JP2009129566A - Insulated electric wire and its manufacturing method - Google Patents

Insulated electric wire and its manufacturing method Download PDF

Info

Publication number
JP2009129566A
JP2009129566A JP2007300330A JP2007300330A JP2009129566A JP 2009129566 A JP2009129566 A JP 2009129566A JP 2007300330 A JP2007300330 A JP 2007300330A JP 2007300330 A JP2007300330 A JP 2007300330A JP 2009129566 A JP2009129566 A JP 2009129566A
Authority
JP
Japan
Prior art keywords
insulated wire
conductor
insulating paint
insulating
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007300330A
Other languages
Japanese (ja)
Inventor
Masafumi Goto
将文 後藤
Sumio Miyashita
澄雄 宮下
Keiichiro Kawakubo
啓一郎 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Wintec Inc
Priority to JP2007300330A priority Critical patent/JP2009129566A/en
Publication of JP2009129566A publication Critical patent/JP2009129566A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Insulating Of Coils (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulated electric wire, along with its manufacturing method, which is excellent in voltage-resistance characteristics without increasing the thickness of an insulation film. <P>SOLUTION: An insulation paint 2 whose viscosity at 30°C is 0.005-0.05 Pa s is applied on the surface of a conductor 10 and baking is performed repeatedly. This operation is repeated to form an insulation film whose thickness is 3-15 μm. The insulated electric wire includes a conductor whose diameter is 0.035-0.15 mm and the insulation film whose thickness is 3-6.5 μm to cover the conductor. The insulation film contains polyurethane or polyester imide, and the insulation film breakdown voltage measured based on JIS-C3003 is 340 V or higher per film thickness of 0.001 mm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、絶縁電線及びその製造方法に関する。さらに詳しくは、絶縁皮膜の皮膜厚さを大きくしなくても耐電圧特性に優れた絶縁電線及びその製造方法に関する。   The present invention relates to an insulated wire and a method for manufacturing the same. More specifically, the present invention relates to an insulated wire excellent in withstand voltage characteristics without increasing the thickness of the insulating coating and a method for manufacturing the same.

一般に、絶縁電線は、導体の表面に絶縁塗料を塗布し、所定温度で焼付けを行って絶縁皮膜を形成することにより製造されている(例えば、特許文献1参照)。   In general, an insulated wire is manufactured by applying an insulating paint to the surface of a conductor and baking it at a predetermined temperature to form an insulating film (see, for example, Patent Document 1).

絶縁電線を、例えば、自動車のイグニッションコイル用電線のように高電圧が印加される用途に用いる場合には、絶縁皮膜には耐電圧特性が要求される。絶縁皮膜の耐電圧特性は、その皮膜厚さに比例して向上することから、絶縁皮膜の皮膜厚さを大きくすることによって耐電圧特性の向上が図られている。   When the insulated wire is used for an application where a high voltage is applied, for example, as an ignition coil wire for an automobile, the insulation film is required to have a withstand voltage characteristic. Since the withstand voltage characteristic of the insulating film improves in proportion to the film thickness, the withstand voltage characteristic is improved by increasing the film thickness of the insulating film.

特開2007−149562号公報JP 2007-149562 A

しかし、絶縁皮膜の皮膜厚さを大きくすると絶縁電線の外径が必然的に大きくなり、その結果、この絶縁電線を用いて製造されたコイルの寸法が大きくなることから、絶縁皮膜の皮膜厚さが小さくても絶縁性に優れた絶縁電線の開発が望まれている。   However, increasing the coating thickness of the insulating coating inevitably increases the outer diameter of the insulated wire, resulting in an increase in the dimensions of the coil manufactured using this insulated wire. Development of an insulated wire excellent in insulating properties even if it is small is desired.

本発明は、このような実情に鑑みてなされたものであり、絶縁皮膜の皮膜厚さを大きくしなくても耐電圧特性に優れた絶縁電線の製造方法を提供することを課題とする。また、本発明は、絶縁皮膜の皮膜厚さが大きくなくても耐電圧特性に優れた絶縁電線を提供することを課題とする。   This invention is made | formed in view of such a situation, and makes it a subject to provide the manufacturing method of the insulated wire excellent in the withstand voltage characteristic, without enlarging the film thickness of an insulating film. Moreover, this invention makes it a subject to provide the insulated wire excellent in the withstand voltage characteristic, even if the film thickness of the insulating film is not large.

本発明の絶縁電線の製造方法は、導体及び該導体を被覆する絶縁皮膜を有する絶縁電線の製造方法であって、導体の表面にその30℃における粘度が0.005〜0.05Pa・sである絶縁塗料を塗布した後、焼付けを行う操作を繰り返し、皮膜厚さが3〜15μmである絶縁皮膜を形成することを特徴としている。この製造方法によれば、従来よりも低粘度の絶縁塗料をより多い回数で塗布及び焼付けを行うことにより、絶縁皮膜中のピンホールの発生を低減することができ、絶縁皮膜の皮膜厚さを大きくしなくても、耐電圧特性に優れた絶縁電線を得ることができる。   The method for producing an insulated wire according to the present invention is a method for producing an insulated wire having a conductor and an insulating film covering the conductor, and the surface of the conductor has a viscosity at 30 ° C. of 0.005 to 0.05 Pa · s. After applying a certain insulating paint, an operation of baking is repeated to form an insulating film having a film thickness of 3 to 15 μm. According to this manufacturing method, the occurrence of pinholes in the insulating film can be reduced by applying and baking an insulating paint having a lower viscosity than in the past, and the film thickness of the insulating film can be reduced. Even if it is not enlarged, an insulated wire excellent in withstand voltage characteristics can be obtained.

本発明の絶縁電線の製造方法によれば、導体の直径が0.035〜0.2mmであっても、絶縁皮膜の皮膜厚さを大きくすることなく、絶縁性に優れた絶縁電線を得ることができる。   According to the method for manufacturing an insulated wire of the present invention, an insulated wire excellent in insulation can be obtained without increasing the thickness of the insulation film even if the diameter of the conductor is 0.035 to 0.2 mm. Can do.

本発明の絶縁電線の製造方法によれば、ポリウレタン又はポリエステルイミドを含有する絶縁塗料を用いることにより、耐電圧特性に優れるとともにはんだ付け性に優れた絶縁電線が得られる。   According to the method for producing an insulated wire of the present invention, by using an insulating paint containing polyurethane or polyesterimide, an insulated wire having excellent withstand voltage characteristics and excellent solderability can be obtained.

