JP5622129B2 - Insulated wire - Google Patents

Insulated wire Download PDF

Info

Publication number
JP5622129B2
JP5622129B2 JP2013177557A JP2013177557A JP5622129B2 JP 5622129 B2 JP5622129 B2 JP 5622129B2 JP 2013177557 A JP2013177557 A JP 2013177557A JP 2013177557 A JP2013177557 A JP 2013177557A JP 5622129 B2 JP5622129 B2 JP 5622129B2
Authority
JP
Japan
Prior art keywords
aromatic
mol
synthesis
bis
aminophenoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013177557A
Other languages
Japanese (ja)
Other versions
JP2014017257A (en
Inventor
菊池 英行
英行 菊池
行森 雄三
雄三 行森
祐樹 本田
祐樹 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013177557A priority Critical patent/JP5622129B2/en
Publication of JP2014017257A publication Critical patent/JP2014017257A/en
Application granted granted Critical
Publication of JP5622129B2 publication Critical patent/JP5622129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Description

本発明は特に、耐部分放電開始電圧の高い絶縁電線に関するものである。   The present invention particularly relates to an insulated wire having a high partial discharge withstand voltage.

近年、省エネを背景にハイブリッド自動車が普及し始め、燃費改善や動力性能向上のため、使用されるモータはインバータ駆動され、小型、軽量化、高耐熱化、高電圧駆動化が急速に進んでいる。   In recent years, hybrid vehicles have begun to spread with the background of energy saving, and motors used are driven by inverters to improve fuel efficiency and power performance, and are rapidly becoming smaller, lighter, more heat resistant, and driven at higher voltages. .

現在このモータのコイルに使用されるエナメル線は、小型、軽量化、高耐熱化というモータ性能の要求に応えるため、優れた耐熱性や過酷なコイル成形に耐えうる機械的特性、あるいは耐ミッションオイル性等を兼ね備えたポリアミドイミドエナメル線が不可欠となっている。但し、耐ミッションオイル性についてはオイル添加剤の種類や量によって絶縁保持性に大きく影響するが、オイル添加剤の影響を除けば含水による加水分解性が耐ミッションオイル性に直結する。   The enameled wire currently used in this motor coil is excellent in heat resistance, mechanical characteristics that can withstand harsh coil forming, or mission-resistant oil in order to meet the requirements of motor performance such as small size, light weight, and high heat resistance. A polyamide-imide enameled wire that has properties and the like is indispensable. However, with respect to the mission oil resistance, the insulation retention is greatly affected by the type and amount of the oil additive, but the hydrolyzability due to water content is directly linked to the mission oil resistance except for the influence of the oil additive.

このポリアミドイミドエナメル線の皮膜に用いられるポリアミドイミド樹脂絶縁塗料は、一般にN−メチル−2−ピロリドン(NMP)やN,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAC)、ジメチルイミダゾリジノン(DMI)等の極性溶媒中にて、4,4’−ジフェニルメタンジイソシアネート(MDI)とトリメリット酸無水物(TMA)との主に2成分による脱炭酸反応により、アミド基とイミド基がほぼ半々の比率で生成され、耐熱性と機械的特性、耐加水分解性などに優れた特性を示す耐熱高分子樹脂である。   Polyamideimide resin insulation coatings used for this polyamideimide enamel wire coating are generally N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), dimethyl. In a polar solvent such as imidazolidinone (DMI), an amide group and an imide group are obtained by decarboxylation of 4,4′-diphenylmethane diisocyanate (MDI) and trimellitic anhydride (TMA) mainly using two components. Is a heat-resistant polymer resin produced at a ratio of almost half and exhibiting excellent properties such as heat resistance, mechanical properties and hydrolysis resistance.

ポリアミドイミド樹脂絶縁塗料の製造としては、例えばイソシアネート法や酸クロライド法などが知られているが、製造生産性の観点から、一般的にはイソシアネート法が用いられている。ポリアミドイミドの例としては4,4’−ジフェニルメタンジイソシアネート(MDI)と、酸成分としてトリメリット酸無水物(TMA)との主に2成分の合成反応によるものが最も良く知られている。   For example, an isocyanate method or an acid chloride method is known as a method for producing a polyamide-imide resin insulating paint. From the viewpoint of production productivity, an isocyanate method is generally used. As an example of the polyamideimide, one obtained by a synthesis reaction mainly of two components of 4,4'-diphenylmethane diisocyanate (MDI) and trimellitic anhydride (TMA) as an acid component is best known.

また、ポリアミドイミド樹脂の特性改質を行うために、BAPPとTMAとを50/100〜80/100の酸過剰下で反応させた後、MDIでポリアミドイミド樹脂を合成する方法がある(特許文献1参照)。   In addition, there is a method of synthesizing a polyamideimide resin with MDI after reacting BAPP and TMA in an acid excess of 50/100 to 80/100 in order to modify the properties of the polyamideimide resin (Patent Literature). 1).

一方、モータの高電圧駆動化に対しては、インバータサージの重畳とあいまって、部分放電が発生するリスクが高まり、インバータサージ絶縁の対応が困難になってきているが、ポリアミドイミド樹脂絶縁塗料からなる皮膜の欠点の一つに、誘電率が高いことが上げられ、樹脂構造的にはアミド基とイミド基の存在が最も誘電率上昇の影響を与えている。ポリアミドイミド樹脂絶縁塗料は、他のエナメル樹脂絶縁塗料、例えばポリエステルやポリエステルイミドと比較すると耐熱性や機械的特性、加水分解性、耐油性は格段に優れているが、誘電率が高く部分放電開始電圧は低い。なお、ポリイミド樹脂絶縁塗料などは、耐熱性は高いが、耐摩耗性や加水分解性が劣り、コイル巻き加工性に関わる機械的特性や耐ミッションオイル性等はポリアミドイミドに劣る結果となる。   On the other hand, for higher voltage drive of motors, combined with inverter surges, the risk of partial discharge is increasing, making it difficult to handle inverter surge insulation. One of the disadvantages of the coating film is that the dielectric constant is high, and the presence of amide groups and imide groups has the greatest influence on the increase in dielectric constant in terms of the resin structure. Polyamideimide resin insulation paint has much better heat resistance, mechanical properties, hydrolysis and oil resistance than other enamel resin insulation paints such as polyester and polyesterimide, but has a high dielectric constant and starts partial discharge. The voltage is low. Polyimide resin insulating paints have high heat resistance, but are inferior in wear resistance and hydrolyzability, resulting in inferior mechanical properties, mission oil resistance, and the like related to coil winding workability.

絶縁電線、特にモータのコイルに用いられるエナメル線においては、モータが高効率化のためインバータ駆動されることが多くなっており、過大な電圧(インバータサージ)の発生により、部分放電劣化を起こし、絶縁破壊に至るケースが多くなっている。また、モータ駆動電圧も上昇する傾向があり、部分放電が発生するリスクは更に高くなってきている。   In insulated wires, especially enameled wires used in motor coils, motors are often driven by inverters for higher efficiency, causing excessive discharge (inverter surge), causing partial discharge deterioration, There are many cases that lead to dielectric breakdown. In addition, the motor drive voltage tends to increase, and the risk of occurrence of partial discharge is further increased.

従って、誘電率の低いポリアミドイミド樹脂絶縁塗料が出来れば、高電圧駆動化にも対応が出来る耐部分放電性に優れたエナメル線が提供できることになる。   Therefore, if a polyamide-imide resin insulating paint having a low dielectric constant can be obtained, an enameled wire excellent in partial discharge resistance that can cope with high voltage driving can be provided.

この部分放電に対する課電寿命を向上させる手法として、オルガノシリカゾルを樹脂溶液中に分散させて得た耐部分放電性樹脂塗料を導体上に被覆して製造した耐部分放電性エナメル線が開示されている(例えば特許文献2、3参照)。   As a technique for improving the service life against this partial discharge, a partial discharge resistant enamel wire produced by coating a conductor with a partial discharge resistant resin paint obtained by dispersing an organosilica sol in a resin solution is disclosed. (For example, refer to Patent Documents 2 and 3).

このようなオルガノシリカゾルを樹脂溶液中に分散させてなる耐部分放電性樹脂塗料では、オルガノシリカゾルと樹脂溶液との溶解性が耐部分放電性の向上に大きく寄与するが、数種類のモノマーを共重合することでオルガノシリカゾルとポリアミドイミド樹脂塗料などからなる樹脂溶液との溶解性が向上することも示されている(特許文献4参照)。   In partial discharge resistant resin coatings in which such an organosilica sol is dispersed in a resin solution, the solubility of the organosilica sol and the resin solution greatly contributes to the improvement of the partial discharge resistance, but several types of monomers are copolymerized. It has also been shown that the solubility of an organosilica sol and a resin solution comprising a polyamide-imide resin paint is improved (see Patent Document 4).

もう一つの手法として、エナメル線の線間の電界(線間に存在する空気層に加わる電界)を緩和して部分放電を発生にくくし、課電寿命を向上させる方法がある。   As another method, there is a method in which the electric field between enamel wires (the electric field applied to the air layer existing between the wires) is relaxed to make it difficult for partial discharge to occur, thereby improving the service life.

その方法としてエナメル線の表面に導電性あるいは半導電性を帯びさせることにより電界緩和する方法と、絶縁皮膜の誘電率を低下させて、電界緩和させる方法がある。   There are a method of relaxing the electric field by imparting conductivity or semiconductivity to the surface of the enameled wire, and a method of reducing the electric field by reducing the dielectric constant of the insulating film.

特開2004−204187号公報JP 2004-204187 A 特開2006−302835号公報JP 2006-302835 A 特許第2897186号公報Japanese Patent No. 2897186 特許第3496636号公報Japanese Patent No. 3396636

エナメル線の表面に導電性あるいは半導電性を帯びさせる方法では、コイル巻き加工時の傷発生が起こり易く絶縁特性が低下してしまうことや、端末部絶縁処理を施さなければならないなど問題が多く、実用性は低い。   In the method of making the surface of the enameled wire conductive or semi-conductive, there are many problems such as the occurrence of scratches during coil winding, resulting in a decrease in insulation characteristics, and the need to perform terminal insulation treatment. The practicality is low.

一方、皮膜の誘電率を低下させる方法では、低誘電率化が樹脂構造に依存することから、耐熱性や機械的特性などに弊害をもたらすことが一般的であり、いずれの手法でも大幅な改善は困難であった。   On the other hand, in the method of reducing the dielectric constant of the film, since lowering the dielectric constant depends on the resin structure, it generally causes adverse effects on heat resistance and mechanical properties. Was difficult.

また特許文献1の方法にて合成したポリアミドイミド樹脂絶縁塗料は、エナメル線の皮膜として用いた場合、耐軟化温度が低いという欠点があった。   In addition, the polyamideimide resin insulating paint synthesized by the method of Patent Document 1 has a drawback that the softening temperature is low when it is used as an enameled wire film.

耐軟化温度が低いとモータが過負荷となって瞬時的に高温に曝された時、短絡する可能性が高くなる。   If the softening temperature is low, the motor is overloaded and the possibility of a short circuit increases when the motor is instantaneously exposed to high temperatures.

そこで、本発明の目的は、上記課題を解決し、耐熱性、機械的特性、耐油性等を維持したまま低誘電率化を図り、部分放電開始電圧の高い絶縁電線を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and provide an insulated wire having a high partial discharge starting voltage by reducing the dielectric constant while maintaining heat resistance, mechanical characteristics, oil resistance and the like.

上記目的を達成するために請求項1の発明は、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、フルオレンジアミン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,4−ビス(4−アミノフェノキシ)ベンゼン、或いはそれらの異性体から選択される少なくとも1つからなる3つ以上のベンゼン環を有する芳香族ジアミン類及び2つ以下のベンゼン環を有する芳香族ジアミン類からなる芳香族ジアミン成分と、芳香族ジイソシアネート成分と、芳香族トリカルボン酸無水物を有する酸成分とを溶剤を用いて溶液重合させてなるポリアミドイミド樹脂絶縁塗料(ただし、析出が生じたポリアミドイミド樹脂絶縁塗料を除く)を、導体上あるいは他の絶縁皮膜上に塗布、焼付して皮膜が形成されており、前記皮膜は、比誘電率が3.5以下で耐軟化温度が390℃以上であることを特徴とする絶縁電線である。 In order to achieve the above object, the invention of claim 1 includes 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] ether, fluorenediamine, 4 , 4′-bis (4-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, or an aromatic having three or more benzene rings consisting of at least one selected from isomers thereof An aromatic diamine component comprising a diamine and an aromatic diamine having two or less benzene rings, an aromatic diisocyanate component, and an acid component having an aromatic tricarboxylic acid anhydride are solution polymerized using a solvent. Polyamideimide resin insulation paint (excluding the polyamideimide resin insulation paint where precipitation occurred) on the conductor or other insulation A film is formed by coating and baking on the film, and the film is an insulated wire characterized by having a relative dielectric constant of 3.5 or less and a softening resistance of 390 ° C. or more.

本発明によれば、MDIとTMAとの合成からなる汎用的ポリアミドイミドエナメル線と同等の特性を維持、特に耐軟化温度を低下せずに、低誘電率化により部分放電開始電圧を向上させた皮膜を得ることができる。   According to the present invention, characteristics equivalent to those of a general-purpose polyamide-imide enameled wire composed of MDI and TMA are maintained, and the partial discharge start voltage is improved by lowering the dielectric constant without particularly reducing the softening temperature. A film can be obtained.

本発明のポリアミドイミド樹脂絶縁塗料を塗布した電線を示す図である。It is a figure which shows the electric wire which apply | coated the polyamide imide resin insulation coating material of this invention.

以下に本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明は、芳香族ジアミン成分と、芳香族トリカルボン酸無水物からなる酸成分とを過剰下で反応させ、酸無水物とアミンの脱水閉環反応によりイミド化して生成された両末端カルボン酸の芳香族イミドプレポリマーを冷却後、芳香族ジイソシアネート成分を投入し、ジカルボン酸とジイソシアネートの脱炭酸反応によりアミド結合を生成して成るものであり、ポリアミドイミド樹脂絶縁塗料のモノマーに、3つ以上のベンゼン環を有する芳香族ジアミンと2つ以下のベンゼン環を有する芳香族ジアミンとを併用した芳香族ジアミン成分を用い、ポリアミドイミド樹脂の誘電率上昇に最も影響を与えているアミド基とイミド基のポリマー中の存在比率を低下させることで誘電率を低減したもので、耐熱性等に優れたポリアミドイミド樹脂絶縁塗料とすることができる。   The present invention relates to an aromatic diamine component produced by reacting an aromatic diamine component with an acid component composed of an aromatic tricarboxylic acid anhydride in an excess and imidizing by a dehydration ring-closing reaction between the acid anhydride and an amine. After cooling the aromatic imide prepolymer, the aromatic diisocyanate component is added and an amide bond is formed by decarboxylation of the dicarboxylic acid and the diisocyanate. Polymer of amide group and imide group which has the most influence on increase in dielectric constant of polyamide-imide resin, using aromatic diamine component in combination of aromatic diamine having ring and aromatic diamine having two or less benzene rings Reduced dielectric constant by reducing the abundance ratio in the polyamideimide resin insulation with excellent heat resistance It may be a fee.

本発明に用いるポリアミドイミド樹脂絶縁塗料は、NMP(N−メチル−2−ピロリドン)等の極性溶媒を主溶剤とし、溶液重合を行なう。   The polyamideimide resin insulating coating used in the present invention performs solution polymerization using a polar solvent such as NMP (N-methyl-2-pyrrolidone) as a main solvent.

主溶媒であるNMPの他に、γ−ブチロラクトンやDMAC(N,N−ジメチルアセトアミド)、DMF(N,N−ジメチルホルムアミド)、DMI(ジメチルイミダゾリジノン)、シクロヘキサノン、メチルシクロヘキサノンなどのポリアミドイミド樹脂の合成反応を阻害しない溶剤を併用して合成しても良いし、希釈しても良い。また希釈用途として芳香族アルキルベンゼン類などを併用しても良い。但し、ポリアミドイミド樹脂の溶解性を低下させる恐れがある場合は考慮する必要がある。   In addition to NMP as a main solvent, polyamide-imide resins such as γ-butyrolactone, DMAC (N, N-dimethylacetamide), DMF (N, N-dimethylformamide), DMI (dimethylimidazolidinone), cyclohexanone, methylcyclohexanone These may be synthesized in combination with a solvent that does not inhibit the synthesis reaction, or may be diluted. In addition, aromatic alkylbenzenes may be used in combination for dilution purposes. However, it is necessary to consider when there is a risk of lowering the solubility of the polyamideimide resin.

芳香族ジアミン成分としては、3つ以上のベンゼン環を有する芳香族ジアミン類と2つ以下のベンゼン環を有する芳香族ジアミン類を併用する。   As the aromatic diamine component, aromatic diamines having 3 or more benzene rings and aromatic diamines having 2 or less benzene rings are used in combination.

3つ以上のベンゼン環を有する芳香族ジアミン類としては、2,2−ビス[4−(4−
アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4−(4−アミノフェノキシ)フェニル]エーテル(BAPE)、フルオレンジアミン(FDA)、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,4−ビス(4−アミノフェノキシ)ベンゼン、或いはそれらの異性体から選択される少なくとも1つを使用することができる。
Examples of aromatic diamines having three or more benzene rings include 2,2-bis [4- (4-
Aminophenoxy) phenyl] propane (BAPP), bis [4- (4-aminophenoxy) phenyl] ether (BAPE), fluorenediamine (FDA), 4,4′-bis (4-aminophenoxy) biphenyl, 1,4 At least one selected from bis (4-aminophenoxy) benzene or isomers thereof can be used.

また、2つ以下のベンゼン環を有する芳香族ジアミン類としては、4,4’−ジアミノジフェニルエーテル(DPE)、4,4’−ジアミノジフェニルスルホン(DDS)、4,4’−ジアミノジフェニルメタン(DAM)、1,2−ジアミノベンゼン、1,3−ジアミノベンゼン、1,4−ジアミノベンゼン、或いはそれらの異性体から選択される少なくとも1つを使用することができる。   Examples of aromatic diamines having two or less benzene rings include 4,4′-diaminodiphenyl ether (DPE), 4,4′-diaminodiphenyl sulfone (DDS), and 4,4′-diaminodiphenylmethane (DAM). 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, or at least one selected from isomers thereof can be used.

これらの芳香族ジアミン類に、ハロゲン元素を含む芳香族ジアミン類などを必要に応じ併用しても良い。場合によっては、脂環式ジアミン類、シラン系ジアミン類も併用することは可能である。   These aromatic diamines may be used in combination with an aromatic diamine containing a halogen element, if necessary. In some cases, alicyclic diamines and silane-based diamines can be used in combination.

またジアミン類をもとにホスゲンを使用してジイソシアネート類を製造することは一般的で且つ工業的に可能であり、上記列挙したジアミン類の全てあるいは一部をジイソシアネート類に代えて使用することも出来る。全てをジイソシアネート類に代えた場合は2段階合成を用いず、第2段目合成で使用するMDIと一度に混合し、1段の脱炭酸反応で合成することも可能である。一部を代えた場合は第2段目合成で使用するMDIと混合し、合成することも可能である。   Moreover, it is general and industrially possible to produce diisocyanates using phosgene based on diamines, and all or a part of the above-listed diamines may be used instead of diisocyanates. I can do it. When all of them are replaced with diisocyanates, it is also possible to synthesize by one-stage decarboxylation reaction by mixing at once with MDI used in the second-stage synthesis without using the two-stage synthesis. When a part is changed, it can be mixed with the MDI used in the second stage synthesis.

芳香族ジイソシアネート成分としては、4,4’−ジフェニルメタンジイソシアネート(MDI)、2,2−ビス[4−(4−イソシアネートフェノキシ)フェニル]プロパン(BIPP)、トリレンジイソシアネート(TDI)、ナフタレンジイソシアネート、キシリレンジイソシアネート、ビフェニルジイソシアネート、ジフェニルスルホンジイソシアネート、ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネート及び異性体、多量体が例示される。また、必要に応じて、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシシレンジイソシアネートなどの脂肪族ジイソシアネート類、或いは上記例示した芳香族ジイソシアネートを水添した脂環式ジイソシアネート類及び異性体も使用、併用しても良い。   As aromatic diisocyanate components, 4,4′-diphenylmethane diisocyanate (MDI), 2,2-bis [4- (4-isocyanatophenoxy) phenyl] propane (BIPP), tolylene diisocyanate (TDI), naphthalene diisocyanate, xylylene Examples include aromatic diisocyanates, isomers, and multimers such as range isocyanate, biphenyl diisocyanate, diphenylsulfone diisocyanate, and diphenyl ether diisocyanate. Further, if necessary, aliphatic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and xylylene diisocyanate, or alicyclic diisocyanates and isomers obtained by hydrogenating the aromatic diisocyanates exemplified above are also used. You may use together.

酸成分としては、トリカルボン酸無水物としてTMA(トリメット酸無水物)がある。その他ベンゾフェノントリカルボン酸無水物など芳香族トリカルボン酸無水物類も使用することは可能であるが、TMAが最も好適である。   As an acid component, there is TMA (trimet acid anhydride) as a tricarboxylic acid anhydride. In addition, aromatic tricarboxylic acid anhydrides such as benzophenone tricarboxylic acid anhydride can be used, but TMA is most preferable.

TMAとともにテトラカルボン酸二無水物類とを併用することも可能である。テトラカルボン酸二無水物としては、ピロメリット酸二無水物(PMDA)、3,3’4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’−オキシジフタル酸二無水物(ODPA)、3,3’4,4’−ビフェニルテトラカルボン酸二無水物等が例示され、また必要に応じ、ブタンテトラカルボン酸二無水物や5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、或いは上記例示した芳香族テトラカルボン酸二無水物を水添した脂環式テトラカルボン酸二無水物類等を併用しても良い。   It is also possible to use tetracarboxylic dianhydrides together with TMA. Examples of tetracarboxylic dianhydrides include pyromellitic dianhydride (PMDA), 3,3′4,4′-benzophenonetetracarboxylic dianhydride (BTDA), and 3,3′4,4′-diphenylsulfone. Examples include tetracarboxylic dianhydride (DSDA), 4,4′-oxydiphthalic dianhydride (ODPA), 3,3′4,4′-biphenyltetracarboxylic dianhydride, and the like. Butanetetracarboxylic dianhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, or the aromatic tetracarboxylic acid exemplified above You may use together alicyclic tetracarboxylic dianhydride etc. which hydrogenated the dianhydride.

脂環構造原料を併用すると誘電率低減や樹脂組成物の透明性向上に効果が期待されるため、必要に応じ併用しても良いが、耐熱性低下を招く恐れがあるため、配合量や化学構造には配慮が必要である。   When used together with alicyclic structure raw materials, it is expected to have an effect on reducing the dielectric constant and improving the transparency of the resin composition, so it may be used together as necessary, but it may cause a decrease in heat resistance. Consideration of the structure is necessary.

3つ以上のベンゼン環を有する芳香族ジアミン類と2つ以下のベンゼン環を有する芳香族ジアミン類との配合比率は、(3つ以上のベンゼン環を有する芳香族ジアミン類)/(2つ以下のベンゼン環を有する芳香族ジアミン類)=99/1〜30/70(モル比)が適正範囲であるが、望ましくは、(3つ以上のベンゼン環を有する芳香族ジアミン類)/(2つ以下のベンゼン環を有する芳香族ジアミン類)=70/30〜40/60(モル比)の範囲が良い。3つ以上のベンゼン環を有する芳香族ジアミン類の配合比が、99(モル比)よりも多くなると、誘電率の低減効果は大きくなるものの耐軟化温度が低下してしまう場合がある。また、2つ以下のベンゼン環を有する芳香族ジアミン類の配合比が、70(モル比)よりも多くなると、耐軟化温度が向上する傾向となるものの誘電率が高くなってしまうことや、1段目のイミド化反応時に溶解性が低下してしまう場合があり、好ましくない。   The blending ratio of the aromatic diamine having three or more benzene rings and the aromatic diamine having two or less benzene rings is (aromatic diamine having three or more benzene rings) / (two or less Aromatic diamines having a benzene ring) = 99/1 to 30/70 (molar ratio) is in an appropriate range, preferably (aromatic diamines having three or more benzene rings) / (two The following aromatic diamines having a benzene ring) = 70/30 to 40/60 (molar ratio) is preferable. When the blending ratio of aromatic diamines having three or more benzene rings is more than 99 (molar ratio), the softening temperature may be lowered although the effect of reducing the dielectric constant is increased. Moreover, when the blending ratio of aromatic diamines having two or less benzene rings is more than 70 (molar ratio), the softening temperature tends to be improved, but the dielectric constant becomes high, and 1 The solubility may decrease during the imidization reaction at the stage, which is not preferable.

3つ以上のベンゼン環を有する芳香族ジアミン類と2つ以下のベンゼン環を有する芳香族ジアミン類とを併用した芳香族ジアミン成分とTMAの比率については特に限定しないが、第1段目合成で使用される3つ以上のベンゼン環を有する芳香族ジアミン類と2つ以下のベンゼン環を有する芳香族ジアミン類、及び必要に応じて他のジアミン類を用いた全ジアミン成分の配合比と、TMA及び必要に応じ用いた他のテトラカルボン酸二無水物類を併せた全酸成分の配合比とは、アミンと無水酸とがイミド化反応に必要な等量が最も望ましい。この比率を外れた場合、2段目の合成時に副反応を引き起こすアミノ基等が残ってしまい、最終的にポリアミドイミド樹脂絶縁塗料の特性が悪化するため、配慮が必要である。   There is no particular limitation on the ratio of the aromatic diamine component and TMA in which an aromatic diamine having three or more benzene rings and an aromatic diamine having two or less benzene rings are used in combination. The mixing ratio of all diamine components using aromatic diamines having three or more benzene rings and aromatic diamines having two or less benzene rings, and other diamines if necessary, and TMA The mixing ratio of all the acid components combined with other tetracarboxylic dianhydrides used as required is most preferably the same amount of amine and anhydride required for the imidization reaction. When this ratio is deviated, an amino group or the like that causes a side reaction remains in the second-stage synthesis, and the characteristics of the polyamide-imide resin insulating paint are ultimately deteriorated.

一般的なMDIとTMAとを用いたポリアミドイミド樹脂絶縁塗料においては、MDIとTMAとほぼ等量で合成するが、イソシアネート成分については1〜1.05の範囲で過剰合成されることもある。本発明の第2段目のMDIの配合比率についても特に限定はないが、1段目で合成されたイミドジカルボン酸とジイソシアネート類総量とは等量が望ましい。なお、1段目と同様にイソシアネートの微過剰配合を行なっても良い。   In the polyamideimide resin insulation paint using general MDI and TMA, it synthesize | combines by a substantially equal amount with MDI and TMA, However About an isocyanate component, it may be oversynthesized in the range of 1-1.05. The blending ratio of the second stage MDI of the present invention is not particularly limited, but the imide dicarboxylic acid synthesized in the first stage and the total amount of diisocyanates are preferably equal. Note that, as in the first stage, a slight excess of isocyanate may be blended.

比誘電率は、低いほど望ましいが、インバータサージ絶縁(耐部分放電性)に有効性を発揮するためには、3.5以下が望ましい。   The lower the relative dielectric constant, the better. However, in order to exhibit effectiveness in inverter surge insulation (partial discharge resistance), 3.5 or less is desirable.

ポリアミドイミド樹脂絶縁塗料の合成時においては、アミン類やイミダゾール類、イミダゾリン類などの反応触媒を使用しても良いが、塗料の安定性を阻害しないものが望ましい。合成反応停止時にはアルコールなどの封止剤を用いても良い。   At the time of synthesizing the polyamideimide resin insulating paint, a reaction catalyst such as amines, imidazoles, and imidazolines may be used, but those that do not inhibit the stability of the paint are desirable. A sealing agent such as alcohol may be used when the synthesis reaction is stopped.

実施例1〜7及び比較例2〜3はジアミン成分(芳香族ジアミン成分)を用いたポリアミドイミド樹脂絶縁塗料の合成であり、下記のように2段階の合成を実施した。   Examples 1-7 and Comparative Examples 2-3 are the synthesis | combination of the polyamideimide resin insulation coating material which used the diamine component (aromatic diamine component), and implemented the two-step synthesis | combination as follows.

撹拌機、還流冷却管、窒素流入管、温度計を備えたフラスコを用意し、第1段目の合成反応として、実施例1〜7及び比較例2〜3に示すジアミン成分と、酸成分、及び溶剤の約50〜80%を投入し、窒素雰囲気中で撹拌しながら約1時間で180℃まで加熱し、脱水反応により生成された水を系外に出しながら、この温度で4時間反応させた。窒素雰囲気を維持したまま60℃まで冷却した後、ジイソシアネート成分と残りの溶剤を投入し、第2段目の合成反応として、窒素雰囲気中で撹拌しながら約1時間で140℃まで加熱し、還元粘度が約0.5dl/gのポリアミドイミド樹脂溶液が得られるように、この温度で2時間反応させて作製した。   Prepare a flask equipped with a stirrer, a reflux condenser, a nitrogen inlet pipe, and a thermometer, and as the first-stage synthesis reaction, the diamine components and acid components shown in Examples 1 to 7 and Comparative Examples 2 to 3, About 50 to 80% of the solvent, heated to 180 ° C. in about 1 hour with stirring in a nitrogen atmosphere, and allowed to react at this temperature for 4 hours while removing water generated by the dehydration reaction from the system. It was. After cooling to 60 ° C. while maintaining the nitrogen atmosphere, the diisocyanate component and the remaining solvent are added, and the second stage synthesis reaction is heated to 140 ° C. with stirring in a nitrogen atmosphere for about 1 hour. It was made to react at this temperature for 2 hours so as to obtain a polyamideimide resin solution having a viscosity of about 0.5 dl / g.

比較例1はジイソシアネート成分のみを用いた一般のポリアミドイミド樹脂絶縁塗料の合成であり、下記のように実施した。   Comparative Example 1 was a synthesis of a general polyamideimide resin insulating paint using only a diisocyanate component, and was carried out as follows.

撹拌機、還流冷却管、窒素流入管、温度計を備えたフラスコに比較例1に示す原料及び溶剤を一度に投入し、窒素雰囲気中で撹拌しながら約1時間で140℃まで加熱し、還元粘度が約0.5dl/gのポリアミドイミド樹脂溶液が得られるように、この温度で2時間反応させて作製した。   The raw material and solvent shown in Comparative Example 1 were charged at once into a flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, and thermometer, and heated to 140 ° C. in about 1 hour with stirring in a nitrogen atmosphere. It was made to react at this temperature for 2 hours so as to obtain a polyamideimide resin solution having a viscosity of about 0.5 dl / g.

また前記ポリアミドイミド樹脂絶縁塗料を0.8mmの銅導体上に塗布、焼付けし、皮膜厚45μmのエナメル線を得た。   The polyamide-imide resin insulating paint was applied onto a 0.8 mm copper conductor and baked to obtain an enameled wire with a film thickness of 45 μm.

図1は本発明に係るポリアミドイミド樹脂絶縁塗料を塗布した電線を示す図である。   FIG. 1 is a view showing an electric wire coated with a polyamide-imide resin insulating paint according to the present invention.

導体1上にポリアミドイミド樹脂絶縁塗料を塗布、焼付けすることにより導体1の周囲に絶縁体の皮膜2が得られる。   An insulating coating 2 is obtained around the conductor 1 by applying and baking a polyamide-imide resin insulating paint on the conductor 1.

なお、導体1の直上に他の絶縁皮膜を形成し、その上に本発明のポリアミドイミド樹脂絶縁塗料からなる皮膜2を形成してもよい。このとき、他の絶縁皮膜は、耐部分放電性或いは一般特性を阻害しないものであれば特に限定されるものではない。   Alternatively, another insulating film may be formed directly on the conductor 1, and the film 2 made of the polyamide-imide resin insulating paint of the present invention may be formed thereon. At this time, the other insulating film is not particularly limited as long as it does not impair partial discharge resistance or general characteristics.

実施例及び比較例における性状、得られたエナメル線の特性等について、表1に示す。   Table 1 shows the properties of the examples and comparative examples, the characteristics of the enamel wires obtained, and the like.


表1におけるエナメル線の特性、特に、寸法、可とう性、耐摩耗性、耐熱性、及び耐軟化温度については、JIS C 3003に準拠した方法で測定した。   The properties of the enameled wire in Table 1, particularly the dimensions, flexibility, wear resistance, heat resistance, and softening temperature were measured by a method based on JIS C 3003.

耐加水分解性は、内容積400mLの耐熱ガラス管に0.4mLの水と対撚りしたエナメル線を投入した後、バーナー等で加熱溶融させ封じ、密封させたものを140℃の恒温槽中で1000h処理した後取り出し、絶縁破壊電圧を測定、未処理の絶縁破壊電圧に対する残率を算出した。   Hydrolysis resistance is as follows: an enameled wire twisted with 0.4 mL of water is put into a heat-resistant glass tube with an internal volume of 400 mL, then heated and melted and sealed with a burner or the like in a 140 ° C. constant temperature bath. After processing for 1000 hours, the sample was taken out, the dielectric breakdown voltage was measured, and the residual ratio relative to the untreated dielectric breakdown voltage was calculated.

比誘電率は、エナメル線表面に金属電極を蒸着し、導体と金属電極間の静電容量を測定し、電極長と皮膜厚の関係から比誘電率を算出した。静電容量の測定はインピーダンスアナライザを用いて、1kHzにて測定した。乾燥時の誘電率は100℃の恒温槽中において、吸湿時の誘電率は、25℃−50%RHの恒温恒湿槽中にて、50h放置した後、その槽内で測定を行なった。   For the relative dielectric constant, a metal electrode was deposited on the surface of the enameled wire, the capacitance between the conductor and the metal electrode was measured, and the relative dielectric constant was calculated from the relationship between the electrode length and the film thickness. The capacitance was measured at 1 kHz using an impedance analyzer. The dielectric constant at the time of drying was measured in a constant temperature bath at 100 ° C., and the dielectric constant at the time of moisture absorption was left in a constant temperature and humidity chamber at 25 ° C. to 50% RH for 50 hours.

部分放電開始電圧は、25℃−50%RHの恒温恒湿槽中にて、50h放置した後、50Hzにて検出感度10pCでの放電開始電圧を測定した。   The partial discharge start voltage was determined by measuring the discharge start voltage at a detection sensitivity of 10 pC at 50 Hz after leaving it in a constant temperature and humidity chamber of 25 ° C.-50% RH for 50 hours.

(実施例1)
第1段目の合成として、BAPPを184.5g(0.45モル)、4,4’−DPEを10.0g(0.05モル)とTMAを192.0g(1.0モル)及び溶剤として1000gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目の合成として、芳香族ジイソシアネート成分として127.5g(0.505モル)のMDI及び溶剤として500gのNMPを投入して、140℃で合成を行い、還元粘度が約0.5dl/g、樹脂分濃度が約25重量%のポリアミドイミド樹脂絶縁塗料を得た。
Example 1
As the synthesis of the first stage, 184.5 g (0.45 mol) of BAPP, 10.0 g (0.05 mol) of 4,4′-DPE, 192.0 g (1.0 mol) of TMA and a solvent As the synthesis of the second stage, as the aromatic diisocyanate component, the synthesis was carried out while adding 1000 g of NMP and synthesizing while discharging water outside the system at 180 ° C. and cooling to 60 ° C. while maintaining the nitrogen atmosphere. 0.5 g (0.505 mol) of MDI and 500 g of NMP as a solvent were added and synthesized at 140 ° C., and the reduced viscosity was about 0.5 dl / g and the resin content concentration was about 25 wt% polyamideimide resin. An insulating paint was obtained.

(実施例2)
第1段目の合成として、BAPPを143.0g(0.35モル)、4,4’−DPEを30.0g(0.15モル)とTMAを192.0g(1.0モル)及び溶剤として1000gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目の合成として、芳香族ジイソシアネート成分として127.5g(0.505モル)のMDI及び溶剤として450gのNMPを投入して、140℃で合成を行い、還元粘度が約0.5dl/g、樹脂分濃度が約25重量%のポリアミドイミド樹脂絶縁塗料を得た。
(Example 2)
As the synthesis of the first stage, 143.0 g (0.35 mol) of BAPP, 30.0 g (0.15 mol) of 4,4′-DPE, 192.0 g (1.0 mol) of TMA and a solvent As the synthesis of the second stage, as the aromatic diisocyanate component, the synthesis was carried out while adding 1000 g of NMP and synthesizing while discharging water outside the system at 180 ° C. and cooling to 60 ° C. while maintaining the nitrogen atmosphere. 0.5 g (0.505 mol) of MDI and 450 g of NMP as a solvent were added and synthesized at 140 ° C., and the reduced viscosity was about 0.5 dl / g and the resin content concentration was about 25% by weight polyamideimide resin. An insulating paint was obtained.

(実施例3)
第1段目の合成として、BAPPを102.5g(0.25モル)、4,4’−DPEを50.0g(0.25モル)とTMAを192.0g(1.0モル)及び溶剤として1000gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目の合成として、芳香族ジイソシアネート成分として127.5g(0.505モル)のMDI及び溶剤として400gのNMPを投入して、140℃で合成を行い、還元粘度が約0.5dl/g、樹脂分濃度が約25重量%のポリアミドイミド樹脂絶縁塗料を得た。
Example 3
As the synthesis of the first stage, 102.5 g (0.25 mol) of BAPP, 50.0 g (0.25 mol) of 4,4′-DPE, 192.0 g (1.0 mol) of TMA and a solvent As the synthesis of the second stage, as the aromatic diisocyanate component, the synthesis was carried out while adding 1000 g of NMP and synthesizing while discharging water outside the system at 180 ° C. and cooling to 60 ° C. while maintaining the nitrogen atmosphere. 0.5 g (0.505 mol) of MDI and 400 g of NMP as a solvent were added and synthesized at 140 ° C., and the reduced viscosity was about 0.5 dl / g and the resin content concentration was about 25 wt% polyamideimide resin. An insulating paint was obtained.

(実施例4)
第1段目の合成として、BAPPを61.5g(0.15モル)、4,4’−DPEを70.0g(0.35モル)とTMAを192.0g(1.0モル)及び溶剤として1000gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目の合成として、芳香族ジイソシアネート成分として127.5g(0.505モル)のMDI及び溶剤として350gのNMPを投入して、140℃で合成を行い、還元粘度が約0.5dl/g、樹脂分濃度が約25重量%のポリアミドイミド樹脂絶縁塗料を得た。
Example 4
As the synthesis of the first stage, 61.5 g (0.15 mol) of BAPP, 70.0 g (0.35 mol) of 4,4′-DPE, 192.0 g (1.0 mol) of TMA and a solvent As the synthesis of the second stage, as the aromatic diisocyanate component, the synthesis was carried out while adding 1000 g of NMP and synthesizing while discharging water outside the system at 180 ° C. and cooling to 60 ° C. while maintaining the nitrogen atmosphere. 0.5 g (0.505 mol) of MDI and 350 g of NMP as a solvent were added and synthesized at 140 ° C., and the reduced viscosity was about 0.5 dl / g, and the resin component concentration was about 25 wt%. An insulating paint was obtained.

(実施例5)
第1段目の合成として、BAPPを102.5g(0.25モル)、4,4’−DPEを30.0g(0.15モル)、3,4’−DPEを20.0g(0.10モル)とTMAを192.0g(1.0モル)及び溶剤として1000gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目の合成として、芳香族ジイソシアネート成分として127.5g(0.505モル)のMDI及び溶剤として400gのNMPを投入して、140℃で合成を行い、還元粘度が約0.5dl/g、樹脂分濃度が約25重量%のポリアミドイミド樹脂絶縁塗料を得た。
(Example 5)
In the first stage synthesis, 102.5 g (0.25 mol) of BAPP, 30.0 g (0.15 mol) of 4,4′-DPE, and 20.0 g (0. 10 mol) and 192.0 g (1.0 mol) of TMA and 1000 g of NMP as a solvent were added, and synthesis was carried out while discharging water out of the system at 180 ° C., and cooled to 60 ° C. while maintaining a nitrogen atmosphere. After that, in the second stage synthesis, 127.5 g (0.505 mol) of MDI as an aromatic diisocyanate component and 400 g of NMP as a solvent were added and synthesized at 140 ° C., and the reduced viscosity was about 0. A polyamideimide resin insulating paint having a resin content concentration of about 25% by weight was obtained.

(実施例6)
第1段目の合成として、4,4’−DPEを30.0g(0.15モル)、3,4’−DPEを20.0g(0.10モル)とTMAを96.0g(0.5モル)及び溶剤として450gのγ−ブチロラクトンと550gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目の合成として、芳香族ジイソシアネート成分として127.5g(0.505モル)のMDI、115.5g(0.25モル)のBIPP(2,2−ビス[4−(4−イソシアネートフェノキシ)フェニル]プロパン)とTMAを96.0g(0.5モル)及び溶剤として450gのNMPを投入して、140℃で合成を行い、還元粘度が約0.5dl/g、樹脂分濃度が約25重量%のポリアミドイミド樹脂絶縁塗料を得た。
(Example 6)
In the first stage synthesis, 30.0 g (0.15 mol) of 4,4′-DPE, 20.0 g (0.10 mol) of 3,4′-DPE and 96.0 g (0. 5 mol) and 450 g of γ-butyrolactone and 550 g of NMP were added as solvents, and synthesis was carried out while discharging water outside the system at 180 ° C. After cooling to 60 ° C. while maintaining the nitrogen atmosphere, the second stage As an eye synthesis, 127.5 g (0.505 mol) of MDI as an aromatic diisocyanate component, 115.5 g (0.25 mol) of BIPP (2,2-bis [4- (4-isocyanatophenoxy) phenyl] Propane) and 96.0 g (0.5 mol) of TMA and 450 g of NMP as a solvent were added and synthesized at 140 ° C., the reduced viscosity was about 0.5 dl / g, and the resin concentration was about 25% by weight. The polyami A doimide resin insulating paint was obtained.

(実施例7)
第1段目の合成として、BAPPを102.5g(0.25モル)、4,4’−DPEを50.0g(0.25モル)、4,4’−DDSを6.2g(0.03モル)とTMAを182.4g(0.95モル)、PMDAを10.9g(0.05モル)及び溶剤として1000gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目の合成として、芳香族ジイソシアネート成分として95.6g(0.38モル)のMDI、17.7g(0.10モル)のTDI及び溶剤として400gのNMPを投入して、140℃で合成を行い、還元粘度が約0.5dl/g、樹脂分濃度が約25重量%のポリアミドイミド樹脂絶縁塗料を得た。
(Example 7)
In the first stage synthesis, 102.5 g (0.25 mol) of BAPP, 50.0 g (0.25 mol) of 4,4′-DPE, and 6.2 g (0. 03 mol), 182.4 g (0.95 mol) of TMA, 10.9 g (0.05 mol) of PMDA, and 1000 g of NMP as a solvent, and synthesizing while discharging water at 180 ° C. After cooling to 60 ° C. while maintaining the nitrogen atmosphere, as the synthesis of the second stage, 95.6 g (0.38 mol) of MDI as an aromatic diisocyanate component, 17.7 g (0.10 mol) of TDI and 400 g of NMP were added as a solvent, and synthesis was performed at 140 ° C. to obtain a polyamide-imide resin insulating paint having a reduced viscosity of about 0.5 dl / g and a resin concentration of about 25% by weight.

(比較例1)
芳香族ジイソシアネート成分として255.0g(1.02モル)のMDI、芳香族トリカルボン酸無水物として192.0g(1.0モル)のTMA及び溶剤として1300gのNMPを投入し、140℃で合成を行い、還元粘度が約0.5dl/g、樹脂分濃度が約25重量%のポリアミドイミド樹脂絶縁塗料を得た。
(Comparative Example 1)
255.0 g (1.02 mol) of MDI as an aromatic diisocyanate component, 192.0 g (1.0 mol) of TMA as an aromatic tricarboxylic acid anhydride, and 1300 g of NMP as a solvent were added and synthesized at 140 ° C. A polyamideimide resin insulating coating having a reduced viscosity of about 0.5 dl / g and a resin concentration of about 25% by weight was obtained.

(比較例2)
第1段目の合成として、BAPPを205.0g(0.50モル)とTMAを192.0g(1.0モル)及び溶剤として1100gのNMPを投入して、180℃で系外に水を出しながら合成を行い、窒素雰囲気を維持したまま60℃まで冷却した後、第2段目の合成として、芳香族ジイソシアネート成分として127.5g(0.505モル)のMDI及び溶剤として450gのNMPを投入して、140℃で合成を行い、還元粘度が約0.5dl/g、樹脂分濃度が約25重量%のポリアミドイミド樹脂絶縁塗料を得た。
(Comparative Example 2)
In the first stage synthesis, 205.0 g (0.50 mol) of BAPP, 192.0 g (1.0 mol) of TMA and 1100 g of NMP as a solvent were added, and water was added to the system at 180 ° C. The composition was synthesized while being cooled and cooled to 60 ° C. while maintaining the nitrogen atmosphere. Then, as the second stage synthesis, 127.5 g (0.505 mol) of MDI as an aromatic diisocyanate component and 450 g of NMP as a solvent were added. The resultant was synthesized at 140 ° C. to obtain a polyamide-imide resin insulating paint having a reduced viscosity of about 0.5 dl / g and a resin concentration of about 25% by weight.

(比較例3)
第1段目の合成として、BAPPを41.0g(0.10モル)、4,4’ −DPEを80.0g(0.40モル)とTMAを192.0g(1.0モル)及び溶剤として1000gのNMPを投入して、180℃で系外に水を出しながら合成を行ったが析出が生じ、その後のエナメル線の特性は測定できなかった。
(Comparative Example 3)
As the first stage synthesis, 41.0 g (0.10 mol) of BAPP, 80.0 g (0.40 mol) of 4,4′-DPE, 192.0 g (1.0 mol) of TMA and a solvent As a result, 1000 g of NMP was added and synthesis was carried out while discharging water out of the system at 180 ° C., but precipitation occurred, and the characteristics of the enameled wire thereafter could not be measured.

表1より、実施例1〜7のポリアミドイミド樹脂絶縁塗料を用いたエナメル線では、誘電率が低く、従来よりも部分放電開始電圧は70〜100V程度向上することが確認された。一般特性は良好で、遜色ないレベルであった。   From Table 1, it was confirmed that the enameled wire using the polyamideimide resin insulating paints of Examples 1 to 7 has a low dielectric constant and the partial discharge starting voltage is improved by about 70 to 100 V compared to the conventional case. General characteristics were good and comparable.

これに対し、比較例1は汎用的に用いられているポリアミドイミドエナメル線を示すものであるが、可とう性、耐摩耗性、耐熱性、耐加水分解性はいずれも良好であるが、比誘電率が高く、部分放電開始電圧が低い。   On the other hand, Comparative Example 1 shows a polyamide-imide enameled wire that is used for general purposes, but the flexibility, wear resistance, heat resistance, and hydrolysis resistance are all good. The dielectric constant is high and the partial discharge starting voltage is low.

また、2つ以下のベンゼン環を有する芳香族ジアミン類を併用しない配合の比較例2では、軟化温度が360℃程度であり、汎用的に用いられるポリアミドイミド樹脂絶縁塗料からなる皮膜を有するエナメル線に比べて軟化温度が低くなってしまう。   Further, in Comparative Example 2 in which aromatic diamines having two or less benzene rings are not used in combination, the enameled wire having a softening temperature of about 360 ° C. and having a film made of a generally used polyamideimide resin insulating paint The softening temperature will be lower than.

また、2つ以下のベンゼン環を有する芳香族ジアミン類の配合比率をモル比で70よりも増やした比較例3では、溶解性が悪化し、1段目の合成の段階で析出してしまった。   Further, in Comparative Example 3 in which the blending ratio of aromatic diamines having two or less benzene rings was increased by more than 70 in terms of molar ratio, the solubility was deteriorated and deposited at the first stage of synthesis. .

以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments and examples of the present invention have been described above, the embodiments and examples described above do not limit the invention according to the claims. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

1 導体
2 皮膜
1 Conductor 2 Film

Claims (1)

2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、フルオレンジアミン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,4−ビス(4−アミノフェノキシ)ベンゼン、或いはそれらの異性体から選択される少なくとも1つからなる3つ以上のベンゼン環を有する芳香族ジアミン類及び2つ以下のベンゼン環を有する芳香族ジアミン類からなる芳香族ジアミン成分と、芳香族ジイソシアネート成分と、芳香族トリカルボン酸無水物を有する酸成分とを溶剤を用いて溶液重合させてなるポリアミドイミド樹脂絶縁塗料(ただし、析出が生じたポリアミドイミド樹脂絶縁塗料を除く)を、導体上あるいは他の絶縁皮膜上に塗布、焼付して皮膜が形成されており、前記皮膜は、比誘電率が3.5以下で耐軟化温度が390℃以上であることを特徴とする絶縁電線。
2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] ether, fluorenediamine, 4,4′-bis (4-aminophenoxy) biphenyl, 1 , 4-bis (4-aminophenoxy) benzene, or aromatic diamines having three or more benzene rings, and aromatic diamines having two or less benzene rings, selected from the isomers thereof an aromatic diamine component consisting class, an aromatic diisocyanate component and, an acid component having an aromatic tricarboxylic acid anhydride with a solvent solution polymerization was composed polyamide-imide resin insulating coating material (however, polyamideimide precipitation occurs A film is formed by applying and baking ( excluding resin insulation paint) on a conductor or other insulation film. The insulated wire has a relative dielectric constant of 3.5 or less and a softening temperature of 390 ° C. or more.
JP2013177557A 2013-08-29 2013-08-29 Insulated wire Active JP5622129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177557A JP5622129B2 (en) 2013-08-29 2013-08-29 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177557A JP5622129B2 (en) 2013-08-29 2013-08-29 Insulated wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008146699A Division JP5365899B2 (en) 2008-06-04 2008-06-04 Polyamideimide resin insulating paint and insulated wire using the same

Publications (2)

Publication Number Publication Date
JP2014017257A JP2014017257A (en) 2014-01-30
JP5622129B2 true JP5622129B2 (en) 2014-11-12

Family

ID=50111741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177557A Active JP5622129B2 (en) 2013-08-29 2013-08-29 Insulated wire

Country Status (1)

Country Link
JP (1) JP5622129B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174632A (en) * 1991-12-19 1993-07-13 Sumitomo Electric Ind Ltd Coil
JPH0632864A (en) * 1991-12-20 1994-02-08 Hitachi Chem Co Ltd Production of high-molecular weight polyamide-imide resin and heat-resistant resin composition
JPH06196025A (en) * 1992-12-22 1994-07-15 Sumitomo Electric Ind Ltd Insulated wire
JPH0745130A (en) * 1993-07-27 1995-02-14 Sumitomo Electric Ind Ltd Insulated wire
JP4473916B2 (en) * 2008-01-09 2010-06-02 日立マグネットワイヤ株式会社 Polyamideimide resin insulating paint and insulated wire using the same

Also Published As

Publication number Publication date
JP2014017257A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5365899B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
JP4473916B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
JP4584014B2 (en) Partially discharge-resistant insulating paint, insulated wire, and method for producing the same
JP5609732B2 (en) Insulating paint and insulated wire using the same
JP5761151B2 (en) Insulated wires and coils
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
JP2011190434A (en) Insulating coating material and manufacturing method thereof as well as insulating electric wire using the same and manufacturing method thereof
JP2013001872A (en) Polyamideimide resin insulating coating material, insulated wire, and coil
JP2012184416A (en) Polyamideimide resin insulation coating and insulated electric wire formed by using the same
JP2013049843A (en) Polyamide-imide resin insulating varnish and method of manufacturing the same, insulated wire, and coil
JP6394697B2 (en) Insulated wires and coils
JP2012195290A (en) Insulated wire
JP2012224697A (en) Polyimide resin varnish, and electric insulated wire, electric appliance coil and motor using the same
JP2013253124A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP2013051030A (en) Insulated wire and armature coil using the same, motor
WO2012153636A1 (en) Polyimide resin varnish, insulated electric wire using same, electric coil, and motor
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP5622129B2 (en) Insulated wire
JP5712661B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire
JP5427276B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
JP5837397B2 (en) Insulated wire and electric coil and motor using the same
JP5081258B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
JP2012243614A (en) Insulated wire, and electric coil and motor using the same
KR20200101867A (en) Composition for insulating coating layer and insulating cable having the insulating coating layer formed from the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

R150 Certificate of patent or registration of utility model

Ref document number: 5622129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350