JP2013241553A - Thermosetting polyimide comprising cardo type diamine - Google Patents

Thermosetting polyimide comprising cardo type diamine Download PDF

Info

Publication number
JP2013241553A
JP2013241553A JP2012130244A JP2012130244A JP2013241553A JP 2013241553 A JP2013241553 A JP 2013241553A JP 2012130244 A JP2012130244 A JP 2012130244A JP 2012130244 A JP2012130244 A JP 2012130244A JP 2013241553 A JP2013241553 A JP 2013241553A
Authority
JP
Japan
Prior art keywords
polyimide
oligomer
residue
bis
polyimide oligomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012130244A
Other languages
Japanese (ja)
Inventor
Hideo Nishino
英雄 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012130244A priority Critical patent/JP2013241553A/en
Publication of JP2013241553A publication Critical patent/JP2013241553A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide oligomer that can be readily thermoformed, yields a polyimide resin excellent in heat resistance after being heated and cured at a low temperature and exhibits large elongation at break.SOLUTION: A polyimide oligomer has a nonaxisymmetric aromatic acid anhydride and an aromatic diamine, has a crosslinkable terminus comprising an ethynylphthalic anhydride residue (4-EPA), a 4-methylethynylphthalic anhydride residue (4-META) or a 4-phenylethynylphthalic anhydride residue (4-PEPA) and is represented by formula (1), which represents a schematic diagram of a chemical structure of the polyimide oligomer, and formula (2) (wherein X is a direct bond, O or CO).

Description

本発明は、熱硬化性のポリイミドオリゴマー、特に低温での熱成形性に優れ、N−メチルピロリドン、γ−ブチロタクトン、アクアミドTM等の極性の強い溶剤に可溶で、且つ加熱硬化することで耐熱性に優れたポリイミド樹脂を得ることのできるポリイミドオリゴマーに関する。The present invention is a thermosetting polyimide oligomer, particularly excellent in thermoformability at low temperatures, is soluble in highly polar solvents such as N-methylpyrrolidone, γ-butyrotactone, aquamid TM , and is heat resistant by heat curing. It is related with the polyimide oligomer which can obtain the polyimide resin excellent in the property.

ポリイミド樹脂は耐熱性に優れており、非常に高い熱分解温度を示すことから、ロケットや人工衛星分野のカーボンファイバー強化構造材マトリックスとして用いられている(例えば、非特許文献1参照)。また、近年,Siウエハーを利用するLSIの分野では、情報の高密度化高速化に伴いSi−Cを用いた電子部品が盛んに研究されており、Si−Cを用いたLSI等では400℃を超える温度での動作が想定されているものの、耐熱性に優れているといわれる従来のポリイミド樹脂を用いたとしても対応することができない。そこで、ポリイミド樹脂に限らず、様々な耐熱性高分子フィルムの使用も検討されている(例えば、非特許文献2参照)。  Polyimide resin is excellent in heat resistance and exhibits a very high thermal decomposition temperature, and is therefore used as a carbon fiber reinforced structural material matrix in the fields of rockets and artificial satellites (see, for example, Non-Patent Document 1). In recent years, in the field of LSIs using Si wafers, electronic parts using Si-C have been actively researched as information is densified and increased in speed, and LSIs using Si-C are 400 ° C. Although operation at a temperature exceeding is assumed, even if a conventional polyimide resin, which is said to be excellent in heat resistance, is used, it cannot be handled. Therefore, use of various heat-resistant polymer films as well as polyimide resins has been studied (for example, see Non-Patent Document 2).

一方で、ポリイミド樹脂は高耐熱性であるが故、結晶構造が強固であり、溶解性・溶融性に欠け、成形が困難であるという問題がある。このような問題に対して、近年、熱硬化性を有するポリイミドオリゴマーの研究開発が進められている。すなわち、4−フェニルエチニルフタル酸無水化物等の架橋反応性官能基をポリイミドオリゴマーの末端に付加することで、ポリイミドオリゴマーを成形した後に、加熱によりオリゴマー鎖間の架橋反応を進行させて樹脂を硬化し、高耐熱性を有するポリイミド樹脂成形体を得ようとするものである。  On the other hand, the polyimide resin has high heat resistance, so that there is a problem that the crystal structure is strong, the solubility / meltability is lacking, and the molding is difficult. In recent years, research and development of polyimide oligomers having thermosetting properties have been promoted for such problems. That is, by adding a crosslinkable functional group such as 4-phenylethynylphthalic anhydride to the end of the polyimide oligomer, the polyimide oligomer is molded, and then the crosslink reaction between the oligomer chains is advanced by heating to cure the resin. And it is going to obtain the polyimide resin molding which has high heat resistance.

さらに、このようなポリイミドオリゴマーの溶解・溶融特性、あるいは得られるポリイミド樹脂の物性を改善する目的で、例えば、2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物のような非軸対称性のビフェニル酸二無水化物を導入したポリイミドオリゴマーが提案されている(例えば、特許文献1参照)。なお、通常のポリイミド構造は直線性が高く分子間相互作用が非常に大きいのに対して、このような非軸対称性分子を導入することによってポリイミド鎖が螺旋性を示すため、分子間相互作用が小さくなり、熱溶融性や着色性が改善されることが明らかとなっている(例えば、非特許文献3参照)。  Furthermore, for the purpose of improving the dissolution / melting characteristics of such polyimide oligomers or the properties of the resulting polyimide resin, for example, non-axial such as 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride A polyimide oligomer into which a symmetric biphenyl dianhydride is introduced has been proposed (see, for example, Patent Document 1). In addition, the normal polyimide structure has high linearity and very large intermolecular interaction, but by introducing such a non-axisymmetric molecule, the polyimide chain exhibits spirality, so intermolecular interaction It becomes clear that heat melting property and coloring property are improved (see, for example, Non-Patent Document 3).

その他、ジアミンとして、例えば、4,4’−ジアミノジフェニルエーテルのような屈曲形状のジアミンと、3,4’−ジアミノジフェニルエーテルのような直線形状のジアミンとを、特定の割合で用いたポリイミドオリゴマーが、樹脂トランスファー成形(RTM)や樹脂注入(RI)技術によるポリイミド樹脂の成形に適していることが報告されている(例えば、特許文献2参照)。  In addition, as the diamine, for example, a polyimide oligomer using a bent diamine such as 4,4′-diaminodiphenyl ether and a linear diamine such as 3,4′-diaminodiphenyl ether in a specific ratio, It has been reported that it is suitable for molding a polyimide resin by resin transfer molding (RTM) or resin injection (RI) technology (for example, see Patent Document 2).

しかしながら、特許文献1,2において記載されているようなポリイミドオリゴマーから得られるポリイミドは、熱硬化後濃い茶褐色を呈し、得られたポリイミドオリゴマーを様々な光学分野へと応用することは、事実上困難であった。  However, polyimides obtained from polyimide oligomers as described in Patent Documents 1 and 2 exhibit a dark brown color after thermosetting, and it is practically difficult to apply the obtained polyimide oligomers to various optical fields. Met.

一方、2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物を用いた直線状で熱硬化性ポリイミドでは、オリゴマーの有機溶媒への溶解性が向上するばかりでなく、作成したフィルムが黄色から淡い黄色を示すことが確認され、1,3,3、−トリメチル1−1H−インデン−5(または6)−アミン(TMDA)のように嵩高く共役が分子内でつながらないジアミンを熱硬化性ポリポリイミドオリゴマーの主組成として採用すれば、より色を示さない熱硬化性ポリイミドが得られる可能性があると考えた(例えば、非特許文献4参照)。  On the other hand, in the linear thermosetting polyimide using 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, not only the solubility of the oligomer in the organic solvent is improved, but also the prepared film is Heat-curing diamine that is confirmed to show yellow to pale yellow and is bulky and has no conjugation in the molecule such as 1,3,3, -trimethyl1-1H-indene-5 (or 6) -amine (TMDA) If it employ | adopts as a main composition of an electroconductive polypolyimide oligomer, it thought that the thermosetting polyimide which does not show a color more may be obtained (for example, refer nonpatent literature 4).

