JP2011131455A - Method for producing polyimide molded body - Google Patents

Method for producing polyimide molded body Download PDF

Info

Publication number
JP2011131455A
JP2011131455A JP2009291937A JP2009291937A JP2011131455A JP 2011131455 A JP2011131455 A JP 2011131455A JP 2009291937 A JP2009291937 A JP 2009291937A JP 2009291937 A JP2009291937 A JP 2009291937A JP 2011131455 A JP2011131455 A JP 2011131455A
Authority
JP
Japan
Prior art keywords
polyimide
powder
film
minutes
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009291937A
Other languages
Japanese (ja)
Inventor
Shotaro Hidaka
正太郎 日高
Hironori Ishikawa
裕規 石川
Hideaki Machida
英明 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2009291937A priority Critical patent/JP2011131455A/en
Priority to PCT/US2010/061696 priority patent/WO2011079159A1/en
Publication of JP2011131455A publication Critical patent/JP2011131455A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0042Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting for shaping parts, e.g. multilayered parts with at least one layer containing regenerated plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0404Disintegrating plastics, e.g. by milling to powder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for independently utilizing a polyimide film in which imidization is perfectly completed. <P>SOLUTION: The method of producing polyimide molded body is characterized in that the polyimide film that contains a biphenyltetracarboxylic acid component as the acid component of polyimide is crushed into powder whose volume-average particle size is 200 μm or less and, substantially, only the powder is molded. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、単独では再利用が困難とされているポリイミドフィルムを単独で再利用して、ポリイミド成形体を製造する方法に関する。   The present invention relates to a method for producing a polyimide molded body by reusing a polyimide film which is difficult to reuse by itself.

ポリイミドフィルムは優れた耐熱性、機械特性、摺動特性、耐薬品性を持つエンジニアリングプラスチックであり、電気・電子機器用途を中心に様々な分野で使用されている。ポリプロピレンやポリエチレンテレフタレートのような多くの熱可塑性のエンジニアリングプラスチックは加熱溶融し、単体あるいは未使用品と混合するなどして成形加工を行い、再使用することができる。   Polyimide films are engineering plastics with excellent heat resistance, mechanical properties, sliding properties, and chemical resistance, and are used in various fields, mainly for electrical and electronic equipment. Many thermoplastic engineering plastics, such as polypropylene and polyethylene terephthalate, can be reused by being melted by heating and then molded or mixed with a single or unused product.

これに対して、ポリイミドフィルムは、一般的に前述のようなエンジニアプラスチックと異なり明確な融点を持たず、非熱可塑性であり、有機溶剤などの薬品にも耐性があることなどから、加熱溶融などによる再使用を行うことができない。このためポリイミドフィルムの耳部や端部、あるいはその他の要因で製品として使用できないポリイミドフィルムは、廃棄物として処理されることが多かった。   In contrast, polyimide films generally do not have a clear melting point unlike engineer plastics as described above, are non-thermoplastic, and are resistant to chemicals such as organic solvents. Cannot be reused. For this reason, the polyimide film which cannot be used as a product due to the ears and ends of the polyimide film or other factors is often treated as waste.

これらのポリイミドフィルムの再使用を行うために、ポリイミドフィルムを裁断、小片化してポリアミック酸溶液に2〜70重量%程度混合し、この小片を含むポリアミド酸溶液からポリイミドシートを作成する方法(特許文献1)や、ポリイミド樹脂原末10〜99重量部に対して、再使用するポリイミドを主成分とする樹脂成形品あるいはフィルムの破砕品1〜90重量部からなる混合物を成形してポリイミド樹脂成形品を得る方法(特許文献2)が提案されている。これらの小片やフィルムの破砕品などは完全にイミド化が完了したポリイミドを使用しており、該ポリイミド粉体のみで成形体を作成することはできなかった。このため、これらの文献では再使用するポリイミドフィルム以外に、新規のポリアミック酸やイミド化が完了していないポリイミド粉末を使用しており、再使用を行うために、新たにポリアミック酸やポリイミド粉体の製造を行わなければならず、再使用を行うためのコスト等に問題があった。   In order to reuse these polyimide films, the polyimide film is cut and cut into small pieces, mixed with a polyamic acid solution in an amount of about 2 to 70% by weight, and a polyimide sheet is prepared from the polyamic acid solution containing the small pieces (Patent Document) 1) or a polyimide resin molded product obtained by molding a resin molded product mainly composed of polyimide to be reused or a mixture of 1 to 90 parts by weight of a crushed product of a polyimide resin raw material to 10 to 99 parts by weight. (Patent Document 2) has been proposed. These small pieces, crushed products of films, etc. use polyimide that has been completely imidized, and it has not been possible to produce a molded body using only the polyimide powder. Therefore, in these documents, in addition to the polyimide film to be reused, a new polyamic acid or a polyimide powder that has not been imidized is used, and in order to reuse, a new polyamic acid or polyimide powder is used. Therefore, there is a problem in cost for re-use.

一方、ポリイミドの酸成分としてビフェニルテトラカルボン酸成分を含有するポリイミドフィルムはよく知られている(特許文献3)。しかし、これらのフィルムを粉砕して再利用することは記載されていないし、もし、再利用されていたとしてもそれは、他の物質と混合して、成形しやすい状態にして成形されていたものであり、ポリイミドフィルムを単独で成形に利用することはなされていなかった。   On the other hand, a polyimide film containing a biphenyltetracarboxylic acid component as an acid component of polyimide is well known (Patent Document 3). However, it is not described that these films are crushed and reused, and even if they are reused, they are mixed with other substances and formed into a form that is easy to mold. Yes, the polyimide film was not used alone for molding.

