造方法は、炭素低減処理によって導体周面と絶縁層との密着を阻害する伸線潤滑剤成分が低減されるため、導体周面と絶縁層との密着力を向上させることができる。その結果、得られる絶縁電線は、密着性、耐傷性及び絶縁特性に優れる。 The above manufacturing method can improve the adhesion between the conductor peripheral surface and the insulating layer because the wire lubricant component that inhibits the adhesion between the conductor peripheral surface and the insulating layer is reduced by the carbon reduction treatment. As a result, the obtained insulated wire is excellent in adhesion, scratch resistance and insulating properties.
 ここで、「剥離試験における絶縁層剥離までの平均捻り回数」とは、JIS-C3216-3の5.4に規定の「剥離試験」に準拠して測定した値の平均値(サンプル数3)である。ただし、公称導体径が1mm未満の場合、試験荷重(張力)は10Nとしている。「グリセリン溶液中における上記絶縁層の単位厚み当たりの絶縁破壊電圧の平均値」とは、グリセリンと飽和食塩水とを17:3の質量割合で混合したグリセリン溶液中に絶縁電線の一部を浸漬させ、電圧を印加し1V/secの速度で昇圧させたときに、絶縁層が破壊される電圧の平均値(サンプル数10)を絶縁層の平均厚みで除した値である。「炭素濃度」とは、エネルギー分散型X線分析法(EDX)を用いて計測される値である。 Here, “the average number of twists until the insulation layer is peeled off in the peel test” means the average value (number of samples: 3) of the values measured in accordance with the “peel test” defined in 5.4 of JIS-C3216-3 It is. However, when the nominal conductor diameter is less than 1 mm, the test load (tension) is 10N. “Average value of dielectric breakdown voltage per unit thickness of the insulating layer in the glycerin solution” means that a part of the insulated wire is immersed in a glycerin solution in which glycerin and saturated saline are mixed at a mass ratio of 17: 3. When the voltage is applied and the voltage is increased at a rate of 1 V / sec, the average voltage (number of samples: 10) at which the insulating layer is broken is divided by the average thickness of the insulating layer. “Carbon concentration” is a value measured using energy dispersive X-ray analysis (EDX).
 以上説明したように、本発明の絶縁電線は、導体にアルミニウム又はアルミニウム合金を用いながら、高い耐傷性及び絶縁特性を有する。また、本発明の絶縁電線の製造方法は、密着性、耐傷性及び絶縁特性に優れる絶縁電線を容易かつ確実に製造することができる。 As described above, the insulated wire of the present invention has high scratch resistance and insulating properties while using aluminum or an aluminum alloy as a conductor. Moreover, the manufacturing method of the insulated wire of this invention can manufacture the insulated wire excellent in adhesiveness, scratch resistance, and an insulation characteristic easily and reliably.
 以下、本発明の絶縁電線の実施形態を詳説する。 Hereinafter, embodiments of the insulated wire of the present invention will be described in detail.
 当該絶縁電線は、線状の導体と、この導体の周面に被覆する絶縁層とを備えている。 The insulated wire includes a linear conductor and an insulating layer covering the peripheral surface of the conductor.
 <導体>
 当該導体は、アルミニウム又はアルミニウム合金を主成分とする。アルミニウム合金としては、特に限定されるものではなく、絶縁電線に用いられる公知のアルミニウム合金を用いることができ、例えば高強度で耐熱性に優れるジルコニウム含有合金や鉄含有合金等を用いることができる。
<Conductor>
The conductor is mainly composed of aluminum or an aluminum alloy. The aluminum alloy is not particularly limited, and a known aluminum alloy used for an insulated wire can be used. For example, a zirconium-containing alloy or an iron-containing alloy having high strength and excellent heat resistance can be used.
 導体の断面形状は、特に限定されず、円形、方形、矩形等の種々の形状を採用することができる。また、導体の断面の大きさも、特に限定されない。丸線の場合は径が100μm~5mmのもの、平角線の場合は一辺の長さが500μm~5mmのものが一般に使用される。 The cross-sectional shape of the conductor is not particularly limited, and various shapes such as a circle, a rectangle, and a rectangle can be adopted. Further, the size of the cross section of the conductor is not particularly limited. In the case of a round wire, one having a diameter of 100 μm to 5 mm is generally used, and in the case of a flat wire, one having a side length of 500 μm to 5 mm is generally used.
 当該導体は、絶縁層を積層する前に周面の炭素を低減する処理が行われる。この炭素低減処理によって、例えば伸線工程時に付着した潤滑剤等の有機物を除去し、導体と絶縁層との密着を阻害する炭素成分を低減することができる。 The conductor is subjected to a treatment for reducing carbon on the peripheral surface before the insulating layer is laminated. By this carbon reduction treatment, for example, organic substances such as a lubricant adhering during the wire drawing process can be removed, and the carbon component that inhibits the adhesion between the conductor and the insulating layer can be reduced.
 当該導体周面の炭素濃度の上限としては、10質量%が好ましく、7質量%がより好ましく、5質量%が特に好ましい。導体周面の炭素濃度が上記上限を超える場合、絶縁層との密着性が低下するおそれがある。また上記炭素濃度と同様の理由で、導体周面におけるアルミニウムの質量に対する炭素の質量比としては、0.1以下が好ましく、0.06以下がさらに好ましい。導体周面における炭素濃度やアルミニウムの質量比を上記上限以下とすると、導体と絶縁層の密着力が改善されるため、当該絶縁電線の耐傷性や可撓性も改善され、コイルへの加工性を向上させることができる。 The upper limit of the carbon concentration of the conductor peripheral surface is preferably 10% by mass, more preferably 7% by mass, and particularly preferably 5% by mass. When the carbon concentration of the conductor peripheral surface exceeds the above upper limit, the adhesion with the insulating layer may be reduced. For the same reason as the carbon concentration, the mass ratio of carbon to the mass of aluminum on the conductor peripheral surface is preferably 0.1 or less, and more preferably 0.06 or less. If the carbon concentration on the conductor peripheral surface or the mass ratio of aluminum is less than the above upper limit, the adhesion between the conductor and the insulating layer is improved, so the scratch resistance and flexibility of the insulated wire are also improved, and the processability to the coil is improved. Can be improved.
 <絶縁層>
 絶縁層は、導体を被覆するように導体の周面に積層される。絶縁層は、単層でも2層以上の多層構造でもよい。多層構造として、特性の異なる絶縁材(樹脂)を組み合わせると、内層、外層等で異なる特性を付与できる。
<Insulating layer>
The insulating layer is laminated on the peripheral surface of the conductor so as to cover the conductor. The insulating layer may be a single layer or a multilayer structure of two or more layers. When insulating materials (resins) having different characteristics are combined as a multilayer structure, different characteristics can be imparted to the inner layer, the outer layer, and the like.
 当該絶縁電線の絶縁層は、例えば導体の周面に積層され、記絶縁層が、導体の周面に積層され、フェノキシ樹脂等の柔軟な成分を主成分として含有するプライマー層を有することが好ましい。さらに、上記プライマー層に加えて、ビフェニル含有ポリアミドイミド樹脂を主成分として含有するビフェニル含有ポリアミドイミド層を有することが好ましい。 The insulating layer of the insulated wire is preferably laminated on the peripheral surface of the conductor, for example, and the insulating layer is preferably laminated on the peripheral surface of the conductor and has a primer layer containing a flexible component such as phenoxy resin as a main component. . Furthermore, it is preferable to have a biphenyl-containing polyamideimide layer containing a biphenyl-containing polyamideimide resin as a main component in addition to the primer layer.
 [プライマー層]
 プライマー層は、フェノキシ樹脂やポリアミドイミド等の柔軟な成分を主成分として含有し、フェノキシ樹脂ワニス、及びこれに硬化剤を含有させたワニス(以上プライマー層用ワニス)を熱処理することで形成される。
[Primer layer]
The primer layer contains a flexible component such as phenoxy resin or polyamideimide as a main component, and is formed by heat-treating a phenoxy resin varnish and a varnish containing the curing agent (this is a primer layer varnish). .
 (フェノキシ樹脂)
 プライマー層用ワニスの主成分として用いられるフェノキシ樹脂とは、ビスフェノール系化合物とエピハロヒドリンとから製造されるエポキシ樹脂のうち、分子量が大きい樹脂をいい、通常、重量平均分子量(GPCによる測定)として30000~10万、好ましくは50000~80000のエポキシ樹脂が該当する。
(Phenoxy resin)
The phenoxy resin used as the main component of the primer layer varnish is a resin having a large molecular weight among epoxy resins produced from a bisphenol compound and epihalohydrin, and usually has a weight average molecular weight (measured by GPC) of 30000- An epoxy resin of 100,000, preferably 50,000 to 80,000 is applicable.
 上記ビスフェノール系化合物としては、2,2-ビス(p-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」という)、2,2-ビス(p-ヒドロキシフェニル)スルホン(以下、「ビスフェノールS」という)、ビスフェノールF、又はこれらの組み合わせが用いられる。使用したビスフェノール系化合物の種類に応じて、ビスフェノールA骨格を有するフェノキシ樹脂(ビスフェノールA型フェノキシ樹脂)、ビスフェノールF骨格を有するフェノキシ樹脂(ビスフェノールF型フェノキシ樹脂)、ビスフェノールA型フェノキシ樹脂の耐熱性を高めるために、ビスフェノール系化合物の一部に、2,2-ビス(p-ヒドロキシフェニル)スルホン(以下、「ビスフェノールS」という)を用いたビスフェノールS骨格を有するフェノキシ樹脂などが得られる。これらのビスフェノール型フェノキシ樹脂は、それぞれ単独で用いてもよいし、2種以上組み合わせて用いてもよい。 Examples of the bisphenol compounds include 2,2-bis (p-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”), 2,2-bis (p-hydroxyphenyl) sulfone (hereinafter referred to as “bisphenol S”). , Bisphenol F, or a combination thereof. Depending on the type of bisphenol compound used, the heat resistance of the phenoxy resin having a bisphenol A skeleton (bisphenol A type phenoxy resin), the phenoxy resin having a bisphenol F skeleton (bisphenol F type phenoxy resin), and the bisphenol A type phenoxy resin In order to increase this, a phenoxy resin having a bisphenol S skeleton using 2,2-bis (p-hydroxyphenyl) sulfone (hereinafter referred to as “bisphenol S”) as a part of the bisphenol-based compound can be obtained. These bisphenol type phenoxy resins may be used alone or in combination of two or more.
 以上のようなビスフェノール型フェノキシ樹脂としては、市販品を用いてもよい。ビスフェノールA型フェノキシ樹脂の市販品としては、例えば、東都化成株式会社製、品番YP-50、YP50S、YP-55、ジャパンエポキシレジン株式会社製のエピコート、大日本インキ化学工業株式会社製のエピクロン、ユニオンカーバイト株式会社製のPKHC、PKHH、PKHJなどが挙げられる。ビスフェノールS型フェノキシ樹脂の市販品としては、例えば、東都化成株式会社製、品番YPS007A30Aなどが挙げられる。ビスフェノールF型フェノキシ樹脂の市販品としては、東都化成株式会社製のFX-316、ジャパンエポキシレジン株式会社の4010P、4110、4210などが挙げられる。さらに、ビスフェノールA型フェノキシ樹脂とビスフェノールF型フェノキシ樹脂の混合品、若しくは共重合品の市販品としては、東都化成株式会社製のYP70、ZX-1356-2、ジャパンエポキシレジン株式会社の4250、4275などが挙げられる。 Commercially available products may be used as the bisphenol type phenoxy resin as described above. Commercially available products of bisphenol A type phenoxy resin include, for example, manufactured by Toto Kasei Co., Ltd., product numbers YP-50, YP50S, YP-55, Epicoat manufactured by Japan Epoxy Resin Co., Ltd., Epicron manufactured by Dainippon Ink & Chemicals, Inc. PKHC, PKHH, PKHJ, etc. manufactured by Union Carbide Corporation are listed. As a commercial item of bisphenol S type phenoxy resin, the Toto Kasei Co., Ltd. product number YPS007A30A etc. are mentioned, for example. Commercially available products of bisphenol F type phenoxy resin include FX-316 manufactured by Toto Kasei Co., Ltd., 4010P, 4110, 4210 manufactured by Japan Epoxy Resin Co., Ltd. Furthermore, as commercial products of bisphenol A-type phenoxy resin and bisphenol F-type phenoxy resin or copolymer products, YP70 and ZX-1356-2 manufactured by Tohto Kasei Co., Ltd., 4250 and 4275 of Japan Epoxy Resin Co., Ltd. Etc.
 上記のようなビスフェノール型フェノキシ樹脂の他、例えば、ジヒドロキシビフェニルの水酸基とエピクロロヒドリンを反応させて、高分子量化することにより得られ、分子内にビフェニル骨格を有するフェノキシ樹脂を用いることもできる。 In addition to the bisphenol-type phenoxy resin as described above, for example, a phenoxy resin obtained by reacting a hydroxyl group of dihydroxybiphenyl with epichlorohydrin to increase the molecular weight and having a biphenyl skeleton in the molecule can also be used. .
 (硬化剤)
 フェノキシ樹脂は、骨格中に、反応性に富むエポキシ基や水酸基を有しているので、これらと反応して架橋構造を形成できる硬化剤を共存させることで、被膜強度及び密着性に優れた絶縁層を得ることができるプライマー層が形成される。硬化剤としては、メラミン化合物、イソシアネート化合物などが挙げられ、これらは単独で用いてもよいし、混合して用いてもよい。
(Curing agent)
Since phenoxy resin has highly reactive epoxy groups and hydroxyl groups in the skeleton, insulation with excellent film strength and adhesion can be obtained by coexisting a curing agent that can react with these to form a crosslinked structure. A primer layer is formed from which a layer can be obtained. Examples of the curing agent include melamine compounds and isocyanate compounds, and these may be used alone or in combination.
 上記メラミン化合物としては、例えば、メチル化メラミン、ブチル化メラミン、メチロール化メラミン、ブチロール化メラミンなどが挙げられ、これらは単独で用いてもよいし、又は2種以上を混合して用いてもよい。 Examples of the melamine compound include methylated melamine, butylated melamine, methylolated melamine, butyrolated melamine, and the like. These may be used alone or in combination of two or more. .