また、ポリイミドオリゴマーの末端に使用する架橋性反応基については検討されており、従来、特に4−フェニルエチニルフタル酸が、成形性、耐熱性、力学特性等のバランスに優れているとされ、最も広く用いられている(例えば、特許文献3参照)。しかしながら、これら従来のポリイミドオリゴマーに使用されている架橋性反応基は、架橋反応(熱硬化)に高温を要し、様々な分野の樹脂成形品への応用に十分であるとは言えない。  In addition, the crosslinkable reactive group used at the terminal of the polyimide oligomer has been studied, and conventionally, 4-phenylethynylphthalic acid, in particular, is said to have an excellent balance of moldability, heat resistance, mechanical properties, etc. Widely used (see, for example, Patent Document 3). However, the crosslinkable reactive group used in these conventional polyimide oligomers requires a high temperature for the crosslinking reaction (thermosetting), and cannot be said to be sufficient for application to resin molded products in various fields.

特開2000−219741号  JP 2000-219741 A 米国特許6,359,107号  US Pat. No. 6,359,107 特開2007−99969号  JP 2007-99969 A 柿本雅明監修,「最新ポリイミド材料と応用技術」,シーエムシー出版  Supervised by Masaaki Enomoto, “Latest Polyimide Materials and Applied Technologies”, CM Publishing 「SiCパワーエレクトロニクス実用化・導入普及戦略に係る調査研究」,財団法人新機能素子研究開発協会,平成17年3月  “Research on practical application and introduction of SiC power electronics”, New Functional Device Research and Development Association, March 2005 Masatoshi Hasegawaら,Macromolecules,1999,32,p382  Masatoshi Hasegawa et al., Macromolecules, 1999, 32, p382. Hongwei Zhou,C.C.,Reito Kanbara,Takeishi Sasaki,Rikio Yokota,High Performance Polymers,2005,17,p213.  Hongwei Zhou, C.I. C. , Reito Kanbara, Takeshi Sasaki, Rikio Yokota, High Performance Polymers, 2005, 17, p213.

本発明は前記従来技術の課題に鑑みて行われたものであり、その解決すべき課題は、熱成形が容易であり、加熱硬化後のポリイミド樹脂として優れた耐熱性を有するとともに、容易にN−メチルピロリドン等の極性の強い溶剤に溶解させることのできるポリイミドオリゴマーを提供することにある。さらに、EL,LCD等光学素子の封止材として理想的には、無色透明であることが望まれる。  The present invention has been made in view of the above-mentioned problems of the prior art. The problem to be solved is that thermoforming is easy, and the polyimide resin after heat curing has excellent heat resistance and is easily N The object is to provide a polyimide oligomer that can be dissolved in a highly polar solvent such as methylpyrrolidone. Furthermore, it is ideally desired to be colorless and transparent as a sealing material for optical elements such as EL and LCD.

本発明者らが、前記従来技術の課題に鑑み、鋭意検討を行った結果、非軸対称性芳香族酸無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物(a−BPDA)を4量体あたり3分子以上、1,3,3、−トリメチル1−1H−インデン−5(または6)−アミン(TMDA)を4量体あたり3分子以上と主組成とし、3,4‘−ジアミノジフェニルエーテル(3、4’−ODA)、1,4−ビス(4−アミノフェノキシ)ベンゼン(1,4,4−APB)、1,3−ビス(3−アミノフェノキシ)ベンゼン(1,3,3−APB)、1,3−ビス(4−アミノフェノキシ)ベンゼン(1,3,4−APB)から選ばれる少なくとも1種以上1分子以下のみ有し、且つ架橋性末端が、エチニルフタル酸無水化物残基(4−EPA)、4−メチルエチニルフタル酸無水化物残基(4−META)または、4−フェニルエチニルフタル酸無水化物残基(4−PEPA)からなり、下記一般式(1)により表されることを特徴とするポリイミドオリゴマー。且つ末端の架橋性反応基として4−メチルエチニルフタル酸無水化物を使用することで、優れた溶解・溶融特性を有し、低温で一次硬化可能な熱成形性に優れたポリイミドオリゴマーが得られることを見出し、さらにこのポリイミドオリゴマーを加熱硬化して得られたポリイミド樹脂が、優れた耐熱性を示すことを見出し、本発明を完成するに至った。  As a result of intensive studies conducted by the present inventors in view of the problems of the prior art, the non-axisymmetric aromatic acid anhydride 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a- BPDA) is 3 or more molecules per tetramer, 1,3,3, -trimethyl1-1H-indene-5 (or 6) -amine (TMDA) is 3 molecules or more per tetramer and the main composition is 3, 4′-diaminodiphenyl ether (3,4′-ODA), 1,4-bis (4-aminophenoxy) benzene (1,4,4-APB), 1,3-bis (3-aminophenoxy) benzene (1 , 3,3-APB), 1,3-bis (4-aminophenoxy) benzene (1,3,4-APB) and having at least one molecule and no more than one molecule, and the crosslinkable terminal is ethynyl. Phthalic anhydride residue (4-E A), consisting of 4-methylethynylphthalic anhydride residue (4-META) or 4-phenylethynylphthalic anhydride residue (4-PEPA), and represented by the following general formula (1) Characterized polyimide oligomer. In addition, by using 4-methylethynylphthalic anhydride as a crosslinkable reactive group at the end, a polyimide oligomer having excellent dissolution / melting characteristics and excellent thermoformability capable of primary curing at low temperature can be obtained. Furthermore, the present inventors have found that a polyimide resin obtained by heat-curing this polyimide oligomer exhibits excellent heat resistance, and completed the present invention.

すなわち、本発明にかかるポリイミドオリゴマーは、非軸対称性2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物に由来する非軸対称部位をオリゴマー鎖に酸二無水化物主分子として4量体あたり3分子以上有し、1,3,3、−トリメチル1−1H−インデン−5(または6)−アミン(TMDA)をジアミン主分子として4量体あたり3分子以上、3,4‘−ジアミノジフェニルエーテル(3、4’−ODA)、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン(1,3,3−APB)、1,3−ビス(4−アミノフェノキシ)ベンゼン(1,3,4−APB)1分子以下のみ有し、且つ架橋性末端がエチニルフタル酸無水化物残基(4−EPA)、4−メチルエチニルフタル酸無水化物残基(4−META)または、4−フェニルエチニルフタル酸無水化物残基(4−PEPA)からなり、下記一般式(1)により表されることを特徴とするものである。

Figure 2013241553
That is, the polyimide oligomer according to the present invention has a non-axisymmetric site derived from non-axisymmetric 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride as an acid dianhydride main molecule in the oligomer chain. 3 or more molecules per monomer, 1,3,3, -trimethyl 1-1H-indene-5 (or 6) -amine (TMDA) as a diamine main molecule, 3 or more molecules per tetramer, 3,4 ′ -Diaminodiphenyl ether (3,4'-ODA), 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene (1,3,3-APB), 1,3 -Bis (4-aminophenoxy) benzene (1,3,4-APB) only 1 molecule or less, and the crosslinkable terminal is an ethynylphthalic anhydride residue (4-EPA), 4-methylethynylphthalic acid It consists of an anhydride residue (4-META) or 4-phenylethynylphthalic anhydride residue (4-PEPA), and is represented by the following general formula (1).
Figure 2013241553

また、前記ポリイミドオリゴマーにおいて、各イミド繰り返し構造の平均重合度n、n’は各イミド繰り返し構造の平均重合度でnは1〜12、n’は0〜6であり、n+n’≦12,且つポリイミドオリゴマー全体の平均分子量が8000以下であることが好適である。  In the polyimide oligomer, the average degree of polymerization n and n ′ of each imide repeating structure is the average degree of polymerization of each imide repeating structure, n is 1 to 12, n ′ is 0 to 6, n + n ′ ≦ 12, and The average molecular weight of the entire polyimide oligomer is preferably 8000 or less.

また、前記ポリイミドオリゴマーにおいて、酸二無水化物残基が、2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物を4量体あたり3分子以上必須とし、物性に応じ、酸二無水化物残基が、4,4’−オキシジフタル酸二無水化物、4,4’−ビフタリック酸二無水化物、3,3’,4,4’−ジフェニルスルフォン酸から選ばれる少なくとも1種以上の酸二無水化物を導入できる。  Further, in the polyimide oligomer, the acid dianhydride residue is required to have 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride at least 3 molecules per tetramer, and depending on the physical properties, acid dianhydride And at least one acid diacid selected from 4,4′-oxydiphthalic acid dianhydride, 4,4′-biphthalic acid dianhydride, and 3,3 ′, 4,4′-diphenylsulfonic acid. Anhydrides can be introduced.