本発明の絶縁電線は、直径が0.035〜0.15mmの導体、及び該導体を被覆し、皮膜厚さが3〜6.5μmの絶縁皮膜を有する絶縁電線であって、絶縁皮膜はポリウレタン又はポリエステルイミドを含有し、JIS C3003により測定した絶縁皮膜の絶縁破壊電圧が、皮膜厚さ0.001mm当たり340V以上である。本発明の絶縁電線は、絶縁被膜の厚さが3〜6.5μmと小さいにもかかわらず、耐電圧特性に優れているので、絶縁電線の外径を小さくすることができるという効果を奏する。   The insulated wire of the present invention is an insulated wire having a conductor having a diameter of 0.035 to 0.15 mm and an insulating film having a coating thickness of 3 to 6.5 μm, and covering the conductor, and the insulating film is made of polyurethane. Alternatively, the dielectric breakdown voltage of the insulating film containing polyesterimide and measured according to JIS C3003 is 340 V or more per 0.001 mm of the film thickness. The insulated wire of the present invention is excellent in withstand voltage characteristics even though the thickness of the insulating coating is as small as 3 to 6.5 μm, so that the outer diameter of the insulated wire can be reduced.

本発明の絶縁電線の製造方法によれば、絶縁皮膜の皮膜厚さを大きくしなくても耐電圧特性に優れた絶縁電線を得ることができる。また、本発明の絶縁電線は、絶縁皮膜の皮膜厚さが大きくなくても耐電圧特性に優れている。   According to the method for manufacturing an insulated wire of the present invention, an insulated wire having excellent withstand voltage characteristics can be obtained without increasing the thickness of the insulating coating. Moreover, the insulated wire of this invention is excellent in the withstand voltage characteristic, even if the film thickness of the insulating film is not large.

本発明の絶縁電線の製造方法は、導体及び該導体上に形成された絶縁皮膜を有する絶縁電線の製造方法であって、導体の表面にその30℃における粘度が0.005〜0.05Pa・sである絶縁塗料を塗布した後、焼付けを行う操作を繰り返し、皮膜厚さが3〜15μmである絶縁皮膜を形成することを特徴としている。本発明の絶縁電線の製造方法は、前記特徴を有するので、絶縁皮膜の皮膜厚さを大きくしなくても耐電圧特性に優れた絶縁電線を製造することができる。したがって、本発明の絶縁電線は、例えば、自動車のイグニッションコイル用電線のように高電圧が印加される用途に好適に使用することができる。   The method for producing an insulated wire according to the present invention is a method for producing an insulated wire having a conductor and an insulating film formed on the conductor, and the viscosity of the conductor at 30 ° C. is 0.005 to 0.05 Pa · After applying the insulating paint as s, the operation of baking is repeated to form an insulating film having a film thickness of 3 to 15 μm. Since the method for manufacturing an insulated wire according to the present invention has the above-described characteristics, an insulated wire having excellent withstand voltage characteristics can be manufactured without increasing the thickness of the insulating coating. Therefore, the insulated wire of this invention can be used conveniently for the use to which a high voltage is applied like the electric wire for ignition coils of a motor vehicle, for example.

導体としては、特に限定がなく、例えば、銅線等が挙げられる。導体の直径(導体径)は、絶縁電線の強度を確保する観点から、好ましくは0.035mm以上、より好ましくは0.04mm以上である。また、使用する塗布装置の観点から、好ましくは0.1mm以下、より好ましくは0.06mm以下である。このように、本発明では、細線から太線にいたるまで幅広い直径を有する導体を用いることができる。なかでも特に、従来、耐電圧特性を付与することが困難であるとされている直径が0.035〜0.15mm、好ましくは0.04〜0.1mmである導体であっても、優れた耐電圧特性を付与することができる。   There is no limitation in particular as a conductor, For example, a copper wire etc. are mentioned. The diameter of the conductor (conductor diameter) is preferably 0.035 mm or more, more preferably 0.04 mm or more, from the viewpoint of securing the strength of the insulated wire. Moreover, from a viewpoint of the coating device to be used, it is preferably 0.1 mm or less, more preferably 0.06 mm or less. Thus, in this invention, the conductor which has a wide diameter from a thin line to a thick line can be used. In particular, even a conductor having a diameter of 0.035 to 0.15 mm, preferably 0.04 to 0.1 mm, which has been conventionally considered difficult to impart withstand voltage characteristics, is excellent. Withstand voltage characteristics can be imparted.

本発明の絶縁電線の製造方法においては、まず、導体の表面にその30℃における粘度が0.005〜0.05Pa・sである絶縁塗料を塗布する。本発明は、このように絶縁塗料として、30℃における粘度が特定範囲内にある絶縁塗料を用いる点に、1つの大きな特徴がある。本発明においては、30℃における絶縁塗料の粘度を特定範囲内となるように調整し、その絶縁塗料を所定の皮膜厚さとなるように塗布と焼付けを繰り返すという操作が採られているので、上記粘度よりも高粘度の絶縁塗料を用いて同じ皮膜厚さを形成した場合と比較すると均一に塗布することができる。これによりピンホールの発生が少なくなり、耐電圧特性に優れた絶縁皮膜を形成することができる。   In the method for producing an insulated wire of the present invention, first, an insulating paint having a viscosity of 0.005 to 0.05 Pa · s at 30 ° C. is applied to the surface of the conductor. The present invention has one major feature in that an insulating paint having a viscosity at 30 ° C. within a specific range is used as the insulating paint. In the present invention, the operation of adjusting the viscosity of the insulating paint at 30 ° C. to be within a specific range and repeating the application and baking so that the insulating paint has a predetermined film thickness is employed. Compared with the case where the same film thickness is formed using an insulating paint having a viscosity higher than the viscosity, the coating can be applied uniformly. As a result, the generation of pinholes is reduced, and an insulating film having excellent withstand voltage characteristics can be formed.

絶縁塗料の粘度は、30℃における粘度で規定されている。絶縁塗料の粘度は、通常、その塗料の温度によって異なることから、絶縁塗料が30℃よりも高温で塗布される場合には、塗布時の粘度は30℃での粘度よりも低くなる。   The viscosity of the insulating paint is defined by the viscosity at 30 ° C. Since the viscosity of the insulating paint usually varies depending on the temperature of the paint, when the insulating paint is applied at a temperature higher than 30 ° C., the viscosity at the time of application becomes lower than the viscosity at 30 ° C.

