JP2013253124A - Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same - Google Patents

Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same Download PDF

Info

Publication number
JP2013253124A
JP2013253124A JP2012127608A JP2012127608A JP2013253124A JP 2013253124 A JP2013253124 A JP 2013253124A JP 2012127608 A JP2012127608 A JP 2012127608A JP 2012127608 A JP2012127608 A JP 2012127608A JP 2013253124 A JP2013253124 A JP 2013253124A
Authority
JP
Japan
Prior art keywords
polyimide resin
insulating layer
polyimide
insulated wire
imide group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012127608A
Other languages
Japanese (ja)
Inventor
Hideaki Saito
秀明 齋藤
Jun Sugawara
潤 菅原
Toru Shimizu
亨 清水
Yudai Furuya
雄大 古屋
Masaaki Yamauchi
雅晃 山内
Kengo Yoshida
健吾 吉田
Junichi Imai
惇一 今井
Yuji Hatanaka
悠史 畑中
Masataka Shinami
正隆 志波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012127608A priority Critical patent/JP2013253124A/en
Publication of JP2013253124A publication Critical patent/JP2013253124A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide resin vanish excellent in heat resistance and crazing resistance, and capable of forming an insulating layer having a low permittivity; and to provide an insulated electric wire excellent in heat resistance and crazing resistance, and capable of raising the corona discharge initiation.SOLUTION: A polyimide resin vanish has, as a main component, a polyimide precursor resin obtained by reacting an aromatic diamine with an aromatic tetracarboxylic anhydride, wherein the imide group concentration after the imidization of the polyimide precursor resin is >35.0% and <36.0%.

Description

本発明は導体に塗布、焼付けして絶縁皮膜を形成することができるポリイミド樹脂ワニス、及びこのポリイミド樹脂ワニスを用いて形成された絶縁層を有する絶縁電線およびそれを用いた電機コイル、モータに関する。   The present invention relates to a polyimide resin varnish that can be coated and baked on a conductor to form an insulating film, an insulated wire having an insulating layer formed using this polyimide resin varnish, an electric coil, and a motor.

モータ等のコイル用巻線として用いられる絶縁電線において、導体を被覆する絶縁層(絶縁皮膜)には、絶縁性、導体に対する密着性、耐熱性、機械的強度等が求められている。絶縁層を形成する樹脂としてはポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂等がある。   In an insulated wire used as a coil winding for a motor or the like, an insulating layer (insulating film) covering the conductor is required to have insulation, adhesion to the conductor, heat resistance, mechanical strength, and the like. Examples of the resin forming the insulating layer include polyimide resin, polyamideimide resin, and polyesterimide resin.

また適用電圧が高い電気機器、例えば高電圧で使用されるモータ等では、電気機器を構成する絶縁電線に高電圧が印加され、その絶縁皮膜表面で部分放電(コロナ放電)が発生しやすくなる。コロナ放電の発生により局部的な温度上昇やオゾンやイオンの発生が引き起こされやすくなり、その結果絶縁電線の絶縁被膜に劣化が生じることで早期に絶縁破壊を起こし、電気機器の寿命が短くなる。高電圧で使用される絶縁電線には上記の理由によりコロナ放電開始電圧の向上も求められており、そのためには絶縁層の誘電率を低くすることが有効であることが知られている。   In addition, in an electric device having a high applied voltage, for example, a motor used at a high voltage, a high voltage is applied to an insulated wire constituting the electric device, and partial discharge (corona discharge) is likely to occur on the surface of the insulating film. The generation of corona discharge tends to cause a local temperature rise and the generation of ozone and ions. As a result, the insulation coating of the insulated wire is deteriorated, resulting in early dielectric breakdown and shortening the life of the electrical equipment. Insulated wires used at high voltages are also required to improve the corona discharge starting voltage for the above reasons, and it is known that reducing the dielectric constant of the insulating layer is effective for this purpose.

ポリイミド樹脂は絶縁電線の絶縁層として汎用されている樹脂の中では特に耐熱性に優れている。また誘電率が低く機械特性にも優れるため、要求特性の高い絶縁電線の絶縁層として用いられている。たとえば特許文献1には耐熱区分がC種(180℃以上のクラス)のエナメル線として、導体直上にポリイミド樹脂エナメル皮膜層が塗布焼付けされているエナメル線が開示されている。   Polyimide resin is particularly excellent in heat resistance among resins widely used as insulating layers for insulated wires. Moreover, since it has a low dielectric constant and excellent mechanical properties, it is used as an insulating layer for insulated wires with high required properties. For example, Patent Document 1 discloses an enameled wire in which a polyimide resin enamel film layer is applied and baked directly on a conductor as an enameled wire having a heat resistance class C (class of 180 ° C. or higher).

また特許文献2には芳香族エーテル構造を有するポリイミド樹脂が記載されている。具体的には、4,4’−オキシジフタル酸二無水物(ODPA)等の芳香族エーテル構造を有する酸無水物と、芳香族エーテル構造を有するジアミン及びフルオレン構造を有するジアミンとを反応させてポリイミド前駆体を合成している。芳香族エーテル構造を有する酸無水物及びジアミンを用いることで可とう性を向上している。またこのような構造のポリイミド樹脂は低誘電率でありコロナ発生抑制に優れた絶縁皮膜を得ることができる、と記載されている。   Patent Document 2 describes a polyimide resin having an aromatic ether structure. Specifically, a polyimide by reacting an acid anhydride having an aromatic ether structure such as 4,4′-oxydiphthalic dianhydride (ODPA) with a diamine having an aromatic ether structure and a diamine having a fluorene structure. The precursor is synthesized. The flexibility is improved by using an acid anhydride having an aromatic ether structure and a diamine. Further, it is described that the polyimide resin having such a structure has a low dielectric constant and can provide an insulating film excellent in suppressing corona generation.