また、前記ポリイミドオリゴマーにおいて、ジアミン残基が、1,3,3、−トリメチル1−1H−インデン−5(または6)−アミン(TMDA)を4量体あたり3分子以上必須とし、目的により3,4‘−ジアミノジフェニルエーテル(3、4’−ODA)、1,4−ビス(4−アミノフェノキシ)ベンゼン(1,4,4−APB)、1,3−ビス(3−アミノフェノキシ)ベンゼン(1,3,3−APB)、1,3−ビス(4−アミノフェノキシ)ベンゼン(1,3,4−APB)から選ばれる少なくとも1種以上のジアミンに由来することが好適である。これらのジアミノ残基の一部が、4,4‘−ジアミノジフェニルエーテル、1,2−ビス(4−アミノフェノキシ)ベンゼン(1,2,4−APB)、4,4’−ジアミノジフェニルエーテル(4,4‘−ODA)、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、ビス(4−アミノフェニル)スルフォン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、α,α’−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼン,3,3’−ビス(4−アミノフェニル)フルオレン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]シクロヘキサンも使用できる。  Further, in the polyimide oligomer, the diamine residue is 1,3,3, -trimethyl1-1H-indene-5 (or 6) -amine (TMDA) is essential for 3 or more molecules per tetramer, and 3 depending on the purpose. , 4′-diaminodiphenyl ether (3,4′-ODA), 1,4-bis (4-aminophenoxy) benzene (1,4,4-APB), 1,3-bis (3-aminophenoxy) benzene ( It is preferably derived from at least one diamine selected from 1,3,3-APB) and 1,3-bis (4-aminophenoxy) benzene (1,3,4-APB). Some of these diamino residues are 4,4′-diaminodiphenyl ether, 1,2-bis (4-aminophenoxy) benzene (1,2,4-APB), 4,4′-diaminodiphenyl ether (4, 4′-ODA), 2,2-bis (4-aminophenyl) hexafluoropropane, bis (4-aminophenyl) sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, α, α′-bis (4-aminophenyl) -1,4-diisopropylbenzene, 3,3′-bis (4-aminophenyl) fluorene, 1,1-bis [4- (4-aminophenoxy) phenyl] Cyclohexane can also be used.

また、本発明にかかるアミック酸オリゴマーは、4量体あたり非軸対称性酸二無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物3分子以上、TMDAを3分子以上と主分子とし、3,4−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン(1,4,4−APB)、1,3−ビス(3−アミノフェノキシ)ベンゼン(1,3,3−APB)、1,3−ビス(4−アミノフェノキシ)ベンゼン(1,3,4−APB)から選ばれたジアミン単独または組み合わせて1分子以下のみ有するオリゴマー鎖を特徴とし、且つ架橋性末端が4−メチルエチニルフタル酸無水化物残基からなり、下記一般式(2)により表されることを特徴とするものである。

Figure 2013241553
(n、n’は各イミド繰り返し構造の平均重合度でnは1〜16、n’は0〜8である。)In addition, the amic acid oligomer according to the present invention comprises 3 or more molecules of non-axisymmetric acid dianhydride 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride per tetramer and 3 or more molecules of TMDA. As main molecules, 3,4-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene (1,4,4-APB), 1,3-bis (3-aminophenoxy) benzene (1,3,3) 3-APB), 1,3-bis (4-aminophenoxy) benzene (1,3,4-APB) selected from diamines alone or in combination and characterized by an oligomer chain having only one molecule or less, and a crosslinkable terminal Consists of 4-methylethynylphthalic anhydride residue and is represented by the following general formula (2).
Figure 2013241553
(N and n ′ are average polymerization degrees of each imide repeating structure, n is 1 to 16, and n ′ is 0 to 8.)

また、本発明にかかるポリイミド樹脂は、前記アミック酸オリゴマーを化学イミド化させた後、化学イミド化剤を留去、または加熱縮合によりイミド化後、ポリイミドオリゴマーワニス等を、メタノール等に投入し、沈殿、粉体化し、加熱硬化させてなることを特徴とするものである。  In addition, the polyimide resin according to the present invention, after chemically imidizing the amic acid oligomer, after distilling off the chemical imidizing agent, or imidization by heat condensation, the polyimide oligomer varnish, etc. is charged into methanol, etc. It is formed by precipitation, pulverization, and heat curing.

本発明によれば、2つのカルボン酸無水基が同一軸上に導入されていない非軸対称性の芳香族酸無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物を4量体あたり少なくとも3分子をポリイミドオリゴマー鎖に配置し、且つ芳香族ジアミンとして1,4−ビス(4−アミノフェノキシ)ベンゼンを3分子以上必須とし、3,4’−ジアミノジフェニルエーテル、1,3−ビス(3−アミノフェノキシ)ベンゼン(1,3,3−APB)、1,3−ビス(4−アミノフェノキシ)ベンゼン(1,3,4−APB)から選ばれたジアミン単独または組み合わせて1分子以下のみ有する導入し、末端の架橋性反応基として4−メチルエチニルフタル酸無水化物を使用することにより、優れた溶解・溶融特性を有し、且つ低温で一次硬化可能な熱成形性に優れたポリイミドオリゴマー容易に得ることができる。また、このポリイミドオリゴマーの粉末を加熱硬化して得られたポリイミド樹脂は、優れた耐熱性を示す。  According to the present invention, a non-axisymmetric aromatic acid anhydride 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride in which two carboxylic acid anhydride groups are not introduced on the same axis is represented by 4 At least 3 molecules per monomer are arranged in a polyimide oligomer chain, and 3 or more molecules of 1,4-bis (4-aminophenoxy) benzene are essential as an aromatic diamine, and 3,4′-diaminodiphenyl ether, 1,3- One molecule of diamine selected from bis (3-aminophenoxy) benzene (1,3,3-APB) and 1,3-bis (4-aminophenoxy) benzene (1,3,4-APB) alone or in combination By introducing 4-methylethynylphthalic anhydride as a cross-linkable reactive group at the terminal having only the following, it has excellent dissolution / melting characteristics and can be used at low temperature. It can be obtained excellent polyimide oligomers readily to curable thermoformability. Moreover, the polyimide resin obtained by heat-curing this polyimide oligomer powder exhibits excellent heat resistance.

本発明にかかるポリイミドオリゴマーは、非軸対称性芳香族酸無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物を4量体あたり3分子以上、1,4−ビス(4−アミノフェノキシ)ベンゼン3分子以上、3,4’−ジアミノジフェニルエーテル、1,3−ビス(3−アミノフェノキシ)ベンゼン(1,3,3−APB)、1,3−ビス(4−アミノフェノキシ)ベンゼン(1,3,4−APB)を目的に応じてから選ばれ、単独または組み合わせて4量体あたり1分子以下のみ有する1分子以下導入し、且つ架橋性末端が4−メチルエチニルフタル酸無水化物残基からなるものである。  The polyimide oligomer according to the present invention comprises 3 or more molecules of non-axisymmetric aromatic acid anhydride 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride per tetramer, 1,4-bis (4 -Aminophenoxy) benzene 3 or more molecules, 3,4'-diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene (1,3,3-APB), 1,3-bis (4-aminophenoxy) Benzene (1,3,4-APB) is selected according to the purpose and is introduced alone or in combination with 1 molecule or less having only 1 molecule or less per tetramer, and the crosslinkable terminal is 4-methylethynylphthalic anhydride It consists of chemical residues.

上記一般式(2)により表される芳香族酸無水化物は、非軸対称性芳香族酸無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物を4量体あたり3分子以上用い、より具体的には、物性に応じ、酸二無水化物残基が、4,4’−オキシジフタル酸二無水化物、4,4’−ビフタリック酸二無水化物、3,3’,4,4’−ジフェニルスルフォン酸、から選ばれる少なくとも1種以上の酸二無水化物を4量体あたり1分子以下導入できる。なお、4,4’−オキシジフタル酸二無水化物を特に好適に用いることができる。  The aromatic acid anhydride represented by the general formula (2) is a non-axisymmetric aromatic acid anhydride 2,3,3 ′, 4′-biphenyltetracarboxylic acid dianhydride, 3 molecules per tetramer. More specifically, the acid dianhydride residue is 4,4′-oxydiphthalic acid dianhydride, 4,4′-biphthalic acid dianhydride, 3,3 ′, 4, depending on the physical properties. At least one or more acid dianhydrides selected from 4′-diphenylsulfonic acid can be introduced in an amount of 1 molecule or less per tetramer. In addition, 4,4'-oxydiphthalic dianhydride can be particularly preferably used.