特開2006−131753号公報JP 2006-131753 A 特開2006−232996号公報JP 2006-232996 A 特開2005−119159号公報JP 2005-119159 A

本発明は、上記従来技術の問題点に鑑み、イミド化が完全に完了したポリイミドフィルムを単独で利用する方法を提供するものである。   This invention provides the method of utilizing independently the polyimide film in which imidation was completed completely in view of the problem of the said prior art.

本発明は、上記課題を解決するために、次のような手段を採用する。即ち本発明は、
(1)ポリイミドの酸成分としてビフェニルテトラカルボン酸成分を含有するポリイミドフィルムを体積平均粒子径200μm以下の粉末に粉砕し、実質的にこの粉末のみを成形することを特徴とするポリイミド成形体の製造方法、
(2)ビフェニルテトラカルボン酸成分の含有量が全酸成分に対して2〜100モル%であることを特徴とする上記(1)に記載のポリイミド成形体の製造方法、
(3)成形体の曲げ伸度、引張り伸度がいずれも2%以上であることを特徴とする上記(1)または(2)に記載のポリイミド成形体の製造方法、である。
In order to solve the above problems, the present invention employs the following means. That is, the present invention
(1) Manufacture of a polyimide molded body characterized by pulverizing a polyimide film containing a biphenyltetracarboxylic acid component as an acid component of polyimide into a powder having a volume average particle diameter of 200 μm or less and substantially molding only this powder. Method,
(2) The method for producing a polyimide molded body according to the above (1), wherein the content of the biphenyltetracarboxylic acid component is 2 to 100 mol% with respect to the total acid component,
(3) The method for producing a polyimide molded body according to (1) or (2) above, wherein both the bending elongation and the tensile elongation of the molded body are 2% or more.

本発明のポリイミド成形体の製造方法であるが、この方法によれば従来、単独では再利用不可能とされていたポリイミドフィルムを再利用して所望のポリイミド成形体を得ることができる。   Although it is the manufacturing method of the polyimide molded body of this invention, according to this method, the desired polyimide molded body can be obtained by reusing the polyimide film conventionally made impossible to reuse alone.

また、再利用する際に該ポリイミドフィルム以外の、他のポリイミド樹脂、粉末等を使用しなくても成形体が成形可能であり、再利用を目的とした新規のポリイミド樹脂、粉末の作成を必要としないため、再利用にかかる工程等を大幅に削減することができたものである。   In addition, when reused, the molded product can be formed without using other polyimide resin or powder other than the polyimide film, and it is necessary to create a new polyimide resin and powder for reuse. As a result, the number of steps involved in reuse can be greatly reduced.

以下に本発明について、具体的に説明する。   The present invention will be specifically described below.

本発明は、ポリイミドの酸成分としてビフェニルテトラカルボン酸成分を含有するポリイミドフィルムを体積平均粒子径200μm以下の粉末に粉砕し、実質的にこの粉末のみを成形することを特徴とするポリイミド成形体の製造方法である。なお、本発明において、「酸成分」と言えば「酸」、「酸二水物」を含む総称であり、また、フィルムなどのポリマー中の「酸成分」と言えばポリマーを構成する、「酸成分に由来する酸の残基」を意味する。   The present invention provides a polyimide molded body characterized in that a polyimide film containing a biphenyltetracarboxylic acid component as an acid component of polyimide is pulverized into a powder having a volume average particle diameter of 200 μm or less and substantially only this powder is molded. It is a manufacturing method. In the present invention, “acid component” is a generic term including “acid” and “acid dihydrate”, and “acid component” in a polymer such as a film constitutes a polymer. It means an “acid residue derived from an acid component”.

ポリイミドフィルムは、通常、テトラカルボン酸二無水物化合物とジアミン化合物を有機溶媒中で反応させ、得られたポリアミック酸溶液を支持体上に流延させ、イミド化を進めることにより製造される。本発明においてはこのテトラカルボン酸成分として少なくともビフェニルテトラカルボン酸を含有させることを特徴としている。使用するビフェニルテトラカルボン酸の量は、全酸成分に対して2〜100モル%が好ましく、その下限は、5モル%、15モル%、25モル%が順次好ましい。使用できるビフェニルテトラカルボン酸成分としては3,3’,4,4’−ビフェニルテトラカルボン酸、2,3’,3,4’−ビフェニルテトラカルボン酸、2,2’,3,3’−ビフェニルテトラカルボン酸が挙げられ、また、これらのアミド形成性誘導体、酸無水物が挙げられる。中でも最も好ましいビフェニルテトラカルボン酸成分は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物である。このビフェニルテトラカルボン酸成分は単独で用いてもよいし、2種類以上を併用してもよく、上記以外の酸成分を併用することも可能である。   A polyimide film is usually produced by reacting a tetracarboxylic dianhydride compound and a diamine compound in an organic solvent, casting the obtained polyamic acid solution on a support, and proceeding imidization. The present invention is characterized in that at least biphenyltetracarboxylic acid is contained as the tetracarboxylic acid component. The amount of biphenyltetracarboxylic acid to be used is preferably 2 to 100 mol% with respect to the total acid component, and the lower limit thereof is preferably 5 mol%, 15 mol% and 25 mol% successively. Usable biphenyltetracarboxylic acid components include 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3 ′, 3,4′-biphenyltetracarboxylic acid, and 2,2 ′, 3,3′-biphenyl. Examples thereof include tetracarboxylic acids, and amide-forming derivatives and acid anhydrides thereof. Of these, the most preferred biphenyltetracarboxylic acid component is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride. This biphenyltetracarboxylic acid component may be used alone or in combination of two or more, and an acid component other than the above may be used in combination.

ここでいう併用する酸成分の具体例としては、ピロメリット酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、オキシジフタル酸、2,3,6,7−ナフタレンジカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)エーテル、ピリジン−2,3,5,6−テトラカルボン酸およびこれらのアミド形成性誘導体などの酸無水物が挙げられる。   Specific examples of the acid component used in combination here include pyromellitic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, oxydiphthalic acid, 2,3,6,7-naphthalenedicarboxylic acid, 2,2 -Acid anhydrides such as bis (3,4-dicarboxyphenyl) ether, pyridine-2,3,5,6-tetracarboxylic acid and amide-forming derivatives thereof.