特開平9−198932号公報JP-A-9-198932 特開2010−67408号公報JP 2010-67408 A

上記のようにポリイミド樹脂は耐熱性、機械的特性、電気特性に優れる材料であるが、絶縁電線の被覆層として汎用的に使用されているポリイミド樹脂の誘電率は3.5でありコロナ放電開始電圧を向上するためには誘電率をさらに低くすることが求められている。本発明者らはポリイミド樹脂のイミド基濃度に着目し、分子量の大きい芳香族ジアミン又は芳香族テトラカルボン酸二無水物を用いることで極性の高いイミド基の濃度を低減し、ポリイミド樹脂の誘電率を低減できることを見いだし、特願2011−091777号等として既に出願している。   As mentioned above, polyimide resin is a material that excels in heat resistance, mechanical properties, and electrical properties. However, the dielectric constant of polyimide resin, which is widely used as a coating layer for insulated wires, is 3.5, and corona discharge starts. In order to improve the voltage, it is required to further lower the dielectric constant. The present inventors pay attention to the imide group concentration of the polyimide resin and reduce the concentration of the highly polar imide group by using an aromatic diamine or aromatic tetracarboxylic dianhydride having a large molecular weight, and the dielectric constant of the polyimide resin. Has been filed as Japanese Patent Application No. 2011-091777.

また自動車用のモータ等に用いられるコイルに絶縁電線を使用する場合、使用環境の温度が高いため、絶縁電線には長期の耐熱性が求められる。また絶縁電線の絶縁信頼性を高めるため、捲線してコイルを形成した後に熱硬化性樹脂でディップコートする、いわゆるワニス含浸処理を行うことがある。そこで絶縁電線の皮膜には含浸ワニス(熱硬化性樹脂液)と接触させたときに皮膜にクラックや割れ等が生じないこと(耐クレージング性)も求められる。   Moreover, when using an insulated wire for the coil used for the motor for motor vehicles etc., since the temperature of a use environment is high, long-term heat resistance is calculated | required by the insulated wire. In order to increase the insulation reliability of the insulated wire, a so-called varnish impregnation treatment in which a coil is formed by winding and then dip-coated with a thermosetting resin may be performed. Therefore, it is required that the coating of the insulated wire is free from cracking or cracking (crazing resistance) when it is brought into contact with the impregnated varnish (thermosetting resin liquid).

本発明者らの検討により、イミド基濃度を低減して誘電率を低くしたポリイミド樹脂を皮膜として使用した絶縁電線はイミド基濃度の高い汎用のポリイミド樹脂と比べると長期耐熱性や耐クレージング性が低下することがわかった。このような絶縁電線であっても絶縁電線の製造後、さらに180℃で10分程度の加熱処理(アニーリング処理)を行うことで耐クレージング性を向上することができるが、製造工程が増えるためにコストが高くなる。   According to the study by the present inventors, an insulated wire using a polyimide resin with a low imide group concentration and a low dielectric constant as a film has long-term heat resistance and crazing resistance compared to a general-purpose polyimide resin with a high imide group concentration. It turns out that it falls. Even if it is such an insulated wire, crazing resistance can be improved by performing a heat treatment (annealing treatment) at 180 ° C. for about 10 minutes after the production of the insulated wire, but the number of production processes is increased. Cost increases.

本発明は上記の問題に鑑みてなされたものであり、耐熱性及び耐クレージング特性の低下を起こすことなく低誘電率の絶縁層を形成可能なポリイミド樹脂ワニスを提供することを課題とする。また本発明は上記のポリイミド樹脂ワニスを用いて形成された絶縁層を有し、耐熱性、耐クレージング性及びコロナ放電開始電圧を向上できる絶縁電線、及びそれを用いた電機コイル、モータを提供することを課題とする。   This invention is made | formed in view of said problem, and makes it a subject to provide the polyimide resin varnish which can form an insulating layer of a low dielectric constant, without raise | generating the heat resistance and a crazing-proof characteristic. The present invention also provides an insulated wire having an insulating layer formed using the above polyimide resin varnish and capable of improving heat resistance, crazing resistance and corona discharge starting voltage, and an electric coil and motor using the same. This is the issue.

本発明は、芳香族ジアミンと芳香族テトラカルボン酸二無水物とを反応して得られるポリイミド前駆体樹脂を主成分とするポリイミド樹脂ワニスであって、
前記ポリイミド前駆体樹脂のイミド化後のイミド基濃度が35.0%よりも大きく36.0%未満であるポリイミド樹脂ワニスである(請求項1)。イミド基濃度を上記の範囲とすることで、耐熱性及び耐クレージング性を低下させることなく誘電率を低減できる。
The present invention is a polyimide resin varnish mainly composed of a polyimide precursor resin obtained by reacting an aromatic diamine and an aromatic tetracarboxylic dianhydride,
A polyimide resin varnish having an imide group concentration after imidization of the polyimide precursor resin of greater than 35.0% and less than 36.0% (Claim 1). By setting the imide group concentration in the above range, the dielectric constant can be reduced without lowering the heat resistance and crazing resistance.

イミド基濃度は、ポリイミド前駆体をイミド化した後のポリイミド樹脂において
(イミド基部分の分子量)/(全ポリマーの分子量)×100(%)
で計算される値である。ポリイミド前駆体は芳香族ジアミンと芳香族テトラカルボン酸二無水物とを反応して得られるので、各モノマー(芳香族ジアミン又は芳香族テトラカルボン酸二無水物)の分子量が大きくなるとイミド基濃度は低くなる。なお絶縁電線の皮膜に汎用されている一般的なポリイミド樹脂はピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルとを重合して得られるポリイミド前駆体(ポリアミック酸)をイミド化して得られるもので、イミド基濃度は36.6%である。
The imide group concentration is the polyimide resin after imidizing the polyimide precursor. (Molecular weight of imide group part) / (Molecular weight of all polymers) × 100 (%)
It is a value calculated by. Since the polyimide precursor is obtained by reacting an aromatic diamine and an aromatic tetracarboxylic dianhydride, the imide group concentration is increased when the molecular weight of each monomer (aromatic diamine or aromatic tetracarboxylic dianhydride) increases. Lower. In addition, the general polyimide resin generally used for the film of an insulated wire is obtained by imidizing a polyimide precursor (polyamic acid) obtained by polymerizing pyromellitic dianhydride and 4,4'-diaminodiphenyl ether. The imide group concentration is 36.6%.