絶縁塗料を導体に塗布するときの絶縁塗料の温度は、使用する設備によっても異なるが、高くなるにしたがって絶縁塗料に含まれている溶媒が揮散し、塗布時の絶縁塗料の粘度に変動が生じやすくなる傾向があることから、通常、常温〜50℃であることが好ましい。   The temperature of the insulating paint when applying the insulating paint to the conductor varies depending on the equipment used, but as it increases, the solvent contained in the insulating paint volatilizes and the viscosity of the insulating paint changes during application. Since there exists a tendency which becomes easy, it is preferable normally that it is normal temperature-50 degreeC.

絶縁塗料の粘度は、例えば、絶縁塗料の固形分量を調節することによって調整してもよく、あるいは絶縁塗料を導体に塗布するときの絶縁塗料の温度を調節することによって調整してもよい。   The viscosity of the insulating paint may be adjusted, for example, by adjusting the solid content of the insulating paint, or may be adjusted by adjusting the temperature of the insulating paint when the insulating paint is applied to the conductor.

絶縁塗料の30℃での粘度は、導体に均一に塗布する観点から、0.005Pa・s以上、好ましくは0.01Pa・s以上であり、生産性を向上させる観点から、0.05Pa・s以下、好ましくは0.04Pa・s以下である。なお、絶縁塗料の粘度は、ブルックフィールド型粘度計(ローターNo.2)を用い、絶縁塗料を30℃で測定したときの値である。したがって、導体に塗布するときの絶縁塗料の粘度は、塗布時の温度が30℃であれば、上記の粘度であり、塗布時の温度が30℃より高ければ、上記の粘度よりも低くなる。   The viscosity at 30 ° C. of the insulating coating is 0.005 Pa · s or more, preferably 0.01 Pa · s or more from the viewpoint of uniformly applying to the conductor, and 0.05 Pa · s from the viewpoint of improving productivity. Hereinafter, it is preferably 0.04 Pa · s or less. The viscosity of the insulating paint is a value when the insulating paint is measured at 30 ° C. using a Brookfield viscometer (rotor No. 2). Therefore, the viscosity of the insulating coating when applied to the conductor is the above viscosity if the temperature at the time of application is 30 ° C., and lower than the above viscosity if the temperature at the time of application is higher than 30 ° C.

絶縁塗料としては、例えば、絶縁性を有する樹脂を有機溶媒に溶解させた絶縁塗料等が挙げられる。
前記樹脂としては、例えば、ポリエステルイミド、ポリアミドイミド、ポリイミド、ポリ塩化ビニル、ポリエチレン、ポリアミド、ポリエステル、ポリウレタン等が挙げられる。これらの中では、本発明の絶縁電線の耐電圧特性を高めるとともにハンダ付けを容易にする観点から、ポリウレタン及びポリエステルイミドが好ましい。
Examples of the insulating paint include an insulating paint obtained by dissolving an insulating resin in an organic solvent.
Examples of the resin include polyesterimide, polyamideimide, polyimide, polyvinyl chloride, polyethylene, polyamide, polyester, and polyurethane. Among these, polyurethane and polyesterimide are preferable from the viewpoint of enhancing the withstand voltage characteristics of the insulated wire of the present invention and facilitating soldering.

ポリウレタンには、ポリエステル系ポリウレタンとポリエーテル系ポリウレタンとがある。ポリエステル系ポリウレタンは、例えば、アジピン酸と多価アルコールの重縮合によって得られるアジペートとジイソシアネートとの重付加反応させるによって得ることができる。ポリエーテル系ポリウレタンは、例えば、ポリ(オキシプロピレン)グリコール(PPG)やポリ(オキシテトラメチレン)グリコール(PTMG)等の二官能ポリエーテルとジイソシアネートとを反応させることにより得ることができる。   Polyurethane includes polyester-based polyurethane and polyether-based polyurethane. The polyester-based polyurethane can be obtained, for example, by a polyaddition reaction of adipate obtained by polycondensation of adipic acid and a polyhydric alcohol and diisocyanate. The polyether-based polyurethane can be obtained, for example, by reacting a difunctional polyether such as poly (oxypropylene) glycol (PPG) or poly (oxytetramethylene) glycol (PTMG) with a diisocyanate.

ポリエステルイミドは、例えば、トリカルボン酸無水物とジアミンとの反応生成物であるイミドジカルボン酸と多価アルコールとを反応させることによって得ることができる。   Polyesterimide can be obtained, for example, by reacting imidodicarboxylic acid, which is a reaction product of tricarboxylic acid anhydride and diamine, with polyhydric alcohol.

前記有機溶媒としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ−ブチロラクトンなどの極性有機溶媒をはじめ、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロへキサノンなどのケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチルなどのエステル類;ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル類;ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素化合物;ジクロロメタン、クロロベンゼンなどのハロゲン化炭化水素化合物;クレゾール、クロロフェノールなどのフェノール類;ピリジンなどの第三級アミン類などが挙げられ、これらの有機溶媒は、それぞれ単独でまたは2種以上を混合して用いることができる。有機溶媒の量は、導体の表面に塗布するときに絶縁塗料が所望の粘度を有するように調整することが好ましい。   Examples of the organic solvent include polar organics such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexaethyl phosphate triamide, and γ-butyrolactone. Solvents, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate; diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, ethylene glycol Ethers such as monobutyl ether (butyl cellosolve), diethylene glycol dimethyl ether, tetrahydrofuran; hexane, heptane, benzene, toluene, xylene Hydrocarbon compounds such as dichloromethane and chlorobenzene; phenols such as cresol and chlorophenol; tertiary amines such as pyridine and the like. These organic solvents may be used alone or in combination of two kinds. The above can be mixed and used. The amount of the organic solvent is preferably adjusted so that the insulating paint has a desired viscosity when applied to the surface of the conductor.

絶縁塗料を導体に塗布する際には、例えば、フエルト絞り方式、ダイス方式等の通常使用されている方式を採用することができる。   When applying the insulating paint to the conductor, for example, a commonly used method such as a felt drawing method or a die method can be employed.