本発明のポリイミドを構成するジアミン成分としては、パラフェニレンジアミン、メタフェニレンジアミン、ベンチジン、パラキシリレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニルおよびこれらのアミド形成性誘導体が挙げられる。中でもパラフェニレンジアミン、4,4’−ジアミノジフェニルエーテルが好ましい。これらのジアミン成分は単独で用いてもよいし、2種類以上を併用してもよい。   As the diamine component constituting the polyimide of the present invention, paraphenylenediamine, metaphenylenediamine, benzidine, paraxylylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis (4-aminophenoxy) Phenyl) propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4 ′ -Bis (3-aminophenoxy) biphenyl and their amides Forming derivatives thereof. Of these, paraphenylenediamine and 4,4'-diaminodiphenyl ether are preferred. These diamine components may be used alone or in combination of two or more.

典型的なポリイミドフィルムの製造方法としては、次のようなものがある。セパラブルフラスコ中に、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、パラフェニレンジアミン等のジアミンを単独または組み合わせて入れ、さらにN,N’−ジメチルアセトアミド等の有機溶媒を入れて窒素雰囲気下、室温で撹拌する。約1時間撹拌後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とピロメリット酸二無水物を数回に分けて投入し、更に約1時間撹拌後、ピロメリット酸二無水物のN,N’−ジメチルアセトアミド溶液を30分かけて滴下し、更に約1時間攪拌してポリアミック酸溶液を得る。得られたポリアミック酸をポリエステルフィルム上に取り、スピンコーターを用いて均一な膜を形成する。これをオーブンで100℃、1時間加熱乾燥することにより自己支持性のポリアミック酸フィルムを得る。この自己支持性のポリアミック酸フィルムをポリエステルフィルムから剥離し、これを金属枠に固定し、200〜400℃で熱処理することによりポリイミドフィルムを得ることができる。   A typical method for producing a polyimide film is as follows. In a separable flask, diamines such as 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, and paraphenylenediamine are used alone or in combination, and an organic solvent such as N, N′-dimethylacetamide is further added. Stir at room temperature under a nitrogen atmosphere. After stirring for about 1 hour, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride were added in several portions. After further stirring for about 1 hour, pyromellitic acid 2 An anhydrous N, N′-dimethylacetamide solution is added dropwise over 30 minutes, and the mixture is further stirred for about 1 hour to obtain a polyamic acid solution. The obtained polyamic acid is taken on a polyester film, and a uniform film is formed using a spin coater. This is heated and dried in an oven at 100 ° C. for 1 hour to obtain a self-supporting polyamic acid film. The self-supporting polyamic acid film is peeled from the polyester film, fixed to a metal frame, and heat-treated at 200 to 400 ° C. to obtain a polyimide film.

なお、本発明に用いるポリイミドフィルムは、酸成分としてビフェニルテトラカルボン酸成分を含有するポリイミドフィルムであれば、工業的に大量生産されているポリイミドフィルムを利用することができる。   In addition, if the polyimide film used for this invention is a polyimide film containing a biphenyl tetracarboxylic acid component as an acid component, the polyimide film currently mass-produced industrially can be utilized.

本発明においては、ポリイミドフィルムを粉砕する。粉砕機としては、フリーザーミル、ボールミル、ビーズミル、サンドミル、ジェットミル、ターボミル、アトマイザーミルおよび、インパクトミル等を使用することができ、複数の異なる粉砕機器を組み合わせて使用してもよい。また、粉砕する前にポリイミドフィルムを薬品処理や加熱によって粉砕しやすくすることもできるし、裁断するなどして、所望の大きさに調整することもできる。粉砕した粒子の大きさは、体積平均粒子径が200μm以下であることが必要であり、より好ましくは10〜150μmであり、さらに好ましくは15〜80μmの微細粉体であることが重要である。これは、ポリイミド粉体の体積平均粒子径の粒径が200μmよりも大きくなると嵩密度が大きくなり、成形体にした時に十分な密度が得られないためである。樹脂の密度は成形体の強度に関わり、十分な密度が得られない場合は脆い樹脂となってしまう。   In the present invention, the polyimide film is pulverized. As a pulverizer, a freezer mill, a ball mill, a bead mill, a sand mill, a jet mill, a turbo mill, an atomizer mill, an impact mill, and the like can be used, and a plurality of different pulverizing devices may be used in combination. In addition, the polyimide film can be easily pulverized by chemical treatment or heating before pulverization, or can be adjusted to a desired size by cutting. The size of the pulverized particles needs to have a volume average particle size of 200 μm or less, more preferably 10 to 150 μm, and still more preferably a fine powder of 15 to 80 μm. This is because if the volume average particle diameter of the polyimide powder is larger than 200 μm, the bulk density increases, and a sufficient density cannot be obtained when formed into a molded body. The density of the resin is related to the strength of the molded body, and if a sufficient density cannot be obtained, the resin becomes brittle.

本発明の最大の特徴は、上記のようにして得られたポリイミドの粉体を実質的に単独で成形することにある。従来のポリイミドフィルムは粉末にしても単独では成形不可能であった。「実質的に」とは、単独で用いても良いし、また、少量の他の物質、例えば本発明で規定するポリイミドフィルム以外のポリイミドフィルムが含まれていても良いという意味である。   The greatest feature of the present invention resides in that the polyimide powder obtained as described above is molded substantially alone. Even if the conventional polyimide film is made into a powder, it cannot be formed alone. “Substantially” may be used alone or may contain a small amount of other substances, for example, a polyimide film other than the polyimide film defined in the present invention.

