JP3717297B2 - Insulated wire - Google Patents

Insulated wire Download PDF

Info

Publication number
JP3717297B2
JP3717297B2 JP35751797A JP35751797A JP3717297B2 JP 3717297 B2 JP3717297 B2 JP 3717297B2 JP 35751797 A JP35751797 A JP 35751797A JP 35751797 A JP35751797 A JP 35751797A JP 3717297 B2 JP3717297 B2 JP 3717297B2
Authority
JP
Japan
Prior art keywords
insulating film
insulated wire
thickness
film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35751797A
Other languages
Japanese (ja)
Other versions
JPH10247422A (en
Inventor
義伯 立松
厚 東浦
成彦 稲吉
洋光 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Denso Corp
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Denso Corp filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP35751797A priority Critical patent/JP3717297B2/en
Publication of JPH10247422A publication Critical patent/JPH10247422A/en
Application granted granted Critical
Publication of JP3717297B2 publication Critical patent/JP3717297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、モーターや発電機などのコイル用として好適な、耐傷性に優れる絶縁電線に関する。
【0002】
【従来の技術】
電気絶縁物で被覆された絶縁電線は各種の電気機器に組み込まれたコイルの用途に大量に使用されている。近年、この絶縁電線のコイル巻線加工工程における高速化、合理化が進められ、コイル巻き作業も従来の手巻きから自動コイル巻線機による加工に移行されている。また、コイルのステータスロット内への挿入も自動化されている。
しかし、この自動コイル巻線加工を行う場合、絶縁電線に大きな張力が加わるので皮膜のストレスが大きく、必然的に絶縁電線は損傷を受けやすくなる。また、コイルのステータスロット内への挿入時も、従来手で押し込んでいたものが機械によって押し込まれるようになったため、電線にはより大きな圧力がかかるようになってきた。このような環境のもとでは、電線同士、あるいは電線と電線接触物の間での擦れがより生じやすくなっており、コイルの絶縁不良が起こりやすくなる。
【0003】
また、コイルにおけるステータスロット内の絶縁電線の占積率をできるかぎり大きくすることが結果として機器全体の小型化、コスト低下につながることから、電線外径の細径化が要望されている。近年、この細径化の中で、さらに機器のパワーアップを意図して導体径の据え置きないしは増大が求められ、絶縁皮膜の薄肉化が必要となってきた。
しかし絶縁皮膜の薄肉化は、コイル巻きやコイルのステータスロット内への挿入の自動化の場合、皮膜損傷の頻度を増大させ、コイルの絶縁不良の発生率を高めることになってしまう。
上記の問題の解決には、電線同士、あるいは電線と接触する物体(金属棒・相間紙等)との摩擦係数の低下と、皮膜強度の向上が考えられる。摩擦係数が低いほどコイル巻き加工が容易になり、皮膜強度が強いほどコイル巻き作業およびコイルのステータスロット内への挿入作業(以下、これらの作業を合わせてコイル加工という)の際の損傷が少なくなる。
【0004】
従来から行われている摩擦係数低下の手段としては、電線表面に潤滑剤を塗布する方法、または絶縁塗料中に潤滑剤を添加して塗布焼付けする方法がある。
皮膜強度向上の手法としては、通常、ポリアミドイミド塗料を塗布焼付けした絶縁電線が使用される。この電線は他の樹脂( ポリエステル、ポリウレタン、ポリエステルイミド、ポリエステルアミドイミド、ポリイミド) と比べて機械的強度が高く、耐摩耗性に優れているため、コイル加工の条件が厳しい場合に多く使用されていた。
【0005】
ところが近年、コイル加工の条件はますます厳しくなり、前述のように摩擦係数を低下させたり、ポリアミドイミド樹脂塗料を塗布焼付けした電線を使用したりしても、皮膜の損傷を防ぐことができない場合が多くなってきた。
そこで、コイル加工時の皮膜損傷を防止する手段の一つとして、絶縁層と導体との密着性を向上させる方法が提案されている。そのための絶縁塗料の具体例として、1)ポリアミドイミド樹脂、アルコキシ変性アミノ樹脂、ベンゾトリアゾールからなる耐熱性塗料(特開平3−37283号公報)、2)ポリアミドイミド樹脂、トリアルキルアミンからなる塗料(特開平6−111632号公報)などが提案されている。
これらの手法を用いた電線は、往復摩耗試験(電線に比較的低い荷重をかけ、ビーズ針で皮膜を擦る試験)においては効果が見られる。しかしながら、一方向摩耗試験(JIS C 3003に規定されている試験;電線に漸次荷重をかけながらピアノ線で皮膜を引っかく試験)では効果が認められない。近年は後者の試験法が皮膜損傷試験として重要視されている。
また、密着性向上の手法のみを採用した電線は、皮膜厚を薄くしていくと往復摩耗値が低下してしまい、密着性向上の手法を用いない従来の電線とほぼ同レベルになることが多かった。
【0006】
一方、樹脂の分子構造の観点から分子中に剛直な構造を多く導入して皮膜強度を向上させ、皮膜の加工傷を減少させる方法も提案されており、特開平6−196025号公報には引張強度、引張弾性率を規定した絶縁皮膜を有する絶縁電線が記載されている。このような電線は一方向摩耗試験では著しい効果が見られ、また、薄肉化してもコイル加工時の皮膜の損傷を防ぐことが可能である。しかしながら、このような絶縁電線は、伸長後の可とう性および熱履歴を受けた後の可とう性のレベルが従来の電線に比較して低く、特に厳しい曲げ加工を受けたときに可とう性が十分でないので、皮膜に亀裂、割れが発生する恐れがあった。
【0007】
また、複数の種類の異なる皮膜を積層し、皮膜の機械的強度や耐熱衝撃性を改良させた例として、特公昭62−21203号公報記載の技術がある。この例では、最下層にポリアミドイミド樹脂、中間層に芳香族ポリイミド樹脂、上層にポリアミドイミド樹脂を設け、皮膜の機械的特性、ワニス含浸処理後の耐熱衝撃性を改良させた絶縁電線が開示されている。この電線においては、往復摩耗値の向上が見られ、また、ワニス含浸処理後熱処理を受けるとワニスが皮膜を引っ張ることになり、この力が中間層で緩和され、皮膜の割れ、亀裂が防止される。しかし、往復摩耗値は向上するものの一方向摩耗に対しては効果がなく、また、薄肉化したときには往復摩耗値も低下してしまうため、コイル加工時の皮膜の損傷を防ぐにはさらなる改良が必要であった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、絶縁皮膜が薄肉であっても、厳しい条件でのコイル加工時の皮膜損傷が防止できる絶縁電線を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは、従来の絶縁電線の絶縁皮膜を薄肉化した際の皮膜損傷の状態を顕微鏡等で十分に観察し、それぞれの損傷のメカニズムを解析した結果、上記課題を解決するためには、導体と絶縁皮膜を密着させること、電線表面の摩擦係数を低下させること、電線にかかる負荷を絶縁皮膜内で分散させる構造とすることの3点を同時に実現する必要があることを見出した。さらに、絶縁皮膜を特定の多層構造とすることにより上記の3点を同時に実現できることを見出し、この知見に基づき本発明を完成するに至った。