また、上記一般式(2)により表される芳香族ジアミンは、より具体的には、TMDAを4量体あたり3分子以上必須とし、目的によりジアミン残基が、3,4’−ジアミノジフェニルエーテル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼンが好適に用いられ、1,2−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ジアミノジフェニルエーテル、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、ビス(4−アミノフェニル)スルフォン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、α,α’−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼン,3,3’−ビス(4−アミノフェニル)フルオレンも用いることができる。なお、これらの芳香族ジアミンは、1種を単独で、あるいは2種以上を組み合わせて、4量体あたり1分子以下用いてよい。  The aromatic diamine represented by the general formula (2) more specifically requires 3 or more molecules of TMDA per tetramer, and depending on the purpose, the diamine residue may be 3,4'-diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene and 1,3-bis (4-aminophenoxy) benzene are preferably used, and 1,2-bis (4-aminophenoxy) benzene, 4,4′-diamino Diphenyl ether, 2,2-bis (4-aminophenyl) hexafluoropropane, bis (4-aminophenyl) sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, α, α ′ -Bis (4-aminophenyl) -1,4-diisopropylbenzene, 3,3'-bis (4-aminophenyl) fluorene should also be used Can do. These aromatic diamines may be used alone or in combination of two or more in one molecule or less per tetramer.

すなわち、本発明にかかるポリイミドオリゴマーは、上記一般式(1)により表される非軸対称性芳香族酸無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物を4量体あたり3分子以上用い、TMDAを3分子以上用い、3,4’−ジアミノジフェニルエーテル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼンをそれぞれの末端アミノ基に、任意の酸二無水化物とジアミンとの重縮合により形成したポリイミドオリゴマー鎖が末端にアミノ基が付加した化合物であって、これにより、非軸対称性芳香族無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物を4量体あたり3分子以上、芳香族ジアミンは、より具体的には、1,4−ビス(4−アミノフェノキシ)ベンゼンを3分子以上と3,4’−ジアミノジフェニルエーテル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼンを1分子以下からなるオリゴマー鎖である。  That is, the polyimide oligomer according to the present invention is a tetramer of the non-axisymmetric aromatic acid anhydride 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride represented by the general formula (1). 3 or more per molecule, 3 or more TMDA molecules, and 3,4′-diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene, and 1,3-bis (4-aminophenoxy) benzene at each end A compound in which an amino group is added to a terminal of a polyimide oligomer chain formed by polycondensation of an arbitrary acid dianhydride and a diamine to an amino group, and thereby a non-axisymmetric aromatic anhydride 2,3 More than 3 molecules of 3 ′, 4′-biphenyltetracarboxylic dianhydride per tetramer and aromatic diamine more specifically 1,4-bis (4-aminophenyl). Noxy) an oligomer chain consisting of 3 or more molecules of benzene and 1,4'-diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene, or 1,3-bis (4-aminophenoxy) benzene is there.

また、本発明にかかるポリイミドオリゴマーにおいては、架橋性末端を形成するための化合物として、フタル酸誘導体が用いられる。
本発明において架橋性末端化合物として用いられる酸無水化物は、フタル酸無水化物にアセチレン基、メチルアセチレン基、フェニルアセチレン基が置換された化合物であり、下記一般式(3)により表される化合物である。

Figure 2013241553
Moreover, in the polyimide oligomer concerning this invention, a phthalic acid derivative is used as a compound for forming a crosslinkable terminal.
The acid anhydride used as a crosslinkable terminal compound in the present invention is a compound in which an acetylene group, a methylacetylene group, or a phenylacetylene group is substituted on a phthalic acid anhydride, and is a compound represented by the following general formula (3). is there.
Figure 2013241553

すなわち、上記一般式(3)により表される、フタル酸誘導体無水化物は、その酸無水化物基が、ポリイミドオリゴマー鎖末端の任意のアミノ基と縮合してイミド結合を形成し、架橋性反応基として付加される。  That is, the phthalic acid derivative anhydride represented by the above general formula (3) has an acid anhydride group condensed with an arbitrary amino group at the end of the polyimide oligomer chain to form an imide bond, and a crosslinkable reactive group. Added as.

通常のポリイミドオリゴマーは、架橋性末端化合物により末端を修飾することにより熱硬化性が付与される。架橋性末端化合物としては、従来、例えば、4−フェニルエチニルフタル酸無水化物が広く用いられているものの、これら従来の架橋性末端化合物は、架橋反応(熱硬化)に高温を要し、一方で硬化後のポリイミド樹脂は非常に強固となるため、成形の柔軟性に欠け、取り扱いにくい。これに対して、本発明のポリイミドオリゴマーは、架橋性末端化合物として、4−メチルエチニルフタル酸無水化物を用いることによって、従来よりも低温で一次硬化することが可能となる。このため、例えば、低温での一次硬化によりおおよその型をとり、次いで細かく成形した後に高温で二次硬化する等、目的とする製品に適した成形方法を柔軟に採用することができる。  A normal polyimide oligomer is imparted with thermosetting properties by modifying the terminal with a crosslinkable terminal compound. As the crosslinkable terminal compound, for example, 4-phenylethynylphthalic anhydride is widely used. However, these conventional crosslinkable terminal compounds require a high temperature for the crosslinking reaction (thermosetting). Since the cured polyimide resin is very strong, it lacks flexibility in molding and is difficult to handle. In contrast, the polyimide oligomer of the present invention can be primarily cured at a lower temperature than before by using 4-methylethynylphthalic anhydride as a crosslinkable terminal compound. For this reason, for example, it is possible to flexibly adopt a molding method suitable for the target product, such as taking an approximate mold by primary curing at low temperature, then finely molding and then secondary curing at high temperature.

本発明にかかるポリイミドオリゴマーは、下記一般式(1)により表される。

Figure 2013241553
The polyimide oligomer according to the present invention is represented by the following general formula (1).
Figure 2013241553

上記一般式(1),(2)において、Xは酸二無水化物残基である。本発明のポリイミドオリゴマーに用いる酸二無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物は、非軸対称性であって、4量体あたり3分子以上、他に4量体あたり1分子以下共重合させる酸二無水化物は、ジアミンと縮合反応してポリイミド構造を形成し得るものであればよく、特に限定されるものではない。本発明に用いる共重合酸二無水化物としては、例えば、4,4’−オキシジフタル酸二無水化物(ODPA)、4,4’−ビフタリック酸二無水化物(s−BPDA)、3,3’,4,4’−ジフェニルスルフォン酸二無水化物等が挙げられる。これらのうち、特に4,4′−オキシジフタル酸二無水化物を好適に用いることができる。  In the above general formulas (1) and (2), X is an acid dianhydride residue. The acid dianhydride 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride used for the polyimide oligomer of the present invention is non-axisymmetric and has 3 or more molecules per tetramer, and other 4 amounts. The acid dianhydride copolymerized by 1 molecule or less per body is not particularly limited as long as it can form a polyimide structure by condensation reaction with diamine. Examples of the copolymer dianhydride used in the present invention include 4,4′-oxydiphthalic dianhydride (ODPA), 4,4′-biphthalic dianhydride (s-BPDA), 3,3 ′, 4,4′-diphenylsulfonic acid dianhydride and the like. Of these, 4,4′-oxydiphthalic dianhydride can be particularly preferably used.

上記一般式(1),(2)において、本発明のポリイミドオリゴマーに用いるジアミンは、酸二無水化物と縮合反応してポリイミド構造を形成し得るものであればよく、特に限定されるものではない。本発明に用いるジアミンとしては、TMDAを4量体あたり3分子以上必須とし、目的により3,4’−ジアミノジフェニルエーテル、1,3−ビス(4−アミノフェノキシ)ベンゼンや1,3−ビス(3−アミノフェノキシ)ベンゼンを1分子以下用いる。その他、1,2−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ジアミノジフェニルエーテル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、ビス(4−アミノフェニル)スルフォン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、α,α’−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼン,3,3’−ビス(4−アミノフェニル)フルオレン等が使用できる。これらのうち、特に3,4’−ジアミノジフェニルエーテル、1,3−ビス(4−アミノフェノキシ)ベンゼンや1,3−ビス(3−アミノフェノキシ)ベンゼンを好適に用いることができる。  In the general formulas (1) and (2), the diamine used in the polyimide oligomer of the present invention is not particularly limited as long as it can form a polyimide structure by condensation reaction with an acid dianhydride. . As a diamine used in the present invention, 3 or more molecules of TMDA are essential per tetramer, and 3,4′-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene or 1,3-bis (3 -Aminophenoxy) benzene is used in one molecule or less. In addition, 1,2-bis (4-aminophenoxy) benzene, 4,4′-diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2 , 2-bis (4-aminophenyl) hexafluoropropane, bis (4-aminophenyl) sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, α, α′-bis ( 4-Aminophenyl) -1,4-diisopropylbenzene, 3,3′-bis (4-aminophenyl) fluorene and the like can be used. Of these, 3,4'-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene, and 1,3-bis (3-aminophenoxy) benzene can be preferably used.