本発明におけるポリイミド粉末を成形する方法は特に限定されず、例えば加熱と加圧を同時に行う熱プレスが挙げられる。また、使用する粉末を成形前に乾燥させたり、熱プレスを行う前に熱を加えずに加圧だけを行う予備成形を行ってもよい。さらに、これらの工程は窒素等の不活性ガスを用いた雰囲気下で行ってもよい。   The method for molding the polyimide powder in the present invention is not particularly limited, and examples thereof include a hot press in which heating and pressing are performed simultaneously. Moreover, you may dry the powder to be used before shaping | molding, or you may perform the pre-molding which only pressurizes, without applying heat before performing a hot press. Further, these steps may be performed in an atmosphere using an inert gas such as nitrogen.

得られた成形体は通常のポリイミド成形体と同程度の物性を有することが好ましく、曲げ伸度、引張り伸度はいずれも2%以上であることが好ましい。また、曲げ弾性率は2GPa以上、曲げ強度は50MPa以上が好ましい。   The obtained molded body preferably has the same physical properties as a normal polyimide molded body, and both the bending elongation and the tensile elongation are preferably 2% or more. The flexural modulus is preferably 2 GPa or more and the bending strength is preferably 50 MPa or more.

以下、実施例により本発明を具体的に説明する。但し本発明はこれらの実施例のみによって限定されない。なお、各実施例における物性は下記の方法で測定した。   Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited only to these examples. In addition, the physical property in each Example was measured with the following method.

<体積平均粒子径>
セイシン企業製レーザー式粒度分布測定機LMS−30を用いて測定した。
<Volume average particle diameter>
Measurement was performed using a laser type particle size distribution measuring machine LMS-30 manufactured by Seishin Corporation.

<曲げ伸度、曲げ伸度>
ASTM D790に準じて測定した。
<Bending elongation, bending elongation>
Measured according to ASTM D790.

<引っ張り伸度、引っ張り強度>
ASTM D1708に準じて測定した。
<Tensile elongation, tensile strength>
Measured according to ASTM D1708.

実施例1
(ポリイミドフィルムの作成)
ケミカルスターラーを備えた300mlセパラブルフラスコ中に、4,4’−ジアミノジフェニルエーテル12.94g(0.065mol)、パラフェニレンジアミン6.99g(0.065mol)、N,N’−ジメチルアセトアミド189.32gを入れ、窒素雰囲気下、室温で撹拌した。60分撹拌後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物13.32g(0.045mol)とピロメリット酸二無水物14.11g(0.065mol)を数回に分けて投入し、更に180分撹拌後、ピロメリット酸二無水物のN,N’−ジメチルアセトアミド溶液(6wt%)14.09gを30分かけて滴下し、更に60分攪拌してポリアミック酸溶液を得た。
Example 1
(Making polyimide film)
In a 300 ml separable flask equipped with a chemical stirrer, 4.94 g (0.065 mol) of 4,4′-diaminodiphenyl ether, 6.99 g (0.065 mol) of paraphenylenediamine, 189.32 g of N, N′-dimethylacetamide And stirred at room temperature under a nitrogen atmosphere. After stirring for 60 minutes, 13.3 g (0.045 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 14.11 g (0.065 mol) of pyromellitic dianhydride were divided into several times. After stirring for 180 minutes, 14.09 g of a pyromellitic dianhydride N, N′-dimethylacetamide solution (6 wt%) was added dropwise over 30 minutes, and the mixture was further stirred for 60 minutes to obtain a polyamic acid solution. Obtained.

得られたポリアミック酸の一部をポリエステルフィルム上に取り、スピンコーターを用いて均一な膜を形成した。これをオーブンで100℃、1時間加熱乾燥することにより自己支持性のポリアミック酸フィルムを得た。   Part of the obtained polyamic acid was taken on a polyester film, and a uniform film was formed using a spin coater. This was heated and dried in an oven at 100 ° C. for 1 hour to obtain a self-supporting polyamic acid film.

自己支持性のポリアミック酸フィルムをポリエステルフィルムより剥離し、これを金属枠に固定し、200℃30分、300℃20分、400℃5分の条件で熱処理を行うことにより、ポリイミドフィルムを得た。
この時のフィルムの膜厚は53μmであった。
The polyimide film was obtained by peeling the self-supporting polyamic acid film from the polyester film, fixing it to a metal frame, and performing heat treatment at 200 ° C. for 30 minutes, 300 ° C. for 20 minutes, and 400 ° C. for 5 minutes. .
The film thickness at this time was 53 μm.

(ポリイミド粉体の作成)
上記の方法で得られたポリイミドフィルムをシュレッダーで裁断した後、ジェットミルにて粉砕を行った。得られた粉体をセイシン企業製レーザー式粒度分布測定機LMS−30にて測定したところ、体積平均粒子径は63μmであった。
(Making polyimide powder)
The polyimide film obtained by the above method was cut with a shredder and then pulverized with a jet mill. When the obtained powder was measured with a laser type particle size distribution measuring machine LMS-30 manufactured by Seishin Enterprise, the volume average particle diameter was 63 μm.

(成形体の作成)
この粉体を使用し、熱プレス法にて粉体から成形体を作成した。粉体を成形機に入れ、2.0ton/cmの圧力をかけた状態で400℃まで温度を上げ、この状態を30分保持して成形体を得た。得られた成形体の物性を表1に示す。
(Creation of molded body)
Using this powder, a compact was produced from the powder by a hot press method. The powder was put into a molding machine, the temperature was raised to 400 ° C. under a pressure of 2.0 ton / cm 2 , and this state was maintained for 30 minutes to obtain a molded body. Table 1 shows the physical properties of the obtained molded body.