すなわち、本発明は、
(1)導体上に、ポリアミドイミド系樹脂100重量部に対し、0.05〜1.0重量部のトリアルキルアミン及び/又は5〜20重量部のアルコキシ化メラミン樹脂を含んでなるポリアミドイミド系樹脂塗料を塗布焼付けして形成した下層、ポリイミド系樹脂塗料を塗布焼付けして形成した中間層及び自己潤滑型ポリアミドイミド系樹脂塗料を塗布焼付けして形成した上層の少なくとも3層からなる絶縁皮膜を有することを特徴とする絶縁電線、
(2)ポリイミド系樹脂の膜厚が全絶縁皮膜厚の10〜40%であることを特徴とする(1)項に記載の絶縁電線、及び
(3)絶縁皮膜の厚さが20〜30μmであることを特徴とする(1)又は(2)項に記載の絶縁電線
を提供するものである。
【0010】
【発明の実施の形態】
以下、本発明について説明する。
本発明において絶縁皮膜の下層を形成するために用いられるポリアミドイミド系樹脂塗料のベース樹脂は、特に制限はなく、常法により、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート類を直接反応させて得たもの、あるいは、極性溶媒中でトリカルボン酸無水物にジアミン類を先に反応させて、まずイミド結合を導入し、ついでジイソシアネート類でアミド化して得たものを用いることができる。
【0011】
この樹脂の調製に用いるトリカルボン酸無水物としては、通常、トリメリット酸無水物を用いる。この場合、トリカルボン酸無水物の一部量をテトラカルボン酸無水物に置き換えて反応させてもよい。このときのテトラカルボン酸無水物としては例えばピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物などが用いられる。また、トリカルボン酸無水物の一部量を他の酸または酸無水物、例えばトリメリット酸、イソフタル酸、テレフタル酸などに置き換えてもよい。一方、トリカルボン酸無水物と反応させるジイソシアネート類としては、例えば、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアネート等の芳香族ジイソシアネート類が挙げられ、ジアミン類としてはm−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノベンゾフェノン等の芳香族ジアミン類が挙げられる。また、イミド化にはN,N’−ジメチルホルムアミドを用いてもよい。また、極性溶媒としては好ましくはN−メチル−2−ピロリドンを用いることができる。
【0012】
このようにして得たベース樹脂溶液にトリアルキルアミン及び/又はアルコキシ化メラミン樹脂を配合することにより、絶縁皮膜の下層に用いるポリアミドイミド系樹脂塗料を得ることができる。
トリアルキルアミンとして、好ましくはトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の低級アルキルのトリアルキルアミンが使用できる。この中でも可とう性および密着性の点でトリメチルアミン、トリエチルアミンが最も好ましい。ポリアミドイミド系樹脂に対する配合割合はポリアミドイミド系樹脂100重量部に対し、通常0.05〜1.0重量部、好ましくは0.1〜1重量部である。トリアルキルアミンを1.0重量部を越えて配合すると、皮膜の耐熱性が低下し、0.05重量部より少ないと、密着性に寄与しない。
また、本発明で使用するアルコキシ化メラミン樹脂としては、例えばブトキシ化メラミン樹脂、メトキシ化メラミン樹脂等の低級アルコキシ基で置換されたメラミン樹脂を用いることができ、樹脂の相溶性の点でメトキシ化メラミン樹脂が好ましい。配合割合はポリアミドイミド系樹脂100重量部に対し、通常5〜20重量部、好ましくは10〜20重量部である。5重量部より少ないと密着性が十分得られず、20重量部を越えて配合すると皮膜の耐熱性が低下する。
このようにして得たポリアミドイミド系樹脂塗料を導体に塗布、焼付けして、導体上に絶縁皮膜の下層を形成する。
【0013】
本発明において絶縁皮膜の中間層に用いられるポリイミド系樹脂は、芳香族テトラカルボン酸二無水物と芳香族ジアミン類を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、これを焼付け時の加熱処理によってイミド化させることによって得られる。芳香族テトラカルボン酸無水物には特に制限はなく、通常用いられるものが使用でき、例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、およびこれらの誘導体などが挙げられる。入手しやすい点においてはピロメリット酸二無水物が最も好ましい。芳香族ジアミン類も特に制限はなく、例えば、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン等が挙げられる。容易に入手できる点で4,4’−ジアミノジフェニルエーテルが好ましい。
このようなポリアミド酸溶液を下層の皮膜上に塗布、焼付けしてポリイミド樹脂皮膜からなる中間層とする。
本発明においてこの中間層は、絶縁電線に大きな荷重が加えられた時に絶縁皮膜の下層に応力が直接伝わらないよう作用する。
【0014】
本発明において絶縁皮膜の上層を形成するポリアミドイミド系樹脂塗料のベース樹脂は、最下層を形成するためのポリアミドイミド系樹脂塗料のベース樹脂と同様にして調製することができる。これに常法によりワックスや潤滑剤を分散、混合して自己潤滑型として上層のためのポリアミドイミド系樹脂塗料とする。分散、混合されるワックスとしては、通常用いられるものを特に制限なく使用することができ、例えば、ポリエチレンワックス、石油ワックス、パラフィンワックス等の合成ワックスおよびカルナバワックス、キャデリラワックス、ライスワックス等の天然ワックス等が挙げられる。潤滑剤についても特に制限はなく、例えば、シリコーン、シリコーンマクロモノマー、フッ素樹脂等を用いることができる。
このような自己潤滑性ポリアミドイミド樹脂塗料を中間層の上にさらに塗布、焼付けし、自己潤滑型ポリアミドイミドからなる上層を設ける。
なお、本発明の絶縁電線において、絶縁皮膜の各層を形成するための樹脂塗料の塗布及び焼付けの条件、方法には特に制限はなく、公知の各種の方法によって行うことができる。また、導体についても特に制限はない。
【0015】
本発明の絶縁電線は、上記のような多層構造の絶縁皮膜を有することにより、
1)絶縁皮膜の各層の層間において外部からかかる応力を分散させること、
2)導体と、導体に直接接する絶縁皮膜の下層との接着を強固にすること、
3)絶縁電線の表面の摩擦係数を低くすること
を同時に実現させたものであり、これによって初めて、絶縁皮膜厚を30μm以下に薄肉化しても、厳しい条件でのコイル加工に耐え得る耐傷性を有するものとすることができる。耐傷性と薄肉化の双方の観点より、本発明の絶縁電線の絶縁皮膜厚は、全膜厚で20〜30μmとすることが好ましい。
本発明においては、全絶縁皮膜厚に対し中間層の膜厚の比率が10〜40%であることが好ましい。中間層をこの厚さとすることにより、絶縁皮膜の耐傷性が効果的に向上する。下層及び上層の膜厚については特に制限はない。
【0016】
【実施例】
以下に本発明を実施例に基づいて、さらに詳細に説明する。
なお、実施例及び比較例の絶縁電線の絶縁皮膜の下層の組成(重量部)は表1及び表2にまとめて示した。
実施例1