絶縁塗料の1回あたりの塗布量は、絶縁塗料の種類や粘度等によって異なるので一概には決定することができない。本発明に用いられる絶縁塗料は、所定の粘度を有することから、通常、導体に絶縁塗料を塗布したときに、絶縁塗料の薄膜が形成される。なお、導体に均一な絶縁皮膜を形成させる観点から、導体の全面に絶縁塗料が塗布される。   Since the coating amount of the insulating paint per application varies depending on the type and viscosity of the insulating paint, it cannot be determined unconditionally. Since the insulating paint used in the present invention has a predetermined viscosity, a thin film of the insulating paint is usually formed when the insulating paint is applied to the conductor. From the viewpoint of forming a uniform insulating film on the conductor, an insulating paint is applied to the entire surface of the conductor.

絶縁塗料を導体に塗布した後に、焼付けを行う。焼付けの際の焼付け温度は、絶縁塗料の種類によって異なるため一概には決定することができないが、耐電圧特性を高める観点から、通常、300〜450℃であることが好ましい。   After the insulating paint is applied to the conductor, baking is performed. Although the baking temperature at the time of baking varies depending on the type of insulating paint, it cannot be determined unconditionally. However, from the viewpoint of improving the withstand voltage characteristics, it is usually preferably 300 to 450 ° C.

本発明では、絶縁塗料の導体への塗布とその焼付けが繰り返されるが、その繰り返し数(以下、塗布回数という)は、所望の絶縁皮膜の皮膜厚さとなるように調整される。したがって、その塗布回数は、塗布条件等によって異なるので一概には決定することができないが、通常、7〜30回程度である。   In the present invention, the application of the insulating paint to the conductor and the baking thereof are repeated, and the number of repetitions (hereinafter referred to as the number of times of application) is adjusted so as to be a desired film thickness of the insulating film. Accordingly, the number of times of application varies depending on application conditions and the like, and cannot be determined unconditionally, but is usually about 7 to 30 times.

以上のようにして絶縁塗料の導体への塗布とその焼付けを繰り返すことにより、導体上に絶縁皮膜が形成される。形成された絶縁皮膜の皮膜厚さは、本発明の絶縁電線の用途等によって異なるので一概には決定することができないが、通常、導体を保護する観点から、3μm以上、好ましくは5μm以上であり、絶縁電線を用いて製造されたコイルの大きさを小さくする観点から、15μm以下、好ましくは10μm以下である。なお、導体が、その直径が0.035〜0.15mmである細線である場合には、絶縁皮膜の皮膜厚さは、導体を保護する観点から、3μm以上、好ましくは4μm以上であり、得られる絶縁電線の直径が大きくなりすぎないようにする観点から、6.5μm以下、好ましくは6μm以下である。   By repeatedly applying the insulating paint to the conductor and baking it as described above, an insulating film is formed on the conductor. The thickness of the formed insulating film varies depending on the use of the insulated wire of the present invention and cannot be determined unconditionally, but is usually 3 μm or more, preferably 5 μm or more from the viewpoint of protecting the conductor. From the viewpoint of reducing the size of the coil manufactured using the insulated wire, it is 15 μm or less, preferably 10 μm or less. When the conductor is a thin wire having a diameter of 0.035 to 0.15 mm, the thickness of the insulating film is 3 μm or more, preferably 4 μm or more from the viewpoint of protecting the conductor. From the viewpoint of preventing the diameter of the insulated wire from becoming too large, it is 6.5 μm or less, preferably 6 μm or less.

このようにして得られる本発明の絶縁電線は、絶縁皮膜の皮膜厚さが大きくなくても、耐電圧特性に優れているので、自動車のイグニッションコイル用電線のように高電圧が印加される用途に好適に使用することができる。   The insulated wire of the present invention thus obtained has excellent withstand voltage characteristics even if the thickness of the insulation film is not large, and therefore, a high voltage is applied like a wire for an ignition coil of an automobile. Can be suitably used.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。   Next, the present invention will be described in more detail based on examples. However, the present invention is not limited to such examples.

実施例1
図1に示される絶縁電線の製造装置を用いて絶縁電線を作製した。絶縁電線の製造装置1は、絶縁塗料を一定量塗布するためにフエルト絞り方式を採用した横型の装置である。絶縁電線の製造装置1は、コーターロール3を備え、絶縁塗料2が満たされた塗料槽4で構成される絶縁塗料塗布部5と、絶縁塗料絞りフエルト部6と、焼付け炉7とで構成されている。
Example 1
The insulated wire was produced using the insulated wire manufacturing apparatus shown in FIG. The insulated wire manufacturing apparatus 1 is a horizontal apparatus that employs a felt drawing method to apply a certain amount of insulating paint. The insulated wire manufacturing apparatus 1 includes a coater roll 3, and includes an insulating paint coating unit 5 including a paint tank 4 filled with an insulating paint 2, an insulating paint squeezing felt unit 6, and a baking furnace 7. ing.

コーターロール3は、直径が70mmであり、矢印A方向に回転している。絶縁塗料絞りフエルト部6は、フエルト8の厚さが10mm、導体の通過する幅が20mm、錘板9の重さが100gである。焼付け炉7は、炉の内部を電熱ヒーターで加熱する電熱式であって、入口、中央及び出口のゾーン別に温度管理が可能となっている。   The coater roll 3 has a diameter of 70 mm and rotates in the direction of arrow A. The insulating paint squeezing felt part 6 has a felt 8 thickness of 10 mm, a conductor passing width of 20 mm, and a weight plate 9 weighing 100 g. The baking furnace 7 is an electrothermal type in which the interior of the furnace is heated by an electric heater, and temperature management is possible for each zone of the inlet, the center, and the outlet.

絶縁塗料2として、ポリウレタン〔大日精化工業(株)製、製品名:FS−144〕(主成分:ポリエステル系ポリウレタン、不揮発分含量:27重量%、粘度:0.06Pa・s〔30℃、ブルックフィールド型粘度計(ローターNo.2)〕、溶媒:クレゾール/キシレンを50/50の重量比で混合したもの)とクレゾールとキシレンとを77.8:11.1:11.1の重量比で混合したものを使用した。塗料槽4内の絶縁塗料2(液温:30℃)の不揮発分含量(樹脂濃度)は21重量%であって、30℃における粘度は0.02Pa・s〔ブルックフィールド型粘度計(ローターNo.2)〕であった。   As the insulating paint 2, polyurethane [manufactured by Dainichi Seika Kogyo Co., Ltd., product name: FS-144] (main component: polyester polyurethane, nonvolatile content: 27% by weight, viscosity: 0.06 Pa · s [30 ° C., Brookfield viscometer (rotor No. 2)], solvent: cresol / xylene mixed at a weight ratio of 50/50), cresol and xylene at a weight ratio of 77.8: 11.1: 11.1 What was mixed with was used. The non-volatile content (resin concentration) of the insulating paint 2 (liquid temperature: 30 ° C.) in the paint tank 4 is 21% by weight, and the viscosity at 30 ° C. is 0.02 Pa · s [Brookfield viscometer (rotor No. .2)].

直径が約0.048mmの銅製の導体10を白抜きの矢印方向に線速210m/分で走行させ、矢印A方向に回転するコーターロール3によって導体10の表面に30℃の絶縁塗料2を塗布した。その後、絶縁塗料絞りフエルト部6を経て、焼付け炉7内を通過させることにより焼付けを行った。焼付け炉7内の温度(焼付温度)は、表1に示すように入口から出口へ進むにつれて高くなるように設定されている。この塗布と焼付けの操作を9回繰り返すことにより、表1に示す寸法(仕上外径、導体径及び皮膜厚さ)を有する絶縁電線を得た。   A copper conductor 10 having a diameter of about 0.048 mm is run in a white arrow direction at a linear speed of 210 m / min, and an insulating paint 2 at 30 ° C. is applied to the surface of the conductor 10 by a coater roll 3 rotating in the arrow A direction. did. Then, it baked by passing the inside of the baking furnace 7 through the insulating paint squeezing felt part 6. As shown in Table 1, the temperature in the baking furnace 7 (baking temperature) is set so as to increase as it proceeds from the inlet to the outlet. By repeating this coating and baking operation 9 times, an insulated wire having the dimensions shown in Table 1 (finished outer diameter, conductor diameter and film thickness) was obtained.

ここで、寸法は、JIS C3003「5.2a 丸線」に準じて測定した。具体的には、仕上外径は、長さ約15cmの試験片を採り、導体軸に垂直な同一平面のほぼ等しい角度で直径をマイクロメータで3ヵ所測定し、これらの測定値の平均値で表した。   Here, the dimension was measured according to JIS C3003 “5.2a round wire”. Specifically, the finished outer diameter is about 15 cm in length, and the diameter is measured with three micrometers at approximately the same angle on the same plane perpendicular to the conductor axis, and the average value of these measured values. expressed.

導体径は、仕上外径を測った箇所の皮膜を炎で焼き、アルコールに浸漬して除去した後、前記「仕上外径」と同じ方法で測定し、その平均値で表した。
皮膜厚さは、前記仕上外径と前記導体径との差を求め、この差を2で除することによって求めた。
The conductor diameter was measured by the same method as the above-mentioned “finished outer diameter” after burning the film of the place where the finished outer diameter was measured with flame and immersing it in alcohol, and expressing the average value.
The film thickness was determined by calculating the difference between the finished outer diameter and the conductor diameter and dividing this difference by 2.

得られた絶縁電線の物性として、外観、ピンホール、3%ピンホール、可とう性、密着性、伸び及び耐電圧特性(絶縁破壊電圧、皮膜厚さ0.001mm当たりの絶縁破壊電圧及びVT特性)を以下の方法に基づいて評価した。その結果を表1に示す。   As physical properties of the obtained insulated wire, appearance, pinhole, 3% pinhole, flexibility, adhesion, elongation and withstand voltage characteristics (dielectric breakdown voltage, dielectric breakdown voltage per 0.001 mm of film thickness and VT characteristics) ) Was evaluated based on the following method. The results are shown in Table 1.

(1)外観
光沢の有無、気泡の有無及び傷の有無を拡大鏡を用いて目視にて観察し、光沢があり、気泡がなく、傷がないものを「○」とし、それ以外は「×」と評価した。
(1) Appearance The presence or absence of gloss, the presence or absence of bubbles, and the presence or absence of scratches are visually observed using a magnifying glass. ".

(2)ピンホール
JIS C3003「6c ピンホール法」に準じて測定した。より具体的には、フェノールフタレインの3%アルコール溶液を滴下した0.2%食塩水中に、試験片として、長さが約5mの絶縁電線を浸した。そして、食塩水を正極、絶縁電線を負極とし、12Vの直流電圧を1分間印加し、発生したピンホールの数をカウントした。
(2) Pinhole Measured according to JIS C3003 “6c pinhole method”. More specifically, an insulated wire having a length of about 5 m was immersed as a test piece in 0.2% saline in which a 3% alcohol solution of phenolphthalein was dropped. And salt water was made into the positive electrode, the insulated wire was made into the negative electrode, DC voltage of 12V was applied for 1 minute, and the number of the generated pinholes was counted.

(3)3%伸長後のピンホール
長さが約1mの絶縁電線の長さを3%伸長させた後、前記(2)と同様にして発生したピンホールの数をカウントした。
(3) Pinhole after 3% elongation After extending the length of an insulated wire having a length of about 1 m by 3%, the number of pinholes generated in the same manner as in (2) was counted.

(4)可とう性
JIS C3003「7.2.1a 伸長」に準じて測定した。より具体的には、同一巻枠から長さ約35cmの絶縁電線3本を採り、それぞれについて標線間距離を250mmに設定し、絶縁電線の長さを3%伸長させ、絶縁皮膜に導体が見える程度の亀裂が発生していないかどうかを約15倍の拡大鏡で調べた。亀裂が生じていなければ「良」と判定し、亀裂が生じていれば「不良」と判定した。
(4) Flexibility Measured according to JIS C3003 “7.2.1a elongation”. More specifically, three insulated wires having a length of about 35 cm are taken from the same winding frame, the distance between the marked lines is set to 250 mm for each, the length of the insulated wires is extended by 3%, and the conductor is applied to the insulating film. It was examined with a magnifying glass about 15 times whether or not cracks were visible. If there was no crack, it was judged as “good”, and if there was a crack, it was judged as “bad”.