上記一般式(1),(2)において、本発明のポリイミドオリゴマーにおいては、4−メチルエチニルフタル酸無水化物により末端を修飾することで、従来の架橋性末端化合物(例えば、4−フェニルエチニルフタル酸無水化物)よりも低温で一次硬化することが可能となる。このため、本発明のポリイミドオリゴマーは、ポリイミド樹脂成形品の製造に際して、目的とする製品に応じた適当な成形方法を柔軟に選択・採用することができ、より幅広い成形品への応用が可能となる。  In the above general formulas (1) and (2), in the polyimide oligomer of the present invention, the terminal is modified with 4-methylethynylphthalic anhydride, so that a conventional crosslinkable terminal compound (for example, 4-phenylethynylphthalate) is obtained. It becomes possible to perform primary curing at a lower temperature than the acid anhydride). For this reason, the polyimide oligomer of the present invention can flexibly select and adopt an appropriate molding method according to the target product when manufacturing a polyimide resin molded product, and can be applied to a wider range of molded products. Become.

また、上記一般式(1),(2)において、n、n’はイミド繰り返し構造の平均重合度であり、平均重合度(n+n’)は1〜12である。なお、この平均重合度は、ポリイミドオリゴマーの製造に用いる芳香族ジアミン、酸二無水化物の比率を変化させることで適宜調整することが可能である。本発明のポリイミドオリゴマーにおいて、各イミド繰り返し構造の平均重合度n+n’が12を超えると、熱溶融性に劣り、成形が困難になる場合がある。ポリイミドオリゴマーの成形性の観点から、各イミド繰り返し構造の平均重合度(n+n’)は1〜12であることが好ましく、さらに好ましくは2〜8である。各イミド繰り返し構造の平均重合度が前記範囲内であり、nがn’より大きいと特に大きな破断伸度に優れたポリイミドオリゴマーが得られる。  In the above general formulas (1) and (2), n and n ′ are the average degree of polymerization of the imide repeating structure, and the average degree of polymerization (n + n ′) is 1 to 12. In addition, this average degree of polymerization can be suitably adjusted by changing the ratio of the aromatic diamine and acid dianhydride used for manufacture of a polyimide oligomer. In the polyimide oligomer of the present invention, if the average degree of polymerization n + n ′ of each imide repeating structure exceeds 12, the meltability may be inferior and molding may be difficult. From the viewpoint of the moldability of the polyimide oligomer, the average degree of polymerization (n + n ′) of each imide repeating structure is preferably 1 to 12, and more preferably 2 to 8. When the average degree of polymerization of each imide repeating structure is within the above range and n is larger than n ′, a polyimide oligomer having particularly high breaking elongation can be obtained.

本発明にかかるポリイミドオリゴマーにおいては、上記一般式(1),(2)に示されるように、上記非軸対称性酸二無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物を4量体あたり3分子以上、ジアミン主組成TMDA3分子以上と3,4’−ジアミノジフェニルエーテル、1,3−ビス(4−アミノフェノキシ)ベンゼンや1,3−ビス(3−アミノフェノキシ)ベンゼンを1分子以下からまるオリゴマー鎖の基本構造としているだけで、オリゴマー鎖は全体として螺旋構造を示している。そして、この結果、本発明にかかるポリイミドオリゴマーは比較的低い温度で熱溶融するため、熱成形が容易であり、また、加熱硬化後のポリイミド樹脂の熱分解温度が500℃以上に達し、耐熱性においても非常に優れている。  In the polyimide oligomer according to the present invention, as shown in the general formulas (1) and (2), the non-axisymmetric acid dianhydride 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride is used. 3 or more molecules per tetramer, 3 or more molecules of diamine main composition TMDA, 3,4'-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene and 1,3-bis (3-aminophenoxy) benzene Is the basic structure of an oligomer chain consisting of 1 molecule or less, and the oligomer chain as a whole shows a helical structure. As a result, since the polyimide oligomer according to the present invention is melted at a relatively low temperature, thermoforming is easy, and the thermal decomposition temperature of the heat-cured polyimide resin reaches 500 ° C. or more, resulting in heat resistance. Is also very good.

なお、例えば、特許文献1に記載されているような従来の螺旋性のポリイミドオリゴマーは、熱成形性及び加熱硬化後のポリイミド樹脂の耐熱性に優れてはいるものの、反応溶剤への溶解性は低く、製造において多大なコストがかかってしまうという問題があった。これに対し、本発明にかかるポリイミドオリゴマーは、N−メチル−2−ピロリドン(NMP)等の有機溶剤に溶解し、優れた熱成形性及び加熱硬化後のポリイミド樹脂の耐熱性を有するポリイミドオリゴマーを、容易且つ安価に得ることができる。  In addition, for example, although the conventional helical polyimide oligomer as described in Patent Document 1 is excellent in thermoformability and heat resistance of the polyimide resin after heat curing, the solubility in the reaction solvent is There is a problem that it is low and costs a great deal in manufacturing. In contrast, the polyimide oligomer according to the present invention is a polyimide oligomer that dissolves in an organic solvent such as N-methyl-2-pyrrolidone (NMP) and has excellent thermoformability and heat resistance of the polyimide resin after heat curing. It can be obtained easily and inexpensively.

以上のようにして得られたアミド酸オリゴマーは、反応終了後の溶液を攪拌しながら、化学イミド化剤を加え、イミド化終了後に、溶剤より低沸点の化学イミド化剤を真空留去後、数時間60℃程度で真空下に放置することで、ポリイミドオリゴマー溶液として用いることができる。また、加熱脱水反応させ、ポリイミドオリゴマーワニスとして用いられる。さらに、アルコール類に攪拌し、滴化沈殿させて得られたポリイミドオリゴマー粉末を濾別乾燥し使用することもできる。  The amidic acid oligomer obtained as described above was added with a chemical imidizing agent while stirring the solution after completion of the reaction. By leaving it under vacuum at about 60 ° C. for several hours, it can be used as a polyimide oligomer solution. Moreover, it is heat-dehydrated and used as a polyimide oligomer varnish. Furthermore, the polyimide oligomer powder obtained by stirring in alcohol and making it drop-precipitate can be filtered and dried for use.

また、以上のようにして得られたポリイミドオリゴマーは、オリゴマー単独で、あるいは炭素繊維等の繊維状補強材に含浸させた状態で加熱硬化することで、耐熱性に優れたポリイミドマトリックス樹脂とすることができる。加えて、本発明にかかるポリイミドオリゴマーは、溶融性を示すため、成形性に優れていることから、例えば、金型等により容易に成形することが可能であり、あるいは繊維状補強材等への含浸も容易に行うことができる。  In addition, the polyimide oligomer obtained as described above can be made into a polyimide matrix resin having excellent heat resistance by heating and curing the oligomer alone or impregnating a fibrous reinforcing material such as carbon fiber. Can do. In addition, since the polyimide oligomer according to the present invention exhibits meltability and is excellent in moldability, for example, it can be easily molded by a mold or the like, or can be applied to a fibrous reinforcing material or the like. Impregnation can also be performed easily.

また、ポリイミドオリゴマーの加熱硬化に際し、加熱温度及び加熱時間については、所望のポリイミド樹脂の物性に合わせて適宜架橋基を選び、調整することができる。なお、本発明にかかるポリイミドオリゴマーは、例えば、MEPAを架橋基よして選んだ場合、約280〜300℃程度で一次硬化を開始する。より具体的には、例えば、予備的に200℃程度の温度で一定時間加熱することでポリイミドオリゴマーを熱溶融し、その後、300℃程度で一定時間加熱して一次硬化を行い、その後、320〜340℃の温度で一定時間加熱して二次硬化して、耐熱性及び機械的特性に優れたポリイミド樹脂硬化物を得ることができる。なお、それぞれの加熱工程における加熱温度を高くするか、あるいは加熱時間を長くすることによって、通常、ポリイミド樹脂硬化物の耐熱性が向上する。  In addition, when the polyimide oligomer is heat-cured, the heating temperature and the heating time can be adjusted by appropriately selecting a crosslinking group in accordance with the physical properties of the desired polyimide resin. In addition, the polyimide oligomer concerning this invention starts primary hardening at about 280-300 degreeC, for example, when MEPA is selected with a crosslinking group. More specifically, for example, the polyimide oligomer is thermally melted by preliminary heating at a temperature of about 200 ° C. for a predetermined time, and then primary curing is performed by heating at a temperature of about 300 ° C. for a predetermined time. A cured polyimide resin having excellent heat resistance and mechanical properties can be obtained by heating at a temperature of 340 ° C. for a certain period of time and secondary curing. In addition, the heat resistance of a polyimide resin hardened | cured material usually improves by raising the heating temperature in each heating process, or lengthening a heating time.