2リットル容の4つ口フラスコに撹拌機、冷却管、塩化カルシウム管を取りつけ、無水トリメリット酸192g、4,4’−ジフェニルメタンジイソシアネート250g、N−メチル−2−ピロリドン663gを仕込み、80℃で2時間、昇温して140℃で5時間反応させた。その後50℃まで冷却し、N,N’−ジメチルホルムアミド163gを加え、希釈した。さらにトリメチルアミン1.8gを加え、メトキシ化メラミン樹脂(商品名;サイメル300、三井サイアナミッド株式会社製)35.4gを加え、1時間撹拌し、絶縁皮膜の下層用のポリアミドイミド系樹脂塗料を得た。
【0017】
3リットル容の4つ口フラスコに撹拌機、冷却管、塩化カルシウム管を取りつけ、無水ピロメリット酸218g、4,4’−ジアミノジフェニルエーテル200g、N−メチル−2−ピロリドン1672gを仕込み、温度を30℃以下に抑えながら、5時間反応させ、中間層用のポリイミド系樹脂塗料を得た。
市販のポリアミドイミド系樹脂塗料(商品名;HI406、日立化成工業株式会社製)にポリエチレンワックス(商品名;サンワックス131P、三洋化成工業株式会社製)を樹脂固形分に対し1重量%配合し、上層用の自己潤滑型ポリアミドイミド系樹脂塗料を得た。
1.0mmφの銅線上に前述の下層用塗料を炉長8mの焼付け炉を用いて複数回塗布焼付けして厚さ19μmの絶縁皮膜の下層を形成した。この上に前述の中間層用塗料を1回塗布焼付けして厚さ3μmの中間層を形成した。さらにこの上に前述の上層用塗料を1回塗布焼付けして、厚さ3μmの上層を形成し、全絶縁皮膜の厚さが25μmの絶縁電線を得た。
図1に、このようにして作成した本発明の絶縁電線の一実施態様の断面図を示した。図1中、1は導体(銅線)であり、この上に導体側から順に、絶縁皮膜の下層2、絶縁皮膜の中間層3、絶縁皮膜の上層4が上記の各塗料を用いて各々上記の膜厚で形成されている。
【0018】
実施例2
絶縁皮膜の下層用塗料におけるトリメチルアミンの配合量を3.6gとした以外は実施例1と同様にして、下層膜厚19μm、中間層膜厚3μm、上層膜厚3μm、全絶縁皮膜の膜厚25μmの絶縁電線を得た。
【0019】
実施例3
絶縁皮膜の下層用塗料におけるトリメチルアミンの代わりにトリエチルアミンを3.6g加え、メチル化メラミン樹脂の代わりにブトキシ化メラミン樹脂を35.4g加えた以外は実施例1と同様にして、下層膜厚19μm、中間層膜厚3μm、上層膜厚3μm、全絶縁皮膜の膜厚25μmの絶縁電線を得た。
【0020】
実施例4
絶縁皮膜の下層用塗料におけるトリエチルアミンの配合量を1.8gとし、ブトキシ化メラミン樹脂の配合量を35.4gとした以外は実施例3と同様にして、下層膜厚19μm、中間層膜厚3μm、上層膜厚3μm、全絶縁皮膜の膜厚25μmの絶縁電線を得た。
【0021】
実施例5
絶縁皮膜の膜厚を下層16μm、中間層6μmとした以外は実施例1と同様にして、全絶縁皮膜の膜厚25μmの絶縁電線を得た。
【0022】
実施例6
絶縁皮膜の膜厚を下層14μmとしたこと以外は実施例1と同様にして、全絶縁皮膜の膜厚20μmの絶縁電線を得た。
実施例7
絶縁皮膜の膜厚を下層14μmとしたこと以外は実施例3と同様にして、全絶縁皮膜の膜厚20μmの絶縁電線を得た。
【0023】
実施例8
絶縁皮膜の下層用塗料からメトキシ化メラミン樹脂を除いた以外は実施例1と同様にして、下層膜厚19μm、中間層膜厚3μm、上層膜厚3μm、全絶縁皮膜の膜厚25μmの絶縁電線を得た。
実施例9
絶縁皮膜の下層用塗料からトリメチルアミンを除いた以外は実施例1と同様にして、下層膜厚19μm、中間層膜厚3μm、上層膜厚3μm、全絶縁皮膜の膜厚25μmの絶縁電線を得た。
【0024】
実施例10
2リットル容の4つ口フラスコに撹拌機、冷却管、塩化カルシウム管を取り付け無水トリメリット酸192g(1.0mol)、4,4’−ジアミノジフェニルメタン99g(0.5mol)、N−メチル−2−ピロリドン436.5gを仕込み、内容物温度200℃まで昇温させ、2時間反応させた。反応中に発生する水は適宜、系外へ取り除いた。その後温度をいったん80℃まで下げ、4,4’−ジフェニルメタンジイソシアネートを125g(0.5mol)仕込み、140℃まで昇温させ5時間反応させた。その後50℃まで冷却し、N−メチル−2−ピロリドンを140g加え、不揮発分30%のポリアミドイミド系樹脂塗料を得た。この樹脂塗料にトリメチルアミン1.24g、メトキシ化メラミン樹脂24.7gを加え、絶縁皮膜の下層用のポリアミドイミド系樹脂塗料を得た。
1.0mmφの銅線上に前述の塗料を炉長8mの焼き付け炉を用いて複数回塗布焼き付けして厚さ19μmの絶縁皮膜の下層を形成した。この上に実施例1記載のポリイミド系樹脂塗料を1回塗布焼き付けして厚さ3μmの中間層を形成した。さらにこの上に実施例1記載の上層用自己潤滑型ポリアミドイミド系樹脂塗料を1回塗布焼き付けして、厚さ3μmの上層を形成し、全絶縁皮膜の厚さが25μmの絶縁電線を得た。
【0025】
比較例1
1.0mmφの銅線上に市販のポリアミドイミド樹脂塗料(商品名;HI406、日立化成工業株式会社製)を炉長8mの縦型焼付け炉を用いて複数回塗布焼付けし、絶縁皮膜の膜厚35μmの絶縁電線を得た。
比較例2
絶縁皮膜の膜厚を25μmとしたこと以外は比較例1と同様にして絶縁電線を得た。
比較例3
実施例1で用いた絶縁皮膜の下層用塗料を1.0mmφの銅線上に炉長8mの縦型焼付け炉を用いて複数回塗布焼付けし、絶縁皮膜の膜厚35μmの絶縁電線を得た。
【0026】
比較例4
絶縁皮膜の膜厚を25μmとしたこと以外は比較例3と同様にして絶縁電線を得た。
【0027】
比較例5
1.0mmφの銅線上に比較例1で用いた市販のポリアミドイミド樹脂塗料を炉長8mの縦型焼付け炉を用いて複数回塗布焼付けし、膜厚20μmの下層を形成した。この上に実施例1で用いた中間層用塗料を複数回塗布焼付けし、膜厚10μmの中間層を形成した。さらにこの上に先の市販のポリアミドイミド樹脂塗料を塗布焼付けして厚さ5μmの上層を形成し、全絶縁皮膜の膜厚35μmの絶縁電線を得た。
比較例6
絶縁皮膜の下層の膜厚を10μmとしたこと以外は比較例5と同様にして、全絶縁皮膜の膜厚25μmの絶縁電線を得た。
【0028】
比較例7
実施例1で用いた絶縁皮膜の下層用塗料を1.0mmφの銅線上に炉長8mの縦型焼付け炉を用いて複数回塗布焼付けし、膜厚22μmの下層を形成した。この上に実施例1で用いた上層用塗料を1 回塗布焼付けして膜厚3μmの上層を形成して、全絶縁皮膜の膜厚25μmの絶縁電線を得た。
比較例8
絶縁皮膜の下層用塗料におけるトリメチルアミンの配合量を0.11g、メトキシ化メラミン樹脂の配合量を10.6gにした以外は実施例1と同様にして、下層膜厚19μm、中間層膜厚3μm、上層膜厚3μm、全絶縁皮膜の膜厚25μmの絶縁電線を得た。
【0029】
上記実施例及び比較例で得た各種絶縁電線の耐傷性評価を、次のような試験法により評価した。
(1)一方向摩耗試験
JIS C 3003に準拠して行った。
(2)往復摩耗試験
旧JIS C 3003(1974年)に準拠して行った。
(3)ピアノ線による皮膜損傷荷重測定
図2に模式図で示したように絶縁電線6とピアノ線7を直交させ、ピアノ線に一定の荷重5をかけ、絶縁電線をひきぬいて皮膜の状態を観察し、導体が露出する荷重を測定した。
(4)コイルリーク電流値測定
ステータスロットにインサーター巻線機を使ってコイルを挿入した後、濃度5重量%の食塩水中に対向電極とともに浸漬し、コイルを+極として12Vの直流電圧を印加してリークしてくる電流値を測定した。
【0030】
(5)銅線と皮膜の密着性試験(JIS C 3003に準拠)
試験片を引っ張り試験機にかけた後、切断部分を顕微鏡で観察し、皮膜が導体から浮いている長さを測定した。
(6)静摩擦係数
図3に平面図、図4に側面図を示した装置で測定した。すなわち、スライダー12に巻き付けた絶縁電線11と台上に固定した絶縁電線14の間の静摩擦係数を、スライダーにかかる荷重13から算出した。
(7)20%伸長後の可とう性
絶縁電線を20%伸長した後、電線の導体径に相当する直径のマンドレルに巻き付け、亀裂の有無を観察した。
【0031】
上記試験法によって評価した結果を表1および表2に示した。
【0032】
【表1】