実施例2
(ポリイミドフィルムの作成)
ケミカルスターラーを備えた300mlセパラブルフラスコ中に、4,4’−ジアミノジフェニルエーテル20.02g(0.100mol)、N,N’−ジメチルアセトアミド182.98gを入れ、窒素雰囲気下、室温で撹拌した。60分撹拌後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物28.54g(0.097mol)を数回に分けて投入し、更に120分撹拌後、ピロメリット酸二無水物のN,N’−ジメチルアセトアミド溶液(6wt%)10.9gを30分かけて滴下し、更に60分攪拌してポリアミック酸溶液を得た。
Example 2
(Making polyimide film)
In a 300 ml separable flask equipped with a chemical stirrer, 20.02 g (0.100 mol) of 4,4′-diaminodiphenyl ether and 182.98 g of N, N′-dimethylacetamide were placed and stirred at room temperature in a nitrogen atmosphere. After stirring for 60 minutes, 28.54 g (0.097 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added in several portions, and after further stirring for 120 minutes, pyromellitic dianhydride was added. 10.9 g of N, N′-dimethylacetamide solution (6 wt%) of the product was added dropwise over 30 minutes, and the mixture was further stirred for 60 minutes to obtain a polyamic acid solution.

得られたポリアミック酸の一部をポリエステルフィルム上に取り、スピンコーターを用いて均一な膜を形成した。これをオーブンで100℃、1時間加熱乾燥することにより自己支持性のポリアミック酸フィルムを得た。   Part of the obtained polyamic acid was taken on a polyester film, and a uniform film was formed using a spin coater. This was heated and dried in an oven at 100 ° C. for 1 hour to obtain a self-supporting polyamic acid film.

自己支持性のポリアミック酸フィルムをポリエステルフィルムより剥離し、これを金属枠に固定し、200℃30分、300℃20分、400℃5分の条件で熱処理を行うことにより、ポリイミドフィルムを得た。この時のフィルムの膜厚は42μmであった。   The polyimide film was obtained by peeling the self-supporting polyamic acid film from the polyester film, fixing it to a metal frame, and performing heat treatment at 200 ° C. for 30 minutes, 300 ° C. for 20 minutes, and 400 ° C. for 5 minutes. . At this time, the film thickness was 42 μm.

(ポリイミド粉体の作成)
得られたフィルムを使用し、シュレッダーで裁断した後、ジェットミルにて粉砕を行った。得られた粉体をセイシン企業製レーザー式粒度分布測定機LMS−30にて測定したところ、体積平均粒子径は70μmであった。
(Making polyimide powder)
The obtained film was used, cut with a shredder, and pulverized with a jet mill. When the obtained powder was measured with a laser type particle size distribution measuring machine LMS-30 manufactured by Seishin Enterprise, the volume average particle size was 70 μm.

(成形体の作成)
この粉体を使用し、熱プレス法にて粉体から成形体を作成した。粉体を成形機に入れ、2.0ton/cmの圧力をかけた状態で400℃まで温度を上げ、この状態を30分保持して成形体を得た。得られた成形体の物性を表1に示す。
(Creation of molded body)
Using this powder, a compact was produced from the powder by a hot press method. The powder was put into a molding machine, the temperature was raised to 400 ° C. under a pressure of 2.0 ton / cm 2 , and this state was maintained for 30 minutes to obtain a molded body. Table 1 shows the physical properties of the obtained molded body.

実施例3
(ポリイミドフィルムの作成)
ケミカルスターラーを備えた300mlセパラブルフラスコ中に、パラフェニレンジアミン14.06g (0.130mol)、N,N’−ジメチルアセトアミド190.87gを入れ、窒素雰囲気下、室温で撹拌した。60分撹拌後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物37.10g(0.126mol)を数回に分けて投入し、更に120分撹拌後、ピロメリット酸二無水物のN,N’−ジメチルアセトアミド溶液(6wt%)14.18gを30分かけて滴下し、更に60分攪拌してポリアミック酸溶液を得た。
Example 3
(Making polyimide film)
In a 300 ml separable flask equipped with a chemical stirrer, 14.06 g (0.130 mol) of paraphenylenediamine and 190.87 g of N, N′-dimethylacetamide were placed and stirred at room temperature in a nitrogen atmosphere. After stirring for 60 minutes, 37.10 g (0.126 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added in several portions, and after further stirring for 120 minutes, pyromellitic dianhydride was added. 14.18 g of N, N′-dimethylacetamide solution (6 wt%) was dropped over 30 minutes, and the mixture was further stirred for 60 minutes to obtain a polyamic acid solution.

得られたポリアミック酸の一部をポリエステルフィルム上に取り、スピンコーターを用いて均一な膜を形成した。これをオーブンで100℃、1時間加熱乾燥することにより自己支持性のポリアミック酸フィルムを得た。   Part of the obtained polyamic acid was taken on a polyester film, and a uniform film was formed using a spin coater. This was heated and dried in an oven at 100 ° C. for 1 hour to obtain a self-supporting polyamic acid film.

自己支持性のポリアミック酸フィルムをポリエステルフィルムより剥離し、これを金属枠に固定し、200℃30分、300℃20分、400℃5分の条件で熱処理を行うことにより、ポリイミドフィルムを得た。
この時のフィルムの膜厚は48μmであった。
The polyimide film was obtained by peeling the self-supporting polyamic acid film from the polyester film, fixing it to a metal frame, and performing heat treatment at 200 ° C. for 30 minutes, 300 ° C. for 20 minutes, and 400 ° C. for 5 minutes. .
The film thickness at this time was 48 μm.

(ポリイミド粉体の作成)
得られたフィルムをシュレッダーで裁断した後、ジェットミルにて粉砕を行った。得られた粉体をセイシン企業製レーザー式粒度分布測定機LMS−30にて測定したところ、体積平均粒子径は68μmであった。
(Making polyimide powder)
The obtained film was cut with a shredder and then pulverized with a jet mill. When the obtained powder was measured with a laser type particle size distribution measuring machine LMS-30 manufactured by Seishin Enterprise, the volume average particle size was 68 μm.