なお、本発明のポリイミドオリゴマーを用いたポリイミド樹脂成形体の製造は、公知の方法にしたがって行なえばよい。例えば、MEPAを架橋基よして選んだ場合、本発明のポリイミドオリゴマーの粉末を金型内に充填し、300℃、0.5〜5MPa程度で、1〜12時間程度加熱圧縮成形して一次成形品を得ることができる。つづいて、350℃、0.5〜5MPa程度で、1〜3時間程度加熱圧縮成形することにより、耐熱性及び機械的特性に優れたポリイミド樹脂成形体を得ることができる。なお、一次成形品を得る必要がなければ、直接300〜350℃程度の高温で加熱処理圧縮処理を行なってもよい。また、例えば、本発明のポリイミドオリゴマーワニスを炭素繊維等の繊維状補強材に含浸させ、120〜200℃で1〜3時間程度加熱乾燥した後、さらに加圧下、230〜350℃で1〜5時間程度加熱して、ポリイミド樹脂の繊維含有複合体を得ることができる。また、例えば、本発明のポリイミドオリゴマー溶液を、銅箔に塗布し、120〜200℃で溶剤を留去し、250〜350℃で1〜5時間程度加熱して銅張り積層板を製作できる。さらに、ガラス板等の剥離性の良好な支持体上へと塗布し、250〜350℃で1〜5時間程度加熱して、ポリイミド樹脂フィルムを得ることができることが分かった。  In addition, what is necessary is just to perform manufacture of the polyimide resin molding using the polyimide oligomer of this invention according to a well-known method. For example, when MEPA is selected as a cross-linking group, the polyimide oligomer powder of the present invention is filled in a mold, and heat compression molding is performed at 300 ° C. and about 0.5 to 5 MPa for about 1 to 12 hours to perform primary molding. Goods can be obtained. Subsequently, a polyimide resin molded article having excellent heat resistance and mechanical properties can be obtained by heat compression molding at 350 ° C. and about 0.5 to 5 MPa for about 1 to 3 hours. If it is not necessary to obtain a primary molded product, the heat treatment compression treatment may be performed directly at a high temperature of about 300 to 350 ° C. Further, for example, after impregnating the fibrous oligomer varnish of the present invention into a fibrous reinforcing material such as carbon fiber and heating and drying at 120 to 200 ° C. for about 1 to 3 hours, further under pressure, 230 to 350 ° C. at 1 to 5 By heating for about an hour, a fiber-containing composite of polyimide resin can be obtained. Moreover, for example, the polyimide oligomer solution of the present invention is applied to a copper foil, the solvent is distilled off at 120 to 200 ° C., and the mixture is heated at 250 to 350 ° C. for about 1 to 5 hours to produce a copper-clad laminate. Further, it was found that a polyimide resin film can be obtained by coating on a support having good peelability such as a glass plate and heating at 250 to 350 ° C. for about 1 to 5 hours.

実施例1

Figure 2013241553
7−8としたポリイミドオリゴマーを例示すると(他も7−8と同じ操作手順)、四つ口フラスコ(300ml)を室温下、窒素置換し、窒素気流下、N/N〜30%となるように、TMDA18.54g、3,4’−ジアミノジフェニルエーテル6.35gとa−BPDA24.88gを加え、攪拌しながら、NMP110gを室温下攪拌する。二時間後温度センサーが発熱の終了を確認後、4−メチルエチニルフタル酸無水化物を3.95gとNMP7gを加え、二時間後温度センサーで発熱の終了を確認した。その後、窒素気流下溶剤存在下、加熱還流を24時間続け、淡い黄色を呈したポリイミドオリゴマーワニスを得た。
その後、洗浄乾燥させたガラス板にカプトンテープを用い、成形型とし、ガラス棒を用い、均一にガラス板に塗布し、190℃で1時間乾燥させ、340℃で2時間加熱処理をした。冷却後、ナイフで切れ目を入れ、水の入ったビーカーにガラス板ごと付けた。剥離したフィルムを室温で一昼夜乾燥させ、幅3mm、長さ50mmに切り取り、膜厚測定後、力学試験を行った。 Example 1
Figure 2013241553
When the polyimide oligomer made into 7-8 is illustrated (the other operation procedure is the same as 7-8), the four-necked flask (300 ml) is purged with nitrogen at room temperature, and N / N to 30% in a nitrogen stream. To this, TMDA 18.54 g, 3,4'-diaminodiphenyl ether 6.35 g and a-BPDA 24.88 g are added, and NMP 110 g is stirred at room temperature while stirring. Two hours later, after the temperature sensor confirmed the end of heat generation, 3.95 g of 4-methylethynylphthalic anhydride and 7 g of NMP were added, and the temperature sensor confirmed the end of heat generation after two hours. Thereafter, heating under reflux was continued for 24 hours in the presence of a solvent in a nitrogen stream to obtain a polyimide oligomer varnish exhibiting a pale yellow color.
Thereafter, a Kapton tape was used for the glass plate that had been washed and dried to form a mold, and a glass rod was used to uniformly apply to the glass plate, dried at 190 ° C. for 1 hour, and heat-treated at 340 ° C. for 2 hours. After cooling, a cut was made with a knife, and the glass plate was attached to a beaker containing water. The peeled film was dried at room temperature for a whole day and night, cut into a width of 3 mm and a length of 50 mm, measured for film thickness, and then subjected to a mechanical test.

以下は、ポリイミドオリゴマーの

Figure 2013241553
Figure 2013241553
The following is the polyimide oligomer
Figure 2013241553
Figure 2013241553

以上とで得られたポリイミドオリゴマーに準じて得られた各種ポリイミドオリゴマーの物理的製出を四量体で検討した。その結果を表2に示す。  The physical production of various polyimide oligomers obtained in accordance with the polyimide oligomer obtained as described above was examined with a tetramer. The results are shown in Table 2.

Figure 2013241553
Figure 2013241553

さらに、7の組成と量体数の関係を検討した。但し、NMP溶液の安定性から組成比が若干異なるが、その結果得を表3に示す。  Furthermore, the relationship between the composition of 7 and the number of masses was examined. However, although the composition ratio is slightly different from the stability of the NMP solution, the results obtained are shown in Table 3.

Figure 2013241553
Figure 2013241553
Figure 2013241553
Figure 2013241553

以上で得られたポリイミド樹脂硬化物については、引張り試験は、島津製作所社製,ASGS−1kNGを用い、恒温恒湿室で測定した。Tについては、TA社製Q200TAにより計測した。TG−DTAは島津製作所社製DTG−50を用い窒素雰囲気下、昇音速度100℃/mm−1で見積もった。線膨張係数CTEは島津社製TMA−50昇温速度100℃/mm−1,ロード10.0g、空気雰囲気下で測定し、例えば、7−8では,CTE=19.8ppmと電子材料として使えることが分かった。About the polyimide resin hardened | cured material obtained above, the tensile test was measured in the constant temperature and humidity chamber using Shimadzu Corp. make and ASGS-1kNG. For T g, measured by the TA manufactured by Q200TA. TG-DTA was estimated using a DTG-50 manufactured by Shimadzu Corporation under a nitrogen atmosphere at a rate of sound increase of 100 ° C./mm −1 . The linear expansion coefficient CTE is measured under the TMA-50 temperature rising rate 100 ° C./mm −1 , load 10.0 g, air atmosphere, manufactured by Shimadzu Corporation. For example, in 7-8, CTE = 19.8 ppm can be used as an electronic material. I understood that.

実施例2
実施例1で重合したオリゴマー溶液をNMP100mlで希釈し、水400mlに反応液を投入し、濾過後水で洗浄濾過を数回繰り返し、80℃で一晩乾燥させ、黄色の粉末状ポリイミドオリゴマーを得た。
Example 2
The oligomer solution polymerized in Example 1 was diluted with 100 ml of NMP, the reaction solution was poured into 400 ml of water, filtered, washed with water several times, dried at 80 ° C. overnight, and a yellow powdered polyimide oligomer was obtained. It was.