Figure 0003717297
【0033】
【表2】
Figure 0003717297
【0034】
各実施例の絶縁電線の耐傷性の向上はJIS C 3003に規定されている一方向摩耗試験で確認された。この試験は荷重を漸次増加させながら皮膜をピアノ線で削る試験であるが、実施例の絶縁電線は高荷重(2000〜3000g)域で絶縁皮膜の中間層および上層のみ削りとられ、下層が残留している現象が見られた。この現象は比較例ではみられなかった新規で特異な現象であった。
この現象をさらに説明すると、各実施例の、本発明の絶縁電線では、漸次増加する荷重によって皮膜に相当の力が加わっても異種の皮膜が積層していることでこの力を逃がすうえ、最下層と導体が強く密着しているため、加わった力で絶縁皮膜を最下層まで全てけずりとられてしまうことがなく、傷は導体まで達しなかったものと考えられる。
【0035】
これに対し、比較例1、2の電線の場合、本発明における中間層にあたるポリイミド樹脂層がないため、高荷重がかかった場合にかかる力を分散させることができず、一気に導体まで傷が進行してしまい、目的とする耐傷性特性が得られなかった。
比較例3、4の電線の場合には、実施例1で用いた塗料と同じトリメチルアミン及びメトキシ化メラミン樹脂を配合したポリアミドイミド塗料を用いているが、絶縁皮膜が多層でないため、かかる力を分散させることができず、やはり一気に導体まで傷が進行してしまい、目的とする耐傷性特性が得られなかった。
比較例5、6の電線の場合は、中間層のポリイミド樹脂層によってかかる力は分散されるものの、絶縁皮膜の導体への密着力が実施例のものと比べて低いため、十分な耐傷性が得られなかった。
比較例7の電線の絶縁皮膜は中間層のない2層構造としたが、実施例1のものと比較して、やはり耐傷性が十分でなかった。
比較例8の電線の絶縁皮膜は実施例と同様の3層構造としたが、下層用塗料中のトリアルキルアミン、アルコキシ化メラミン樹脂の配合量が少ないため十分な耐傷性特性は得られなかった。
すなわち本発明の絶縁電線は、導体に強く密着した下層、加わった応力を緩和する中間層、及び摩擦係数の低い上層を有する多層構造の絶縁皮膜を有することにより、従来にない耐傷性を発現していることがわかる。
【0036】
【発明の効果】
本発明の絶縁電線は高い耐傷性を有し、過酷なコイル加工の条件下で高い負荷がかかっても傷が導体まで達しにくく、絶縁不良を起こしにくい。また、本発明の絶縁電線においては、絶縁皮膜を薄肉化しても高い耐傷性が維持されるため、絶縁電線の占積率を低減させて、信頼性の高いコイルが提供でき、コイルを用いる機器全体の小型化、低コスト化、信頼性向上に寄与するという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の絶縁電線の一実施態様を示す断面図である。
【図2】ピアノ線による皮膜損傷荷重測定方法の試験装置の模式図である。
【図3】静摩擦係数測定装置の平面図である。
【図4】静摩擦係数測定装置の側面図である。
【符号の説明】
1 導体
2 絶縁皮膜の下層
3 絶縁皮膜の中間層
4 絶縁皮膜の上層
5 荷重
6 絶縁電線
7 ピアノ線
11 絶縁電線
12 スライダー
13 荷重
14 絶縁電線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulated wire that is suitable for coils of motors, generators and the like and has excellent scratch resistance.
[0002]
[Prior art]
Insulated wires coated with an electrical insulator are used in large quantities for applications of coils incorporated in various electrical devices. In recent years, speeding up and rationalization in the coil winding process of this insulated wire have been promoted, and the coil winding operation has been shifted from conventional manual winding to processing by an automatic coil winding machine. Also, the insertion of the coil into the status lot is automated.
However, when this automatic coil winding process is performed, since a large tension is applied to the insulated wire, the stress of the film is large, and the insulated wire is apt to be damaged. In addition, when inserting a coil into a status lot, since what has been pushed in by hand has been pushed by the machine, a greater pressure has been applied to the electric wire. Under such an environment, rubbing between the electric wires or between the electric wire and the electric wire contact object is more likely to occur, and the insulation failure of the coil is liable to occur.
[0003]
In addition, increasing the space factor of the insulated wire in the status lot in the coil as much as possible results in downsizing of the entire device and cost reduction, and thus there is a demand for a reduction in the outer diameter of the wire. In recent years, with this reduction in diameter, there has been a demand for deferring or increasing the conductor diameter in order to further increase the power of equipment, and it has become necessary to reduce the thickness of the insulating film.
However, the thinning of the insulating film increases the frequency of film damage and increases the incidence of coil insulation failure in the case of automating coil winding or coil insertion into a status lot.
In order to solve the above problem, it is conceivable to reduce the friction coefficient between the electric wires or the objects (metal rod, interphase paper, etc.) in contact with the electric wires and to improve the film strength. The lower the coefficient of friction, the easier the coil winding process, and the stronger the coating strength, the less damage during coil winding and coil insertion into the status lot (hereinafter referred to as coil processing). Become.
[0004]
Conventional means for reducing the friction coefficient include a method of applying a lubricant to the surface of an electric wire, or a method of applying and baking a lubricant in an insulating paint.
As a technique for improving the film strength, an insulated wire coated with a polyamide-imide paint and baked is usually used. This wire has high mechanical strength and excellent wear resistance compared to other resins (polyester, polyurethane, polyesterimide, polyesteramideimide, polyimide), so it is often used when the coil processing conditions are severe. It was.
[0005]
However, in recent years, the conditions for coil processing have become more severe, and even if the coefficient of friction is reduced as described above, or even if a wire coated with a polyamide-imide resin paint is baked, damage to the film cannot be prevented. Has increased.
Thus, as one means for preventing film damage during coil processing, a method for improving the adhesion between the insulating layer and the conductor has been proposed. As specific examples of the insulating paint for that purpose, 1) a heat-resistant paint comprising a polyamidoimide resin, an alkoxy-modified amino resin, and benzotriazole (JP-A-3-37283), 2) a paint comprising a polyamidoimide resin and a trialkylamine ( Japanese Patent Laid-Open No. 6-116632) has been proposed.
An electric wire using these methods is effective in a reciprocating wear test (a test in which a relatively low load is applied to the electric wire and the coating is rubbed with a bead needle). However, no effect is observed in the unidirectional wear test (the test prescribed in JIS C 3003; a test in which a film is scratched with a piano wire while gradually applying a load to an electric wire). In recent years, the latter test method has been regarded as important as a film damage test.
In addition, electric wires that use only the adhesion improvement technique have a reciprocating wear value that decreases as the film thickness decreases, and can be almost the same level as conventional cables that do not use the adhesion improvement technique. There were many.
[0006]
On the other hand, from the viewpoint of the molecular structure of the resin, there has also been proposed a method of introducing a lot of rigid structures in the molecule to improve the film strength and reduce the processing flaws of the film. An insulated wire having an insulating film that defines strength and tensile modulus is described. Such an electric wire has a remarkable effect in the unidirectional wear test, and even if the wire is thinned, it is possible to prevent damage to the film during coil processing. However, such an insulated wire has a lower level of flexibility after being stretched and subjected to a thermal history than conventional wires, and is particularly flexible when subjected to severe bending. Is not sufficient, there was a risk of cracking and cracking in the film.
[0007]
Moreover, as an example in which a plurality of different types of coatings are laminated to improve the mechanical strength and thermal shock resistance of the coating, there is a technique described in Japanese Patent Publication No. 62-21203. In this example, an insulated wire is disclosed in which a polyamideimide resin is provided in the lowermost layer, an aromatic polyimide resin is provided in the intermediate layer, and a polyamideimide resin is provided in the upper layer to improve the mechanical properties of the film and the thermal shock resistance after varnish impregnation treatment. ing. In this wire, the reciprocal wear value is improved, and when subjected to heat treatment after varnish impregnation treatment, the varnish pulls the film, and this force is relaxed in the intermediate layer, preventing the film from cracking and cracking. The However, although the reciprocating wear value is improved, it is not effective for unidirectional wear, and the reciprocating wear value also decreases when the wall thickness is reduced. Therefore, further improvements can be made to prevent damage to the film during coil processing. It was necessary.
[0008]
[Problems to be solved by the invention]
The objective of this invention is providing the insulated wire which can prevent the membrane | film | coat damage at the time of coil processing on severe conditions, even if an insulation membrane is thin.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors sufficiently observed the state of film damage when thinning the insulation film of the conventional insulated wire with a microscope or the like, and analyzed the mechanism of each damage, In order to solve the above problems, the conductor and the insulating film are brought into close contact with each other, the friction coefficient of the electric wire surface is reduced, and the load applied to the electric wire is dispersed in the insulating film. I found it necessary. Furthermore, it discovered that said 3 points | pieces were realizable simultaneously by making an insulating film into a specific multilayer structure, and came to complete this invention based on this knowledge.
That is, the present invention
(1) Polyamideimide system comprising 0.05 to 1.0 parts by weight of trialkylamine and / or 5 to 20 parts by weight of alkoxylated melamine resin with respect to 100 parts by weight of polyamideimide resin on the conductor. An insulating film comprising at least three layers: a lower layer formed by applying and baking a resin paint, an intermediate layer formed by applying and baking a polyimide resin paint, and an upper layer formed by applying and baking a self-lubricating polyamideimide resin paint An insulated wire characterized by having,
(2) The thickness of the polyimide resin is 10 to 40% of the total insulation film thickness, and (3) the insulation film has a thickness of 20 to 30 μm. The insulated wire according to item (1) or (2) is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below.
The base resin of the polyamide-imide resin paint used for forming the lower layer of the insulating film in the present invention is not particularly limited, and a tricarboxylic acid anhydride and a diisocyanate are directly reacted in a conventional method, for example, in a polar solvent. A product obtained or a product obtained by first reacting a diamine with a tricarboxylic acid anhydride in a polar solvent, first introducing an imide bond, and then amidating with a diisocyanate can be used.
[0011]
As the tricarboxylic acid anhydride used for preparing the resin, trimellitic acid anhydride is usually used. In this case, a part of the tricarboxylic acid anhydride may be replaced with a tetracarboxylic acid anhydride for the reaction. Examples of the tetracarboxylic acid anhydride used here include pyromellitic dianhydride and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride. In addition, a part of the tricarboxylic acid anhydride may be replaced with another acid or acid anhydride such as trimellitic acid, isophthalic acid, terephthalic acid, or the like. On the other hand, examples of the diisocyanates to be reacted with the tricarboxylic acid anhydride include aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate, and examples of the diamine include m-phenylenediamine and 4,4 ′. -Aromatic diamines such as diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 4,4′-diaminobenzophenone. Further, N, N′-dimethylformamide may be used for imidization. As the polar solvent, N-methyl-2-pyrrolidone can be preferably used.