 上記イソシアネート化合物としては、イソシアネート基をブロック剤で保護したブロックイソシアネートが好ましく用いられる。ブロックイソシアネート化合物は、常温で安定であるが、その解離温度以上に加熱すると、遊離のイソシアネート基を再生するものである。イソシアネートの解離温度は、ブロック剤の種類によるが、好ましくは80~160℃、より好ましくは90~130℃である。 As the isocyanate compound, a blocked isocyanate in which an isocyanate group is protected with a blocking agent is preferably used. The blocked isocyanate compound is stable at room temperature, but regenerates a free isocyanate group when heated above its dissociation temperature. The dissociation temperature of the isocyanate depends on the type of the blocking agent, but is preferably 80 to 160 ° C, more preferably 90 to 130 ° C.
 上記イソシアネート化合物としては、トリレンジイソシアネート(TDI)、p-フェニレンジイソシアネート、ナフタリンジイソシアネートなどの芳香族ジイソシアネート;ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルへキサンジイソシアネート、リジンジイソシアネートなどの炭素数3~12の脂肪族ジイソシアネート;1,4-シクロへキサンジイソシアネート(CDI)、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水添MDI)、メチルシクロへキサンジイソシアネート、イソプロピデンジシクロヘキシル-4,4’-ジイソシアネート、1,3-ジイソシアナトメリルシクロへキサン(水添XDI)、水添TDI、2,5-ビス(イソシナートメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(イソシナートメチル)-ビシクロ[2.2.1]ヘプタンなどの炭素数5~18の脂環式ジイソシアネート;キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)などの芳香環を有する脂肪族ジイソシアネート;これらのジイソシアネートの変性物などが挙げられる。 Examples of the isocyanate compound include aromatic diisocyanates such as tolylene diisocyanate (TDI), p-phenylene diisocyanate, and naphthalene diisocyanate; carbon numbers such as hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, and lysine diisocyanate. 3 to 12 aliphatic diisocyanates; 1,4-cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI), methylcyclohexane diisocyanate, isopropylidene dicyclohexyl-4 , 4′-diisocyanate, 1,3-diisocyanatomerylcyclohexane (hydrogenated XDI), hydrogenated TDI, 2,5-bis (isocyanate) A cycloaliphatic diisocyanate having 5 to 18 carbon atoms such as til) -bicyclo [2.2.1] heptane, 2,6-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane; (XDI), aliphatic diisocyanates having an aromatic ring such as tetramethylxylylene diisocyanate (TMXDI), and modified products of these diisocyanates.
 これらのイソシアネート化合物のイソシアネート基をブロックするブロック剤としては、メタノール、エタノール、プロパノール、ブタノール、ベンジルアルコール、シクロヘキサノール等のアルコール類、フェノール類、ε-カプロラクタム、ブチルセロソルブ類などが挙げられる。 Examples of the blocking agent that blocks the isocyanate group of these isocyanate compounds include alcohols such as methanol, ethanol, propanol, butanol, benzyl alcohol, and cyclohexanol, phenols, ε-caprolactam, and butyl cellosolves.
 以上のようなブロックイソシアネートとして、市販品を用いてもよく、例えば、住化バイエルウレタン株式会社製のCT stable、BL-3175、TPLS-2759、BL-4165、日本ポリウレタン工業株式会社製のMS-50などを用いることができる。 Commercially available products may be used as the blocked isocyanate as described above. For example, CT stable, BL-3175, TPLS-2759, BL-4165 manufactured by Sumika Bayer Urethane Co., Ltd., MS- manufactured by Nippon Polyurethane Industry Co., Ltd. 50 or the like can be used.
 以上のような硬化剤は、密着性を高める観点から、フェノキシ樹脂100質量部あたり3~60質量部、好ましくは5~50質量部、より好ましくは10~40質量部の割合で用いる。 The curing agent as described above is used in a proportion of 3 to 60 parts by mass, preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass per 100 parts by mass of the phenoxy resin from the viewpoint of improving the adhesion.
 (プライマー層用ワニス)
 プライマー層用ワニスは、上記フェノキシ樹脂等の柔軟な成分、あるいは、これに硬化剤を含有し、更に、本発明の目的が阻害されない範囲で、必要に応じて、エポキシ樹脂、ポリエステルイミド樹脂、ポリアミドイミド樹脂等の他の樹脂;シリカ、アルミナ、酸化マグネシウム、酸化ベリリウム、炭化ケイ素、炭化チタン、タングステンカーバイド、窒化ホウ素、窒化ケイ素などのフィラー;ワニスの硬化性や流動性を改善するために、例えば、テトライソプロピルチタネート、テトラブチルチタネート、テトラヘキシルチタネートなどのチタン系ナフテン酸亜鉛、オクテン酸亜鉛などの亜鉛系化合物;酸化防止剤;防食剤;密着性向上剤;硬化性改善剤;レベリング剤;接着助剤などの添加剤を含有した樹脂組成物を、有機溶剤に溶解して調製される。
(Primer layer varnish)
The primer layer varnish contains a flexible component such as the above phenoxy resin, or contains a curing agent, and further, an epoxy resin, a polyesterimide resin, a polyamide, as necessary, as long as the object of the present invention is not hindered. Other resins such as imide resins; fillers such as silica, alumina, magnesium oxide, beryllium oxide, silicon carbide, titanium carbide, tungsten carbide, boron nitride, silicon nitride; to improve the curability and fluidity of varnish, for example , Tetraisopropyl titanate, tetrabutyl titanate, tetrahexyl titanate and other titanium compounds such as zinc naphthenates and zinc octenoates; antioxidants; anticorrosives; adhesion improvers; curability improvers; leveling agents; A resin composition containing additives such as auxiliaries is dissolved in an organic solvent. It is prepared.
 上記有機溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ-ブチロラクトンなどの極性有機溶媒をはじめ、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロへキサノンなどのケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチルなどのエステル類;ジエチルエステル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールメチルエーテル、テトラヒドロフランなどのエーテル類;ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素化合物;ジクロロメタン、クロロベンゼンなどのハロゲン化炭化水素化合物;クレゾール、クロルフェノールなどのフェノール類;ピリジンなどの第三級アミンなどが挙げられ、これらの有機溶媒は、それぞれ単独で又は2種以上混合して用いることができる。 Examples of the organic solvent include polar organics such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphoric triamide, and γ-butyrolactone. Solvents, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate; diethyl esters, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, ethylene glycol Ethers such as monobutyl ether (butyl cellosolve), diethylene glycol methyl ether, tetrahydrofuran; hexane, heptane, benzene, toluene, xylene Hydrocarbon compounds such as dichloromethane and chlorobenzene; phenols such as cresol and chlorophenol; tertiary amines such as pyridine and the like. These organic solvents may be used alone or in combination of two or more. It can be used by mixing.
 以上のような組成を有するプライマー層用ワニスを、アルミニウム導体に直接塗布した後、焼付けることによりプライマー層を形成できる。焼付温度としては、フェノキシ樹脂が硬化剤と反応して熱硬化できる温度であることが好ましく、通常、200~600℃程度である。また、ワニスの塗布、焼付は、1回だけであってもよいし、2回以上行ってもよい。 A primer layer can be formed by directly applying a varnish for a primer layer having the above composition to an aluminum conductor and baking it. The baking temperature is preferably a temperature at which the phenoxy resin can be thermally cured by reacting with a curing agent, and is usually about 200 to 600 ° C. Moreover, application | coating and baking of a varnish may be performed only once and may be performed twice or more.
 以上のようにして形成されるプライマー層の平均厚みとしては、0.5μm以上5μm以下が好ましく、1μm以上3μm以下がより好ましい。プライマー層の平均厚みが上記下限未満の場合、プライマー層形成の効果が得られにくいおそれがある。また、巻線製造上も周方向や長手方向の最小厚みに対する最大厚みの比が大きくなり、各種特性のバラツキの要因となる可能性がある。一方、プライマー層の平均厚みが上記上限を超えても密着力の低下は見られないが、フェノキシ樹脂等の柔軟なプライマーは一般に熱軟化温度が低いため、機械特性や熱軟化特性が低下する可能性がある。また、コスト的に不利となるおそれがある。 The average thickness of the primer layer formed as described above is preferably 0.5 μm to 5 μm, and more preferably 1 μm to 3 μm. When the average thickness of the primer layer is less than the above lower limit, the effect of forming the primer layer may be difficult to obtain. In addition, the ratio of the maximum thickness to the minimum thickness in the circumferential direction and the longitudinal direction also increases in manufacturing the winding, which may cause variations in various characteristics. On the other hand, even if the average thickness of the primer layer exceeds the above upper limit, there is no decrease in adhesion, but a flexible primer such as phenoxy resin generally has a low heat softening temperature, so mechanical properties and heat softening properties may be reduced. There is sex. Moreover, there exists a possibility that it may become disadvantageous in cost.
 [ビフェニル含有ポリアミドイミド層]
 ビフェニル含有ポリアミドイミド層とは、アミドイミド原料であるイソシアネート化合物の一部として、ビフェニル含有ジイソシアネートを用いたポリアミドイミドワニスを用いて形成される硬化物層をいい、形成されたポリアミドイミド層中にも当該ビフェニル含有ジイソシアネート由来のビフェニル基が含有されていることから、ビフェニル含有化合物を原料として使用しないポリアミドイミドワニス(汎用ポリアミドイミドワニス)の硬化物と比べて強度がアップしている。
[Biphenyl-containing polyamideimide layer]
The biphenyl-containing polyamide-imide layer refers to a cured product layer formed using a polyamide-imide varnish using a biphenyl-containing diisocyanate as part of an isocyanate compound that is an amide imide raw material. Since a biphenyl group derived from a biphenyl-containing diisocyanate is contained, the strength is improved as compared with a cured product of a polyamideimide varnish (a general-purpose polyamideimide varnish) that does not use a biphenyl-containing compound as a raw material.
 ここで、アミドイミド原料としては、イソシアネート化合物及びカルボン酸、あるいはアミン化合物と酸との反応生成物であるイミドジカルボン酸をイソシアネートと反応させることによりポリアミドイミドを合成する場合には、さらにアミン化合物が用いられる。ビフェニル含有ポリアミドイミド層用ワニスでは、原料に用いるイソシアネート化合物の一部に、ビフェニル含有ジイソシアネートを使用するところに特徴がある。 Here, as the amide-imide raw material, an amine compound is further used when synthesizing a polyamide-imide by reacting an isocyanate compound and a carboxylic acid, or an imide dicarboxylic acid, which is a reaction product of an amine compound and an acid, with an isocyanate. It is done. The varnish for biphenyl-containing polyamideimide layer is characterized in that biphenyl-containing diisocyanate is used as a part of the isocyanate compound used as a raw material.
 上記ビフェニル含有ジイソシアネート化合物としては、代表的には3,3′-ジメチルビフェニル-4,4′-ジイソシアネートが好ましく用いられ、その他、ビフェニル-4,4′-ジイソシアネート、ビフェニル-3,3′-ジイソシアネート、ビフェニル-3,4′-ジイソシアネート、3,3′-ジクロロビフェニル-4,4′-ジイソシアネート、2,2′-ジクロロビフェニル-4,4′-ジイソシアネート、3,3′-ジブロモビフェニル-4,4′-ジイソシアネート、2,2′-ジブロモビフェニル-4,4′-ジイソシアネート、3,3′-ジメチルビフェニル-4,4′-ジイソシアネート、2,2′-ジメチルビフェニル-4,4′-ジイソシアネート、2,3′-ジメチルビフェニル-4,4′-ジイソシアネート、3,3′-ジエチルビフェニル-4,4′-ジイソシアネート、2,2′-ジエチルビフェニル-4,4′-ジイソシアネート、3,3′-ジメトキシビフェニル-4,4′-ジイソシアネート、2,2′-ジメトキシビフェニル-4,4′-ジイソシアネート、2,3′-ジメトキシビフェニル-4,4′-ジイソシアネート、3,3′-ジエトキシビフェニル-4,4′-ジイソシアネート、2,2′-ジエトキシビフェニル-4,4′-ジイソシアネート、2,3′-ジエトキシビフェニル-4,4′-ジイソシアネートなどが挙げられる。 As the above-mentioned biphenyl-containing diisocyanate compound, typically 3,3′-dimethylbiphenyl-4,4′-diisocyanate is preferably used. In addition, biphenyl-4,4′-diisocyanate, biphenyl-3,3′-diisocyanate are used. Biphenyl-3,4'-diisocyanate, 3,3'-dichlorobiphenyl-4,4'-diisocyanate, 2,2'-dichlorobiphenyl-4,4'-diisocyanate, 3,3'-dibromobiphenyl-4, 4'-diisocyanate, 2,2'-dibromobiphenyl-4,4'-diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate, 2,2'-dimethylbiphenyl-4,4'-diisocyanate, 2,3'-dimethylbiphenyl-4,4'-diisocyanate 3,3'-diethylbiphenyl-4,4'-diisocyanate, 2,2'-diethylbiphenyl-4,4'-diisocyanate, 3,3'-dimethoxybiphenyl-4,4'-diisocyanate, 2,2 '-Dimethoxybiphenyl-4,4'-diisocyanate, 2,3'-dimethoxybiphenyl-4,4'-diisocyanate, 3,3'-diethoxybiphenyl-4,4'-diisocyanate, 2,2'-diethoxy Biphenyl-4,4'-diisocyanate, 2,3'-diethoxybiphenyl-4,4'-diisocyanate and the like can be mentioned.