以上で得られたポリイミドオリゴマー粉末をポリイミドフィルムに所要量を取り、ホットプレス上250℃で0.5時間溶融・脱泡した後、250℃、2MPaでホットプレス上を用い10分脱泡・加圧を繰り返し、320℃2時間加熱し(昇温速度5℃/分)、ポリイミド樹脂硬化物を得た。窒素気流下、TG−DTAによる分析の結果、5%熱分解温度が568.5℃(昇温速度10℃/分)、DSCによるTが262.0℃(昇温速度10℃/分)CTEは21ppmであることを確認した。また、厚さ約50μmのフィルムの初期弾性率は3.0GPa、破断強度208.7MPa、破断伸度32.0%であった。The polyimide oligomer powder obtained above is taken in a polyimide film, melted and degassed on a hot press at 250 ° C for 0.5 hours, and then defoamed and added for 10 minutes at 250 ° C and 2 MPa on a hot press. The pressure was repeated and heated at 320 ° C. for 2 hours (heating rate 5 ° C./min) to obtain a cured polyimide resin. Under a nitrogen stream, a result of analysis by TG-DTA, 5% thermal decomposition temperature of 568.5 ° C. (heating rate 10 ° C. / min), T g is 262.0 ° C. by DSC (heating rate 10 ° C. / min) CTE was confirmed to be 21 ppm. The initial elastic modulus of the film having a thickness of about 50 μm was 3.0 GPa, the breaking strength was 208.7 MPa, and the breaking elongation was 32.0%.

比較例
表1に示したイミドナンバー1、3、4、5が比較例である。
Comparative Examples Imide numbers 1, 3, 4, and 5 shown in Table 1 are comparative examples.

上記実施例1,2の結果から、非軸対称性芳香族酸無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物を4量体あたり3分子以上、1,4−ビス(4−アミノフェノキシ)ベンゼンを4量体あたり3分子以上とし、3,4−ジアミノジフェニルエーテルを1分子以下のみ有し、且つ架橋性末端が4−エチニルフタル酸無水化物残基からなり、上記一般式(1)により表されることを特徴とするポリイミドオリゴマー実施例1,2のポリイミドオリゴマーにおいては、容易にフィルムが得られることから、従来よりも低温での一次成形が可能であることがわかった。また、このポリイミドオリゴマーを熱硬化して得られたポリイミド樹脂硬化物の5%熱分解温度(τ)は500℃以上であり、耐熱性にも非常に優れていることが確認された。また、得られたポリイミド樹脂硬化物の機械的特性も良好なものであることがわかった。From the results of Examples 1 and 2 above, 3 or more molecules of 1,4-bis (non-axisymmetric aromatic acid anhydride 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride per tetramer are obtained. (4-aminophenoxy) benzene has 3 or more molecules per tetramer, 3,4-diaminodiphenyl ether has only 1 molecule or less, and the crosslinkable terminal consists of 4-ethynylphthalic anhydride residue. Polyimide oligomer represented by the formula (1) In the polyimide oligomers of Examples 1 and 2, the film can be easily obtained, so that it is possible to perform primary molding at a lower temperature than before. It was. Moreover, 5% thermal decomposition temperature ((tau) 5 ) of the polyimide resin hardened | cured material obtained by thermosetting this polyimide oligomer was 500 degreeC or more, and it was confirmed that it is excellent also in heat resistance. Moreover, it turned out that the mechanical property of the obtained polyimide resin hardened | cured material is also a favorable thing.

なお、上記実施例1のポリイミドオリゴマーの化学構造は、オリゴマー鎖が全体として螺旋性を示していると推定できる。そして、以上のようにオリゴマー鎖が螺旋性を示す結果、直線性(結晶性)の高い従来のポリイミドオリゴマーと比較して、より低い温度で容易に熱成形を行なうことが可能となると考えられる。また、架橋性末端化合物として4−エチニルフタル酸無水化物を使用することによって、従来よりも低温で一次硬化を行うことができるため、より幅広い成形品への応用が可能となると考えられる。さらに、1,4−ビス(4−アミノフェノキシ)ベンゼンを主分子とすることで、加熱硬化後のポリイミド樹脂においては、優れた耐熱性及び大きな破断伸度に代表される機械的特性が得られ、3,4‘−ジアミノジフェニルエーテルと2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物により溶解性を確保し、低温硬化と有機溶剤への溶解性を実現し、1,4−ビス(4−アミノフェノキシ)ベンゼンにより大きな破断伸度を実現している。  In addition, it can be estimated that the oligomer chain of Example 1 has a helical structure as a whole. As a result of the fact that the oligomer chain exhibits spirality as described above, it is considered that thermoforming can be easily performed at a lower temperature as compared with conventional polyimide oligomers having high linearity (crystallinity). In addition, by using 4-ethynylphthalic anhydride as a crosslinkable terminal compound, primary curing can be performed at a lower temperature than before, and thus it is considered that application to a wider range of molded products becomes possible. Furthermore, by using 1,4-bis (4-aminophenoxy) benzene as the main molecule, the heat-cured polyimide resin has excellent heat resistance and mechanical characteristics represented by a large elongation at break. , 3,4′-diaminodiphenyl ether and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride ensure solubility, achieve low temperature curing and solubility in organic solvents, Bis (4-aminophenoxy) benzene achieves a high elongation at break.

本発明のポリイミドオリゴマーの化学構造の模式図Schematic diagram of chemical structure of polyimide oligomer of the present invention 実施例1のポリイミドオリゴマーの化学構造の模式図Schematic diagram of the chemical structure of the polyimide oligomer of Example 1 本発明のポリイミドオリゴマーの末端架橋基の化学構造の模式図Schematic diagram of chemical structure of terminal crosslinking group of polyimide oligomer of the present invention

Claims (8)