[0012]
By blending the trialkylamine and / or alkoxylated melamine resin into the base resin solution thus obtained, a polyamideimide resin coating used for the lower layer of the insulating film can be obtained.
The trialkylamine is preferably a lower alkyl trialkylamine such as trimethylamine, triethylamine, tripropylamine or tributylamine. Among these, trimethylamine and triethylamine are most preferable in terms of flexibility and adhesion. The compounding ratio with respect to the polyamide-imide resin is usually 0.05 to 1.0 part by weight, preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the polyamide-imide resin. If the trialkylamine is added in an amount exceeding 1.0 part by weight, the heat resistance of the film is lowered, and if it is less than 0.05 part by weight, it does not contribute to adhesion.
In addition, as the alkoxylated melamine resin used in the present invention, for example, a melamine resin substituted with a lower alkoxy group such as butoxylated melamine resin or methoxylated melamine resin can be used. Melamine resins are preferred. The blending ratio is usually 5 to 20 parts by weight, preferably 10 to 20 parts by weight, based on 100 parts by weight of the polyamideimide resin. When the amount is less than 5 parts by weight, sufficient adhesion cannot be obtained, and when the amount exceeds 20 parts by weight, the heat resistance of the film decreases.
The polyamideimide-based resin paint thus obtained is applied to a conductor and baked to form a lower layer of an insulating film on the conductor.
[0013]
In the present invention, the polyimide resin used for the intermediate layer of the insulating film is a polyamic acid solution obtained by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine in a polar solvent. It is obtained by imidization by heat treatment. There is no restriction | limiting in particular in aromatic tetracarboxylic acid anhydride, What is used normally can be used, for example, pyromellitic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 3 , 3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and derivatives thereof. In terms of easy availability, pyromellitic dianhydride is most preferable. The aromatic diamines are not particularly limited, and examples thereof include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, and the like. 4,4′-diaminodiphenyl ether is preferred because it is easily available.
Such a polyamic acid solution is applied onto the lower film and baked to form an intermediate layer made of a polyimide resin film.
In the present invention, this intermediate layer acts so that stress is not directly transmitted to the lower layer of the insulating film when a large load is applied to the insulated wire.
[0014]
In the present invention, the base resin of the polyamide-imide resin paint that forms the upper layer of the insulating film can be prepared in the same manner as the base resin of the polyamide-imide resin paint for forming the lowermost layer. In this manner, wax or a lubricant is dispersed and mixed by a conventional method to form a self-lubricating polyamideimide resin coating for the upper layer. As the wax to be dispersed and mixed, those usually used can be used without particular limitation. For example, synthetic waxes such as polyethylene wax, petroleum wax, paraffin wax, and natural waxes such as carnauba wax, cadilla wax, and rice wax. A wax etc. are mentioned. There is no restriction | limiting in particular also about a lubricant, For example, silicone, a silicone macromonomer, a fluororesin etc. can be used.
Such a self-lubricating polyamideimide resin coating is further applied and baked on the intermediate layer to provide an upper layer made of self-lubricating polyamideimide.
In addition, in the insulated wire of this invention, there is no restriction | limiting in particular in the application | coating and baking conditions of the resin coating material for forming each layer of an insulating film, It can carry out by various well-known methods. Moreover, there is no restriction | limiting in particular also about a conductor.
[0015]
The insulated wire of the present invention has an insulating film having a multilayer structure as described above,
1) Dispersing the stress applied from the outside between the layers of the insulating film,
2) To strengthen the adhesion between the conductor and the lower layer of the insulating film that is in direct contact with the conductor;
3) A reduction in the friction coefficient of the surface of the insulated wire has been realized at the same time, and for the first time, even if the insulation film thickness is reduced to 30 μm or less, it has scratch resistance that can withstand coil processing under severe conditions. It can have. From the viewpoint of both scratch resistance and thinning, it is preferable that the insulation film thickness of the insulated wire of the present invention is 20 to 30 μm in total film thickness.
In this invention, it is preferable that the ratio of the film thickness of an intermediate | middle layer is 10 to 40% with respect to the total insulation film thickness. By setting the intermediate layer to this thickness, the scratch resistance of the insulating film is effectively improved. There is no restriction | limiting in particular about the film thickness of a lower layer and an upper layer.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail based on examples.
In addition, the composition (weight part) of the lower layer of the insulation film of the insulated wire of an Example and a comparative example was put together in Table 1 and Table 2, and was shown.
Example 1
Attach stirrer, condenser and calcium chloride tube to a 2 liter four-necked flask and charge 192 g of trimellitic anhydride, 250 g of 4,4′-diphenylmethane diisocyanate and 663 g of N-methyl-2-pyrrolidone at 80 ° C. The temperature was raised for 2 hours and reacted at 140 ° C. for 5 hours. Thereafter, the mixture was cooled to 50 ° C., and 163 g of N, N′-dimethylformamide was added for dilution. Further, 1.8 g of trimethylamine was added, 35.4 g of a methoxylated melamine resin (trade name: Cymel 300, manufactured by Mitsui Cyanamid Co., Ltd.) was added, and the mixture was stirred for 1 hour to obtain a polyamideimide resin coating for the lower layer of the insulating film. .
[0017]
A three-liter four-necked flask was equipped with a stirrer, a condenser tube, and a calcium chloride tube, charged with 218 g of pyromellitic anhydride, 200 g of 4,4′-diaminodiphenyl ether, and 1672 g of N-methyl-2-pyrrolidone, and the temperature was 30. The reaction was allowed to proceed for 5 hours while keeping the temperature below ℃ or below to obtain a polyimide resin coating for the intermediate layer.
A commercially available polyamideimide resin coating (trade name: HI406, manufactured by Hitachi Chemical Co., Ltd.) and polyethylene wax (trade name; Sunwax 131P, manufactured by Sanyo Chemical Industries Co., Ltd.) are blended in an amount of 1% by weight based on the resin solid content. A self-lubricating polyamide-imide resin coating for the upper layer was obtained.
The above-mentioned lower layer coating material was applied and baked a plurality of times on a 1.0 mmφ copper wire using a baking furnace having a furnace length of 8 m to form a lower layer of an insulating film having a thickness of 19 μm. On this, the intermediate layer coating material was applied and baked once to form an intermediate layer having a thickness of 3 μm. Further, the above-mentioned upper layer coating material was applied and baked once thereon to form an upper layer having a thickness of 3 μm, and an insulated wire having a total insulating film thickness of 25 μm was obtained.
FIG. 1 shows a cross-sectional view of one embodiment of the insulated wire of the present invention prepared as described above. In FIG. 1, reference numeral 1 denotes a conductor (copper wire), and the lower layer 2 of the insulating film, the intermediate layer 3 of the insulating film, and the upper layer 4 of the insulating film are respectively formed on the conductor using the above-mentioned paints. It is formed with the film thickness.
[0018]
Example 2
The lower layer film thickness 19 μm, the intermediate layer film thickness 3 μm, the upper layer film thickness 3 μm, and the total insulation film film thickness 25 μm, except that the amount of trimethylamine in the coating for the lower layer of the insulating film was 3.6 g. An insulated wire was obtained.
[0019]
Example 3
In the same manner as in Example 1 except that 3.6 g of triethylamine was added instead of trimethylamine in the coating for the lower layer of the insulating film, and 35.4 g of butoxylated melamine resin was added instead of methylated melamine resin, the lower layer film thickness was 19 μm, An insulated wire having an intermediate layer thickness of 3 μm, an upper layer thickness of 3 μm, and a total insulating film thickness of 25 μm was obtained.
[0020]
Example 4
In the same manner as in Example 3, except that the blending amount of triethylamine in the coating for the lower layer of the insulating film was 1.8 g and the blending amount of the butoxylated melamine resin was 35.4 g, the lower layer film thickness was 19 μm and the intermediate layer film thickness was 3 μm. An insulated wire having an upper layer thickness of 3 μm and a total insulating film thickness of 25 μm was obtained.
[0021]
Example 5
An insulated wire having a total insulating film thickness of 25 μm was obtained in the same manner as in Example 1 except that the film thickness of the insulating film was 16 μm for the lower layer and 6 μm for the intermediate layer.
[0022]
Example 6
An insulated wire having a total insulating film thickness of 20 μm was obtained in the same manner as in Example 1 except that the insulating film thickness was 14 μm.
Example 7
An insulated wire having a total insulating film thickness of 20 μm was obtained in the same manner as in Example 3 except that the thickness of the insulating film was 14 μm.
[0023]
Example 8
Insulated wire having a lower layer thickness of 19 μm, an intermediate layer thickness of 3 μm, an upper layer thickness of 3 μm, and a total insulating coating thickness of 25 μm, except that the methoxylated melamine resin was removed from the lower layer coating of the insulating coating. Got.
Example 9