(成形体の作成)
この粉体を使用し、熱プレス法にて粉体から成形体を作成した。粉体を成形機に入れ、2.0[ton/cm]の圧力をかけた状態で400℃まで温度を上げ、この状態を30分保持して作成した。得られた成形体の物性を表1に示す。
(Creation of molded body)
Using this powder, a compact was produced from the powder by a hot press method. The powder was put into a molding machine, and the temperature was raised to 400 ° C. under a pressure of 2.0 [ton / cm 2 ], and this state was maintained for 30 minutes. Table 1 shows the physical properties of the obtained molded body.

実施例4
(ポリイミドフィルムの作成)
ケミカルスターラーを備えた300mlセパラブルフラスコ中に、4,4’−ジアミノジフェニルエーテル23.03g (0.115mol)、N,N’−ジメチルアセトアミド185.69gを入れ、窒素雰囲気下、室温で撹拌した。60分撹拌後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物8.46g(0.028mol)とピロメリット酸二無水物18.06g(0.082mol)を数回に分けて投入し、更に120分撹拌後、ピロメリット酸二無水物のN,N’−ジメチルアセトアミド溶液(6wt%)12.54gを30分かけて滴下し、更に60分攪拌してポリアミック酸溶液を得た。
Example 4
(Making polyimide film)
In a 300 ml separable flask equipped with a chemical stirrer, 23.03 g (0.115 mol) of 4,4′-diaminodiphenyl ether and 185.69 g of N, N′-dimethylacetamide were placed and stirred at room temperature in a nitrogen atmosphere. After stirring for 60 minutes, 8.46 g (0.028 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 18.06 g (0.082 mol) of pyromellitic dianhydride were divided into several times. After stirring for 120 minutes, 12.54 g of N, N′-dimethylacetamide solution of pyromellitic dianhydride (6 wt%) was added dropwise over 30 minutes, and the mixture was further stirred for 60 minutes to obtain a polyamic acid solution. Obtained.

得られたポリアミック酸の一部をポリエステルフィルム上に取り、スピンコーターを用いて均一な膜を形成した。これをオーブンで100℃、1時間加熱乾燥することにより自己支持性のポリアミック酸フィルムを得た。   Part of the obtained polyamic acid was taken on a polyester film, and a uniform film was formed using a spin coater. This was heated and dried in an oven at 100 ° C. for 1 hour to obtain a self-supporting polyamic acid film.

自己支持性のポリアミック酸フィルムをポリエステルフィルムより剥離し、これを金属枠に固定し、200℃30分、300℃20分、400℃5分の条件で熱処理を行うことにより、ポリイミドフィルムを得た。この時のフィルムの膜厚は47μmであった。   The polyimide film was obtained by peeling the self-supporting polyamic acid film from the polyester film, fixing it to a metal frame, and performing heat treatment at 200 ° C. for 30 minutes, 300 ° C. for 20 minutes, and 400 ° C. for 5 minutes. . The film thickness at this time was 47 μm.

(ポリイミド粉体の作成)
得られたフィルムをシュレッダーで裁断した後、ジェットミルにて粉砕を行った。得られた粉体をセイシン企業製レーザー式粒度分布測定機LMS−30にて測定したところ、体積平均粒子径は65μmであった。
(Making polyimide powder)
The obtained film was cut with a shredder and then pulverized with a jet mill. The obtained powder was measured with a laser type particle size distribution analyzer LMS-30 manufactured by Seishin Corporation. The volume average particle size was 65 μm.

(成形体の作成)
この粉体を使用し、熱プレス法にて粉体から成形体を作成した。粉体を成形機に入れ、2.0[ton/cm]の圧力をかけた状態で400℃まで温度を上げ、この状態を30分保持して作成した。得られた成形体の物性を表1に示す。
(Creation of molded body)
Using this powder, a compact was produced from the powder by a hot press method. The powder was put into a molding machine, and the temperature was raised to 400 ° C. under a pressure of 2.0 [ton / cm 2 ], and this state was maintained for 30 minutes. Table 1 shows the physical properties of the obtained molded body.

比較例1
(ポリイミドフィルムの作成)
ケミカルスターラーを備えた300mlセパラブルフラスコ中に、4,4’−ジアミノジフェニルエーテル25.03g(0.125mol)、N,N’−ジメチルアセトアミド192.50gを入れ、窒素雰囲気下、室温で撹拌した。60分撹拌後、ピロメリット酸二無水物26.45g(0.121mol)を数回に分けて投入し、更に120分撹拌後、ピロメリット酸二無水物のN,N’−ジメチルアセトアミド溶液(6wt%)13.63gを30分かけて滴下し、更に60分攪拌してポリアミック酸溶液を得た。
Comparative Example 1
(Making polyimide film)
In a 300 ml separable flask equipped with a chemical stirrer, 25.03 g (0.125 mol) of 4,4′-diaminodiphenyl ether and 192.50 g of N, N′-dimethylacetamide were placed and stirred at room temperature in a nitrogen atmosphere. After stirring for 60 minutes, 26.45 g (0.121 mol) of pyromellitic dianhydride was added in several portions. After further stirring for 120 minutes, an N, N′-dimethylacetamide solution of pyromellitic dianhydride ( 6 wt%) 13.63 g was added dropwise over 30 minutes and stirred for 60 minutes to obtain a polyamic acid solution.

得られたポリアミック酸の一部をポリエステルフィルム上に取り、スピンコーターを用いて均一な膜を形成した。これをオーブンで100℃、1時間加熱乾燥することにより自己支持性のポリアミック酸フィルムを得た。   Part of the obtained polyamic acid was taken on a polyester film, and a uniform film was formed using a spin coater. This was heated and dried in an oven at 100 ° C. for 1 hour to obtain a self-supporting polyamic acid film.