 ビフェニル含有ジイソシアネート化合物以外のイソシアネート化合物としては、通常のポリアミドイミドワニスに用いられるようなジイソシアネート化合物を用いることができ、ジフェニルメタン-4,4′-ジイソシアネート、ジフェニルメタン-3,3′-ジイソシアネート、ジフェニルメタン-3,4′-ジイソシアネート、ジフェニルエーテル-4,4′-ジイソシアネート、ベンゾフェノン-4,4′-ジイソシアネート、ジフェニルスルホン-4,4′-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート等の芳香族ジイソシアネートなどが好ましく用いられる。 As the isocyanate compound other than the biphenyl-containing diisocyanate compound, a diisocyanate compound as used in a normal polyamide-imide varnish can be used, and diphenylmethane-4,4′-diisocyanate, diphenylmethane-3,3′-diisocyanate, diphenylmethane-3 , 4'-diisocyanate, diphenyl ether-4,4'-diisocyanate, benzophenone-4,4'-diisocyanate, diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, Aromatic diisocyanates such as naphthylene-1,5-diisocyanate, m-xylylene diisocyanate, and p-xylylene diisocyanate are preferably used.
 さらに、ビフェニル含有ポリアミドイミド層の架橋密度を上げるために、多官能のポリイソシアネート化合物を、アミドイミド原料としてのイソシアネート化合物の一部として用いることができる。多官能ポリイソシアネートとしては、トリフェニルメタントリイソシアネート、ジフェニルエーテルトリイソシアネート、ジイソシアネート化合物の3量体であるポリイソシアネート(住化バイエルウレタン株式会社の商品名デスモジュールL、デスモジュールAP等)、ポリメチレンポリフェニルイソシアネートなどが挙げられる。 Furthermore, in order to increase the crosslinking density of the biphenyl-containing polyamideimide layer, a polyfunctional polyisocyanate compound can be used as a part of the isocyanate compound as an amideimide raw material. Examples of polyfunctional polyisocyanates include polyisocyanates that are trimers of triphenylmethane triisocyanate, diphenyl ether triisocyanate, and diisocyanate compounds (trade names Desmodur L, Desmodur AP, etc. from Sumika Bayer Urethane Co., Ltd.), polymethylene poly Examples thereof include phenyl isocyanate.
 原料として使用するイソシアネート化合物のうち、上記ビフェニル含有ジイソシアネート化合物の含有割合は、10~80モル%とすることが好ましい。10モル%未満では、得られるビフェニル含有ポリアミドイミド膜の強度アップ効果が不十分となる。 Among the isocyanate compounds used as the raw material, the content ratio of the biphenyl-containing diisocyanate compound is preferably 10 to 80 mol%. If it is less than 10 mol%, the effect of increasing the strength of the resulting biphenyl-containing polyamideimide film will be insufficient.
 カルボン酸としては、トリメリット酸無水物、トリメリット酸クロライド、又はトリメリット酸の誘導体のうちの三塩基酸等の無水物;テトラカルボン酸無水物や二塩基酸、例えば、ピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、テレフタル酸、イソフタル酸、スルホテレフタル酸、ジクエン酸、2,5-チオフェンジカルボン酸、4,5-フェナントレンジカルボン酸、ベンゾフェノン-4,4′-ジカルボン酸、フタルジイミドジカルボン酸、ビフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、ジフェニルスルホン-4,4′-ジカルボン酸、アジピン酸等のジカルボン酸;トリメリット酸、ピロメリット酸、ブタンテトラカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ジフェニルスルホンテトラカルボン酸等のポリカルボン酸を用いることができる。これらは単独で使用できる他、2種類以上を併用することもできる。 Examples of carboxylic acids include trimellitic anhydride, trimellitic acid chloride, and trimellitic acid anhydrides such as tribasic acids; tetracarboxylic acid anhydrides and dibasic acids such as pyromellitic dianhydride , Biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, diphenylsulfonetetracarboxylic dianhydride, terephthalic acid, isophthalic acid, sulfoterephthalic acid, dicitric acid, 2,5-thiophenedicarboxylic acid, 4, Dicarboxylic acids such as 5-phenanthenedicarboxylic acid, benzophenone-4,4'-dicarboxylic acid, phthaldiimide dicarboxylic acid, biphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, adipic acid Trimellitic acid, pyromellitic acid, Tan tetracarboxylic acid, biphenyl tetracarboxylic acid, benzophenone tetracarboxylic acid, can be used polycarboxylic acids such as diphenylsulfone tetracarboxylic acid. These can be used alone or in combination of two or more.
 イソシアネート基又はカルボキシル基を3個以上含む多官能ポリイソシアネート又は多官能カルボン酸は、ポリアミドイミド膜の架橋密度を上げることができるので、耐熱性の観点から好ましいが、ビフェニル含有ポリアミドイミド層用ワニスでは、多官能ポリイソシアネート及び多官能カルボン酸の含有量は、イソシアネート成分および酸成分の総量に対する、上記ポリイソシアネート化合物及び/又はポリカルボン酸化合物の合計の含有割合が0.5~8モル%、好ましくは0.5~3モル%となるようにすることが好ましい。0.5モル%未満では、十分な架橋構造が得られず、8モル%を超えると、架橋密度が高すぎて、絶縁層の可撓性が劣る傾向にある。 A polyfunctional polyisocyanate or polyfunctional carboxylic acid containing three or more isocyanate groups or carboxyl groups is preferable from the viewpoint of heat resistance because it can increase the crosslinking density of the polyamideimide film. The content of the polyfunctional polyisocyanate and the polyfunctional carboxylic acid is such that the total content of the polyisocyanate compound and / or the polycarboxylic acid compound is 0.5 to 8 mol% with respect to the total amount of the isocyanate component and the acid component. Is preferably 0.5 to 3 mol%. If it is less than 0.5 mol%, a sufficient crosslinked structure cannot be obtained, and if it exceeds 8 mol%, the crosslinking density is too high and the flexibility of the insulating layer tends to be inferior.
 以上のように、ポリイソシアネート化合物及び/又はポリカルボン酸化合物を上記の割合で含有する、略等モル量のイソシアネート成分および酸成分を、適当な有機溶媒中で0~180℃の温度で1~24時間、より具体的には、まず140℃未満の温度で一定時間、加熱した後、昇温してさらに一定時間、加熱して反応させると、イソシアネート成分と酸成分との共重合体であるポリアミドイミドが、有機溶媒中に溶解又は分散したポリアミドイミド系ワニスが得られる。 As described above, an approximately equimolar amount of an isocyanate component and an acid component containing the polyisocyanate compound and / or the polycarboxylic acid compound in the above proportions are added in an appropriate organic solvent at a temperature of 0 to 180 ° C. More specifically, after 24 hours, more specifically, heating at a temperature of less than 140 ° C. for a certain period of time, then raising the temperature and further reacting by heating for a certain period of time, it is a copolymer of an isocyanate component and an acid component. A polyamideimide varnish in which polyamideimide is dissolved or dispersed in an organic solvent is obtained.
 アミン成分と酸成分とを反応させてイミドジカルボン酸を得、このイミドジカルボン酸とイソシアネート成分とを反応させてなるポリアミドイミドワニスの場合、アミドイミド原料として上記に列挙した酸、ジイソシアネート化合物の他、アミン成分が含まれる。この場合、アミン成分、酸成分、イソシアネート成分の総量に対する、上記ポリカルボン酸化合物、ポリイソシアネート化合物の合計の含有割合が0.5~8モル%となるように、ポリカルボン酸及び/又はポリイソシアネートが含有される。 In the case of a polyamide-imide varnish obtained by reacting an amine component and an acid component to obtain an imide dicarboxylic acid and reacting the imide dicarboxylic acid and an isocyanate component, in addition to the acids and diisocyanate compounds listed above as amine amide raw materials, an amine Ingredients included. In this case, the polycarboxylic acid and / or the polyisocyanate is adjusted so that the total content of the polycarboxylic acid compound and the polyisocyanate compound is 0.5 to 8 mol% with respect to the total amount of the amine component, the acid component, and the isocyanate component. Is contained.
 ジアミン化合物としては、とくに構造中に芳香族環を有する芳香族ジアミンが好適に使用される。芳香族ジアミンとしては、例えば4,4′-ジアミノジフェニルエーテル、3,4′-ジアミノジフェニルエーテル、3,3′-ジアミノジフェニルエーテル、4,4′-ジアミノジフエニルメタン、4,4′-ジアミノジフェニルスルホン、4,4′-ジアミノジフェニルスルフィド、4,4′-ジアミノジベンゾフェノン、4,4′-ジアミノジフェニルプロパン、4,4′-ジアミノジフェニルヘキサフルオロプロパン、4,4′-〔ビス(4-アミノフェノキシ)〕ビフェニル、4,4′-〔ビス(4-アミノフェノキシ)〕ジフェニルエーテル、4,4′-〔ビス(4-アミノフェノキシ)〕ジフェニルスルホン、4,4′-〔ビス(4-アミノフェノキシ)〕ジフェニルメタン、4,4′-〔ビス(4-アミノフェノキシ)〕ジフェニルプロパン、4,4′-〔ビス(4-アミノフェノキシ)〕ジフェニルヘキサフルオロプロパン等、従来公知の種々のジアミン化合物が挙げられる。 As the diamine compound, an aromatic diamine having an aromatic ring in the structure is particularly preferably used. Examples of the aromatic diamine include 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodibenzophenone, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylhexafluoropropane, 4,4 '-[bis (4-aminophenoxy )] Biphenyl, 4,4 '-[bis (4-aminophenoxy)] diphenyl ether, 4,4'-[bis (4-aminophenoxy)] diphenyl sulfone, 4,4 '-[bis (4-aminophenoxy) Diphenylmethane, 4,4 '-[bis (4-aminophenoxy)] di Enirupuropan, 4,4' [bis (4-aminophenoxy)] diphenyl hexafluoropropane, etc., various diamine compounds conventionally known may be mentioned.
 このほか、ベンジジン、3-メチル-4,4′-ジアミノビフェニル、3,3′-ジメチル-4,4′-ジアミノビフェニル、2,3′-ジメチル-4,4′-ジアミノビフェニル、2,2′-ジメチル-4,4′-ジアミノビフェニル、3,3′-ジメチル-3,4′-ジアミノビフェニル、3,3′-ジメチル-3,3′-ジアミノビフェニル、3,3′-ジエチル-4,4′-ジアミノビフェニル、3,3′-ジメトキシ-4,4′-ジアミノビフェニル、3,3′-ジエトキシ-4,4′-ジアミノビフェニル、3,3′-ジクロロ-4,4′-ジアミノビフェニル、3,3′-ジブロモ-4,4′-ジアミノビフェニル等を混合して用いることもできる。 In addition, benzidine, 3-methyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,3'-dimethyl-4,4'-diaminobiphenyl, 2,2 '-Dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-3,4'-diaminobiphenyl, 3,3'-dimethyl-3,3'-diaminobiphenyl, 3,3'-diethyl-4 , 4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-diethoxy-4,4'-diaminobiphenyl, 3,3'-dichloro-4,4'-diamino Biphenyl, 3,3′-dibromo-4,4′-diaminobiphenyl, and the like can also be mixed and used.
 以上のようなアミン成分と酸成分とを略化学量論量、有機溶媒中で反応させてイミドジカルボン酸を生成させ、これを、略化学量論量のイソシアネート成分と共重合させることで、ビフェニル含有ポリアミドイミド樹脂を製造することができる。より詳細には、酸成分およびその略1/2倍モル量のアミン成分を、適当な有機溶媒中で0~150℃の温度で1~24時間反応させると、アミン成分と酸成分との反応生成物であるイミドジカルボン酸が、反応液中に生成する。つぎにこの反応液に、イミドジカルボン酸と略等モル量のイソシアネート成分を添加して、0~150℃の温度で1~24時間反応させると、ビフェニル含有ポリアミドイミドが、有機溶媒中に溶解又は分散したビフェニル含有ポリアミドイミドワニスが得られる。 By reacting an amine component and an acid component as described above in an approximately stoichiometric amount in an organic solvent to form imidodicarboxylic acid, and copolymerizing it with an approximately stoichiometric amount of an isocyanate component, biphenyl is obtained. A containing polyamideimide resin can be produced. More specifically, when an acid component and an amine component of about 1/2 mole amount thereof are reacted in a suitable organic solvent at a temperature of 0 to 150 ° C. for 1 to 24 hours, the reaction between the amine component and the acid component is performed. The product, imidodicarboxylic acid, is generated in the reaction solution. Next, when an approximately equimolar amount of an isocyanate component is added to the reaction liquid and reacted at a temperature of 0 to 150 ° C. for 1 to 24 hours, the biphenyl-containing polyamideimide is dissolved in the organic solvent or A dispersed biphenyl-containing polyamideimide varnish is obtained.
 なお、ビフェニル含有ポリアミドイミドワニスにおいても、必要に応じて、プライマー層用ワニスで挙げたような各種添加剤を含有してもよい。また、有機溶剤としては、プライマー層用ワニスで挙げたような有機溶剤を用いることができる。 In addition, the biphenyl-containing polyamide-imide varnish may contain various additives as mentioned in the primer layer varnish, if necessary. Moreover, as an organic solvent, the organic solvent as mentioned in the varnish for primer layers can be used.
 以上のようなビフェニル含有ポリアミドイミド層を形成するポリアミドイミド系ワニスとしては、例えば、特許第3497525号に開示されているようなポリアミドイミド系ワニスを用いることができる。 As the polyamide-imide varnish for forming the biphenyl-containing polyamide-imide layer as described above, for example, a polyamide-imide varnish as disclosed in Japanese Patent No. 3497525 can be used.
 ビフェニル含有ポリアミドイミド層は、以上のようなポリアミドイミドワニスの硬化物からなり、プライマー層上に形成されてもよいし、プライマー層上に他の樹脂層を介して、かかる他の樹脂層上に形成されてもよい。ビフェニル含有ポリアミドイミドワニスを塗布、焼付することにより、ビフェニル含有ポリアミドイミド層が形成される。焼付温度は、通常、200~600℃程度である。また、ワニスの塗布、焼付は、1回だけであってもよいし、複数回行ってもよい。 The biphenyl-containing polyamideimide layer is composed of a cured product of the polyamideimide varnish as described above, and may be formed on the primer layer, or on the other resin layer via the other resin layer on the primer layer. It may be formed. A biphenyl-containing polyamideimide layer is formed by applying and baking a biphenyl-containing polyamideimide varnish. The baking temperature is usually about 200 to 600 ° C. Moreover, application | coating and baking of a varnish may be performed only once and may be performed in multiple times.
 ビフェニル含有ポリアミドイミド層の厚みは、少なくとも0.5μmあればよく、他の樹脂層の有無、絶縁電線サイズとの関係で、最大でも50μm程度の範囲で適宜選択される。 The thickness of the biphenyl-containing polyamideimide layer may be at least 0.5 μm, and is appropriately selected within a range of about 50 μm at the maximum depending on the presence of other resin layers and the size of the insulated wire.
 [他の樹脂層]
 当該絶縁電線の絶縁層は、上記プライマー層及びビフェニル含有ポリアミドイミド層以外の他の樹脂層を有していてもよい。
[Other resin layers]
The insulating layer of the insulated wire may have a resin layer other than the primer layer and the biphenyl-containing polyamideimide layer.
 絶縁層をプライマー層とビフェニル含有ポリアミドイミド層と他の樹脂層との3層以上の構造とする場合、他の樹脂層は、プライマー層とビフェニル含有ポリアミドイミド層との間に介在するようにしてもよいし、プライマー層上にビフェニル含有ポリアミドイミド層が形成され、このビフェニル含有ポリアミドイミド層上に他の樹脂層を形成してもよいし、さらに2つの他の樹脂層の間にビフェニル含有ポリアミドイミド層が介層されている構造の絶縁層としてもよい。 When the insulating layer has a structure of three or more layers including a primer layer, a biphenyl-containing polyamideimide layer, and another resin layer, the other resin layer is interposed between the primer layer and the biphenyl-containing polyamideimide layer. Alternatively, a biphenyl-containing polyamideimide layer may be formed on the primer layer, another resin layer may be formed on the biphenyl-containing polyamideimide layer, and biphenyl-containing polyamide may be formed between two other resin layers. An insulating layer having a structure in which an imide layer is interposed may be used.
 他の樹脂層の形成に用いられるワニスとしては、特に限定されず、従来より絶縁電線の被膜として用いられている汎用タイプのポリアミドイミド樹脂、ポリエステルイミド系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、エポキシ樹脂などを主成分とするワニスを用いることができる。これらのワニスを、従来公知の方法で、塗布、焼付することにより、ワニスの種類に応じて、汎用タイプのポリアミドイミド層、ポリエステルイミド層、ポリイミド層、ポリエステル層、ポリアミド層、エポキシ樹脂層などの樹脂層が形成される。 The varnish used for forming the other resin layers is not particularly limited, and is a general-purpose type polyamideimide resin, polyesterimide resin, polyimide resin, polyurethane resin, polyester conventionally used as a coating for insulated wires. It is possible to use a varnish mainly composed of a resin, a polyamide resin, an epoxy resin or the like. By applying and baking these varnishes by a conventionally known method, depending on the type of varnish, a general-purpose type polyamideimide layer, polyesterimide layer, polyimide layer, polyester layer, polyamide layer, epoxy resin layer, etc. A resin layer is formed.
 他の樹脂層を含む場合、絶縁層における他の樹脂層の厚み割合は、絶縁層の厚みに対して0~80%程度とすることが好ましく、0~50%程度とすることがより好ましい。80%を超えると、ビフェニル含有ポリアミドイミド層の割合が低下するため、その効果(機械的強度の向上)が得られにくくなる。 When other resin layers are included, the thickness ratio of the other resin layers in the insulating layer is preferably about 0 to 80%, more preferably about 0 to 50% with respect to the thickness of the insulating layer. If it exceeds 80%, the ratio of the biphenyl-containing polyamideimide layer decreases, so that it is difficult to obtain the effect (improvement of mechanical strength).
 [表面潤滑層]
 当該絶縁電線は、さらに絶縁層周面に、巻線の摩擦低減の観点から、潤滑性を有する被膜(表面潤滑層)を有していてもよい。表面潤滑層を構成する樹脂としては、潤滑性を有するものであればよく、例えば、流動パラフィン、固形パラフィン等のパラフィン類、各種ワックス、ポリエチレン、フッ素樹脂、シリコーン樹脂等の潤滑剤をバインダー樹脂で結着したものなどを挙げることができる。好ましくは、パラフィン又はワックスを添加することで潤滑性を付与したポリアミドイミド樹脂が用いられる。
[Surface lubrication layer]
The insulated wire may further have a coating (surface lubricating layer) having lubricity on the peripheral surface of the insulating layer from the viewpoint of reducing the friction of the winding. The resin constituting the surface lubrication layer may be any resin having lubricity, for example, paraffins such as liquid paraffin and solid paraffin, various waxes, polyethylene, fluororesin, silicone resin and other lubricants with a binder resin. There may be mentioned a bound one. Preferably, a polyamide-imide resin imparted with lubricity by adding paraffin or wax is used.
 表面潤滑層の厚みは、特に限定しないが、コイルとされた場合に、周囲の絶縁電線やコイル形成治具との摩擦、摩耗を低減するのに必要十分な厚みであればよく、具体的には0.5μm以上10μmが好ましく、1μm以上5μm以下がより好ましい。 The thickness of the surface lubrication layer is not particularly limited, but may be any thickness that is necessary and sufficient to reduce friction and wear with surrounding insulated wires and coil forming jigs when it is a coil. Is preferably 0.5 μm to 10 μm, and more preferably 1 μm to 5 μm.
 絶縁層全体の平均厚みとしては、特に限定されないが、例えば20μm以上100μm以下とすることができる。 Although it does not specifically limit as average thickness of the whole insulating layer, For example, they can be 20 micrometers or more and 100 micrometers or less.
 <絶縁電線>
 当該絶縁電線は、剥離強度試験における絶縁層剥離までの平均捻り回数が50回以上である。この絶縁層剥離までの平均捻り回数の下限としては、60回がさらに好ましい。剥離までの平均捻り回数が上記下限未満の場合、導体と絶縁層との密着性が十分ではないため、当該絶縁電線の耐傷性が得られない。
<Insulated wire>
The insulated wire has an average number of twists of 50 or more until peeling of the insulating layer in the peel strength test. The lower limit of the average number of twists until the insulating layer is peeled is more preferably 60 times. When the average number of twists until peeling is less than the above lower limit, the adhesion between the conductor and the insulating layer is not sufficient, so that the scratch resistance of the insulated wire cannot be obtained.
 当該絶縁電線のグリセリン溶液中における上記絶縁層の単位厚み当たりの絶縁破壊電圧の平均値の下限としては、0.15kV/μmが好ましく、0.20kV/μmがさらに好ましい。一方、絶縁層の単位厚み当たりの絶縁破壊電圧の平均値の上限としては、0.27kV/μmが好ましい。絶縁破壊電圧が上記下限未満の場合、高電圧下で使用される機器に当該絶縁電線を用いることができないおそれがある。また、絶縁破壊電圧が上記上限を超える場合、当該絶縁電線を安定的に製造する際、コストの上昇を招来するおそれがある。 The lower limit of the average value of the dielectric breakdown voltage per unit thickness of the insulating layer in the glycerin solution of the insulated wire is preferably 0.15 kV / μm, and more preferably 0.20 kV / μm. On the other hand, the upper limit of the average value of the dielectric breakdown voltage per unit thickness of the insulating layer is preferably 0.27 kV / μm. When the dielectric breakdown voltage is less than the lower limit, the insulated wire may not be used for equipment used under high voltage. Moreover, when a dielectric breakdown voltage exceeds the said upper limit, when manufacturing the said insulated wire stably, there exists a possibility of causing a raise of cost.
 当該絶縁電線の引掻き削れ荷重の下限としては、3.5kgfが好ましく、4.0kgfがさらに好ましく、3.8kgfが特に好ましい。引掻き削れ荷重が上記下限未満の場合、コイルを加工する際に絶縁電線に傷が付いたり、絶縁層が剥がれたりすることで、絶縁性が低下してしまうおそれがある。なお、引掻き削れ荷重は、絶縁電線と直角にピアノ線を重ね、交点部分に荷重をかけた状態で絶縁電線を引き抜いた場合に絶縁層にピンホールが発生する時の荷重である。 The lower limit of the scratching load of the insulated wire is preferably 3.5 kgf, more preferably 4.0 kgf, and particularly preferably 3.8 kgf. When the scratching load is less than the above lower limit, there is a possibility that the insulating property may be deteriorated by scratching the insulated wire or peeling off the insulating layer when the coil is processed. The scratching load is a load when a pinhole is generated in the insulating layer when a piano wire is overlapped at right angles to the insulated wire and the insulated wire is pulled out with the load applied to the intersection.
 <絶縁電線の製造方法>
 当該絶縁電線は、以下の工程を有する製造方法により容易かつ確実に製造することができる。
 (1)導体を得る導体製造工程
 (2)上記導体周面に対して炭素低減処理を行う炭素低減工程
 (3)上記導体の周面に絶縁層を被覆する被覆工程
<Insulated wire manufacturing method>
The insulated wire can be easily and reliably manufactured by a manufacturing method having the following steps.
(1) Conductor manufacturing process for obtaining a conductor (2) Carbon reduction process for performing carbon reduction treatment on the conductor peripheral surface (3) Coating process for covering the peripheral surface of the conductor with an insulating layer
 <(1)導体製造工程>
 導体製造工程においては、まず、導体の原料となるアルミニウム又はアルミニウム合金を鋳造及び圧延して圧延材を得る。次に、この圧延材に伸線加工を行って、任意の断面形状及び線径(短辺幅)を有する伸線材を形成する。伸線加工の方法としては、例えば複数の伸線ダイスを備えた伸線装置によって、この伸線ダイスに潤滑剤を塗布した圧延材を挿通させることで所望の断面形状及び線径(短辺幅)に徐々に近づける方法を用いることができる。この伸線ダイスは、線引きダイス、ローラダイス等を用いることができる。また、潤滑剤としては、油性成分を含油する水溶性及び非水溶性のものを使用可能である。なお、断面形状の加工は、軟化後に別途行うことも可能である。
<(1) Conductor manufacturing process>
In the conductor manufacturing process, first, aluminum or an aluminum alloy as a raw material for a conductor is cast and rolled to obtain a rolled material. Next, this rolled material is subjected to wire drawing to form a wire drawing material having an arbitrary cross-sectional shape and wire diameter (short side width). As a method of wire drawing, for example, by using a wire drawing device equipped with a plurality of wire drawing dies, a rolled material coated with a lubricant is inserted into the wire drawing dies, thereby obtaining a desired cross-sectional shape and wire diameter (short side width). ) Can be used. As the wire drawing die, a wire drawing die, a roller die, or the like can be used. Further, as the lubricant, water-soluble and water-insoluble ones containing an oil component can be used. Note that the cross-sectional processing can be performed separately after softening.
 伸線加工後、上記伸線材には加熱による軟化処理が行なわれる。軟化処理を行うことによって伸線材の結晶が再結晶化されるため、導体の靱性を向上させることができる。軟化処理における加熱温度としては、例えば250℃以上とすることができる。 After the wire drawing, the wire drawing material is softened by heating. Since the crystal of the wire drawing material is recrystallized by performing the softening treatment, the toughness of the conductor can be improved. As heating temperature in a softening process, it can be set as 250 degreeC or more, for example.
 軟化処理は、大気雰囲気下でも可能であるが、酸素含有量が少ない非酸化性雰囲気下で行うことが好ましい。このように非酸化性雰囲気下で軟化処理を行うことによって、軟化処理中(加熱中)の伸線材周面の酸化を抑制することができる。この非酸化性雰囲気としては、例えば真空雰囲気、窒素やアルゴン等の不活性ガス雰囲気、水素含有ガスや炭酸ガス含有ガス等の還元ガス雰囲気等を挙げることができる。 The softening treatment can be performed in an air atmosphere, but is preferably performed in a non-oxidizing atmosphere with a low oxygen content. Thus, by performing a softening process in a non-oxidizing atmosphere, the oxidation of the surrounding surface of a wire drawing material during a softening process (heating) can be suppressed. Examples of the non-oxidizing atmosphere include a vacuum atmosphere, an inert gas atmosphere such as nitrogen and argon, and a reducing gas atmosphere such as a hydrogen-containing gas and a carbon dioxide-containing gas.
 軟化処理は連続方式又はバッチ方式を用いることができる。連続方式としては、例えばパイプ炉等の加熱用容器内に伸線材を導入して熱伝導により加熱する炉式、伸線材に通電して抵抗熱によって加熱する直接通電方式、伸線材を高周波の電磁波によって加熱する間接通電方式等を挙げることができる。これらの中でも温度調節が容易な炉式が好ましい。バッチ方式としては、例えば箱型炉等の加熱用容器内に伸線材を封入して加熱する方式を挙げることができる。バッチ方式の加熱時間は0.5時間以上6時間以下とすることができる。また、バッチ方式においては、加熱後に50℃/sec以上の冷却速度で急冷することで、組織をより微細化することができる。 Softening treatment can be continuous or batch. As a continuous method, for example, a furnace type in which a wire drawing material is introduced into a heating container such as a pipe furnace and heated by heat conduction, a direct current method in which a wire drawing material is energized and heated by resistance heat, and the wire drawing material is subjected to high-frequency electromagnetic waves. And an indirect energization method in which heating is performed. Among these, a furnace type that allows easy temperature control is preferable. Examples of the batch method include a method in which a wire drawing material is enclosed in a heating container such as a box furnace and heated. The heating time of the batch method can be set to 0.5 hours or more and 6 hours or less. In the batch method, the structure can be further refined by rapid cooling at a cooling rate of 50 ° C./sec or more after heating.
 <(2)炭素低減工程>
 炭素低減工程においては、上記導体製造工程で得られた導体の周面に炭素低減処理を施す。このように炭素低減処理を施すことで、伸線工程時に付着した潤滑剤等の有機物を除去し、導体と絶縁層との密着性を向上させることができる。
<(2) Carbon reduction process>
In the carbon reduction step, a carbon reduction treatment is performed on the peripheral surface of the conductor obtained in the conductor manufacturing step. By performing the carbon reduction treatment in this manner, organic substances such as a lubricant attached during the wire drawing process can be removed, and the adhesion between the conductor and the insulating layer can be improved.
 上記炭素低減処理の具体的方法としては、例えば洗浄方法、分解方法、物理的除去方法等を挙げることができる。 Specific examples of the carbon reduction treatment include a cleaning method, a decomposition method, and a physical removal method.
 上記洗浄方法としては、例えば浸漬洗浄、スプレー洗浄、スチーム洗浄、ブラッシング洗浄、電解洗浄、超音波洗浄、微細な泡によるマイクロバブリング等を用いることができる。この洗浄方法で用いる洗浄剤としては、例えば水、石油系溶剤、芳香族炭化水素、ハロゲン化炭化水素、極性基含有溶剤(ケトン、アルコール等)等の溶剤、これらからなるエマルジョン、これらに界面活性剤等を溶解させた液等の中性液体;無機酸(塩酸、硝酸、硫酸、クロム酸等)水溶液、有機酸(ギ酸、酢酸等)水溶液等の酸性液体;無機アルカリ(水酸化ナトリウム、炭酸水素ナトリウム等)水溶液、有機アルカリ(エタノールアミン等)水溶液等のアルカリ性液体などを挙げることができる。 As the above cleaning method, for example, immersion cleaning, spray cleaning, steam cleaning, brushing cleaning, electrolytic cleaning, ultrasonic cleaning, micro bubbling with fine bubbles, or the like can be used. Examples of the cleaning agent used in this cleaning method include solvents such as water, petroleum-based solvents, aromatic hydrocarbons, halogenated hydrocarbons, polar group-containing solvents (ketones, alcohols, etc.), emulsions composed of these, and surface active agents for these. Neutral liquids such as solutions in which agents are dissolved; acidic liquids such as aqueous solutions of inorganic acids (hydrochloric acid, nitric acid, sulfuric acid, chromic acid, etc.), aqueous solutions of organic acids (formic acid, acetic acid, etc.); inorganic alkalis (sodium hydroxide, carbonic acid, etc.) Examples thereof include alkaline liquids such as aqueous solutions of sodium hydrogen and the like, and aqueous solutions of organic alkalis (such as ethanolamine).
 上記分解方法としては、例えば紫外線照射方法、プラズマ処理方法、焼成方法等を用いることができる。 As the decomposition method, for example, an ultraviolet irradiation method, a plasma treatment method, a baking method, or the like can be used.
 上記物理的除去方法としては、例えばふき取り、ブラッシング、遠心分離、加振、空気洗浄等を用いることができる。 As the physical removal method, for example, wiping, brushing, centrifugation, vibration, air washing, or the like can be used.
 上記各種方法は、複数を組み合わせて用いることができる。但し、酸性液体又はアルカリ性液体を用いた電解洗浄は、特に径の小さいアルミニウム導体の場合、周面への不純物の析出により、周面の密着性の低下、電気特性の低下、線形変動等が発生し、量産適性が低下するおそれがある。また、アルミニウム導体の伸線工程では鉱物油を多く含む伸線潤滑剤が用いられるため、一度の洗浄では十分な効果を得ることが難しい。そこで、中性の液体を用いて複数回の洗浄を行うことが好ましい。例えば、界面活性剤を含む洗浄剤で導体を浸漬洗浄した後、水を用いた浸漬洗浄、水を用いた超音波洗浄、又はこれら両方をさらに行うことによって、伸線工程後にアルミニウム導体の周面に付着している鉱物油を多く含む潤滑剤を効果的に除去することができ、炭素除去効果を高めることができる。また、高温での洗浄や長時間の洗浄でも、炭素除去効果を高めることができる。これらの洗浄方法は絶縁電線の製造工程においてインラインで連続的に行うことができるため、絶縁電線の生産性の向上にも寄与する。 The above various methods can be used in combination. However, electrolytic cleaning using acidic liquid or alkaline liquid, especially in the case of aluminum conductors with small diameters, causes deterioration of adhesion, deterioration of electrical characteristics, linear fluctuation, etc. due to precipitation of impurities on the peripheral surface. However, the suitability for mass production may be reduced. Further, since a wire drawing lubricant containing a large amount of mineral oil is used in the wire drawing process of the aluminum conductor, it is difficult to obtain a sufficient effect with a single cleaning. Therefore, it is preferable to perform a plurality of washings using a neutral liquid. For example, after the conductor is immersed and cleaned with a detergent containing a surfactant, the peripheral surface of the aluminum conductor after the wire drawing step is further performed by immersion cleaning using water, ultrasonic cleaning using water, or both. The lubricant containing a lot of mineral oil adhering to the surface can be effectively removed, and the carbon removal effect can be enhanced. In addition, the carbon removal effect can be enhanced by high-temperature cleaning or long-time cleaning. Since these cleaning methods can be continuously performed in-line in the manufacturing process of the insulated wire, they contribute to the improvement of the productivity of the insulated wire.
 なお、洗浄に酸性液体又はアルカリ性液体を用いた場合は、洗浄のみならずアルミニウム導体の溶解による粗化を積極的に発生させてもよい。このアルミニウム導体の粗化により、アルミニウム導体と絶縁層との接触面積を大きくして密着性を向上させることができる。 In addition, when an acidic liquid or alkaline liquid is used for cleaning, not only cleaning but also roughening due to dissolution of the aluminum conductor may be actively generated. By roughening the aluminum conductor, the contact area between the aluminum conductor and the insulating layer can be increased to improve adhesion.
 <(3)被覆工程>
 被覆工程においては、上記炭素低減処理がなされた導体に絶縁層を積層して絶縁電線を得る。具体的には、絶縁層の形成樹脂を有機溶媒に溶かした塗料(ワニス)を導体の周面に塗布し、焼付けることで絶縁層を形成する。
<(3) Coating process>
In the covering step, an insulated wire is obtained by laminating an insulating layer on the conductor subjected to the carbon reduction treatment. Specifically, the insulating layer is formed by applying a paint (varnish) obtained by dissolving a resin for forming the insulating layer in an organic solvent to the peripheral surface of the conductor and baking it.
 ワニスを導体周面に塗布する方法としては、例えばワニスを貯留したワニス槽と塗布ダイスとを備える塗布装置を用いた方法を挙げることができる。この塗布装置によれば、導体がワニス槽内を挿通することでワニスが導体周面に付着し、その後塗布ダイスを通過することでこのワニスがほぼ均一な厚みに塗布される。なお、ワニスにおける樹脂の含有量としては、10質量%以上50質量%以下が好ましい。 As a method of applying the varnish to the conductor peripheral surface, for example, a method using a coating apparatus including a varnish tank storing the varnish and a coating die can be used. According to this coating apparatus, the varnish adheres to the peripheral surface of the conductor as the conductor passes through the varnish tank, and then the varnish is applied to a substantially uniform thickness by passing through the coating die. In addition, as content of the resin in a varnish, 10 to 50 mass% is preferable.
 上記ワニスを加熱して焼付ける方法としては、例えば導体の走行方向に長い筒状の加熱炉を用い、導体を間接的に加熱する方法を用いることができる。この加熱方法は特に限定されないが、熱風加熱、赤外線加熱、誘導加熱等の公知の方法で行うことができる。このような加熱により、導体周面に塗布されたワニスに含まれる溶剤が気化し、導体周面が樹脂で被覆される。加熱温度は、絶縁層に用いる樹脂の種類により適宜選択される。 As a method of heating and baking the varnish, for example, a method of indirectly heating the conductor using a cylindrical heating furnace long in the running direction of the conductor can be used. Although this heating method is not specifically limited, It can carry out by well-known methods, such as hot air heating, infrared heating, induction heating. By such heating, the solvent contained in the varnish applied to the conductor peripheral surface is vaporized, and the conductor peripheral surface is coated with the resin. The heating temperature is appropriately selected depending on the type of resin used for the insulating layer.
 上記導体を上記塗布装置及び加熱炉内に複数回走行させることで、上記塗布及び焼付けが複数回繰り返されて樹脂被膜の厚みを増加させていくことができる。このとき、塗布ダイスの孔径は繰り返し回数にあわせて、必要に応じ、徐々に大きくなるように調整される。所定の厚みの樹脂被膜が得られた時点で、ワニスに含まれる樹脂成分を変更して被覆工程を継続することで、主成分の異なる複数の層からなる絶縁層を形成することができる。なお、各層ごとの塗布及び焼付けの繰り返し回数は適宜選択することができるが、2回から20回が適当である。 By running the conductor in the coating apparatus and the heating furnace a plurality of times, the coating and baking can be repeated a plurality of times to increase the thickness of the resin film. At this time, the hole diameter of the coating die is adjusted to gradually increase as necessary according to the number of repetitions. When a resin film having a predetermined thickness is obtained, an insulating layer composed of a plurality of layers having different main components can be formed by changing the resin component contained in the varnish and continuing the coating process. In addition, although the repetition frequency of application | coating and baking for each layer can be selected suitably, 2 to 20 times is suitable.
 <コイル>
 当該絶縁電線は、アルミニウム又はアルミニウム合金を導体として用いているため軽量性に優れ、さらに上述のように耐傷性及び絶縁特性に優れる。そのため、当該絶縁電線を巻回することで、多様な用途に好適に用いることが可能なコイルを得ることができる。
<Coil>
Since the said insulated wire uses aluminum or aluminum alloy as a conductor, it is excellent in lightweight property, and also as mentioned above, it is excellent in scratch resistance and insulation characteristics. Therefore, the coil which can be used suitably for various uses can be obtained by winding the said insulated wire.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
 なお、本実施例における各測定値は、以下の方法にて測定した値である。 In addition, each measured value in a present Example is a value measured with the following method.
 [絶縁層剥離までの捻り回数(単位:回)]
 JIS-C3216-3の5.4に規定の「剥離試験」に準拠し、絶縁層剥離までの捻り回数を計測し、10回の平均値を求めた。以下、1回の試験を説明すると、まずスクレーパを用いて絶縁電線の上下の被膜部分を導体が表出するように除去して試験片を作製する。次に、この試験片の一端を固定し、他端を一定荷重で一方向に捻り、残った側面部の絶縁層が浮き上がるまでの捻り回数を計測した。
[Number of twists until insulation layer peeling (unit: times)]
Based on the “peeling test” specified in 5.4 of JIS-C3216-3, the number of twists until the insulating layer was peeled was measured, and the average value of 10 times was obtained. Hereinafter, one test will be described. First, using a scraper, the upper and lower coating portions of the insulated wire are removed so that the conductors are exposed, and a test piece is prepared. Next, one end of this test piece was fixed, the other end was twisted in one direction with a constant load, and the number of twists until the insulating layer on the remaining side surface part was lifted was measured.
 [絶縁破壊電圧(単位:kV/μm)]
 絶縁電線を二個撚りにした試験片(長さ120mm、撚り数18)を作製した。この試験片を、グリセリンと飽和食塩水とを17:3の質量割合で混合した試験液に一部を浸し、試験片の一端と試験液との間に交流電圧を印加した。交流電圧の電圧を1V/secの速度で昇圧させて短絡したときの電圧を絶縁破壊電圧として計測し、10個の試験片の絶縁破壊電圧の平均値を絶縁電線の絶縁層の平均厚みで除した値を算出した。
[Dielectric breakdown voltage (unit: kV / μm)]
A test piece (length 120 mm, twist number 18) in which two insulated wires were twisted was produced. A part of this test piece was immersed in a test solution in which glycerin and saturated saline were mixed at a mass ratio of 17: 3, and an alternating voltage was applied between one end of the test piece and the test solution. The voltage when the AC voltage is boosted at a rate of 1 V / sec and shorted is measured as the breakdown voltage, and the average breakdown voltage of the 10 test pieces is divided by the average thickness of the insulating layer of the insulated wire. The calculated value was calculated.
 [引掻き削れ荷重(単位:kgf)]
 絶縁電線と直角にピアノ線を重ね、交点部分に荷重をかけた状態で絶縁電線を引き抜いた場合に絶縁層にピンホールが発生する時の荷重を計測した。荷重は2kgfから開始して0.5kgfずつ増加させた。また、ピンホールの発生は、JIS-C3216-5の7に規定の「ピンホール試験」に準拠し、適量の30g/Lのフェノールフタレインアルコール溶液を加えた2g/Lの食塩水に上記引掻き試験後の絶縁電線の一部を浸し、絶縁導線の一端と食塩水との間に12Vの直流電圧を1分間印加することで確認した。この印加試験において、ピンホールの発生個所周辺の食塩水はピンク色へ変色するため、この変色の確認によってピンホールの有無が確認できる。試験は8本の絶縁電線の試験体に対して行い、1本でもピンホールが認められた場合の荷重を引掻き削れ荷重とした。
[Scratching load (unit: kgf)]
A piano wire was superimposed at right angles to the insulated wire, and when the insulated wire was pulled out with a load applied to the intersection, the load when a pinhole was generated in the insulating layer was measured. The load was started from 2 kgf and increased by 0.5 kgf. The occurrence of pinholes is in accordance with the “pinhole test” specified in 7 of JIS-C3216-5, and the above-mentioned scratch is applied to 2 g / L saline solution with an appropriate amount of 30 g / L phenolphthalein alcohol solution added. It confirmed by immersing a part of insulated wire after a test, and applying the DC voltage of 12V for 1 minute between the end of an insulated conductor, and salt solution. In this application test, the saline solution around the location where the pinhole is generated turns pink, so that the presence or absence of the pinhole can be confirmed by confirming the color change. The test was performed on eight test specimens of insulated wires, and the load in the case where even one pinhole was recognized was defined as a scratch load.
 [導体周面の炭素濃度(単位:質量%)]
 絶縁層を積層する前の導体周面の炭素濃度をエネルギー分散型X線分析法(EDX)によって計測した。計測条件は、加速電圧を5kV、エミッション電流を100~120μA、分析エリアを0.4224mm×0.3300mm、フルスケールのカウント数(CPS)を約1000とした。
[Carbon concentration on conductor circumference (unit: mass%)]
The carbon concentration of the conductor peripheral surface before laminating the insulating layer was measured by energy dispersive X-ray analysis (EDX). The measurement conditions were an acceleration voltage of 5 kV, an emission current of 100 to 120 μA, an analysis area of 0.4224 mm × 0.3300 mm, and a full-scale count (CPS) of about 1000.
 [導体周面のアルミニウムに対する炭素の質量比]
 上記エネルギー分散型X線分析法によって導体周面のアルミニウム濃度を計測し、上記導体周面の炭素濃度をこのアルミニウム濃度で除して導体周面のアルミニウムに対する炭素の質量比を得た。
[Mass ratio of carbon to aluminum on the conductor circumference]
The aluminum concentration of the conductor peripheral surface was measured by the energy dispersive X-ray analysis method, and the carbon concentration of the conductor peripheral surface was divided by this aluminum concentration to obtain the mass ratio of carbon to aluminum on the conductor peripheral surface.
 [樹脂の弾性率(単位:GPa)]
 絶縁電線から樹脂部分のみを取り出し、動的粘弾性測定法(DMS)によって測定した。測定条件は、周波数1Hz、歪み5μmとし、窒素気流下、昇温速度10℃/分で昇温させた場合の引っ張り応力から算出した貯蔵弾性率を弾性率とした。
[Elastic modulus of resin (unit: GPa)]
Only the resin part was taken out from the insulated wire and measured by a dynamic viscoelasticity measurement method (DMS). The measurement conditions were a frequency of 1 Hz, a strain of 5 μm, and a storage elastic modulus calculated from a tensile stress when the temperature was raised at a rate of temperature increase of 10 ° C./min in a nitrogen stream was defined as an elastic modulus.
 [実施例1]
 アルミニウムを鋳造、延伸、伸線及び軟化し、断面が円形で直径1mmの導体を得た。この導体を、界面活性剤(共栄社化学株式会社製「エクセムライトDS-336」、表中洗浄剤A)を含む洗浄液を貯留した洗浄液貯留槽Aに浸漬させた後、蒸留水を貯留した蒸留水貯留槽Bに浸漬させ、さらに蒸留水を貯留した超音波槽C内にて超音波洗浄を行って導体周面の炭素を減少させた。この導体の周面炭素濃度は3.5質量%であり、導体周面のアルミニウムの質量に対する炭素の質量比は0.04であった。なお、伸線時の潤滑剤としてはファ-ベスト化成株式会社「スーパードロー450」を用いた。
[Example 1]
Aluminum was cast, drawn, drawn and softened to obtain a conductor having a circular cross section and a diameter of 1 mm. This conductor is immersed in a cleaning liquid storage tank A storing a cleaning liquid containing a surfactant (“Exemlite DS-336” manufactured by Kyoeisha Chemical Co., Ltd., cleaning agent A in the table), and then distilled water storing distilled water. It was immersed in the storage tank B, and further ultrasonic cleaning was performed in an ultrasonic tank C storing distilled water to reduce carbon on the conductor peripheral surface. The peripheral surface carbon concentration of this conductor was 3.5% by mass, and the mass ratio of carbon to the mass of aluminum on the peripheral surface of the conductor was 0.04. As a lubricant at the time of wire drawing, Farbest Kasei Co., Ltd. “Super Draw 450” was used.
 上記炭素低減処理後、導体周面に樹脂ワニスを塗布し焼き付けることによって絶縁層を被覆し、実施例1の絶縁電線を得た。なお、絶縁層は、ポリエステルイミド(日立化成株式会社製「Isomid40SM-45」、表中「汎用EsI」)で形成された厚み29.5μmの最内層と、汎用ポリアミドイミド(表中「汎用AI」)で形成された厚み4.5μmの中間層と、高潤滑性ポリアミドイミド(表中「潤滑AI」)で形成された厚み4.5μmの最外層とから形成されてなる。この内、汎用EsIワニスを上記被覆工程にて焼き付けた樹脂の弾性率は50℃で1.9GPa、200℃で0.46GPaであった。 After the carbon reduction treatment, an insulating layer was coated by applying and baking a resin varnish on the peripheral surface of the conductor to obtain an insulated wire of Example 1. The insulating layer is made of polyesterimide (“Isomid40SM-45” manufactured by Hitachi Chemical Co., Ltd., “general purpose EsI” in the table) and 29.5 μm thick innermost layer, and general purpose polyamideimide (“general purpose AI” in the table). ) And an outer layer having a thickness of 4.5 μm and formed from a highly lubricious polyamideimide (“Lubrication AI” in the table). Among these, the elastic modulus of the resin obtained by baking the general-purpose EsI varnish in the coating step was 1.9 GPa at 50 ° C. and 0.46 GPa at 200 ° C.
 上記中間層に用いた汎用ポリアミドイミドは以下の方法で調製した。まず、温度計、冷却管、塩化カルシウム充填管、攪拌器及び窒素吹込み管が取り付けられた容量1Lのフラスコ内に、窒素吹込み管から毎分150mLの窒素ガスを流入させながら、無水トリメリット酸143.6g及び4,4’-ジフェニルメタンジイソシアネート(三井武田ケミカル株式会社製「コスモネートPH」)193.8gを投入した。次に、このフラスコ内に溶媒としてN-メチル-2-ピロリドン536gを添加し、攪拌器で攪拌しながら80℃で約3時間加熱した後、フラスコ内の温度を約4時間かけて120℃まで昇温し、この温度で約3時間加熱した。その後、加熱を停止し、フラスコ内にキシレン134gを添加して内容液を希釈した後、放冷し、汎用ポリアミドイミド樹脂ワニスを得た。 The general-purpose polyamideimide used for the intermediate layer was prepared by the following method. First, anhydrous Trimerit while flowing 150 mL of nitrogen gas from a nitrogen blowing tube into a 1 L flask equipped with a thermometer, a cooling tube, a calcium chloride filling tube, a stirrer and a nitrogen blowing tube. 143.6 g of acid and 193.8 g of 4,4′-diphenylmethane diisocyanate (“Cosmonate PH” manufactured by Mitsui Takeda Chemical Co., Ltd.) were added. Next, 536 g of N-methyl-2-pyrrolidone was added as a solvent in the flask, and the mixture was heated at 80 ° C. for about 3 hours while stirring with a stirrer. Then, the temperature in the flask was increased to 120 ° C. over about 4 hours. The temperature was raised and the mixture was heated at this temperature for about 3 hours. Thereafter, the heating was stopped, 134 g of xylene was added to the flask to dilute the content liquid, and then allowed to cool to obtain a general-purpose polyamideimide resin varnish.
 また、上記最外層に用いた高潤滑性ポリアミドイミドは以下の方法で調製した。上記方法で調製した汎用ポリアミドイミドに、汎用ポリアミドイミドの固形分100質量部に対してポリエチレンワックスを1.5質量部の割合で混合することにより、高潤滑性ポリアミドイミド樹脂ワニスを得た。 Further, the highly lubricious polyamideimide used for the outermost layer was prepared by the following method. A highly lubricious polyamideimide resin varnish was obtained by mixing polyethylene wax in a ratio of 1.5 parts by mass with 100 parts by mass of the solid content of the general-purpose polyamideimide in the general-purpose polyamideimide prepared by the above method.
 [実施例2]
 実施例1と同様の工程によりアルミニウム導体を得、この導体を洗浄液貯留槽Aに浸漬させた後、蒸留水貯留槽Bでの浸漬洗浄は行わず、そのまま超音波槽C内にて超音波洗浄を行った。この導体の周面炭素濃度は4.5質量%であり、導体周面のアルミニウムに対する炭素の質量比は0.05であった。この導体周面に実施例1と同様の絶縁層を積層し、実施例2の絶縁電線を得た。
[Example 2]
After obtaining an aluminum conductor by the same process as in Example 1 and immersing this conductor in the cleaning liquid storage tank A, the immersion cleaning in the distilled water storage tank B is not performed, but the ultrasonic cleaning is performed in the ultrasonic tank C as it is. Went. The peripheral surface carbon concentration of this conductor was 4.5% by mass, and the mass ratio of carbon to aluminum on the peripheral surface of the conductor was 0.05. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of Example 2 was obtained.
 [実施例3]
 実施例1と同様の工程によりアルミニウム導体を得、この導体を洗浄液貯留槽Aに浸漬させた後、蒸留水貯留槽Bに浸漬させた。超音波槽Cにおける超音波洗浄は行わなかった。この導体の周面炭素濃度は6.3質量%であり、導体周面のアルミニウムに対する炭素の質量比は0.07であった。この導体周面に実施例1と同様の絶縁層を積層し、実施例3の絶縁電線を得た。
[Example 3]
An aluminum conductor was obtained by the same process as in Example 1, and this conductor was immersed in the cleaning liquid storage tank A and then immersed in the distilled water storage tank B. The ultrasonic cleaning in the ultrasonic tank C was not performed. The peripheral surface carbon concentration of this conductor was 6.3% by mass, and the mass ratio of carbon to aluminum on the peripheral surface of the conductor was 0.07. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of Example 3 was obtained.
 [実施例4]
 実施例1と同様の工程によりアルミニウム導体を得、界面活性剤としてホートン株式会社製「Cerfa-Kleen5395」(表中洗浄剤B)を用いた以外は実施例1と同様の手順で導体周面を洗浄した。この導体の周面炭素濃度は4.5質量%であった。この導体周面に実施例1と同様の絶縁層を積層し、実施例4の絶縁電線を得た。
[Example 4]
An aluminum conductor was obtained by the same process as in Example 1, and the conductor peripheral surface was formed in the same procedure as in Example 1 except that “Cerfa-Kleen 5395” (cleaning agent B in the table) manufactured by Horton Co., Ltd. was used as the surfactant. Washed. The circumferential surface carbon concentration of this conductor was 4.5% by mass. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of Example 4 was obtained.
 [実施例5]
 実施例1と同様の工程によりアルミニウム導体を得、界面活性剤としてホートン株式会社製「Cerfa-Kleen5395」(表中洗浄剤B)を用いた以外は実施例3と同様の手順で導体周面を洗浄した。この導体の周面炭素濃度は9.6質量%であった。この導体周面に実施例1と同様の絶縁層を積層し、実施例5の絶縁電線を得た。
[Example 5]
An aluminum conductor was obtained by the same process as in Example 1, and the peripheral surface of the conductor was formed in the same procedure as in Example 3 except that “Cerfa-Kleen 5395” (cleaning agent B in the table) manufactured by Horton Co., Ltd. was used as the surfactant. Washed. The peripheral surface carbon concentration of this conductor was 9.6% by mass. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of Example 5 was obtained.
 [実施例6]
 実施例1と同様の工程によりアルミニウム導体を得、界面活性剤としてJX日鉱日石エネルギー株式会社製「NSクリーン200」(表中洗浄剤C)を用いた以外は実施例3と同様の手順で導体周面を洗浄した。この導体の周面炭素濃度は4.3質量%であった。この導体周面に実施例1と同様の絶縁層を積層し、実施例6の絶縁電線を得た。
[Example 6]
An aluminum conductor was obtained by the same process as in Example 1, and the same procedure as in Example 3 was used except that “NS Clean 200” (cleaning agent C in the table) manufactured by JX Nippon Oil & Energy was used as the surfactant. The conductor peripheral surface was cleaned. The circumferential surface carbon concentration of this conductor was 4.3% by mass. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of Example 6 was obtained.
 [実施例7]
 実施例1と同様の工程によりアルミニウム導体を得、この導体を界面活性剤(JX日鉱日石エネルギー株式会社製「NSクリーン200」、表中洗浄剤C)を含む洗浄液を貯留した洗浄液貯留槽Aに浸漬させた。蒸留水貯留槽Bへの浸漬及び超音波槽Cでの超音波清浄は行わなかった。この導体の周面炭素濃度は4.4質量%であった。この導体周面に実施例1と同様の絶縁層を積層し、実施例7の絶縁電線を得た。
[Example 7]
An aluminum conductor is obtained by the same process as in Example 1, and this conductor is a cleaning liquid storage tank A in which a cleaning liquid containing a surfactant (“NS Clean 200” manufactured by JX Nippon Mining & Energy Co., Ltd., cleaning agent C in the table) is stored. Soaked. The immersion in the distilled water storage tank B and the ultrasonic cleaning in the ultrasonic tank C were not performed. The circumferential surface carbon concentration of this conductor was 4.4% by mass. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of Example 7 was obtained.
 [比較例1]
 実施例1と同様の工程によりアルミニウム導体を得たが、この導体に対して周面洗浄(炭素低減処理)を行わなかった。この導体の周面炭素濃度は13.0質量%であり、導体周面のアルミニウムに対する炭素の質量比は0.15であった。この導体周面に実施例1と同様の絶縁層を積層し、比較例1の絶縁電線を得た。
[Comparative Example 1]
An aluminum conductor was obtained by the same process as in Example 1, but the peripheral surface cleaning (carbon reduction treatment) was not performed on this conductor. The peripheral surface carbon concentration of this conductor was 13.0% by mass, and the mass ratio of carbon to aluminum on the peripheral surface of the conductor was 0.15. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of the comparative example 1 was obtained.
 [比較例2]
 実施例1と同様の工程によりアルミニウム導体を得、この導体を蒸留水貯留槽Bに浸漬させた。洗浄液貯留槽Aへの浸漬及び超音波槽Cでの超音波清浄は行わなかった。この導体の周面炭素濃度は12.9質量%であり、導体周面のアルミニウムに対する炭素の質量比は0.18であった。この導体周面に実施例1と同様の絶縁層を積層し、比較例2の絶縁電線を得た。
[Comparative Example 2]
An aluminum conductor was obtained by the same process as in Example 1, and this conductor was immersed in the distilled water storage tank B. The immersion in the cleaning liquid storage tank A and the ultrasonic cleaning in the ultrasonic tank C were not performed. The peripheral surface carbon concentration of this conductor was 12.9% by mass, and the mass ratio of carbon to aluminum on the peripheral surface of the conductor was 0.18. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of the comparative example 2 was obtained.
 [比較例3]
 実施例1と同様の工程によりアルミニウム導体を得、この導体を洗浄液貯留槽Aに浸漬させた。蒸留水貯留槽Bへの浸漬及び超音波槽Cでの超音波清浄は行わなかった。この導体の周面炭素濃度は11.5質量%であり、導体周面のアルミニウムに対する炭素の質量比は0.13であった。この導体周面に実施例1と同様の絶縁層を積層し、比較例3の絶縁電線を得た。
[Comparative Example 3]
An aluminum conductor was obtained by the same process as in Example 1, and this conductor was immersed in the cleaning liquid storage tank A. The immersion in the distilled water storage tank B and the ultrasonic cleaning in the ultrasonic tank C were not performed. The peripheral surface carbon concentration of this conductor was 11.5% by mass, and the mass ratio of carbon to aluminum on the peripheral surface of the conductor was 0.13. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of the comparative example 3 was obtained.
 [比較例4]
 実施例1と同様の工程によりアルミニウム導体を得、この導体を超音波槽C内にて超音波洗浄を行った。洗浄液貯留槽A及び蒸留水貯留槽Bへの浸漬は行わなかった。この導体の周面炭素濃度は12.5質量%であった。この導体周面に実施例1と同様の絶縁層を積層し、比較例4の絶縁電線を得た。
[Comparative Example 4]
An aluminum conductor was obtained by the same process as in Example 1, and this conductor was subjected to ultrasonic cleaning in the ultrasonic bath C. The immersion in the cleaning liquid storage tank A and the distilled water storage tank B was not performed. The peripheral surface carbon concentration of this conductor was 12.5% by mass. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of the comparative example 4 was obtained.
 [実施例8~13]
 実施例1と同様の工程によりアルミニウム導体を得、この導体を表2に示す温度の水蒸気で表2に示す時間処理して表面を洗浄した。これらの導体の周面炭素濃度はそれぞれ表2に示す値であった。これらの導体周面に実施例1と同様の絶縁層を積層し、実施例8~13の絶縁電線を得た。
[Examples 8 to 13]
An aluminum conductor was obtained by the same process as in Example 1, and this conductor was treated with water vapor at the temperature shown in Table 2 for the time shown in Table 2 to clean the surface. The peripheral carbon concentrations of these conductors were the values shown in Table 2, respectively. An insulating layer similar to that of Example 1 was laminated on these conductor peripheral surfaces to obtain insulated wires of Examples 8 to 13.
 [比較例5]
 実施例1と同様の工程によりアルミニウム導体を得、この導体に26℃の水に4秒間浸漬し表面を洗浄した。この導体の周面炭素濃度は13.2質量%であった。この導体周面に実施例1と同様の絶縁層を積層し、比較例5の絶縁電線を得た。
[Comparative Example 5]
An aluminum conductor was obtained by the same process as in Example 1, and the surface was immersed in water at 26 ° C. for 4 seconds to clean the surface. The peripheral carbon concentration of this conductor was 13.2% by mass. The insulating layer similar to Example 1 was laminated | stacked on this conductor surrounding surface, and the insulated wire of the comparative example 5 was obtained.
 [比較例6、7]
 実施例1と同様の工程によりアルミニウム導体を得、この導体に10MPaの圧力で表2に示す温度の水を4秒間噴射して表面を洗浄した。これらの導体の周面炭素濃度はそれぞれ表2に示す値であった。これらの導体周面に実施例1と同様の絶縁層を積層し、比較例6、7の絶縁電線を得た。
[Comparative Examples 6 and 7]
An aluminum conductor was obtained by the same process as in Example 1, and the surface was washed by spraying water at a pressure shown in Table 2 for 4 seconds at a pressure of 10 MPa. The peripheral carbon concentrations of these conductors were the values shown in Table 2, respectively. The insulating layers similar to those of Example 1 were laminated on the peripheral surfaces of these conductors, and the insulated wires of Comparative Examples 6 and 7 were obtained.
 [比較例8、9]
 実施例1と同様の工程によりアルミニウム導体を得、この導体を表2に示す温度の水蒸気で表2に示す時間処理して表面を洗浄した。これらの導体の周面炭素濃度はそれぞれ表2に示す値であった。これらの導体周面に実施例1と同様の絶縁層を積層し、比較例8、9の絶縁電線を得た。
[Comparative Examples 8 and 9]
An aluminum conductor was obtained by the same process as in Example 1, and this conductor was treated with water vapor at the temperature shown in Table 2 for the time shown in Table 2 to clean the surface. The peripheral carbon concentrations of these conductors were the values shown in Table 2, respectively. The insulating layers similar to those of Example 1 were laminated on the conductor peripheral surfaces to obtain insulated wires of Comparative Examples 8 and 9.
 [実施例14~23]
 実施例1と同様の工程によりアルミニウム導体を得、実施例1と同様の手順で導体周面を洗浄した。この導体周面に表3に示す構成の絶縁層を積層し、実施例14~23の絶縁電線を得た。
[Examples 14 to 23]
An aluminum conductor was obtained by the same process as in Example 1, and the conductor peripheral surface was washed in the same procedure as in Example 1. An insulating layer having the configuration shown in Table 3 was laminated on the circumferential surface of the conductor to obtain insulated wires of Examples 14 to 23.
 [実施例24~32]
 実施例1と同様の工程によりアルミニウム導体を得、この導体を、界面活性剤(共栄社化学株式会社製「エクセムライトDS-336」)を含む洗浄液を貯留した洗浄液貯留槽Aに浸漬させた後、蒸留水を貯留した蒸留水貯留槽Bに浸漬させ、さらに蒸留水を貯留した超音波槽C内にて超音波洗浄を行って導体周面を洗浄した。この導体の周面炭素濃度は3.4質量%であった。この導体周面に表3に示す構成の絶縁層を積層し、実施例24~32の絶縁電線を得た。
[Examples 24-32]
After obtaining an aluminum conductor by the same process as in Example 1 and immersing this conductor in a cleaning liquid storage tank A storing a cleaning liquid containing a surfactant (“Exemlite DS-336” manufactured by Kyoeisha Chemical Co., Ltd.), The conductor peripheral surface was cleaned by immersing in distilled water storage tank B storing distilled water, and further performing ultrasonic cleaning in ultrasonic tank C storing distilled water. The circumferential surface carbon concentration of this conductor was 3.4% by mass. An insulating layer having the structure shown in Table 3 was laminated on the peripheral surface of the conductor to obtain insulated wires of Examples 24 to 32.
 実施例14~32(表3)で用いた絶縁層構成樹脂を以下に説明する。 The insulating layer constituting resin used in Examples 14 to 32 (Table 3) will be described below.
 表中の「フェノキシ1」とは、ビスフェノールA変性フェノキシ樹脂を意味し、次の手順でワニスを得た。東都化成株式会社の「YP-50」(JIS K7236に基づくエポキシ当量87600g/eq、GPCによる重量平均分子量60000~80000、DSC法(10℃/min昇値)によるガラス転移点84℃)を、クレゾール/シクロヘキサノンに溶解させた溶液(固形分量:27質量%)を用いた。ビスフェノールA変性フェノキシ樹脂100質量部に対して、ブロックイソシアネートとしてMS50(日本ポリウレタン工業製)20質量部を混合して、プライマー層用ワニスとした。このワニスにおける固形分量は、27質量%である。この樹脂ワニスを上記被覆工程にて焼き付けた樹脂の弾性率は50℃で1.6GPa、200℃で0.017GPaであった。 “Phenoxy 1” in the table means bisphenol A-modified phenoxy resin, and a varnish was obtained by the following procedure. “Toyo Kasei Co., Ltd.“ YP-50 ”(epoxy equivalent 87600 g / eq based on JIS K7236, weight average molecular weight 60000-80000 by GPC, glass transition point 84 ° C. by DSC method (10 ° C./min increase)) / A solution (solid content: 27% by mass) dissolved in cyclohexanone was used. A varnish for a primer layer was prepared by mixing 20 parts by mass of MS50 (manufactured by Nippon Polyurethane Industry) as a blocked isocyanate with 100 parts by mass of a bisphenol A-modified phenoxy resin. The solid content in the varnish is 27% by mass. The elastic modulus of the resin obtained by baking this resin varnish in the coating step was 1.6 GPa at 50 ° C. and 0.017 GPa at 200 ° C.
 表中の「フェノキシ2」とは、ビスフェノールA変性フェノキシ樹脂を意味し、次の手順でワニスを得た。東都化成株式会社の「YP-50」(JIS K7236に基づくエポキシ当量87600g/eq、GPCによる重量平均分子量60000~80000、DSC法(10℃/min昇値)によるガラス転移点84℃)を、クレゾール/シクロヘキサノンに溶解させプライマー層用ワニスとした。このワニスにおける固形分量は、27質量%である。 “Phenoxy 2” in the table means bisphenol A-modified phenoxy resin, and a varnish was obtained by the following procedure. “Toyo Kasei Co., Ltd.“ YP-50 ”(epoxy equivalent 87600 g / eq based on JIS K7236, weight average molecular weight 60000-80000 by GPC, glass transition point 84 ° C. by DSC method (10 ° C./min increase)) / Dissolved in cyclohexanone to obtain a primer layer varnish. The solid content in the varnish is 27% by mass.
 表中の「フェノキシ3」とは、ビスフェノールA型とビスフェノールF型との共重合変性フェノキシ樹脂を意味し、次の手順でワニスを得た。東都化成株式会社の「ZX-1356-2」(GPCによる重量平均分子量60000~80000、DSC法(10℃/min昇値)によるガラス転移点72℃)を、クレゾール/シクロヘキサノンに溶解させ、ビスフェノールA型とビスフェノールF型との共重合変性フェノキシ樹脂100質量部に対して、ブロックイソシアネートとしてMS50(日本ポリウレタン工業株式会社製)20質量部を混合して、プライマー層用ワニスとした。このワニスにおける固形分量は、27質量%である。この樹脂ワニスを上記被覆工程にて焼き付けた樹脂の弾性率は50℃で1.7GPa、200℃で0.015GPaであった。 “Phenoxy 3” in the table means a copolymer-modified phenoxy resin of bisphenol A type and bisphenol F type, and a varnish was obtained by the following procedure. “ZX-1356-2” (GPC weight average molecular weight 60000-80000, glass transition point 72 ° C. by DSC method (10 ° C./min increase)) of Toto Kasei Co., Ltd. was dissolved in cresol / cyclohexanone to give bisphenol A A varnish for a primer layer was prepared by mixing 20 parts by mass of MS50 (manufactured by Nippon Polyurethane Industry Co., Ltd.) as a blocked isocyanate with 100 parts by mass of a copolymer-modified phenoxy resin of a type and a bisphenol F type. The solid content in the varnish is 27% by mass. The elastic modulus of the resin obtained by baking the resin varnish in the coating step was 1.7 GPa at 50 ° C. and 0.015 GPa at 200 ° C.
 表中の「高強度AI」とは、ビフェニル含有ポリアミドイミドを意味し、次の手順でワニスを得た。まず、温度計、冷却装置、塩化カルシウム充填管、攪拌器、窒素吹き込み管を取り付けたフラスコ中に、上記窒素吹き込み管から毎分150mlの窒素ガスを流しながら、トリメリット酸無水物(TMA)108.6gと、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート(TODI)29.9gと、ジフェニルメタン-4,4’-ジイソシアネート(MDI)113.1gとを投入した。TODIの全ジイソシアネート中に占る割合は、20モル%であった。次に、上記フラスコ中に、N-メチル-2-ピロリドン637gを入れ、攪拌器で攪拌しつつ、80℃で3時間、加熱し、さらに3時間かけて、140℃まで昇温した後、140℃で1時間加熱した。そして、1時間経過した段階で、加熱を止め、放冷して、濃度25質量%のビフェニル含有ポリアミドイミド層用ワニスを得た。 “High strength AI” in the table means biphenyl-containing polyamideimide, and varnish was obtained by the following procedure. First, trimellitic anhydride (TMA) 108 was flowed through a flask equipped with a thermometer, a cooling device, a calcium chloride filled tube, a stirrer, and a nitrogen blowing tube while flowing 150 ml of nitrogen gas from the nitrogen blowing tube per minute. , 6 g, 3,3′-dimethylbiphenyl-4,4′-diisocyanate (TODI) 29.9 g, and diphenylmethane-4,4′-diisocyanate (MDI) 113.1 g. The proportion of TODI in all diisocyanates was 20 mol%. Next, 637 g of N-methyl-2-pyrrolidone was placed in the flask, heated at 80 ° C. for 3 hours while stirring with a stirrer, and further heated to 140 ° C. over 3 hours. Heated at 0 ° C. for 1 hour. Then, when 1 hour had passed, heating was stopped and the mixture was allowed to cool to obtain a varnish for a biphenyl-containing polyamideimide layer having a concentration of 25% by mass.
 表中の「汎用PI」とは、汎用ポリイミドを意味し、次の手順でワニスを得た。まず、4,4’-ジアミノジフェニルエーテル(ODA)をN-メチルピロリドンに溶解させた後、ピロメリット酸二無水物(PMDA)を加えて窒素雰囲気下、室温で1時間攪拌した。その後、60℃で20時間攪拌し、反応を終え、室温まで冷却してポリイミド樹脂ワニスを得た。ODAとPMDAとの配合比率(モル比)は、100:100とした。 “General-purpose PI” in the table means general-purpose polyimide, and varnish was obtained by the following procedure. First, 4,4'-diaminodiphenyl ether (ODA) was dissolved in N-methylpyrrolidone, pyromellitic dianhydride (PMDA) was added, and the mixture was stirred at room temperature for 1 hour in a nitrogen atmosphere. Thereafter, the mixture was stirred at 60 ° C. for 20 hours to finish the reaction, and cooled to room temperature to obtain a polyimide resin varnish. The blending ratio (molar ratio) of ODA and PMDA was 100: 100.
 表中の「柔軟AI」とは、Voltatex9100(デュポン株式会社製)のことを言う。この樹脂ワニスを上記被覆工程にて焼き付けた樹脂の弾性率は50℃で2.2GPa、200℃で0.025GPaであった。 “Flexible AI” in the table refers to Voltatex 9100 (manufactured by DuPont). The elastic modulus of the resin obtained by baking this resin varnish in the coating step was 2.2 GPa at 50 ° C. and 0.025 GPa at 200 ° C.