An insulated wire having a lower layer thickness of 19 μm, an intermediate layer thickness of 3 μm, an upper layer thickness of 3 μm, and a total insulating coating thickness of 25 μm was obtained in the same manner as in Example 1 except that trimethylamine was removed from the lower coating for the insulating coating. .
[0024]
Example 10
A two-liter four-necked flask is equipped with a stirrer, a condenser tube, and a calcium chloride tube, 192 g (1.0 mol) of trimellitic anhydride, 99 g (0.5 mol) of 4,4′-diaminodiphenylmethane, N-methyl-2 -The pyrrolidone 436.5g was prepared, and it heated up to the content temperature of 200 degreeC, and was made to react for 2 hours. Water generated during the reaction was appropriately removed from the system. Thereafter, the temperature was once lowered to 80 ° C., 125 g (0.5 mol) of 4,4′-diphenylmethane diisocyanate was added, and the temperature was raised to 140 ° C. and reacted for 5 hours. Thereafter, the mixture was cooled to 50 ° C., and 140 g of N-methyl-2-pyrrolidone was added to obtain a polyamideimide resin paint having a nonvolatile content of 30%. Trimethylamine 1.24 g and methoxylated melamine resin 24.7 g were added to this resin paint to obtain a polyamideimide resin paint for the lower layer of the insulating film.
The above-mentioned coating material was applied and baked a plurality of times on a 1.0 mmφ copper wire using a baking oven having a furnace length of 8 m to form a lower layer of an insulating film having a thickness of 19 μm. On top of this, the polyimide resin paint described in Example 1 was applied and baked once to form an intermediate layer having a thickness of 3 μm. Furthermore, the upper layer self-lubricating polyamideimide resin coating material described in Example 1 was applied and baked once thereon to form an upper layer having a thickness of 3 μm, and an insulated wire having a total insulating film thickness of 25 μm was obtained. .
[0025]
Comparative Example 1
A commercially available polyamide-imide resin paint (trade name: HI406, manufactured by Hitachi Chemical Co., Ltd.) was applied and baked several times on a 1.0 mmφ copper wire using a vertical baking furnace with a furnace length of 8 m, and the film thickness of the insulating film was 35 μm. An insulated wire was obtained.
Comparative Example 2
An insulated wire was obtained in the same manner as in Comparative Example 1 except that the thickness of the insulating film was 25 μm.
Comparative Example 3
The coating for the lower layer of the insulating film used in Example 1 was applied and baked a plurality of times on a 1.0 mmφ copper wire using a vertical baking furnace having a furnace length of 8 m to obtain an insulated wire having an insulating film thickness of 35 μm.
[0026]
Comparative Example 4
An insulated wire was obtained in the same manner as in Comparative Example 3 except that the thickness of the insulating film was 25 μm.
[0027]
Comparative Example 5
The commercially available polyamideimide resin paint used in Comparative Example 1 was applied and baked several times on a 1.0 mmφ copper wire using a vertical baking furnace having a furnace length of 8 m to form a lower layer having a thickness of 20 μm. On this, the intermediate layer coating material used in Example 1 was applied and baked a plurality of times to form an intermediate layer having a thickness of 10 μm. Further, the above-mentioned commercially available polyamideimide resin paint was applied and baked thereon to form an upper layer having a thickness of 5 μm, and an insulated wire having a total insulation film thickness of 35 μm was obtained.
Comparative Example 6
An insulated wire having a total insulating film thickness of 25 μm was obtained in the same manner as in Comparative Example 5 except that the film thickness of the lower layer of the insulating film was 10 μm.
[0028]
Comparative Example 7
The coating for the lower layer of the insulating film used in Example 1 was applied and baked several times on a 1.0 mmφ copper wire using a vertical baking furnace having a furnace length of 8 m to form a lower layer having a thickness of 22 μm. On this, the upper layer coating material used in Example 1 was applied and baked once to form an upper layer having a thickness of 3 μm, thereby obtaining an insulated wire having a total thickness of 25 μm.
Comparative Example 8
In the same manner as in Example 1 except that the blending amount of trimethylamine in the coating for the lower layer of the insulating film was 0.11 g and the blending amount of the methoxylated melamine resin was 10.6 g, the lower layer film thickness was 19 μm, the intermediate layer film thickness was 3 μm, An insulated wire having an upper layer thickness of 3 μm and a total insulating film thickness of 25 μm was obtained.
[0029]
The scratch resistance evaluation of various insulated wires obtained in the above Examples and Comparative Examples was evaluated by the following test methods.
(1) Unidirectional wear test It was performed according to JIS C 3003.
(2) Reciprocal wear test The test was performed according to the former JIS C 3003 (1974).
(3) Measurement of film damage load by piano wire As shown in the schematic diagram of FIG. 2, the insulated wire 6 and the piano wire 7 are orthogonally crossed, a constant load 5 is applied to the piano wire, and the insulated wire is pulled to remove the film. And the load at which the conductor was exposed was measured.
(4) Coil leakage current measurement status Insert a coil into the status lot using an inserter winding machine, then immerse it in a 5% strength by weight saline solution with a counter electrode, and apply a DC voltage of 12V with the coil as the positive electrode. Then, the leaked current value was measured.
[0030]
(5) Copper wire and film adhesion test (conforming to JIS C 3003)
After the test piece was subjected to a tensile tester, the cut portion was observed with a microscope, and the length of the film floating from the conductor was measured.
(6) Coefficient of static friction Measured with an apparatus having a plan view in FIG. 3 and a side view in FIG. That is, the coefficient of static friction between the insulated wire 11 wound around the slider 12 and the insulated wire 14 fixed on the table was calculated from the load 13 applied to the slider.
(7) The flexible insulated wire after 20% elongation was stretched by 20%, and then wound around a mandrel having a diameter corresponding to the conductor diameter of the wire, and the presence or absence of cracks was observed.
[0031]
The results evaluated by the above test methods are shown in Tables 1 and 2.
[0032]
[Table 1]
Figure 0003717297
[0033]
[Table 2]
Figure 0003717297
[0034]
The improvement of the scratch resistance of the insulated wire in each example was confirmed by a unidirectional wear test specified in JIS C 3003. This test is a test in which the film is shaved with a piano wire while gradually increasing the load, but the insulated wire of the example is scraped only in the intermediate layer and the upper layer of the insulating film in the high load (2000 to 3000 g) region, and the lower layer remains. This phenomenon was observed. This phenomenon was a novel and unique phenomenon that was not seen in the comparative example.
To further explain this phenomenon, in the insulated wire of the present invention of each example, even when a considerable force is applied to the film due to a gradually increasing load, the different types of films are laminated, and this force is released. Since the lower layer and the conductor are in close contact with each other, the applied film does not scrape all the insulating film down to the lowermost layer, and it is considered that the scratch did not reach the conductor.
[0035]
On the other hand, in the case of the electric wires of Comparative Examples 1 and 2, since there is no polyimide resin layer corresponding to the intermediate layer in the present invention, the force applied when a high load is applied cannot be dispersed, and scratches progress to the conductor at once. As a result, the intended scratch resistance characteristic could not be obtained.
In the case of the wires of Comparative Examples 3 and 4, the same polyamide imide paint as the paint used in Example 1 and a polyamidoimide paint blended with a methoxylated melamine resin are used. As a result, scratches progressed to the conductor all at once, and the intended scratch resistance characteristics could not be obtained.
In the case of the electric wires of Comparative Examples 5 and 6, although the force applied by the polyimide resin layer of the intermediate layer is dispersed, the adhesion strength of the insulating film to the conductor is lower than that of the example, so that the scratch resistance is sufficient. It was not obtained.
Although the insulating film of the electric wire of Comparative Example 7 had a two-layer structure without an intermediate layer, it was still insufficient in scratch resistance as compared with that of Example 1.
The insulation film of the electric wire of Comparative Example 8 had a three-layer structure similar to that of the example, but sufficient scratch resistance characteristics could not be obtained due to the small amount of trialkylamine and alkoxylated melamine resin in the lower layer coating. .
That is, the insulated wire of the present invention has a multi-layered insulating film having a lower layer that is strongly adhered to the conductor, an intermediate layer that relieves applied stress, and an upper layer that has a low coefficient of friction, and thus exhibits unprecedented scratch resistance. You can see that
[0036]
【The invention's effect】
The insulated electric wire of the present invention has high scratch resistance, and even when a high load is applied under severe coil processing conditions, the scratch does not easily reach the conductor and hardly causes poor insulation. In addition, in the insulated wire of the present invention, high scratch resistance is maintained even if the insulation film is thinned. Therefore, the space factor of the insulated wire can be reduced, and a highly reliable coil can be provided. It has an excellent effect of contributing to overall downsizing, cost reduction, and reliability improvement.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of an insulated wire according to the present invention.
FIG. 2 is a schematic diagram of a test apparatus for a method for measuring a film damage load with a piano wire.
FIG. 3 is a plan view of a static friction coefficient measuring apparatus.
FIG. 4 is a side view of the static friction coefficient measuring apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Conductor 2 Lower layer of insulating film 3 Intermediate layer of insulating film 4 Upper layer of insulating film 5 Load 6 Insulated wire 7 Piano wire 11 Insulated wire 12 Slider 13 Load 14 Insulated wire