非軸対称性芳香族酸無水化物2,3,3’,4’−ビフェニルテトラカルボン酸二無水化物残基を4量体あたり3分子以上、4,4’−オキシジフタル酸二無水化物残基または3,3,3’,4’−ビフェニルテトラカルボン酸二無水化物残基、3,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物残基1分子以下有し、1−(4−アミノフェニル)1,3,3、−トリメチル1−1H−インデン−5(または6)−アミン残基を4分子以上5分子以下とし、3,4−ジアミノジフェニルエーテル残基、1,3−ビス(3−アミノフェノキシ)ベンゼン残基、1,3−ビス(4−アミノフェノキシ)ベンゼン残基を単独または組み合わせて1分子以下のみ有し、且つ架橋性末端が4−エチニルフタル酸無水化物残基、4−メチルエチニルフタル酸無水化物残基または4−フェニルエチニルフタル酸残基からなり、下記一般式(1)により表されることを特徴とするポリイミドオリゴマー。
Figure 2013241553
(上記式(1)において、nはイミド繰り返し構造の平均重合度でnは1〜12、nは0〜3)
3 or more molecules of non-axisymmetric aromatic acid anhydride 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride residue per tetramer, 4,4′-oxydiphthalic acid dianhydride residue or 1,3,3 ′, 4′-biphenyltetracarboxylic dianhydride residue, 3,3,3 ′, 4′-benzophenonetetracarboxylic dianhydride residue Aminophenyl) 1,3,3, -trimethyl1-1H-indene-5 (or 6) -amine residue is 4 or more and 5 molecules or less, 3,4-diaminodiphenyl ether residue, 1,3-bis ( 3-aminophenoxy) benzene residue, 1,3-bis (4-aminophenoxy) benzene residue, alone or in combination, having only one molecule or less, and having a crosslinkable terminal 4-ethynylphthalic anhydride residue, 4-methylethynylphthal A polyimide oligomer comprising a sulfonic anhydride residue or a 4-phenylethynylphthalic acid residue and represented by the following general formula (1).
Figure 2013241553
(In the above formula (1), n is the average degree of polymerization of the imide repeating structure, n is 1 to 12, and n is 0 to 3)
請求項1に記載のポリイミドオリゴマーにおいて、ポリイミドオリゴマー全体の平均分子量が8000以下であることを特徴とするポリイミドオリゴマー。  The polyimide oligomer according to claim 1, wherein the average molecular weight of the whole polyimide oligomer is 8000 or less. 請求項1から3のいずれかに記載のポリイミドオリゴマーにおいて、下記一般式(2)を特徴とするアミック酸オリゴマー。
Figure 2013241553
The polyimide oligomer according to any one of claims 1 to 3, wherein the amic acid oligomer is characterized by the following general formula (2).
Figure 2013241553
請求項3に記載のポリアミド酸オリゴマーにおいて、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、γ−ブチロラクトン、アクアミド(TM)等の極性溶媒存在下、加熱脱水反応によりイミド化し得られるポリイミドオリゴマー。  The polyimide that can be imidized by a heat dehydration reaction in the presence of a polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, γ-butyrolactone, aquamid (TM), etc. Oligomer. 請求項3に記載のポリアミド酸オリゴマーで、60℃以下の低温でトリエチルアミン/無水酢酸等化学イミド化剤を用い、イミド化後、残存化学イミド化剤並びにその副生成物を減圧下留去して得られるポリイミドオリゴマーとそのワニス。  The polyamic acid oligomer according to claim 3, wherein a chemical imidizing agent such as triethylamine / acetic anhydride is used at a low temperature of 60 ° C or lower, and after imidation, the remaining chemical imidizing agent and its by-products are distilled off under reduced pressure. The resulting polyimide oligomer and its varnish. 請求項3に記載のアミド酸オリゴマーで、末端架橋基のRがCH,Cのポリアミド酸オリゴマーで、加熱還流下、熱によるイミ度化後得られるポリイミドオリゴマーとそのワニス。A polyimide oligomer and a varnish thereof obtained by the amidic acid oligomer according to claim 3, wherein the terminal cross-linking group R is a polyamic acid oligomer having CH 3 , C 6 H 5 , and is obtained after heat immobilization with heating under reflux. 請求項1、2、4,5、6で得られたポリイミドオリゴマーを、メタノール等のアルコールを用いて沈殿させ得られる粉体ポリイミドオリゴマー。  The powder polyimide oligomer obtained by precipitating the polyimide oligomer obtained by Claim 1, 2, 4, 5, 6 using alcohol, such as methanol. 請求項1から7に記載オリゴマーを加熱硬化させて、膜厚20μmのフイルムで、350mmでの吸光度が0.2以下なることを特徴とするポリイミド樹脂。  The polyimide resin according to claim 1, wherein the oligomer according to claim 1 is cured by heating and has a film thickness of 20 μm and an absorbance at 350 mm of 0.2 or less.
JP2012130244A 2012-05-22 2012-05-22 Thermosetting polyimide comprising cardo type diamine Pending JP2013241553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012130244A JP2013241553A (en) 2012-05-22 2012-05-22 Thermosetting polyimide comprising cardo type diamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130244A JP2013241553A (en) 2012-05-22 2012-05-22 Thermosetting polyimide comprising cardo type diamine

Publications (1)

Publication Number Publication Date
JP2013241553A true JP2013241553A (en) 2013-12-05

Family

ID=49842767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130244A Pending JP2013241553A (en) 2012-05-22 2012-05-22 Thermosetting polyimide comprising cardo type diamine

Country Status (1)

Country Link
JP (1) JP2013241553A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279688A (en) * 2016-08-11 2017-01-04 中国科学院宁波材料技术与工程研究所 Thermoset polyimide resin and its preparation method and application
JP2020534407A (en) * 2017-09-18 2020-11-26 シェブロン・オロナイト・カンパニー・エルエルシー Polyimide dispersant and its production and usage
CN114790289A (en) * 2022-04-24 2022-07-26 中国船舶重工集团公司第七一八研究所 Preparation method of high-temperature-resistant polyimide resin
CN114806396A (en) * 2022-05-17 2022-07-29 住井科技(深圳)有限公司 Method for making polyimide varnish have surge resistance and moist heat resistance, polyimide varnish and insulated wire
CN115160977A (en) * 2022-08-17 2022-10-11 中国地质大学(北京) Polyimide fiber film adhesive and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219741A (en) * 1998-11-25 2000-08-08 Ube Ind Ltd Terminally modified imide oligomer and its cured item
JP2006104440A (en) * 2004-09-08 2006-04-20 Japan Aerospace Exploration Agency Soluble terminal-modified imide oligomer and varnish and cured product thereof
JP2006312699A (en) * 2005-05-09 2006-11-16 Japan Aerospace Exploration Agency Soluble terminal-modified imide oligomer and varnish and cured product thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219741A (en) * 1998-11-25 2000-08-08 Ube Ind Ltd Terminally modified imide oligomer and its cured item
JP2006104440A (en) * 2004-09-08 2006-04-20 Japan Aerospace Exploration Agency Soluble terminal-modified imide oligomer and varnish and cured product thereof
JP2006312699A (en) * 2005-05-09 2006-11-16 Japan Aerospace Exploration Agency Soluble terminal-modified imide oligomer and varnish and cured product thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279688A (en) * 2016-08-11 2017-01-04 中国科学院宁波材料技术与工程研究所 Thermoset polyimide resin and its preparation method and application
JP2020534407A (en) * 2017-09-18 2020-11-26 シェブロン・オロナイト・カンパニー・エルエルシー Polyimide dispersant and its production and usage
CN114790289A (en) * 2022-04-24 2022-07-26 中国船舶重工集团公司第七一八研究所 Preparation method of high-temperature-resistant polyimide resin
CN114790289B (en) * 2022-04-24 2023-08-11 中国船舶重工集团公司第七一八研究所 Preparation method of high-temperature-resistant polyimide resin
CN114806396A (en) * 2022-05-17 2022-07-29 住井科技(深圳)有限公司 Method for making polyimide varnish have surge resistance and moist heat resistance, polyimide varnish and insulated wire
CN115160977A (en) * 2022-08-17 2022-10-11 中国地质大学(北京) Polyimide fiber film adhesive and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN106928707B (en) Polyimide polymer composition, method for producing same, and polyimide film
US8846552B2 (en) Soluble terminally modified imide oligomer using 2-phenyl-4, 4′-diaminodiphenyl ether, varnish, cured product thereof, imide prepreg thereof, and fiber-reinforced laminate having excellent heat resistance
CN108473677B (en) Polyamide acid composition with improved adhesive strength and polyimide film comprising same
TWI439371B (en) Transparent polyimide film with improved solvent resistance
TW201602168A (en) Polyamic acid solution having high heat-resistance properties and polyimide film
JP7387742B2 (en) Polyamic acid composition and transparent polyimide film using the same
JP2013241553A (en) Thermosetting polyimide comprising cardo type diamine
JP5050269B2 (en) Terminal-modified imide oligomer and varnish and cured product thereof having high elastic modulus
US10017666B2 (en) Polyimide resin composition and varnish produced from terminal-modified imide oligomer prepared using 2-phenyl-4,4′-diaminodiphenyl ether and thermoplastic aromatic polyimide prepared using oxydiphthalic acid, polyimide resin composition molded article and prepreg having excellent heat resistance and mechanical characteristic, and fiber-reinforced composite material thereof
JP4263182B2 (en) Soluble end-modified imide oligomer and varnish and cured product thereof
US9051430B2 (en) Resin-transfer-moldable terminal-modified imide oligomer using 2-phenyl-4,4′diaminodiphenyl ether and having excellent moldability, mixture thereof, varnish containing same, and cured resin thereof and fiber-reinforced cured resin thereof made by resin transfer molding and having excellent heat resistance
JP2009185204A (en) Polyimide oligomer and polyimide resin formed by heating/curing the same
JP2024028411A (en) Polyamic acid composition and transparent polyimide film using the same
KR20170092925A (en) A PolyImide film and preparation method thereof
JP2014201740A (en) Imide oligomer and polyimide resin obtained by thermal hardening of the same
KR101288724B1 (en) Polyamic acid and polyimide coating layer
JP2012197403A (en) Imide oligomer, and polyimide resin formed by heat curing thereof
KR102080004B1 (en) Polyimidesiloxane Copolymer and Film Made Therefrom
JP2004161979A (en) New thermoplastic polyimide and imide oligomer
JP4042861B2 (en) Imido prepreg and laminate
JP2010121095A (en) Imide oligomer and polyimide resin obtained by heat curing the same
JP2882114B2 (en) Terminally modified imide oligomer composition
JP2013256549A (en) Imide oligomer, and polyimide resin formed by heat curing the same
KR101258432B1 (en) Polyimide film having excellent high temperature stability and substrate for display device using the same
JP2022502535A (en) Method for producing a novel amic acid oligomer for molding a polyimide composite material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170214