自己支持性のポリアミック酸フィルムをポリエステルフィルムより剥離し、これを金属枠で把持し、200℃30分、300℃20分、400℃5分の条件で熱処理を行うことにより、ポリイミドフィルムを得た。この時のフィルムの膜厚は55μmであった。   The polyimide film was obtained by peeling the self-supporting polyamic acid film from the polyester film, holding it with a metal frame, and performing heat treatment under conditions of 200 ° C. for 30 minutes, 300 ° C. for 20 minutes, and 400 ° C. for 5 minutes. . The film thickness at this time was 55 μm.

(ポリイミド粉体の作成)
上記のポリイミドフィルムをシュレッダーで裁断した後、ジェットミルにて粉砕を行った。得られた粉体をセイシン企業製レーザー式粒度分布測定機LMS−30にて測定したところ、体積平均粒子径は63μmであった。
(Making polyimide powder)
The polyimide film was cut with a shredder and pulverized with a jet mill. When the obtained powder was measured with a laser type particle size distribution measuring machine LMS-30 manufactured by Seishin Enterprise, the volume average particle diameter was 63 μm.

(成形体の作成)
この粉体を使用し、熱プレス法にて粉体から成形体を作成した。粉体を成形機に入れ、2.0ton/cmの圧力をかけた状態で400℃まで温度を上げ、この状態を30分保持したが、粉体同士の密着力が不足しているために成形体を得られなかった。
(Creation of molded body)
Using this powder, a compact was produced from the powder by a hot press method. The powder was put into a molding machine and the temperature was raised to 400 ° C. with a pressure of 2.0 ton / cm 2 , and this state was maintained for 30 minutes. However, the adhesion between the powders is insufficient. A molded product could not be obtained.

比較例2
(ポリイミドフィルムの作成)
ケミカルスターラーを備えた300mlセパラブルフラスコ中に、4,4’−ジアミノジフェニルエーテル20.02g(0.100mol)、N,N’−ジメチルアセトアミド182.98gを入れ、窒素雰囲気下、室温で撹拌した。60分撹拌後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物28.54g(0.097mol)を数回に分けて投入し、更に120分撹拌後、ピロメリット酸二無水物のN,N’−ジメチルアセトアミド溶液(6wt%)10.9gを30分かけて滴下し、更に60分攪拌してポリアミック酸溶液を得た。
Comparative Example 2
(Making polyimide film)
In a 300 ml separable flask equipped with a chemical stirrer, 20.02 g (0.100 mol) of 4,4′-diaminodiphenyl ether and 182.98 g of N, N′-dimethylacetamide were placed and stirred at room temperature in a nitrogen atmosphere. After stirring for 60 minutes, 28.54 g (0.097 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added in several portions, and after further stirring for 120 minutes, pyromellitic dianhydride was added. 10.9 g of N, N′-dimethylacetamide solution (6 wt%) of the product was added dropwise over 30 minutes, and the mixture was further stirred for 60 minutes to obtain a polyamic acid solution.

得られたポリアミック酸の一部をポリエステルフィルム上に取り、スピンコーターを用いて均一な膜を形成した。これをオーブンで100℃、1時間加熱乾燥することにより自己支持性のポリアミック酸フィルムを得た。   Part of the obtained polyamic acid was taken on a polyester film, and a uniform film was formed using a spin coater. This was heated and dried in an oven at 100 ° C. for 1 hour to obtain a self-supporting polyamic acid film.

自己支持性のポリアミック酸フィルムをポリエステルフィルムより剥離し、これを金属枠に固定し、200℃30分、300℃20分、400℃5分の条件で熱処理を行うことにより、ポリイミドフィルムを得た。
この時のフィルムの膜厚は42μmであった。
The polyimide film was obtained by peeling the self-supporting polyamic acid film from the polyester film, fixing it to a metal frame, and performing heat treatment at 200 ° C. for 30 minutes, 300 ° C. for 20 minutes, and 400 ° C. for 5 minutes. .
At this time, the film thickness was 42 μm.

(ポリイミド粉体の作成)
得られたフィルムを使用し、鋏で裁断した後、ジェットミルにて粉砕を行った。得られた粉体をセイシン企業製レーザー式粒度分布測定機LMS−30にて測定したところ、体積平均粒子径は252μmであった。
(Making polyimide powder)
The obtained film was cut with a scissors and then pulverized with a jet mill. When the obtained powder was measured with a laser type particle size distribution measuring machine LMS-30 manufactured by Seishin Enterprise, the volume average particle size was 252 μm.

(成形体の作成)
この粉体を使用し、熱プレス法にて粉体から成形体を作成した。粉体を成形機に入れ、2.0[ton/cm]の圧力をかけた状態で400℃まで温度を上げ、この状態を30分保持したが、粉体同士の密着力が不足しているために成形体を得られなかった。
(Creation of molded body)
Using this powder, a compact was produced from the powder by a hot press method. The powder was put into a molding machine and the temperature was raised to 400 ° C. with a pressure of 2.0 [ton / cm 2 ] applied, and this state was maintained for 30 minutes, but the adhesion between the powders was insufficient. Therefore, a molded body could not be obtained.

Figure 2011131455
Figure 2011131455

本発明のポリイミド粉体は、作成した粉体のみで既存のポリイミド成形体と同等の成形体を作成することができるため、再利用を目的とするポリイミドフィルムのみから既存のポリイミド成形体と同等の樹脂を作成することができる。   Since the polyimide powder of the present invention can produce a molded body equivalent to an existing polyimide molded body only with the prepared powder, it is equivalent to an existing polyimide molded body only from a polyimide film for reuse. Resin can be made.