Claims (3)

導体上に、ポリアミドイミド系樹脂100重量部に対し、0.05〜1.0重量部のトリアルキルアミン及び/又は5〜20重量部のアルコキシ化メラミン樹脂を含んでなるポリアミドイミド系樹脂塗料を塗布焼付けして形成した下層、ポリイミド系樹脂塗料を塗布焼付けして形成した中間層及び自己潤滑型ポリアミドイミド系樹脂塗料を塗布焼付けして形成した上層の少なくとも3層からなる絶縁皮膜を有することを特徴とする絶縁電線。A polyamide-imide resin coating comprising 0.05 to 1.0 parts by weight of trialkylamine and / or 5 to 20 parts by weight of alkoxylated melamine resin with respect to 100 parts by weight of polyamide-imide resin on a conductor. It has an insulating film consisting of at least three layers of a lower layer formed by coating and baking, an intermediate layer formed by coating and baking a polyimide resin coating, and an upper layer formed by coating and baking a self-lubricating polyamideimide resin coating. Characterized insulated wire. ポリイミド系樹脂の膜厚が全絶縁皮膜厚の10〜40%であることを特徴とする請求項1に記載の絶縁電線。The insulated wire according to claim 1, wherein the thickness of the polyimide resin is 10 to 40% of the total thickness of the insulating film. 絶縁皮膜の厚さが20〜30μmであることを特徴とする請求項1又は2に記載の絶縁電線。The insulated wire according to claim 1 or 2, wherein the insulating film has a thickness of 20 to 30 µm.
JP35751797A 1996-12-25 1997-12-25 Insulated wire Expired - Fee Related JP3717297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35751797A JP3717297B2 (en) 1996-12-25 1997-12-25 Insulated wire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-345650 1996-12-25
JP34565096 1996-12-25
JP35751797A JP3717297B2 (en) 1996-12-25 1997-12-25 Insulated wire