(5)密着性
JIS C3003「8.1a 急激伸長」に準じて測定した。より具体的には、標線間距離250mmの絶縁電線を破断するまで急激に伸長させ、その破断した絶縁電線に亀裂が発生していないかどうかを拡大鏡で調べた。亀裂の数が0個の場合に「良」と判定し、亀裂が生じた場合に「不良」と判定した。
(5) Adhesiveness Measured according to JIS C3003 “8.1a rapid elongation”. More specifically, an insulated wire with a distance between marked lines of 250 mm was rapidly extended until it was broken, and whether or not the broken insulated wire was cracked was examined with a magnifying glass. When the number of cracks was 0, it was determined as “good”, and when a crack occurred, it was determined as “bad”.

(6)破断時の伸び率
標線間距離250mmの絶縁電線を引張速さ100mm/分で引張り、破断時の長さをオートグラフにて測定し、式:
〔破断時の伸び率(%)〕=〔(破断時の長さ−250)÷250〕×100
に基づいて求めた。
(6) Elongation rate at break The insulated wire with a distance of 250 mm between the marked lines was pulled at a pulling speed of 100 mm / min, and the length at break was measured with an autograph.
[Elongation at break (%)] = [(Length at break−250) ÷ 250] × 100
Based on.

(7)耐電圧特性
(i)絶縁破壊電圧
JIS C3003「10.2b 2個より法」に準じて測定した。より具体的には、同一巻枠から長さ約50cmの絶縁電線3本を採り、その各々を2つに折り合わせ、0.0294Nの張力を加えながら、約12cmの長さの部分を50回撚り合わせた後、張力を取り去り、折り目部分を取り除いて2個よりの絶縁電線を作製した。この2個よりの絶縁電線の2本の導体間に50Hz又は60Hzの交流電圧を500V/sで昇圧しながら印加し、絶縁皮膜が破壊されて短絡したときの電圧(kV)を測定した。3本の絶縁電線の平均値を表1に示す。
(7) Dielectric strength characteristics (i) Dielectric breakdown voltage Measured according to JIS C3003 “Method from two 10.2b”. More specifically, three insulated wires having a length of about 50 cm are taken from the same reel, each of which is folded into two, and a portion having a length of about 12 cm is applied 50 times while applying a tension of 0.0294N. After twisting, the tension was removed, and the crease portion was removed to produce two insulated wires. An alternating voltage of 50 Hz or 60 Hz was applied between two conductors of these two insulated wires while increasing the voltage at 500 V / s, and the voltage (kV) when the insulating film was broken and short-circuited was measured. Table 1 shows the average value of the three insulated wires.

(ii)皮膜厚さ0.001mm当たりの絶縁破壊電圧
前記「寸法」で求めた皮膜厚さの値と、前記(i)で求めた絶縁破壊電圧の値とから、0.001mm当たりの絶縁破壊電圧を、式:
〔皮膜厚さ0.001mm当たりの絶縁破壊電圧(V)〕
=〔絶縁破壊電圧(kV)/皮膜厚さ(mm)×2〕
に基づいて求めた。
(Ii) Dielectric breakdown voltage per 0.001 mm of film thickness From the value of the film thickness obtained in the above “dimension” and the value of the dielectric breakdown voltage obtained in (i) above, the dielectric breakdown per 0.001 mm Voltage, formula:
[Dielectric breakdown voltage per coating thickness 0.001mm (V)]
= [Dielectric breakdown voltage (kV) / film thickness (mm) x 2]
Based on.

(iii)VT特性
VT特性は、過電圧印加時の絶縁破壊電圧と破壊時間との関係を示す特性のことである。前記(i)の絶縁破壊電圧試験と同じ2個よりの絶縁電線を用い、2本の導体間に1.3kVの電圧を1kHzの周波数で連続的に印加し、絶縁皮膜が破壊されて短絡するまでの時間(秒)を測定した。3本の絶縁電線について測定し、その平均値を表1に示す。
(Iii) VT characteristics The VT characteristics are characteristics indicating the relationship between the breakdown voltage and the breakdown time when an overvoltage is applied. Using the same two insulated wires as in the dielectric breakdown voltage test of (i) above, a voltage of 1.3 kV is continuously applied between the two conductors at a frequency of 1 kHz, and the insulation film is broken and short-circuited. Time (seconds) was measured. Three insulated wires were measured and the average value is shown in Table 1.

実施例2
実施例1において、絶縁塗料の塗布回数を9回から12回に変更したこと以外は、実施例1と同様にして絶縁電線を作製した。得られた各絶縁電線の物性を実施例1と同様にして調べた。その結果を表1に示す。
Example 2
In Example 1, an insulated wire was produced in the same manner as in Example 1 except that the number of times of applying the insulating paint was changed from 9 times to 12 times. The physical properties of the obtained insulated wires were examined in the same manner as in Example 1. The results are shown in Table 1.

実施例3
実施例1において、絶縁塗料の塗布回数を9回から15回に変更し、焼付け炉内の温度(入口/中央/出口)を320℃、330℃及び340℃の代わりにそれぞれ310℃、320℃及び330℃にしたこと以外は、実施例1と同様にして絶縁電線を作製した。得られた各絶縁電線の物性を実施例1と同様にして調べた。その結果を表1に示す。
Example 3
In Example 1, the number of times of applying the insulating paint was changed from 9 to 15, and the temperature in the baking furnace (inlet / center / outlet) was 310 ° C and 320 ° C instead of 320 ° C, 330 ° C and 340 ° C, respectively. And the insulated wire was produced like Example 1 except having been 330 degreeC. The physical properties of the obtained insulated wires were examined in the same manner as in Example 1. The results are shown in Table 1.

実施例4
実施例1において、絶縁塗料の塗布回数を9回から18回に変更し、焼付け炉内の温度(入口/中央/出口)を320℃、330℃及び340℃の代わりにそれぞれ310℃、320℃及び330℃にしたこと以外は、実施例1と同様にして絶縁電線を作製した。得られた各絶縁電線の物性を実施例1と同様にして調べた。その結果を表1に示す。
Example 4
In Example 1, the number of times of applying the insulating paint was changed from 9 times to 18 times, and the temperature in the baking furnace (inlet / center / outlet) was 310 ° C. and 320 ° C. instead of 320 ° C., 330 ° C. and 340 ° C., respectively. And the insulated wire was produced like Example 1 except having been 330 degreeC. The physical properties of the obtained insulated wires were examined in the same manner as in Example 1. The results are shown in Table 1.