 [参考例]
 アルミニウムの代わりに銅を使用することで銅導体を得た。伸線時の潤滑剤としては一般的な伸線潤滑剤を用いた。この導体の周面炭素濃度は表3に示すとおりであった。この導体周面に表3に示す構成の絶縁層を積層し、参考例の絶縁電線を得た。
[Reference example]
A copper conductor was obtained by using copper instead of aluminum. A general wire drawing lubricant was used as the lubricant during wire drawing. The peripheral carbon concentration of this conductor was as shown in Table 3. An insulating layer having the configuration shown in Table 3 was laminated on the peripheral surface of the conductor to obtain an insulated wire of a reference example.
 得られた実施例1~32、比較例1~9及び参考例の各絶縁電線について、絶縁層剥離までの捻り回数、絶縁破壊電圧及び引掻き削れ荷重をそれぞれ計測した。計測結果について表1、表2及び表3に示す。 For each of the insulated wires obtained in Examples 1 to 32, Comparative Examples 1 to 9, and Reference Example, the number of twists until the insulation layer was peeled, the dielectric breakdown voltage, and the scratching load were measured. The measurement results are shown in Table 1, Table 2, and Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1、表2及び表3の結果から示されるように、実施例1~32の絶縁電線は、引掻き削れ荷重が高く、高い耐傷性を有し、銅導体を用いた参考例の絶縁電線と同等かそれ以上の性能を発揮した。また、絶縁破壊電圧が高いため、絶縁特性にも優れる。なお、比較例2は、炭素濃度低減処理(水での洗浄処理)を行っていない比較例1よりも捻り回数及び絶縁破壊電圧が劣っているように見えるが、比較例1と比較例2とのこれらの数値の差は測定誤差の範囲内であると考えられる。 As shown in the results of Table 1, Table 2 and Table 3, the insulated wires of Examples 1 to 32 have high scratching load, high scratch resistance, and the insulated wires of Reference Example using copper conductors. Equivalent or better performance. In addition, since the dielectric breakdown voltage is high, the insulation characteristics are also excellent. In addition, although the comparative example 2 seems to be inferior in the twist frequency and the dielectric breakdown voltage compared with the comparative example 1 which has not performed the carbon concentration reduction process (cleaning process with water), the comparative example 1 and the comparative example 2 The difference between these values is considered to be within the measurement error.
 以上のように、本発明の絶縁電線は、導体にアルミニウム又はアルミニウム合金を用いながら、高い密着性、耐傷性及び絶縁特性を有する。従って、当該絶縁電線は、例えばモータ、オルタネータ、イグニッション等に好適に用いることができる。 As described above, the insulated wire of the present invention has high adhesion, scratch resistance, and insulating properties while using aluminum or an aluminum alloy as a conductor. Therefore, the said insulated wire can be used suitably for a motor, an alternator, an ignition etc., for example.

Claims (10)

  1.  アルミニウム又はアルミニウム合金を主成分とする導体及びこの導体の周面を被覆する絶縁層を備える絶縁電線であって、
     剥離試験における上記絶縁層剥離までの平均捻り回数が50回以上であることを特徴とする絶縁電線。
    An insulated wire comprising a conductor mainly composed of aluminum or an aluminum alloy and an insulating layer covering the peripheral surface of the conductor,
    An insulated wire characterized in that the average number of twists until peeling of the insulating layer in the peel test is 50 or more.
  2.  グリセリン溶液中における上記絶縁層の単位厚み当たりの絶縁破壊電圧の平均値が0.15kV/μm以上である請求項1に記載の絶縁電線。 The insulated wire according to claim 1, wherein an average value of a dielectric breakdown voltage per unit thickness of the insulating layer in the glycerin solution is 0.15 kV / µm or more.
  3.  上記導体周面の炭素濃度が10質量%以下である請求項1又は請求項2に記載の絶縁電線。 The insulated wire according to claim 1 or 2, wherein a carbon concentration of the conductor peripheral surface is 10% by mass or less.
  4.  上記導体周面が炭素低減処理されている請求項1、請求項2又は請求項3に記載の絶縁電線。 The insulated wire according to claim 1, wherein the conductor peripheral surface is subjected to carbon reduction treatment.
  5.  上記炭素低減処理が液体を用いた洗浄処理である請求項4に記載の絶縁電線。 The insulated wire according to claim 4, wherein the carbon reduction treatment is a washing treatment using a liquid.
  6.  上記絶縁層が、
     導体の周面に積層され、フェノキシ樹脂を主成分として含有するプライマー層と、
     ビフェニル含有ポリアミドイミド樹脂を主成分として含有するビフェニル含有ポリアミドイミド層と
     を有し、
     上記プライマー層の平均厚みが0.5μm以上5μm以下である請求項1から請求項5のいずれか1項に記載の絶縁電線。
    The insulating layer is
    A primer layer that is laminated on the peripheral surface of the conductor and contains a phenoxy resin as a main component;
    A biphenyl-containing polyamideimide layer containing a biphenyl-containing polyamideimide resin as a main component,
    The insulated wire according to any one of claims 1 to 5, wherein an average thickness of the primer layer is 0.5 µm or more and 5 µm or less.
  7.  上記ビフェニル含有ポリアミドイミド樹脂を形成するイソシアネート成分が、アミドイミド原料としてビフェニル含有ジイソシアネート化合物を含む請求項6に記載の絶縁電線。 The insulated wire according to claim 6, wherein the isocyanate component forming the biphenyl-containing polyamideimide resin contains a biphenyl-containing diisocyanate compound as an amideimide raw material.
  8.  上記絶縁層が、他の樹脂層をさらに有し、
     上記他の樹脂層が、ポリエステルイミド樹脂、ポリアミドイミド樹脂、又はポリイミド樹脂を主成分として含有する請求項6又は7に記載の絶縁電線。
    The insulating layer further has another resin layer,
    The insulated wire according to claim 6 or 7, wherein the other resin layer contains a polyesterimide resin, a polyamideimide resin, or a polyimide resin as a main component.
  9.  上記絶縁層の周面に、潤滑剤を含有したポリアミドイミド樹脂を主成分とする表面潤滑層をさらに備える請求項1から請求項8のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 8, further comprising a surface lubricating layer mainly composed of a polyamide-imide resin containing a lubricant on a peripheral surface of the insulating layer.
  10.  アルミニウム又はアルミニウム合金を主成分とする導体及びこの導体の周面を被覆する絶縁層を備える絶縁電線の製造方法であって、
     上記導体を得る工程、
     上記導体周面に対して炭素低減処理を行う工程、及び
     上記導体の周面に絶縁層を被覆する工程
     を有することを特徴とする絶縁電線の製造方法。
    A method for producing an insulated wire comprising a conductor mainly composed of aluminum or an aluminum alloy and an insulating layer covering a peripheral surface of the conductor,
    Obtaining the conductor,
    A method for producing an insulated wire, comprising: performing a carbon reduction process on the conductor peripheral surface; and coating an insulating layer on the peripheral surface of the conductor.
PCT/JP2013/059751 2012-04-02 2013-03-29 Insulated electric wire and method for manufacturing same WO2013150991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380018055.9A CN104246914B (en) 2012-04-02 2013-03-29 Insulated electric conductor and its manufacture method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012083796 2012-04-02
JP2012-083796 2012-04-02
JP2012136428 2012-06-15
JP2012-136428 2012-06-15

Publications (1)

Publication Number Publication Date
WO2013150991A1 true WO2013150991A1 (en) 2013-10-10

Family

ID=49300475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059751 WO2013150991A1 (en) 2012-04-02 2013-03-29 Insulated electric wire and method for manufacturing same

Country Status (3)

Country Link
JP (1) JPWO2013150991A1 (en)
CN (1) CN104246914B (en)
WO (1) WO2013150991A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095444A (en) * 2013-11-14 2015-05-18 住友電工ウインテック株式会社 Insulated wire and method for producing the same
WO2015121999A1 (en) * 2014-02-17 2015-08-20 株式会社日立製作所 Insulated wire, rotary electric machinery, and method for producing insulated wire
CN105006302A (en) * 2015-06-23 2015-10-28 中山市鸿程科研技术服务有限公司 Manufacture process of environment-friendly cable with low power consumption
JP2021104661A (en) * 2019-12-27 2021-07-26 住友電気工業株式会社 Laminate for circuit board and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015213535A1 (en) * 2015-07-17 2017-01-19 Siemens Aktiengesellschaft Solid insulation material, use for this purpose and insulation system manufactured therewith

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287515A (en) * 1986-06-04 1987-12-14 株式会社フジクラ Insulated wire and manufacture thereof
JPH0773744A (en) * 1993-08-31 1995-03-17 Sumitomo Electric Ind Ltd Insulated electric wire
JPH0873738A (en) * 1994-09-02 1996-03-19 Hitachi Chem Co Ltd Heat-resistant resin composition and aluminum base
JP2001319526A (en) * 2000-03-01 2001-11-16 Furukawa Electric Co Ltd:The Insulated cable
JP2006221859A (en) * 2005-02-08 2006-08-24 Toyota Motor Corp Wire and motor
JP2008161747A (en) * 2006-12-27 2008-07-17 Furukawa Sky Kk Resin coating aluminum plate and its manufacturing method
JP2009129566A (en) * 2007-11-20 2009-06-11 Sumitomo Electric Wintec Inc Insulated electric wire and its manufacturing method
JP2010205708A (en) * 2009-03-06 2010-09-16 Sumitomo Electric Wintec Inc Phenoxy resin insulating varnish
JP2011162826A (en) * 2010-02-08 2011-08-25 Sumitomo Electric Ind Ltd Aluminum alloy wire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563276U (en) * 1979-06-15 1981-01-13
JPS5928530A (en) * 1982-08-09 1984-02-15 Fujikura Ltd Manufacture of enameled wire
JPS59207509A (en) * 1983-05-11 1984-11-24 住友電気工業株式会社 Method of producing flat type insulated wire
US6734361B2 (en) * 2000-02-10 2004-05-11 The Furukawa Electric Co., Ltd. Insulated wire
JP5476649B2 (en) * 2008-04-03 2014-04-23 住友電工ウインテック株式会社 Insulated wire
JP5365899B2 (en) * 2008-06-04 2013-12-11 日立金属株式会社 Polyamideimide resin insulating paint and insulated wire using the same
CN101667477B (en) * 2009-09-24 2011-04-06 无锡巨丰复合线有限公司 Production technology of compound enamelled round aluminium wire with high heat resistance
JP5626530B2 (en) * 2010-02-16 2014-11-19 日立金属株式会社 Insulating paint, method for producing the same, insulated wire using the same, and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287515A (en) * 1986-06-04 1987-12-14 株式会社フジクラ Insulated wire and manufacture thereof
JPH0773744A (en) * 1993-08-31 1995-03-17 Sumitomo Electric Ind Ltd Insulated electric wire
JPH0873738A (en) * 1994-09-02 1996-03-19 Hitachi Chem Co Ltd Heat-resistant resin composition and aluminum base
JP2001319526A (en) * 2000-03-01 2001-11-16 Furukawa Electric Co Ltd:The Insulated cable
JP2006221859A (en) * 2005-02-08 2006-08-24 Toyota Motor Corp Wire and motor
JP2008161747A (en) * 2006-12-27 2008-07-17 Furukawa Sky Kk Resin coating aluminum plate and its manufacturing method
JP2009129566A (en) * 2007-11-20 2009-06-11 Sumitomo Electric Wintec Inc Insulated electric wire and its manufacturing method
JP2010205708A (en) * 2009-03-06 2010-09-16 Sumitomo Electric Wintec Inc Phenoxy resin insulating varnish
JP2011162826A (en) * 2010-02-08 2011-08-25 Sumitomo Electric Ind Ltd Aluminum alloy wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095444A (en) * 2013-11-14 2015-05-18 住友電工ウインテック株式会社 Insulated wire and method for producing the same
WO2015121999A1 (en) * 2014-02-17 2015-08-20 株式会社日立製作所 Insulated wire, rotary electric machinery, and method for producing insulated wire
CN105006302A (en) * 2015-06-23 2015-10-28 中山市鸿程科研技术服务有限公司 Manufacture process of environment-friendly cable with low power consumption
JP2021104661A (en) * 2019-12-27 2021-07-26 住友電気工業株式会社 Laminate for circuit board and production method thereof
JP7327159B2 (en) 2019-12-27 2023-08-16 住友電気工業株式会社 LAMINATED BOARD FOR CIRCUIT BOARD AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
CN104246914B (en) 2017-07-07
CN104246914A (en) 2014-12-24
JPWO2013150991A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5609732B2 (en) Insulating paint and insulated wire using the same
US20140154407A1 (en) Polyamide-imide resin insulating coating material, insulated wire and method of making the same
JP5540671B2 (en) Insulated wire
WO2013150991A1 (en) Insulated electric wire and method for manufacturing same
JP2009149757A (en) Polyamide imide and production method thereof, polyamide imide-based insulating coating, and insulated wire
JP2013253124A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
US20110193442A1 (en) Insulated wire, electrical coil using the insulated wire, and motor
JP2000235818A (en) Insulated wire
JP2016044288A (en) Polyimide resin precursor insulation coating and insulation wire using the same
WO2012153636A1 (en) Polyimide resin varnish, insulated electric wire using same, electric coil, and motor
JP2008016266A (en) Insulated wire
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP6368241B2 (en) Insulated wire and electric coil using the same
JP4190589B2 (en) Insulated wire
JP2012046619A (en) Insulated wire, electric appliance coil using the same, and motor
JP2010205708A (en) Phenoxy resin insulating varnish
JP5364939B2 (en) Insulated wire
JP2016044287A (en) Polyesterimide resin insulation coating and insulation wire using the same
JP5829697B2 (en) Insulated wire
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire
KR100879002B1 (en) Insulating varnish composition containing polyamideimide and Insulated wire containing insulated layer coated thereof
JP2012243614A (en) Insulated wire, and electric coil and motor using the same
US20240052199A1 (en) Insulated electrical wire and production method therefor
WO2022180794A1 (en) Insulated wire and method for manufacturing same
JP5596916B2 (en) Insulated wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772252

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014509143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772252

Country of ref document: EP

Kind code of ref document: A1