イミド基濃度を低くすると誘電率を低下させることができる。しかしイミド基濃度を低くしすぎると耐熱性、耐クレージング性が低下する。イミド基濃度を35.0%〜36.0%の範囲とすることで耐熱性及び耐クレージング性を低下させることなく誘電率を低減できる。ポリイミド前駆体を構成する芳香族ジアミンと芳香族テトラカルボン酸二無水物とを、イミド基濃度が上記の範囲となるように任意に選択してイミド基濃度を調整する。   If the imide group concentration is lowered, the dielectric constant can be lowered. However, if the imide group concentration is too low, the heat resistance and crazing resistance deteriorate. By setting the imide group concentration in the range of 35.0% to 36.0%, the dielectric constant can be reduced without lowering the heat resistance and crazing resistance. The imide group concentration is adjusted by arbitrarily selecting the aromatic diamine and the aromatic tetracarboxylic dianhydride constituting the polyimide precursor so that the imide group concentration falls within the above range.

芳香族ジアミンとして、2,2−ビス[4−(アミノフェノキシ)フェニル]プロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、及び1,4−ビス(4−アミノフェノキシ)ベンゼンからなる群から選択される1種以上を含有することが好ましい(請求項2)。これらの芳香族ジアミンは分子量が大きく、イミド基濃度を低くすることができる。特に芳香族テトラカルボン酸二無水物としてPMDAを選択した場合には耐熱性、耐クレージング性と誘電率とのバランスが取れて好ましい。なお芳香族ジアミンは複数併用しても良い。この場合、上記の分子量の大きい芳香族ジアミンと、4,4’−ジアミノジフェニルエーテル(ODA)等の分子量の小さい芳香族ジアンとを組み合わせてイミド基濃度を調整することが好ましい。   The group consisting of 2,2-bis [4- (aminophenoxy) phenyl] propane, 1,3-bis (4-aminophenoxy) benzene, and 1,4-bis (4-aminophenoxy) benzene as the aromatic diamine It is preferable to contain 1 or more types selected from (Claim 2). These aromatic diamines have a large molecular weight and can reduce the imide group concentration. In particular, when PMDA is selected as the aromatic tetracarboxylic dianhydride, heat resistance, crazing resistance and dielectric constant are balanced, which is preferable. A plurality of aromatic diamines may be used in combination. In this case, it is preferable to adjust the imide group concentration by combining the aromatic diamine having a large molecular weight with an aromatic dian having a small molecular weight such as 4,4'-diaminodiphenyl ether (ODA).

前記芳香族テトラカルボン酸二無水物はピロメリット酸二無水物(PMDA)であると好ましい(請求項3)。ピロメリット酸二無水物は比較的分子量が小さく剛直な構造である。イミド基濃度を調整するためには、芳香族ジアミン、芳香族テトラカルボン酸のいずれかを分子量の大きいものとすることが考えられるが、分子量の大きい芳香族テトラカルボン酸を使用すると耐熱性が低下するため、酸成分には分子量の小さいPMDAを選択し、分子量の大きい芳香族ジアミンを用いてイミド基濃度を調整する方が耐熱性が向上し、好ましい。   The aromatic tetracarboxylic dianhydride is preferably pyromellitic dianhydride (PMDA) (Claim 3). Pyromellitic dianhydride has a relatively small molecular weight and a rigid structure. In order to adjust the imide group concentration, it is considered that either aromatic diamine or aromatic tetracarboxylic acid has a large molecular weight, but if an aromatic tetracarboxylic acid having a large molecular weight is used, the heat resistance is lowered. Therefore, it is preferable that PMDA having a low molecular weight is selected as the acid component and the imide group concentration is adjusted using an aromatic diamine having a high molecular weight because the heat resistance is improved.

請求項4に記載の発明は、導体及び該導体を直接又は他の層を介して被覆する絶縁層を有する絶縁電線であって、前記絶縁層は上記のポリイミド樹脂ワニスを塗布、焼付けして形成されたものである絶縁電線である。絶縁層の誘電率が低いため、コロナ放電開始電圧の高い絶縁電線が得られる。また耐熱性及び耐クレージング性にも優れているため、特にワニス含浸処理して用いられる絶縁電線として好適に用いることができる。   Invention of Claim 4 is an insulated wire which has a conductor and the insulating layer which coat | covers this conductor directly or through another layer, Comprising: The said insulating layer is formed by apply | coating and baking said polyimide resin varnish It is the insulated wire which is made. Since the dielectric constant of the insulating layer is low, an insulated wire having a high corona discharge starting voltage can be obtained. Moreover, since it is excellent also in heat resistance and crazing resistance, it can be used suitably especially as an insulated wire used by varnish impregnation treatment.

請求項5に記載の発明は、上記の絶縁電線を捲線してなる電機コイルである。また請求項6に記載の発明は、請求項5に記載の電機コイルを有するモータである。耐熱性及び耐クレージング性に優れた絶縁電線を使用していることから高温環境下での使用が可能であり、またワニス含浸処理の際に絶縁層の割れが生じにくい。さらに高電圧が印加された場合でも絶縁皮膜の劣化が起こりにくいので寿命を長くすることが可能である。   The invention according to claim 5 is an electric coil formed by winding the insulated wire. A sixth aspect of the present invention is a motor having the electric coil according to the fifth aspect. Since an insulated wire excellent in heat resistance and crazing resistance is used, it can be used in a high temperature environment, and the insulating layer is not easily cracked during the varnish impregnation treatment. Further, even when a high voltage is applied, the insulating film is hardly deteriorated, so that the life can be extended.

本発明によれば、耐熱性及び耐クレージング特性の低下を起こすことなく低誘電率の絶縁層を形成可能なポリイミド樹脂ワニスを提供することができる。また本発明の絶縁電線は耐熱性、耐クレージング性及びコロナ放電開始電圧を向上できる。   According to the present invention, it is possible to provide a polyimide resin varnish capable of forming an insulating layer having a low dielectric constant without causing deterioration of heat resistance and crazing resistance. Moreover, the insulated wire of this invention can improve heat resistance, crazing resistance, and a corona discharge start voltage.

本発明の絶縁電線の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the insulated wire of this invention. 本発明のコイルの一例を示す模式図である。It is a schematic diagram which shows an example of the coil of this invention. 本発明のモータの一例を示す模式図である。It is a schematic diagram which shows an example of the motor of this invention. 誘電率の測定方法を説明する模式図である。It is a schematic diagram explaining the measuring method of a dielectric constant.

本発明のポリイミド樹脂ワニスの主成分であるポリイミド前駆体樹脂(ポリアミック酸)は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの縮合重合によって得られる。この縮合重合反応は従来のポリイミド前駆体の合成と同様な条件にて行うことができる。   The polyimide precursor resin (polyamic acid) which is the main component of the polyimide resin varnish of the present invention is obtained by condensation polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine. This condensation polymerization reaction can be performed under the same conditions as in the conventional synthesis of a polyimide precursor.

芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物(PMDA)、4,4’−オキシジフタル酸二無水物(ODPA)、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、ビシクロ(2,2,2)−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボンキシフェニル)ヘキサフルオロプロパン二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物等が例示される。   As aromatic tetracarboxylic dianhydrides, pyromellitic dianhydride (PMDA), 4,4′-oxydiphthalic dianhydride (ODPA), 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride Anhydride (BPDA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, bicyclo (2, 2,2) -Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 2,2-bis (3 Examples include 4-dicarboxyxyphenyl) hexafluoropropane dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, and the like.

この中でもピロメリット酸二無水物(PMDA)は低分子量で剛直な構造を持つため、ポリイミド樹脂の耐熱性を向上できる点で好ましい。   Among these, pyromellitic dianhydride (PMDA) is preferable because it has a low molecular weight and a rigid structure and can improve the heat resistance of the polyimide resin.

芳香族ジアミンとしては、4,4’−ジアミノジフェニルエーテル(ODA)、4,4’−メチレンジアニリン(MDA)、2,2−ビス[4−(アミノフェノキシ)フェニル]プロパン(BAPP)、1,4−ビス(4−アミノフェノキシ)ベンゼン(TPE−Q)、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)、1,1−ビス[4−(4−アミノフェノキシ)フェニル]シクロヘキサン(4−APBZ)、1,3−ビス(3−アミノフェノキシ)ベンゼン(3−APB)、1,5−ビス(3−アミノフェノキシ)ナフタレン(1,5−BAPN)等が例示される。   Aromatic diamines include 4,4′-diaminodiphenyl ether (ODA), 4,4′-methylenedianiline (MDA), 2,2-bis [4- (aminophenoxy) phenyl] propane (BAPP), 1, 4-bis (4-aminophenoxy) benzene (TPE-Q), 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,1-bis [4- (4-aminophenoxy) phenyl] Examples include cyclohexane (4-APBZ), 1,3-bis (3-aminophenoxy) benzene (3-APB), 1,5-bis (3-aminophenoxy) naphthalene (1,5-BAPN), and the like.

この中でも2,2−ビス[4−(アミノフェノキシ)フェニル]プロパン(BAPP)、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)、1,4−ビス(4−アミノフェノキシ)ベンゼン(TPE−Q)は分子量が大きく、イミド基濃度を低減できるため好ましく使用できる。これらの芳香族ジアミンとODA、MDA等の分子量の小さい芳香族ジアミンとを組み合わせて使用することで、イミド基濃度を調整できる。   Among these, 2,2-bis [4- (aminophenoxy) phenyl] propane (BAPP), 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,4-bis (4-aminophenoxy) Benzene (TPE-Q) can be preferably used because it has a large molecular weight and can reduce the imide group concentration. The imide group concentration can be adjusted by using these aromatic diamines in combination with an aromatic diamine having a small molecular weight such as ODA and MDA.

芳香族テトラカルボン酸二無水物、芳香族ジアミンは、イミド化後のイミド基濃度が28.0%以上33.0%以下となるように選択する。イミド基濃度はポリイミド前駆体をイミド化した後のポリイミド樹脂において、
(イミド基部分の分子量)/(全ポリマーの分子量)×100
で計算される値である。具体的には以下の方法でイミド基濃度を計算する。
The aromatic tetracarboxylic dianhydride and the aromatic diamine are selected so that the imide group concentration after imidization is 28.0% or more and 33.0% or less. In the polyimide resin after imidizing the polyimide precursor, the imide group concentration is
(Molecular weight of imide group) / (Molecular weight of all polymers) × 100
It is a value calculated by. Specifically, the imide group concentration is calculated by the following method.

芳香族テトラカルボン酸二無水物、芳香族ジアミンの分子量からユニット単位でのイミド基濃度を計算する。例えば下記式(1)で示されるポリイミドの場合、イミド基濃度は
イミド基分子量=70.03×2=140.06
ユニット分子量=894.96となるため、
イミド基濃度(%)=(140.06)/(894.96)×100=15.6%
となる。
The imide group density | concentration in a unit unit is calculated from the molecular weight of aromatic tetracarboxylic dianhydride and aromatic diamine. For example, in the case of polyimide represented by the following formula (1), the imide group concentration is imide group molecular weight = 70.03 x 2 = 140.06.
Since unit molecular weight = 894.96,
Imide group concentration (%) = (140.06) / (894.96) × 100 = 15.6%
It becomes.

Figure 2013253124
Figure 2013253124

上記の芳香族テトラカルボン酸二無水物と芳香族ジアミンを混合して反応させる。芳香族ジアミンの合計量(当量)と、芳香族テトラカルボン酸二無水物の合計量(当量)を約1:1とすると反応が良好に進行して好ましい。それぞれの材料を混合し、有機溶媒中で加熱して反応させてポリイミド前駆体樹脂を得る。   The above aromatic tetracarboxylic dianhydride and aromatic diamine are mixed and reacted. When the total amount (equivalent) of aromatic diamine and the total amount (equivalent) of aromatic tetracarboxylic dianhydride is about 1: 1, the reaction proceeds favorably, which is preferable. Each material is mixed and heated to react in an organic solvent to obtain a polyimide precursor resin.

有機溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクトン等の非プロトン性極性有機溶媒が使用できる。これらの有機溶媒は単独で用いても2種以上を組み合わせても良い。   As the organic solvent, an aprotic polar organic solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and γ-butyrolactone can be used. These organic solvents may be used alone or in combination of two or more.

有機溶媒の量は、芳香族テトラカルボン酸二無水物、芳香族ジアミンを均一に分散させることができる量であれば良く特に制限されないが、通常これらの成分の合計量100質量部あたり100質量部〜1000質量部(樹脂濃度で10%〜50%程度となるように)使用する。有機溶媒量を少なくするとできあがったポリイミド樹脂ワニスの固形分量が多くなりコスト低減に有効である。   The amount of the organic solvent is not particularly limited as long as it is an amount capable of uniformly dispersing the aromatic tetracarboxylic dianhydride and the aromatic diamine, but usually 100 parts by mass per 100 parts by mass of the total amount of these components. ˜1000 parts by mass (so that the resin concentration is about 10% to 50%). If the amount of the organic solvent is reduced, the amount of the solid content of the polyimide resin varnish obtained is increased, which is effective for cost reduction.

ポリイミド樹脂ワニスには顔料、染料、無機又は有機のフィラー、潤滑剤、密着向上剤等の各種添加剤や反応性低分子、相溶化剤等を添加しても良い。密着向上剤としてメラミン、トリアゾール系化合物、テトラゾール系化合物、チオール系化合物等を添加すると、導体との密着力を向上できる。さらに本発明の趣旨を損ねない範囲で他の樹脂を混合して使用することもできる。   Various additives such as pigments, dyes, inorganic or organic fillers, lubricants, adhesion improvers, reactive low molecules, compatibilizers, and the like may be added to the polyimide resin varnish. When melamine, a triazole compound, a tetrazole compound, a thiol compound, or the like is added as an adhesion improver, adhesion with the conductor can be improved. Furthermore, other resins can be mixed and used within a range not impairing the gist of the present invention.

ポリイミド樹脂ワニスを導体上に直接又は他の層を介して塗布、焼き付けして絶縁層を形成する。焼付け工程でポリイミド前駆体樹脂がイミド化してポリイミドとなる。塗布、焼付けは通常の絶縁電線の製造と同様に行うことができる。例えば、導体に樹脂ワニスを塗布した後、設定温度を350〜500℃とした炉内を1パス当たり5〜10秒間通過させて焼付ける作業を数回繰り返して絶縁層を形成する。絶縁層の厚みは10μm〜150μmとする。   The insulating layer is formed by applying and baking a polyimide resin varnish directly on the conductor or through another layer. In the baking step, the polyimide precursor resin is imidized to become polyimide. Application and baking can be performed in the same manner as in the production of a normal insulated wire. For example, after the resin varnish is applied to the conductor, an insulating layer is formed by repeating a baking operation by passing the inside of a furnace having a set temperature of 350 to 500 ° C. for 5 to 10 seconds per pass several times. The insulating layer has a thickness of 10 μm to 150 μm.

導体としては、銅や銅合金、アルミニウム等を使用できる。導体の大きさやその断面形状は特に限定されないが、丸線の場合は導体径が100μm〜5mmのものが、平角線の場合は一辺の長さが500μm〜5mmのものが一般に使用される。   As the conductor, copper, copper alloy, aluminum or the like can be used. The size of the conductor and the cross-sectional shape thereof are not particularly limited, but in the case of a round wire, a conductor diameter of 100 μm to 5 mm is generally used, and in the case of a flat wire, one having a side length of 500 μm to 5 mm is generally used.

絶縁層は単層であっても多層であっても良い。絶縁層が単層である場合は上記のポリイミド樹脂ワニスを塗布、焼き付けして形成された絶縁層のみが絶縁層となる。絶縁層を多層にする場合は、上記のポリイミドからなる絶縁層の形成前又は形成後に他の絶縁層を形成する。他の絶縁層を形成する樹脂としては汎用ポリイミド、ポリアミドイミド、ポリエステルイミド、ポリウレタン、ポリエーテルイミド等任意の樹脂を使用できる。   The insulating layer may be a single layer or a multilayer. When the insulating layer is a single layer, only the insulating layer formed by applying and baking the above polyimide resin varnish becomes the insulating layer. When the insulating layer has a multilayer structure, another insulating layer is formed before or after the formation of the insulating layer made of polyimide. As the resin for forming the other insulating layer, any resin such as general-purpose polyimide, polyamideimide, polyesterimide, polyurethane, and polyetherimide can be used.

さらに、絶縁層として、最外層に表面潤滑層を有するとさらに加工性が向上して好ましい。また絶縁電線の外側に表面潤滑油を塗布しても良い。この場合はさらにインサート性や加工性が向上する。   Furthermore, it is preferable to have a surface lubricating layer as the outermost layer as the insulating layer because the workability is further improved. Moreover, you may apply | coat surface lubricating oil to the outer side of an insulated wire. In this case, insertability and workability are further improved.

図1は本発明の絶縁電線の一例を示す断面模式図である。導体3の外側に多層の絶縁層があり、絶縁層は導体側から第1の絶縁層1、第2の絶縁層2としている。第1の絶縁層1、第2の絶縁層2を全て本発明のポリイミド樹脂ワニスを塗布焼き付けして形成すると、耐熱性、耐クレージング性に優れると共に誘電率の低い絶縁層を有する絶縁電線が得られる。導体との密着力を向上するために、第1の絶縁層1にはポリアミドイミド等、導体との密着性に優れる他の樹脂を使用しても良い。なお本発明の絶縁電線はこの形状に限定されるものではない。   FIG. 1 is a schematic cross-sectional view showing an example of the insulated wire of the present invention. A multi-layer insulating layer is provided outside the conductor 3, and the insulating layers are a first insulating layer 1 and a second insulating layer 2 from the conductor side. When the first insulating layer 1 and the second insulating layer 2 are all formed by applying and baking the polyimide resin varnish of the present invention, an insulated wire having an insulating layer with excellent heat resistance and crazing resistance and a low dielectric constant is obtained. It is done. In order to improve the adhesion with the conductor, the first insulating layer 1 may be made of other resin having excellent adhesion with the conductor, such as polyamideimide. The insulated wire of the present invention is not limited to this shape.

図3(a)は本発明の電機コイルの一例を示す模式図であり、図3(b)は図3(a)のA−A’断面図である。磁性材料からなるコア13の外側に絶縁電線11を捲線して電機コイル12が形成される。コアと電機コイルからなる部材は、モータのロータやステータとして使用される。例えば、図4に示すように、コア13と電機コイル12とからなる分割ステータ14を複数組み合わせて環状に配置したステータ15を、モータの構成部材として使用する。   FIG. 3A is a schematic diagram illustrating an example of the electric coil of the present invention, and FIG. 3B is a cross-sectional view taken along the line A-A ′ of FIG. The electric wire 12 is formed by winding the insulated wire 11 outside the core 13 made of a magnetic material. A member composed of a core and an electric coil is used as a rotor or a stator of a motor. For example, as shown in FIG. 4, a stator 15 in which a plurality of divided stators 14 including a core 13 and an electric coil 12 are combined and arranged in an annular shape is used as a constituent member of a motor.

上記のように巻線した電機コイルの絶縁信頼性を高めるため、捲線後の電機コイルをワニス含浸処理する。具体的には、電機コイルをエポキシ樹脂、キシレン樹脂等の熱硬化性樹脂液に浸漬してコイルの周囲に熱硬化性樹脂を付着させた後、熱処理して熱硬化性樹脂を硬化させる。熱硬化性樹脂の硬化温度は約約100℃〜180℃である。このようにしてワニス含浸処理した電機コイルが得られる。   In order to increase the insulation reliability of the electric coil wound as described above, the electric coil after the winding is subjected to varnish impregnation treatment. Specifically, the electric coil is immersed in a thermosetting resin liquid such as an epoxy resin or a xylene resin to attach the thermosetting resin around the coil, and then heat-treated to cure the thermosetting resin. The curing temperature of the thermosetting resin is about 100 ° C to 180 ° C. Thus, an electric coil impregnated with varnish is obtained.

次に、本発明を実施例に基づいてさらに詳細に説明する。なお本発明の範囲はこの実施例のみに限定されるものではない。   Next, the present invention will be described in more detail based on examples. The scope of the present invention is not limited to this example.

(実施例1〜3、比較例1〜6)
(ポリイミド前駆体樹脂の作製)
表1に示す種類と量の芳香族ジアミン(ODA、BAPP)をN−メチルピロリドンに溶解させた後、表1に示す種類と量の芳香族テトラカルボン酸無水物(PMDA)を加えて窒素雰囲気下室温で1時間撹拌した。その後60℃で20時間撹拌し反応を終え、室温まで冷却してポリイミド樹脂ワニスを得た。なお表1に記載している配合量の数値はモル比である。各成分の分子量から計算したイミド基濃度を表1中に記載している。
(Examples 1-3, Comparative Examples 1-6)
(Preparation of polyimide precursor resin)
After dissolving the types and amounts of aromatic diamines (ODA, BAPP) shown in Table 1 in N-methylpyrrolidone, the types and amounts of aromatic tetracarboxylic acid anhydrides (PMDA) shown in Table 1 are added to form a nitrogen atmosphere. The mixture was stirred at room temperature for 1 hour. Thereafter, the mixture was stirred at 60 ° C. for 20 hours to finish the reaction, and cooled to room temperature to obtain a polyimide resin varnish. In addition, the numerical value of the compounding amount described in Table 1 is a molar ratio. The imide group concentration calculated from the molecular weight of each component is shown in Table 1.

(絶縁電線の作製)
厚み1.5mm、幅3.0mmの平角導体の表面に作製したポリイミド樹脂ワニスを常法によって塗布、焼付けする工程を複数回繰り返して厚み約40μmの絶縁層を形成し、実施例1〜3、比較例1〜6絶縁電線を作製した。
(Production of insulated wires)
A process of applying and baking a polyimide resin varnish produced on the surface of a flat conductor having a thickness of 1.5 mm and a width of 3.0 mm by a conventional method is repeated a plurality of times to form an insulating layer having a thickness of about 40 μm. Comparative Example 1-6 The insulated wire was produced.

(誘電率の測定)
得られた各絶縁電線について、絶縁層の誘電率を測定した。図4に示すように、絶縁電線の表面3カ所に銀ペーストを塗布して測定用のサンプルを作製した(塗布幅は両端2カ所が10mm、中央部分が100mmである)。導体と銀ペースト間の静電容量をLCRメータで測定し、測定した静電容量の値と絶縁層の厚みから誘電率を算出した。なお測定は温度30℃、湿度50%の条件で行った。
(Measurement of dielectric constant)
About each obtained insulated wire, the dielectric constant of the insulating layer was measured. As shown in FIG. 4, a silver paste was applied to three places on the surface of the insulated wire to prepare a measurement sample (the width of application is 10 mm at both ends and 100 mm at the center). The capacitance between the conductor and the silver paste was measured with an LCR meter, and the dielectric constant was calculated from the measured capacitance value and the thickness of the insulating layer. The measurement was performed under conditions of a temperature of 30 ° C. and a humidity of 50%.

(熱耐久性の評価)
得られた各絶縁電線1mを温度280℃の恒温槽内に放置し、絶縁層に割れが発生するまでの時間を計測した。48時間以上割れが発生無いことを合格基準とした。
(Evaluation of thermal durability)
Each obtained insulated wire 1 m was left in a thermostatic bath at a temperature of 280 ° C., and the time until the insulation layer was cracked was measured. An acceptance criterion was that no cracking occurred for 48 hours or more.

(耐クレージング性の評価)
得られた各絶縁電線を10%伸張後、10mをキシレンモノマーに約30秒間浸漬した後取り出して絶縁層を観察し、絶縁電線1mあたり発生した割れの数を計測した。1mあたりの割れ発生数が0個であることを合格基準とした。以上の結果を表1に示す。
(Evaluation of crazing resistance)
Each obtained insulated wire was stretched 10%, 10 m was immersed in xylene monomer for about 30 seconds and then taken out, the insulating layer was observed, and the number of cracks generated per 1 m of the insulated wire was measured. The acceptance criterion was that the number of cracks generated per 1 m was 0. The results are shown in Table 1.

Figure 2013253124
Figure 2013253124

実施例1〜3及び比較例1〜6は芳香族ジアミンとして分子量の小さいODAと分子量の大きいBAPPを併用し、BAPPの比率を0%〜50%まで変えてイミド基濃度を調整したものである。BAPPの比率を高くしてイミド基濃度が低くなるほど誘電率が低くなっている。しかしイミド基濃度が低くなるほど耐熱性が低下し、耐クレージング性も悪くなっている。耐クレージング性が合格基準を満たすのはイミド基濃度が35.0%を超える実施例3であり、誘電率が汎用ポリイミド(比較例1)の3.5よりも低くなるのはイミド基濃度が36.0%未満の実施例1である。以上のことより、耐熱性、耐クレージング性と低誘電率とを両立できるイミド基濃度は35.0%超36.0%未満であることがわかる。   In Examples 1 to 3 and Comparative Examples 1 to 6, ODA having a low molecular weight and BAPP having a high molecular weight are used in combination as an aromatic diamine, and the imide group concentration is adjusted by changing the ratio of BAPP from 0% to 50%. . The dielectric constant decreases as the BAPP ratio increases and the imide group concentration decreases. However, the lower the imide group concentration, the lower the heat resistance and the worse the crazing resistance. The crazing resistance satisfies the acceptance criteria in Example 3 where the imide group concentration exceeds 35.0%, and the dielectric constant is lower than 3.5 of the general-purpose polyimide (Comparative Example 1) because the imide group concentration is Example 1 with less than 36.0%. From the above, it can be seen that the imide group concentration capable of achieving both heat resistance, crazing resistance and low dielectric constant is more than 35.0% and less than 36.0%.

1 第1の絶縁層
2 第2の絶縁層
3 導体
11 絶縁電線
12 電機コイル
13 コア
14 分割ステータ
15 ステータ
DESCRIPTION OF SYMBOLS 1 1st insulating layer 2 2nd insulating layer 3 Conductor 11 Insulated electric wire 12 Electric coil 13 Core 14 Split stator 15 Stator

Claims (6)

芳香族ジアミンと芳香族テトラカルボン酸二無水物とを反応して得られるポリイミド前駆体樹脂を主成分とするポリイミド樹脂ワニスであって、
前記ポリイミド前駆体樹脂のイミド化後のイミド基濃度が35.0%よりも大きく36.0%未満である、ポリイミド樹脂ワニス。
A polyimide resin varnish mainly composed of a polyimide precursor resin obtained by reacting an aromatic diamine and an aromatic tetracarboxylic dianhydride,
A polyimide resin varnish having an imide group concentration after imidation of the polyimide precursor resin of greater than 35.0% and less than 36.0%.
前記芳香族ジアミンが、2,2−ビス[4−(アミノフェノキシ)フェニル]プロパン(BAPP)、1,3−ビス(4−アミノフェノキシ)ベンゼン、及び1,4−ビス(4−アミノフェノキシ)ベンゼンからなる群から選択される1種以上を含有する、請求項1に記載のポリイミド樹脂ワニス。   The aromatic diamine is 2,2-bis [4- (aminophenoxy) phenyl] propane (BAPP), 1,3-bis (4-aminophenoxy) benzene, and 1,4-bis (4-aminophenoxy). The polyimide resin varnish of Claim 1 containing 1 or more types selected from the group which consists of benzene. 前記芳香族テトラカルボン酸二無水物が、ピロメリット酸二無水物である、請求項1に記載のポリイミド樹脂ワニス。   The polyimide resin varnish according to claim 1, wherein the aromatic tetracarboxylic dianhydride is pyromellitic dianhydride. 導体及び該導体を直接又は他の層を介して被覆する絶縁層を有する絶縁電線であって、前記絶縁層は、請求項1〜3のいずれか1項に記載のポリイミド樹脂ワニスを塗布、焼付けして形成されたものである絶縁電線。   It is an insulated wire which has an insulating layer which coat | covers a conductor and this conductor directly or through another layer, Comprising: The said insulating layer apply | coats and bakes the polyimide resin varnish of any one of Claims 1-3 An insulated wire that is formed as a result. 請求項4に記載の絶縁電線を捲線してなる電機コイル。   An electric coil formed by winding the insulated wire according to claim 4. 請求項5に記載の電機コイルを有するモータ。   A motor having the electric coil according to claim 5.
JP2012127608A 2012-06-05 2012-06-05 Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same Pending JP2013253124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012127608A JP2013253124A (en) 2012-06-05 2012-06-05 Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127608A JP2013253124A (en) 2012-06-05 2012-06-05 Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same

Publications (1)

Publication Number Publication Date
JP2013253124A true JP2013253124A (en) 2013-12-19

Family

ID=49950936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127608A Pending JP2013253124A (en) 2012-06-05 2012-06-05 Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same

Country Status (1)