比較例1
実施例1において、塗布時(30℃)における粘度が0.02Pa・sの絶縁塗料の代わりに、前述のポリウレタン樹脂〔不揮発分含量:27重量%、粘度:0.06Pa・s(30℃、ブルックフィールド型粘度計(ローターNo.2))〕を希釈せずに絶縁塗料として用い、焼付け炉内の温度(入口/中央/出口)を320℃、330℃及び340℃の代わりにそれぞれ340℃、350℃及び360℃にしたこと以外は、実施例1と同様にして絶縁電線を作製した。得られた絶縁電線の物性を実施例1と同様にして調べた。その結果を表2に示す。
Comparative Example 1
In Example 1, instead of the insulating paint having a viscosity of 0.02 Pa · s at the time of application (30 ° C.), the above polyurethane resin [nonvolatile content: 27 wt%, viscosity: 0.06 Pa · s (30 ° C., Brookfield viscometer (rotor No. 2))] was used as an insulating coating without dilution, and the temperature in the baking furnace (inlet / center / outlet) was 340 ° C instead of 320 ° C, 330 ° C and 340 ° C. An insulated wire was produced in the same manner as in Example 1 except that the temperature was 350 ° C. and 360 ° C. The physical properties of the obtained insulated wire were examined in the same manner as in Example 1. The results are shown in Table 2.

比較例2
実施例1において、塗布時(30℃)における粘度が0.02Pa・sの絶縁塗料の代わりに、0.06Pa・sの絶縁塗料を用い、絶縁塗料の塗布回数を9回から12回に変更し、焼付け炉内の温度(入口/中央/出口)を320℃、330℃及び340℃の代わりにそれぞれ330℃、340℃及び350℃にしたこと以外は、実施例1と同様にして絶縁電線を作製した。得られた各絶縁電線の物性を実施例1と同様にして調べた。その結果を表2に示す。
Comparative Example 2
In Example 1, instead of an insulating paint with a viscosity of 0.02 Pa · s at the time of application (30 ° C.), an insulating paint of 0.06 Pa · s was used, and the number of times of applying the insulating paint was changed from 9 times to 12 times. Insulated wire in the same manner as in Example 1 except that the temperature in the baking furnace (inlet / center / outlet) was changed to 330 ° C, 340 ° C and 350 ° C instead of 320 ° C, 330 ° C and 340 ° C, respectively. Was made. The physical properties of the obtained insulated wires were examined in the same manner as in Example 1. The results are shown in Table 2.

比較例3
実施例1において、塗布時(30℃)における粘度が0.02Pa・sの絶縁塗料の代わりに、0.06Pa・sの絶縁塗料を用い、絶縁塗料の塗布回数を9回から15回に変更したこと以外は、実施例1と同様にして絶縁電線を作製した。得られた各絶縁電線の物性を実施例1と同様にして調べた。その結果を表2に示す。
Comparative Example 3
In Example 1, instead of an insulating paint with a viscosity of 0.02 Pa · s at the time of application (30 ° C.), an insulating paint of 0.06 Pa · s was used, and the number of times of applying the insulating paint was changed from 9 to 15 times. An insulated wire was produced in the same manner as in Example 1 except that. The physical properties of the obtained insulated wires were examined in the same manner as in Example 1. The results are shown in Table 2.

比較例4
実施例1において、塗布時(30℃)における粘度が0.02Pa・sの絶縁塗料の代わりに、0.06Pa・sの絶縁塗料を用い、絶縁塗料の塗布回数を9回から18回に変更し、焼付け炉内の温度(入口/中央/出口)を320℃、330℃及び340℃の代わりにそれぞれ310℃、320℃及び330℃にしたこと以外は、実施例1と同様にして絶縁電線を作製した。得られた各絶縁電線の物性を実施例1と同様にして調べた。その結果を表2に示す。
Comparative Example 4
In Example 1, instead of an insulating paint having a viscosity of 0.02 Pa · s at the time of application (30 ° C.), an insulating paint having a viscosity of 0.06 Pa · s was used, and the number of times of applying the insulating paint was changed from 9 to 18 times. Insulated wire in the same manner as in Example 1 except that the temperature in the baking furnace (inlet / center / outlet) was 310 ° C, 320 ° C and 330 ° C instead of 320 ° C, 330 ° C and 340 ° C, respectively. Was made. The physical properties of the obtained insulated wires were examined in the same manner as in Example 1. The results are shown in Table 2.

Figure 2009129566
Figure 2009129566

Figure 2009129566
Figure 2009129566

表1及び表2に示された結果から、各実施例で得られた絶縁電線は、塗布時の粘度が0.06Pa・sである絶縁塗料が用いられた各比較例で得られた絶縁電線と対比して、同じ皮膜厚さであるにもかかわらず、耐電圧特性として、絶縁破壊電圧及びVT特性、特にVT特性に優れていることがわかる。   From the results shown in Table 1 and Table 2, the insulated wires obtained in each example were the insulated wires obtained in each comparative example using an insulating paint having a viscosity of 0.06 Pa · s when applied. In contrast to this, it can be seen that the dielectric breakdown voltage and the VT characteristics, particularly the VT characteristics, are excellent as the withstand voltage characteristics despite the same film thickness.

実施例5
実施例1において、絶縁塗料の塗布温度を30℃から40℃に変更することにより、塗布時の粘度を0.02Pa・sから0.018Pa・sに変更し、絶縁塗料の塗布回数を9回から12回に変更し、焼付け炉内の温度(入口/中央/出口)を270℃、300℃及び330℃の代わりにそれぞれ340℃、350℃及び360℃に変更したこと以外は、実施例1と同様にして絶縁電線を作製した。なお、塗布時の絶縁塗料温度は40℃である。得られた絶縁電線の物性を実施例1と同様にして調べた。その結果を表3に示す。
Example 5
In Example 1, by changing the coating temperature of the insulating paint from 30 ° C. to 40 ° C., the viscosity at the time of coating is changed from 0.02 Pa · s to 0.018 Pa · s, and the number of times of applying the insulating paint is 9 times. Example 1 except that the temperature in the baking furnace (inlet / center / outlet) was changed to 340 ° C, 350 ° C and 360 ° C instead of 270 ° C, 300 ° C and 330 ° C, respectively. An insulated wire was produced in the same manner as described above. In addition, the insulating paint temperature at the time of application | coating is 40 degreeC. The physical properties of the obtained insulated wire were examined in the same manner as in Example 1. The results are shown in Table 3.