Claims (3)

ポリイミドの酸成分としてビフェニルテトラカルボン酸成分を含有するポリイミドフィルムを体積平均粒子径200μm以下の粉末に粉砕し、実質的にこの粉末のみを成形することを特徴とするポリイミド成形体の製造方法。 A method for producing a polyimide molded body, comprising: pulverizing a polyimide film containing a biphenyltetracarboxylic acid component as an acid component of polyimide into a powder having a volume average particle diameter of 200 μm or less, and substantially molding only this powder. ビフェニルテトラカルボン酸成分の含有量が全酸成分に対して2〜100モル%であることを特徴とする請求項1に記載のポリイミド成形体の製造方法。 2. The method for producing a polyimide molded body according to claim 1, wherein the content of the biphenyltetracarboxylic acid component is 2 to 100 mol% with respect to the total acid component. 成形体の曲げ伸度、引張り伸度がいずれも2%以上であることを特徴とする請求項1または2に記載のポリイミド成形体の製造方法。 The method for producing a polyimide molded body according to claim 1 or 2, wherein both the bending elongation and tensile elongation of the molded body are 2% or more.
JP2009291937A 2009-12-24 2009-12-24 Method for producing polyimide molded body Pending JP2011131455A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009291937A JP2011131455A (en) 2009-12-24 2009-12-24 Method for producing polyimide molded body
PCT/US2010/061696 WO2011079159A1 (en) 2009-12-24 2010-12-22 Manufacturing method for polyimide molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291937A JP2011131455A (en) 2009-12-24 2009-12-24 Method for producing polyimide molded body

Publications (1)

Publication Number Publication Date
JP2011131455A true JP2011131455A (en) 2011-07-07

Family

ID=43759819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291937A Pending JP2011131455A (en) 2009-12-24 2009-12-24 Method for producing polyimide molded body

Country Status (2)

Country Link
JP (1) JP2011131455A (en)
WO (1) WO2011079159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253124A (en) * 2012-06-05 2013-12-19 Sumitomo Electric Wintec Inc Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2630538C1 (en) * 2016-12-19 2017-09-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Method for producing block products from non-fusible polyimides consisting of waste products of polypyromellitimide films

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004027011D1 (en) 2003-03-21 2010-06-17 Black & Decker Inc Uziervorrichtung
JP4126432B2 (en) 2003-10-17 2008-07-30 東レ・デュポン株式会社 Method for producing polyimide film
JP2006131753A (en) 2004-11-05 2006-05-25 Toyobo Co Ltd Heat-resistant polymer small piece and molded article containing the same
JP2006232996A (en) 2005-02-24 2006-09-07 Toray Ind Inc Molding material of polyimide resin, molded product using the same and material recycling method for polyimide
US8545975B2 (en) * 2006-06-26 2013-10-01 Sabic Innovative Plastics Ip B.V. Articles comprising a polyimide solvent cast film having a low coefficient of thermal expansion and method of manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253124A (en) * 2012-06-05 2013-12-19 Sumitomo Electric Wintec Inc Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same

Also Published As

Publication number Publication date
WO2011079159A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP7016082B2 (en) Semi-pregs, prepregs, resin composites and their manufacturing methods
JP6604588B2 (en) Varnishes using 2-phenyl-4,4′-diaminodiphenyl ethers, imide resin compositions excellent in moldability and cured resin molded articles having excellent elongation at break, and prepregs, imide prepregs and heat resistance using them, and Fiber reinforced material with excellent mechanical strength
JP2000219741A (en) Terminally modified imide oligomer and its cured item
WO2014181670A1 (en) Polyimide resin composition comprising terminal-modified imide oligomer prepared using 2-phenyl-4,4&#39;-diaminodiphenyl ether and aromatic thermoplastic polyimide prepared using oxydiphthalic acid, varnish, polyimide resin composition molded article having excellent heat resistance and mechanical properties, prepreg, and fiber-reinforced composite material containing said prepreg
JP6332528B2 (en) Polyimide resin composition made of terminal-modified imide oligomer using 2-phenyl-4,4&#39;-diaminodiphenyl ether and aromatic thermoplastic polyimide using oxydiphthalic acid, and varnish, and heat resistance and mechanical properties Excellent molded article of polyimide resin composition, prepreg, and fiber reinforced composite material thereof
JP6592856B2 (en) Terminal-modified imide oligomer, varnish, cured product thereof, film, and imide prepreg and fiber-reinforced composite material using the same
JP5987898B2 (en) Heat curable solution composition, cured product using the same, prepreg and fiber reinforced composite material
JP5283408B2 (en) Method for producing ultra-thin polyimide film
JP2011131455A (en) Method for producing polyimide molded body
JP2013241553A (en) Thermosetting polyimide comprising cardo type diamine
US20210221113A1 (en) Uncured laminate, reinforcing fiber composite material, method for producing uncured laminate, and method for producing reinforcing fiber composite material
JP2006312700A (en) Imide prepreg and laminate
JP6522395B2 (en) Polyimide film, flexible metal-clad laminate, and method of manufacturing flexible printed wiring board
JP2014201740A (en) Imide oligomer and polyimide resin obtained by thermal hardening of the same
JP2012197403A (en) Imide oligomer, and polyimide resin formed by heat curing thereof
JP7138993B1 (en) Composition containing sizing agent for inorganic fiber and method for producing inorganic fiber
JP7475816B2 (en) Imide prepregs, composite materials and heat-resistant insulating parts
JP2009242661A (en) Light-weight polyimide molded body and manufacturing method thereof
JP2006131753A (en) Heat-resistant polymer small piece and molded article containing the same
JP2013256549A (en) Imide oligomer, and polyimide resin formed by heat curing the same
KR20170093013A (en) Resin composition for producing high temperature heat resistingprepreg and method for producing the same
JP2009203252A (en) Bulk molding compound and its molded article
JPH0641507A (en) Thermosetting polyimide coating composition and method of bonding with said composition
JP2008056755A (en) Polyimide powder and method for producing the same
JP2001164005A (en) Maleimide-based resin film and method for producing the same