Country Link
JP (1) JP2013253124A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007065A (en) * 2012-06-25 2014-01-16 Hitachi Cable Ltd Insulated wire and coil using the same
WO2015198491A1 (en) * 2014-06-27 2015-12-30 日立金属株式会社 Insulated electric wire and coil
CN106098179A (en) * 2016-08-15 2016-11-09 常州百富电子有限公司 It is applicable to the enamel-covered wire of hot environment
JP2017046454A (en) * 2015-08-26 2017-03-02 株式会社東芝 Rotary electric machine coil and rotary electric machine
WO2018230706A1 (en) 2017-06-16 2018-12-20 住友電気工業株式会社 Insulated electric wire
JPWO2017168749A1 (en) * 2016-04-01 2019-02-07 日立金属株式会社 Insulated wires, coils and motors for vehicles
JP2019193434A (en) * 2018-04-25 2019-10-31 日立金属株式会社 Insulated wire and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203638A (en) * 1984-03-29 1985-10-15 Nitto Electric Ind Co Ltd Polyimide film
JPH0570591A (en) * 1991-09-13 1993-03-23 Kanegafuchi Chem Ind Co Ltd Polyamic acid copolymer and polyimide film formed from the same
JPH11264981A (en) * 1998-03-17 1999-09-28 Chisso Corp Aligning agent for antiferroelectric liquid crystal display element, alignment layer using the aligning agent and antiferroelectric liquid crystal display element having the alignment layer
JP2003119380A (en) * 2001-10-05 2003-04-23 Du Pont Toray Co Ltd Flame-retardant molded product, reflector substrate for illuminating equipment and reflector for illuminating equipment
JP2011131455A (en) * 2009-12-24 2011-07-07 Du Pont-Toray Co Ltd Method for producing polyimide molded body
JP2013191356A (en) * 2012-03-13 2013-09-26 Hitachi Cable Ltd Insulation electric wire and coil formed by using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203638A (en) * 1984-03-29 1985-10-15 Nitto Electric Ind Co Ltd Polyimide film
JPH0570591A (en) * 1991-09-13 1993-03-23 Kanegafuchi Chem Ind Co Ltd Polyamic acid copolymer and polyimide film formed from the same
JPH11264981A (en) * 1998-03-17 1999-09-28 Chisso Corp Aligning agent for antiferroelectric liquid crystal display element, alignment layer using the aligning agent and antiferroelectric liquid crystal display element having the alignment layer
JP2003119380A (en) * 2001-10-05 2003-04-23 Du Pont Toray Co Ltd Flame-retardant molded product, reflector substrate for illuminating equipment and reflector for illuminating equipment
JP2011131455A (en) * 2009-12-24 2011-07-07 Du Pont-Toray Co Ltd Method for producing polyimide molded body
JP2013191356A (en) * 2012-03-13 2013-09-26 Hitachi Cable Ltd Insulation electric wire and coil formed by using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007065A (en) * 2012-06-25 2014-01-16 Hitachi Cable Ltd Insulated wire and coil using the same
CN105793933B (en) * 2014-06-27 2018-02-13 日立金属株式会社 Insulated electric conductor and coil
WO2015198491A1 (en) * 2014-06-27 2015-12-30 日立金属株式会社 Insulated electric wire and coil
CN105793933A (en) * 2014-06-27 2016-07-20 日立金属株式会社 Insulated electric wire and coil
JPWO2015198491A1 (en) * 2014-06-27 2017-04-20 日立金属株式会社 Insulated wires and coils
US9843233B2 (en) 2014-06-27 2017-12-12 Hitachi Metals, Ltd. Insulated electric wire and coil
JP2017046454A (en) * 2015-08-26 2017-03-02 株式会社東芝 Rotary electric machine coil and rotary electric machine
JPWO2017168749A1 (en) * 2016-04-01 2019-02-07 日立金属株式会社 Insulated wires, coils and motors for vehicles
JP2021106152A (en) * 2016-04-01 2021-07-26 日立金属株式会社 Insulated wire, coil and motor for vehicles
JP7075337B2 (en) 2016-04-01 2022-05-25 日立金属株式会社 Insulated wires, coils and vehicle motors
JP7147892B2 (en) 2016-04-01 2022-10-05 日立金属株式会社 Insulated wires, coils and vehicle motors
CN106098179A (en) * 2016-08-15 2016-11-09 常州百富电子有限公司 It is applicable to the enamel-covered wire of hot environment
WO2018230706A1 (en) 2017-06-16 2018-12-20 住友電気工業株式会社 Insulated electric wire
JP2019193434A (en) * 2018-04-25 2019-10-31 日立金属株式会社 Insulated wire and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
US8193451B2 (en) Polyamide-imide resin insulating varnish and insulated wire using the same
JP4473916B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
JP5609732B2 (en) Insulating paint and insulated wire using the same
JP2013253124A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP2011190434A (en) Insulating coating material and manufacturing method thereof as well as insulating electric wire using the same and manufacturing method thereof
JP2012224697A (en) Polyimide resin varnish, and electric insulated wire, electric appliance coil and motor using the same
JP6394697B2 (en) Insulated wires and coils
US11905431B2 (en) Polyimide varnish comprising aromatic carboxylic acid for conductor coating and manufacturing method therefor
WO2012153636A1 (en) Polyimide resin varnish, insulated electric wire using same, electric coil, and motor
JP2013051030A (en) Insulated wire and armature coil using the same, motor
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
WO2020203193A1 (en) Insulated electrical wire, coil, and electrical/electronic appliance
JP2013101759A (en) Insulation wire, electric machine coil using the same, and motor
JP2017095594A (en) Resin varnish and insulation wire
JP2012046619A (en) Insulated wire, electric appliance coil using the same, and motor
JP5837397B2 (en) Insulated wire and electric coil and motor using the same
JP2013028695A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire
JP5712661B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
JP7179132B2 (en) insulated wire
JP2012243614A (en) Insulated wire, and electric coil and motor using the same
CN110301015B (en) Insulated wire
JP2012097177A (en) Polyamideimide varnish, and insulated wire, electric coil and motor using the same
JP5622129B2 (en) Insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301