実施例6
実施例5において、絶縁塗料の塗布温度を40℃から45℃に変更することにより、塗布時の粘度を0.018Pa・sから0.014Pa・sに変更したこと以外は、実施例5と同様にして絶縁電線を作製した。得られた絶縁電線の物性を実施例1と同様にして調べた。その結果を表3に示す。
Example 6
In Example 5, the coating temperature of the insulating paint was changed from 40 ° C. to 45 ° C., so that the viscosity at the time of coating was changed from 0.018 Pa · s to 0.014 Pa · s. Thus, an insulated wire was produced. The physical properties of the obtained insulated wire were examined in the same manner as in Example 1. The results are shown in Table 3.

Figure 2009129566
Figure 2009129566

表3に示された結果から、塗布時の絶縁塗料の温度を高くすることによって粘度が下げられた絶縁塗料を用いて絶縁電線を製造した場合にも、各比較例で得られた絶縁電線よりも耐電圧特性として、絶縁破壊電圧及びVT特性、特にVT特性に優れた絶縁電線が得られることがわかる。   From the results shown in Table 3, even when an insulated wire was manufactured using an insulating paint whose viscosity was lowered by increasing the temperature of the insulating paint at the time of application, the insulated wire obtained in each comparative example It can also be seen that an insulated wire excellent in dielectric breakdown voltage and VT characteristics, particularly VT characteristics can be obtained as the withstand voltage characteristics.

以上開示された実施の形態は、すべての点で例示的であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed above should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の絶縁電線の製造に使用される絶縁電線の製造装置の概略斜視図である。It is a schematic perspective view of the manufacturing apparatus of the insulated wire used for manufacture of the insulated wire of this invention.

符号の説明Explanation of symbols

1 絶縁電線の製造装置
2 絶縁塗料
3 コーターロール
4 塗料槽
5 絶縁塗料塗布部
6 絶縁塗料絞りフエルト部
7 焼付け炉
10 導体
DESCRIPTION OF SYMBOLS 1 Insulated wire manufacturing apparatus 2 Insulating paint 3 Coater roll 4 Paint tank 5 Insulating paint application part 6 Insulating paint squeeze felt part 7 Baking furnace 10 Conductor

Claims (4)

導体及び該導体を被覆する絶縁皮膜を有する絶縁電線の製造方法であって、導体の表面にその30℃における粘度が0.005〜0.05Pa・sである絶縁塗料を塗布した後、焼付けを行う操作を繰り返し、皮膜厚さが3〜15μmである絶縁皮膜を形成することを特徴とする絶縁電線の製造方法。   A method of manufacturing an insulated wire having a conductor and an insulating film covering the conductor, wherein an insulating paint having a viscosity of 0.005 to 0.05 Pa · s at 30 ° C. is applied to the surface of the conductor and then baked. A method for producing an insulated wire, comprising repeating the operation to form an insulating film having a film thickness of 3 to 15 μm. 導体の直径が0.035〜0.2mmである請求項1に記載の絶縁電線の製造方法。   The method for manufacturing an insulated wire according to claim 1, wherein the conductor has a diameter of 0.035 to 0.2 mm. 絶縁塗料がポリウレタン又はポリエステルイミドを含有する請求項1又は2に記載の絶縁電線の製造方法。   The manufacturing method of the insulated wire of Claim 1 or 2 in which an insulating coating material contains a polyurethane or polyesterimide. 直径が0.035〜0.15mmの導体、及び該導体を被覆し、皮膜厚さが3〜6.5μmの絶縁皮膜を有する絶縁電線であって、
絶縁皮膜はポリウレタン又はポリエステルイミドを含有し、
JIS C3003により測定した絶縁皮膜の絶縁破壊電圧が、皮膜厚さ0.001mm当たり340V以上であることを特徴とする絶縁電線。
An insulated wire having a conductor having a diameter of 0.035 to 0.15 mm, and an insulating film covering the conductor and having a film thickness of 3 to 6.5 μm,
The insulating film contains polyurethane or polyesterimide,
An insulated wire characterized by having a dielectric breakdown voltage measured by JIS C3003 of 340 V or more per 0.001 mm of film thickness.
JP2007300330A 2007-11-20 2007-11-20 Insulated electric wire and its manufacturing method Pending JP2009129566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007300330A JP2009129566A (en) 2007-11-20 2007-11-20 Insulated electric wire and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300330A JP2009129566A (en) 2007-11-20 2007-11-20 Insulated electric wire and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009129566A true JP2009129566A (en) 2009-06-11

Family

ID=40820315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300330A Pending JP2009129566A (en) 2007-11-20 2007-11-20 Insulated electric wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009129566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150991A1 (en) * 2012-04-02 2013-10-10 住友電気工業株式会社 Insulated electric wire and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150991A1 (en) * 2012-04-02 2013-10-10 住友電気工業株式会社 Insulated electric wire and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5609732B2 (en) Insulating paint and insulated wire using the same
TWI523048B (en) Insulated wire, electronic / electrical machine and insulated wire manufacturing method
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
WO2018173608A1 (en) Insulated electric wire, production method therefor, coil and coil production method using same
TW201434650A (en) Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same
JP5540671B2 (en) Insulated wire
TW201835246A (en) Electrodeposition solution and method of producing conductor with insulating coating formed by using same
JP6394697B2 (en) Insulated wires and coils
JP2012224697A (en) Polyimide resin varnish, and electric insulated wire, electric appliance coil and motor using the same
JP5351011B2 (en) Insulated wire, electric coil and motor
JP2009129566A (en) Insulated electric wire and its manufacturing method
US8809684B2 (en) Insulated wire
JP2013051030A (en) Insulated wire and armature coil using the same, motor
JP2012233123A (en) Polyimide resin varnish, insulated electric wire using the same, electric machine coil, and motor
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP2016213097A (en) Manufacturing method and manufacturing installation of enamel wire
JP6567797B1 (en) Laminated body of conductor and insulating film, coil, rotating electric machine, insulating paint, and insulating film
JP2013101759A (en) Insulation wire, electric machine coil using the same, and motor
JP3724922B2 (en) Polyimide-based insulating paint and insulated wire
JP2001266647A (en) Insulating coating material and insulating paint for obtaining the same
JP5837397B2 (en) Insulated wire and electric coil and motor using the same
JP6515571B2 (en) Polyimide paint and insulated wire
JP2013028695A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP2015209457A (en) Polyamic acid coating material and insulation electric wire
JP7179132B2 (en) insulated wire

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090904

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090914