Publications (2)

Publication Number Publication Date
JPH10247422A JPH10247422A (en) 1998-09-14
JP3717297B2 true JP3717297B2 (en) 2005-11-16

Family

ID=26578072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35751797A Expired - Fee Related JP3717297B2 (en) 1996-12-25 1997-12-25 Insulated wire

Country Status (1)

Country Link
JP (1) JP3717297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297785A (en) * 2008-05-13 2009-12-24 Hitachi Cable Ltd Copper wire for magnet wire, method for producing copper wire for magnet wire, and magnet wire
JP2010023090A (en) * 2008-07-22 2010-02-04 Hitachi Cable Ltd Manufacturing method of copper wire for magnet wire, copper wire for magnet wire, and magnet wire

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4057230B2 (en) * 2000-10-03 2008-03-05 古河電気工業株式会社 Insulated conductor
JP5117027B2 (en) * 2006-10-06 2013-01-09 古河電気工業株式会社 Insulated wire
US20100132975A1 (en) * 2007-04-12 2010-06-03 Toru Shimizu Insulated electrical wire, electrical coil, and motor
JP5503121B2 (en) * 2008-07-03 2014-05-28 古河電気工業株式会社 Insulating paint and insulated wires
US8420938B2 (en) * 2009-03-05 2013-04-16 Hitachi Cable, Ltd. Insulated electric wire
JP5493192B2 (en) * 2010-03-15 2014-05-14 住友電工ウインテック株式会社 Insulated wire and manufacturing method thereof
CN102855975B (en) 2011-06-30 2017-06-06 日立金属株式会社 Insulated electric conductor and the coil using the insulated electric conductor
JP5783239B2 (en) * 2012-12-27 2015-09-24 株式会社デンソー Rotating electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297785A (en) * 2008-05-13 2009-12-24 Hitachi Cable Ltd Copper wire for magnet wire, method for producing copper wire for magnet wire, and magnet wire
JP2010023090A (en) * 2008-07-22 2010-02-04 Hitachi Cable Ltd Manufacturing method of copper wire for magnet wire, copper wire for magnet wire, and magnet wire

Also Published As

Publication number Publication date
JPH10247422A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
US5965263A (en) Insulated wire
JP5626530B2 (en) Insulating paint, method for producing the same, insulated wire using the same, and method for producing the same
US5393612A (en) Insulated wire
JP5540671B2 (en) Insulated wire
JP6839695B2 (en) Insulated wires, motor coils and electrical / electronic equipment
JP3717297B2 (en) Insulated wire
US6734361B2 (en) Insulated wire
EP1011107B1 (en) Insulated wire
JP2002109965A (en) Insulation sheath electric conductor
JP2000235818A (en) Insulated wire
JP5351011B2 (en) Insulated wire, electric coil and motor
JPWO2013150991A1 (en) Insulated wire and manufacturing method thereof
JP4190589B2 (en) Insulated wire
JP2001155551A (en) Insulated wire
JP3287025B2 (en) Insulated wire
JP4844992B2 (en) Insulated wire
JP2012046619A (en) Insulated wire, electric appliance coil using the same, and motor
JP2011159578A (en) Insulation wire, and electric coil and motor using the same
JP2936895B2 (en) Insulated wire
JP4360566B2 (en) Insulated wire and method of manufacturing coil using the same
JP5329121B2 (en) Insulated wire
JP5342277B2 (en) Multi-layer insulated wire
JP4934624B2 (en) Insulated wire
JP2012048922A (en) Insulation wire, and electric machine coil and motor using the same
JP5117027B2 (en) Insulated wire

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees