JP4355097B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP4355097B2
JP4355097B2 JP2000330132A JP2000330132A JP4355097B2 JP 4355097 B2 JP4355097 B2 JP 4355097B2 JP 2000330132 A JP2000330132 A JP 2000330132A JP 2000330132 A JP2000330132 A JP 2000330132A JP 4355097 B2 JP4355097 B2 JP 4355097B2
Authority
JP
Japan
Prior art keywords
green sheet
ceramic green
metal layer
wiring board
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000330132A
Other languages
Japanese (ja)
Other versions
JP2002134646A (en
Inventor
秀憲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000330132A priority Critical patent/JP4355097B2/en
Publication of JP2002134646A publication Critical patent/JP2002134646A/en
Application granted granted Critical
Publication of JP4355097B2 publication Critical patent/JP4355097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子や表面弾性波素子等の電子部品が搭載される配線基板の製造方法に関するものである。
【0002】
【従来の技術】
従来、半導体素子や表面弾性波素子等の電子部品を搭載するための配線基板は、例えばその上面の中央部に電子部品が塔載される搭載部を有する四角形状のセラミックスより成る絶縁基体と、この絶縁基体の搭載部から外部に導出する配線導体と、絶縁基体の上面外周部に搭載部を取り囲むように枠状に形成されたシール金属層とを具備している。
【0003】
そして、絶縁基体の搭載部に電子部品を塔載するとともに、この電子部品の各電極を配線導体に電気的に接続し、しかる後、シール金属層に例えば封止用シールリングを介して金属からなる蓋体を接合させ、絶縁基体と蓋体とからなる容器の内部に電子部品を気密に封止することによって製品としての電子装置となる。
【0004】
ところでこのような配線基板は、近時における電子装置の小型化の要求に伴い、その大きさが数mm角程度と極めて小さく、薄いものとなってきているとともに、封止用シールリングを用いずシール金属層に蓋体を直接溶接する方法がとられるようになってきている。
【0005】
なお、前記シール金属層に蓋体を直接、溶接接合する場合、シール金属層の絶縁基体に対する接合強度を強いものとしておく必要があり、そのためシール金属層は絶縁基体の上面外周縁まで施し、絶縁基体との接合面積を広いものとしてある。
【0006】
またこのような小型化した配線基板は、その取り扱いを容易とするため、さらにまたセラミック配線基板および電子装置の製作効率をよくするために、多数個の配線基板を1枚の広面積のセラミック基板から同時集約的に得るようになした、いわゆる多数個取り配線基板の形態で、通常、以下の工程により製作される。
【0007】
即ち、
(1)セラミックグリーンシートを縦方向及び横方向の仮想線によって四角形状をなす複数の領域に区画するとともに各領域に金属ペースト所定パターンに印刷塗布し配線用導体を形成する工程と
(2)前記セラミックグリーンシートの各領域の外周縁に沿って金属ペーストを0.3mm〜0.6mmの幅で枠状に印刷塗布し、シール用金属層を形成する工程と
(3)前記セラミックグリーンシートの上面で横方向の仮想線上に第1の分割溝を、縦方向の仮想線上に第2の分割溝を、例えば、金属製の刃をセラミックグリーンシート上に各仮想線に沿って押圧することにより、順次形成する工程と
(4)前記セラミックグリーンシートを焼成し、セラミック焼結体から成る絶縁基体に配線導体及びシール金属層を被着させた複数個の配線基板を有するセラミック基板を形成する工程と
(5)前記セラミック基板を第1及び第2の分割溝に沿って曲げ応力を加えることにより切断し、多数の配線基板を個々に分割する工程
とにより製作されている。
【0008】
なお、前記セラミックグリーンシートに形成された第1の分割溝はセラミックグリーンシートに第2の分割溝を形成するために金属製の刃を押圧した際、閉じるような変形を受け、これによって第1の分割溝の幅は、第2の分割溝の幅に対して約70%〜90%と狭いものとなっている。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来の配線基板では、シール用金属層がセラミックグリーンシートの各四角形状の領域の外周縁まで形成されていること、第1の分割溝の幅が狭くなっていること等からセラミックグリーンシートを焼成し、絶縁基体と成す際に、セラミックグリーンシートの焼成収縮によって第1の分割溝の幅がより一層狭いものとなり、第1の分割溝を挟んで隣合った同士のシール金属層が、癒着してしまうという欠点を有していた。
【0010】
特にこのようなシール金属層同士の癒着は各四角形状の領域のそれぞれの辺の中央部で起こり易く、シール金属層同士が癒着すると分割溝に沿って各絶縁基体に分割する時、大きな力が必要となり分割が困難となるとともに、本来分割される箇所以外の所で割れを発生し、所定形状の絶縁基体を得ることができないという欠点が誘発されてしまう。
【0011】
本発明は上記欠点に鑑み案出されたものであり、その目的は、配線基板を多数個取りのセラミック基板の形態で製作する方法において、シール金属層が分割溝を挟んで隣合った同士で癒着することを防止し、セラミック基板を容易かつ正確に分割溝に沿って分割することが可能な配線基板の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明の配線基板の製造方法は、
(1)セラミックグリーンシートを縦方向及び横方向の仮想線によって四角形状をなす複数の領域に区画するとともに各領域に配線用導体を形成する工程と、
(2)前記セラミックグリーンシートの各領域の外周縁に、金属ペーストを0.3〜0.6mmの幅で枠状に印刷塗布し、シール用金属層を形成する工程と、
(3)前記セラミックグリーンシートの横方向の仮想線上で各領域の中央部に直径0.1mm〜0.25mmの貫通孔を形成する工程と、
(4)前記セラミックグリーンシートの上面で横方向の仮想線上に第1の分割溝を形成する工程と、
(5)前記セラミックグリーンシートの上面で縦方向の仮想線上に第2の分割溝を形成する工程と、
(6)前記セラミックグリーンシートを焼成し、セラミック焼結体から成る絶縁基体に配線導体及びシール金属層被着させた複数個の配線基板を有するセラミック基板を形成する工程と、
(7)前記セラミック基板を第1及び第2の分割溝に沿って切断し、多数の配線基板を個々に分割する工程
とから成ることを特徴とするものである。
【0013】
本発明の配線基板の製造方法によれば、セラミックグリーンシートの横方向の仮想線上で四角形状の各領域の中央部に直径0.1mm〜0.25mmの貫通孔を形成した後、セラミックグリーンシートの上面で横方向の仮想線上に第1の分割溝を、セラミックグリーンシートの上面で縦方向の仮想線上に第2の分割溝を順次形成するようになしたことから、第2の分割溝を形成する際に第1の分割溝の幅が狭くなること及びセラミックグリーンシートの焼成収縮等に起因して各四角形状の領域のそれぞれの辺の中央部でシール金属層同士が癒着しようとしてもその癒着は第1の分割溝の各領域の中央部に貫通孔が形成されていることによって効果的に阻止され、その結果、分割溝に沿って各絶縁基体に分割する時、小さな力で分割が可能となるとともに所定箇所で正確に分割が可能となり、所定形状の絶縁基体を正確に得ることができる。
【0014】
【発明の実施の形態】
次に本発明を添付図面に基づき詳細に説明する。
図1は本発明の製造方法で形成された配線基板を半導体素子収納用パッケージに適用した場合の一実施例を示し、図中、Aは絶縁基体1と配線導体2とシール金属層3とから成る配線基板、4は蓋体である。この配線基板Aの絶縁基体1と蓋体4とで半導体素子5を収容するための容器6が構成される。
【0015】
前記絶縁基体1は半導体素子5を支持する支持部材として作用し、上面の略中央部に半導体素子搭載部1aを有し、この搭載部1a上に半導体素子5がガラス、ロウ材、樹脂等の接着材を介して取着固定される。
【0016】
また前記配線導体2は半導体素子5の各電極を外部電気回路に接続するための導電路として作用し、半導体素子5の各電極をボンディングワイヤ7を介し配線導体2に接続することによって半導体素子5の各電極は配線導体2を介して外部電気回路に接続されることとなる。
【0017】
更に前記シール金属層3は蓋体4をロウ材を介して接合するための下地金属層として作用し、シール金属層3上に蓋体4を金−錫等のロウ材を介して位置決め載置するとともに所定温度で熱処理することによりシール金属層3上に蓋体4が接合され、絶縁基体1と蓋体4とから成る容器6内部に半導体素子5が気密に収容される。
【0018】
前記配線基板Aは、分割溝で区画された配線基板Aとなる領域を多数個有するセラミック基板を、前記分割溝に沿って切断することにより製作される。
【0019】
この配線基板Aの製造方法について、次に、図2乃至図7に基づいて説明する。なお、図中、図1と同一箇所には同一符号が付してある。
【0020】
まず、図2に示す如く、セラミックグリーンシート11を横方向の仮想線12a及び縦方向の仮想線12bによって四角形状をなし中央部に半導体素子搭載部1aを有する複数の領域13に区画するとともに各四角形状の領域13の搭載部1a周辺に配線用導体14を形成する。
【0021】
前記セラミックグリーンシート11は、例えば、絶縁基体1が酸化アルミニウム質焼結体で形成されている場合であれば、酸化アルミニウム、酸化ケイ素、酸化カルシウム、酸化マグネシウム等の原料粉末に適当な有機バインダおよび溶剤を添加混合して泥漿状となすとともに、従来周知のドクターブレード法やカレンダーロール法等を用いてシート状に成形することによって形成される。
【0022】
また前記配線用導体14は、タングステン、モリブデン、マンガン、銅、銀等の金属粉末から成り、タングステン等の金属粉末に適当な有機バインダーや溶剤を添加混合して得た金属ペーストをセラミックグリーンシート11の仮想線によって区画された各四角形状の領域13に従来周知のスクリーン印刷法により所定パターンに印刷塗布することによって形成される。
【0023】
次に、図3に示す如く、前記セラミックグリーンシート11の各四角形状の領域13の外周縁に金属ペーストを0.3〜0.6mmの幅で枠状に印刷塗布し、シール用金属層15を形成する。
【0024】
前記シール用金属層15を形成する金属ペーストは、配線用導体14を形成する金属ペーストと同様に、タングステン、モリブデン、マンガン、銅、銀等の金属粉末に適当な有機バインダーや溶剤を添加混合することにより作製される。
【0025】
次に、図4に示す如く、前記セラミックグリーンシート11の横方向の仮想線12a上で各領域13の中央部に貫通孔16を形成する。
【0026】
前記貫通孔16は、横方向の仮想線12aを挟んで隣接するシール用金属層15の各領域13の中央部に一定の隙間を形成する作用をなし、この隙間により、セラミックグリーンシート11に印刷、形成したシール用金属層15が、後の工程の焼成時、分割溝を挟んで隣合った同士で癒着することが阻止される。
【0027】
前記貫通孔16は、例えば、金属製の打ち抜きピンを、セラミックグリーンシート11の仮想線上の所定位置に押圧するとともに厚み方向に貫通させることにより形成される。
【0028】
次に、図5に示す如く、前記セラミックグリーンシート11の上面で横方向の仮想線12a上に第1の分割溝17aを形成し、その後、縦方向の仮想線12b上に第2の分割溝17bを形成する。
【0029】
前記第1の分割溝17aおよび第2の分割溝17bは、例えば、V字状等、前記各分割溝の所定の断面形状と同じ縦断面形を有する金属製の刃をセラミックグリーンシート11の上面に押圧することにより形成される。
【0030】
なお、この場合、前記第1の分割溝17aは、セラミックグリーンシート11に第2の分割溝17bを形成するために金属製の刃を押圧した際、閉じるような変形を受け、これによって第1の分割溝17aの幅は、第2の分割溝17bの幅に対して約70%〜90%と狭いものとなっている。
【0031】
次に、前記セラミックグリーンシート11を、還元雰囲気中、約1600℃の温度で焼成し、図6に示す如く、セラミック焼結体から成る絶縁基体1に配線導体2及びシール金属層3を被着させた複数個の配線基板Aを有するセラミック基板18を形成する。この焼成の際、セラミックグリーンシート11の各分割溝17a、17bは、セラミックグリーンシート11の四角形状の各領域13の中央部の焼結開始が端部に比べて遅く、収縮量も小さいことから、各領域13の中央部で閉じるようにして収縮する。このため分割溝の幅は、上記セラミックグリーンシートへの形成時の変形と相俟って、特に第1の分割溝17aの中央部で非常に狭いものとなっている。しかしながら、第1の分割溝17aの中央部には貫通孔16が形成されており、該貫通孔16によって四角形状をなす各配線基板Aのそれぞれの辺の中央部でシール金属層3同士が癒着しようとするのが効果的に阻止され、隣接するシール金属層3同士が癒着することはない。
【0032】
次に、前記セラミック基板18を第1及び第2の分割溝17a、17bに沿って切断し、図7に示す如く、中央部に搭載部1aを有する絶縁基体1に配線導体2及びシール金属層3を形成した多数の配線基板Aを個々に分割する。
【0033】
前記セラミック基板18の切断は、順次、第1、第2の各分割溝17a、17bに沿ってセラミック基板18に曲げ応力を加えて撓折することにより行われる。
【0034】
また前記セラミック基板18を縦横の分割溝17a、17bに沿って分割する際、隣接するシール金属層3同士は貫通孔16により癒着が阻止されているため分割を小さな力で行なうことが可能となり、同時に分割を分割溝17a、17bに沿って正確に行なうことができ、所定形状の配線基板Aを正確に得ることができる。
【0035】
なお、前記貫通孔16は、その直径が0.1mmよりも小さくなると、第1の分割溝17aの、各領域13の中央部を挟んで隣接するシール金属層3同士が癒着するのを効果的に阻止することができず、また0.25mmよりも大きくなると、貫通孔16の形成部位におけるシール金属層3の幅が狭くなり過ぎ、蓋体4とシール金属層3との接合面積が不十分となり、蓋体4の接合強度や気密封止の長期信頼性を劣化させてしまう。従って、前記貫通孔16は、その直径が0.1mm〜0.25mmの範囲に特定される。
【0036】
かくして得られた配線基板Aは、絶縁基体1の上面に半導体素子5を搭載するとともに半導体素子5の電極を配線導体2に電気的に接続し、シール金属層3に蓋体4をロウ材等の封止材を介して接合することにより、半導体素子5が絶縁基体1と蓋体4とで構成される容器6内部に気密に封止されて半導体装置となり、外部電気回路に実装することにより半導体素子5の電極が外部電気回路と電気的に接続されることとなる。
【0037】
なお、前記蓋体4のシール金属層3への接合は、例えば、金−錫ロウ材を介してシール金属層3上に蓋体4を位置決め当接するとともに、ロウ材を加熱溶融させてシール金属層3と蓋体4との接合する面に濡れ広がらせることにより行われる。
【0038】
また前記シール金属層3は、その幅が0.3mm未満となると、貫通孔16形成部位におけるシール金属層3の幅が狭くなり過ぎ、蓋体4とシール金属層3とを強固に接合させることができず、蓋体の接合強度や気密封止の長期信頼性を劣化させてしまい、0.6mmを超えると配線基板Aを小型化することができなくなるとともに、封止材がシール金属層3と蓋体4との接合面積に比べて広く流れ過ぎ蓋体4の接合強度が弱くなり、また蓋体4の接合位置がずれ易くなってしまう。従って、前記シール金属層3は、その幅が0.3mm〜0.6mmの範囲に特定される。
【0039】
更に前記各配線基板Aのシール金属層3および配線導体2はその表面にニッケル、銅、パラジウム、金、錫等の金属またはその合金から成るメッキ層(非図示)を2μm〜20μmの厚みに被着させておくとシール金属層3および配線導体2の酸化腐食が有効に防止されるとともに、ボンディングワイヤ7のボンディング性や蓋体4の溶接接合の強度等が良好となる。従って、前記各配線基板Aのシール金属層3および配線導体2はその表面にニッケル、銅、パラジウム、金、錫等の金属またはその合金から成るメッキ層(非図示)を2μm〜20μmの厚みに被着させておくことが好ましい。
本発明はまた上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、上述の実施例では本発明の配線基板を半導体素子収納用パッケージに適用した例で説明したが、これを、表面弾性波素子等の電子部品を搭載する配線基板に適用してもよい。
【0040】
【発明の効果】
本発明の配線基板の製造方法によれば、セラミックグリーンシートの横方向の仮想線上で四角形状の各領域の中央部に直径0.1mm〜0.25mmの貫通孔を形成した後、セラミックグリーンシートの上面で横方向の仮想線上に第1の分割溝を、セラミックグリーンシートの上面で縦方向の仮想線上に第2の分割溝を順次形成するようになしたことから、第2の分割溝を形成する際に第1の分割溝の幅が狭くなること及びセラミックグリーンシートの焼成収縮等に起因して各四角形状の領域のそれぞれの辺の中央部でシール金属層同士が癒着しようとしてもその癒着は第1の分割溝の各領域の中央部に貫通孔が形成されていることによって効果的に阻止され、その結果、分割溝に沿って各絶縁基体に分割する時、小さな力で分割が可能となるとともに所定箇所で正確に分割が可能となり、所定形状の絶縁基体を正確に得ることができる。
【図面の簡単な説明】
【図1】本発明の配線基板を半導体素子収納用パッケージに適用した場合の一実施例を示す断面図である。
【図2】図1に示す半導体素子収納用パッケージに使用される配線基板の製造方法を説明するための各工程毎の平面図である。
【図3】図1に示す半導体素子収納用パッケージに使用される配線基板の製造方法を説明するための各工程毎の平面図である。
【図4】図1に示す半導体素子収納用パッケージに使用される配線基板の製造方法を説明するための各工程毎の平面図である。
【図5】図1に示す半導体素子収納用パッケージに使用される配線基板の製造方法を説明するための各工程毎の平面図である。
【図6】図1に示す半導体素子収納用パッケージに使用される配線基板の製造方法を説明するための各工程毎の平面図である。
【図7】図1に示す半導体素子収納用パッケージに使用される配線基板の製造方法を説明するための各工程毎の平面図である。
【符号の説明】
1・・・・絶縁基体
1a・・・搭載部
2・・・・配線導体
3・・・・シール金属層
A・・・・配線基板
4・・・・蓋体
5・・・・半導体素子
6・・・・容器
7・・・・ボンディングワイヤ
11・・・セラミックグリーンシート
12a・・横方向の仮想線
12b・・縦方向の仮想線
13・・・領域
14・・・配線用導体
15・・・シール用金属層
16・・・貫通孔
17a・・第1の分割溝
17b・・第2の分割溝
18・・・セラミック基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a wiring board on which electronic components such as semiconductor elements and surface acoustic wave elements are mounted.
[0002]
[Prior art]
Conventionally, a wiring board for mounting an electronic component such as a semiconductor element or a surface acoustic wave element includes, for example, an insulating base made of a rectangular ceramic having a mounting portion on which an electronic component is mounted at the center of its upper surface, A wiring conductor led out from the mounting portion of the insulating base and a seal metal layer formed in a frame shape so as to surround the mounting portion on the outer peripheral portion of the upper surface of the insulating base.
[0003]
And while mounting an electronic component on the mounting part of an insulating base | substrate, each electrode of this electronic component is electrically connected to a wiring conductor, and after that, from a metal via a sealing ring for sealing, for example. An electronic device as a product is obtained by bonding a lid body and sealing an electronic component inside a container composed of an insulating base and a lid body.
[0004]
By the way, with the recent demand for miniaturization of electronic devices, such wiring boards have become extremely small and have a thickness of about several millimeters square, and do not use a sealing ring for sealing. A method of directly welding the lid to the seal metal layer has been adopted.
[0005]
When the lid is directly welded to the seal metal layer, the seal metal layer needs to have a strong bonding strength to the insulating base, and therefore, the seal metal layer is applied to the outer periphery of the upper surface of the insulating base and insulated. The bonding area with the substrate is wide.
[0006]
In addition, in order to facilitate the handling of such a miniaturized wiring board, and to improve the manufacturing efficiency of the ceramic wiring board and the electronic device, a large number of wiring boards are combined into a single large-area ceramic board. In the form of a so-called multi-piece wiring board that is obtained collectively from the above, it is usually manufactured by the following steps.
[0007]
That is,
(1) a step of partitioning the ceramic green sheet into a plurality of rectangular regions by vertical and horizontal imaginary lines and printing and applying a predetermined pattern of metal paste to each region to form a wiring conductor; Forming a metal layer for sealing by applying a metal paste in a frame shape with a width of 0.3 mm to 0.6 mm along the outer peripheral edge of each region of the ceramic green sheet; and (3) an upper surface of the ceramic green sheet. By pressing the first dividing groove on the horizontal imaginary line, the second dividing groove on the imaginary line in the vertical direction, for example, by pressing a metal blade on the ceramic green sheet along each imaginary line, And (4) a plurality of wiring boards in which the ceramic green sheet is fired and a wiring conductor and a sealing metal layer are deposited on an insulating base made of a ceramic sintered body. And (5) cutting the ceramic substrate by applying a bending stress along the first and second dividing grooves, and dividing the plurality of wiring substrates individually. Yes.
[0008]
The first dividing groove formed in the ceramic green sheet is deformed so as to close when a metal blade is pressed to form the second dividing groove in the ceramic green sheet. The width of the divided grooves is as narrow as about 70% to 90% with respect to the width of the second divided grooves.
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional wiring board, the sealing metal layer is formed up to the outer peripheral edge of each square-shaped region of the ceramic green sheet, and the width of the first dividing groove is reduced. When the sheet is fired to form an insulating substrate, the width of the first dividing groove becomes narrower due to the firing shrinkage of the ceramic green sheet, and the seal metal layers adjacent to each other across the first dividing groove are formed. , Had the disadvantage of adhering.
[0010]
In particular, such adhesion between the seal metal layers is likely to occur at the center of each side of each quadrangular region, and when the seal metal layers adhere to each other, a large force is generated when the seal metal layers are divided into the respective insulating bases along the dividing grooves. It becomes necessary and difficult to divide, and cracks are generated in places other than the part that is originally divided, leading to a disadvantage that an insulating substrate having a predetermined shape cannot be obtained.
[0011]
The present invention has been devised in view of the above-described drawbacks, and the object of the present invention is to manufacture a wiring board in the form of a multi-piece ceramic substrate, in which a sealing metal layer is adjacent to each other with a dividing groove interposed therebetween. An object of the present invention is to provide a method of manufacturing a wiring board that prevents adhesion and can divide a ceramic substrate along a dividing groove easily and accurately.
[0012]
[Means for Solving the Problems]
The manufacturing method of the wiring board of the present invention includes:
(1) a step of partitioning the ceramic green sheet into a plurality of rectangular regions by vertical and horizontal virtual lines and forming a wiring conductor in each region;
(2) A step of printing and applying a metal paste in a frame shape with a width of 0.3 to 0.6 mm on the outer peripheral edge of each region of the ceramic green sheet to form a metal layer for sealing;
(3) forming a through hole having a diameter of 0.1 mm to 0.25 mm in the center of each region on the horizontal imaginary line of the ceramic green sheet;
(4) forming a first divided groove on a horizontal imaginary line on the upper surface of the ceramic green sheet;
(5) forming a second divided groove on the imaginary line in the vertical direction on the upper surface of the ceramic green sheet;
(6) firing the ceramic green sheet, and forming a ceramic substrate having a plurality of wiring substrates in which a wiring conductor and a seal metal layer are deposited on an insulating base made of a ceramic sintered body;
(7) The method includes a step of cutting the ceramic substrate along the first and second dividing grooves and dividing a plurality of wiring substrates individually.
[0013]
According to the method for manufacturing a wiring board of the present invention, after forming a through hole having a diameter of 0.1 mm to 0.25 mm in the center of each quadrangular region on the horizontal virtual line of the ceramic green sheet, the ceramic green sheet Since the first divided grooves are sequentially formed on the horizontal imaginary line on the upper surface of the ceramic green sheet and the second divided grooves are formed on the imaginary vertical line on the upper surface of the ceramic green sheet, the second divided grooves are formed. Even when the seal metal layers try to adhere to each other at the center of each side of each quadrangular region due to the narrowing of the width of the first dividing groove during the formation and firing shrinkage of the ceramic green sheet Adhesion is effectively prevented by the formation of a through hole in the center of each region of the first dividing groove. As a result, when dividing into each insulating substrate along the dividing groove, the adhesion can be performed with a small force. Made possible Together enables accurately divided at a predetermined position can be obtained accurately insulation substrate having a predetermined shape.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an embodiment in which a wiring board formed by the manufacturing method of the present invention is applied to a package for housing a semiconductor element. In the figure, A is composed of an insulating substrate 1, a wiring conductor 2, and a seal metal layer 3. The wiring board 4 is a lid. The insulating substrate 1 and the lid 4 of the wiring board A constitute a container 6 for housing the semiconductor element 5.
[0015]
The insulating substrate 1 functions as a support member for supporting the semiconductor element 5 and has a semiconductor element mounting portion 1a at a substantially central portion on the upper surface. The semiconductor element 5 is made of glass, brazing material, resin, etc. It is attached and fixed via an adhesive.
[0016]
The wiring conductor 2 acts as a conductive path for connecting each electrode of the semiconductor element 5 to an external electric circuit. By connecting each electrode of the semiconductor element 5 to the wiring conductor 2 via the bonding wire 7, the semiconductor element 5 is connected. These electrodes are connected to an external electric circuit through the wiring conductor 2.
[0017]
Further, the seal metal layer 3 acts as a base metal layer for joining the lid body 4 via the brazing material, and the lid body 4 is positioned on the seal metal layer 3 via the brazing material such as gold-tin. At the same time, the cover 4 is bonded onto the seal metal layer 3 by heat treatment at a predetermined temperature, and the semiconductor element 5 is hermetically accommodated inside the container 6 composed of the insulating base 1 and the cover 4.
[0018]
The wiring board A is manufactured by cutting a ceramic substrate having a plurality of regions to be the wiring board A divided by the dividing grooves along the dividing grooves.
[0019]
Next, a method for manufacturing the wiring board A will be described with reference to FIGS. In the figure, the same parts as those in FIG.
[0020]
First, as shown in FIG. 2, the ceramic green sheet 11 is formed into a quadrangular shape by a horizontal imaginary line 12a and a vertical imaginary line 12b, and is partitioned into a plurality of regions 13 having a semiconductor element mounting portion 1a at the center. A wiring conductor 14 is formed around the mounting portion 1a of the rectangular region 13.
[0021]
For example, when the insulating base 1 is formed of an aluminum oxide sintered body, the ceramic green sheet 11 includes an organic binder suitable for raw material powders such as aluminum oxide, silicon oxide, calcium oxide, and magnesium oxide, and It is formed by adding a solvent to form a slurry, and forming it into a sheet using a conventionally known doctor blade method, calendar roll method, or the like.
[0022]
The wiring conductor 14 is made of a metal powder such as tungsten, molybdenum, manganese, copper, or silver. A metal paste obtained by adding an appropriate organic binder or solvent to the metal powder such as tungsten is mixed with the ceramic green sheet 11. Each of the rectangular regions 13 defined by the virtual lines is formed by printing and applying a predetermined pattern by a conventionally known screen printing method.
[0023]
Next, as shown in FIG. 3, a metal paste is printed and applied in a frame shape with a width of 0.3 to 0.6 mm on the outer peripheral edge of each square-shaped region 13 of the ceramic green sheet 11, and the sealing metal layer 15. Form.
[0024]
As with the metal paste forming the wiring conductor 14, the metal paste forming the metal layer 15 for sealing is mixed by adding an appropriate organic binder or solvent to metal powder such as tungsten, molybdenum, manganese, copper, or silver. It is produced by this.
[0025]
Next, as shown in FIG. 4, a through hole 16 is formed in the center of each region 13 on the horizontal virtual line 12 a of the ceramic green sheet 11.
[0026]
The through hole 16 has a function of forming a fixed gap at the center of each region 13 of the sealing metal layer 15 adjacent to the horizontal imaginary line 12a, and the gap is printed on the ceramic green sheet 11. The formed sealing metal layer 15 is prevented from adhering to each other adjacent to each other across the dividing groove when firing in a later step.
[0027]
The through hole 16 is formed, for example, by pressing a metal punching pin to a predetermined position on the imaginary line of the ceramic green sheet 11 and penetrating it in the thickness direction.
[0028]
Next, as shown in FIG. 5, the first divided grooves 17a are formed on the horizontal virtual lines 12a on the upper surface of the ceramic green sheet 11, and then the second divided grooves are formed on the vertical virtual lines 12b. 17b is formed.
[0029]
The first dividing groove 17a and the second dividing groove 17b are made of, for example, a metal blade having the same vertical cross-sectional shape as the predetermined cross-sectional shape of each of the dividing grooves, such as a V shape. It is formed by pressing.
[0030]
In this case, the first dividing groove 17a is deformed so as to be closed when a metal blade is pressed to form the second dividing groove 17b in the ceramic green sheet 11, and thereby the first dividing groove 17a is deformed. The width of the divided groove 17a is as narrow as about 70% to 90% with respect to the width of the second divided groove 17b.
[0031]
Next, the ceramic green sheet 11 is fired at a temperature of about 1600 ° C. in a reducing atmosphere, and as shown in FIG. 6, the wiring conductor 2 and the seal metal layer 3 are deposited on the insulating base 1 made of a ceramic sintered body. A ceramic substrate 18 having the plurality of wiring substrates A thus formed is formed. At the time of firing, each of the divided grooves 17a and 17b of the ceramic green sheet 11 has a slower start of sintering at the center of each square-shaped region 13 of the ceramic green sheet 11 than the end, and the shrinkage amount is small. Then, it shrinks so as to close at the center of each region 13. For this reason, the width of the dividing groove is very narrow, especially in the central portion of the first dividing groove 17a, coupled with the deformation at the time of forming the ceramic green sheet. However, a through hole 16 is formed in the central portion of the first dividing groove 17a, and the seal metal layers 3 adhere to each other at the central portion of each side of each of the wiring boards A having a quadrangular shape. The attempt is effectively prevented, and the adjacent seal metal layers 3 do not adhere to each other.
[0032]
Next, the ceramic substrate 18 is cut along the first and second dividing grooves 17a and 17b, and as shown in FIG. 7, the wiring conductor 2 and the seal metal layer are formed on the insulating base 1 having the mounting portion 1a at the center. A large number of wiring boards A formed with 3 are individually divided.
[0033]
The ceramic substrate 18 is cut by bending the ceramic substrate 18 by applying bending stress along the first and second divided grooves 17a and 17b sequentially.
[0034]
Further, when the ceramic substrate 18 is divided along the vertical and horizontal dividing grooves 17a, 17b, the adjacent seal metal layers 3 are prevented from adhering to each other by the through holes 16, so that the division can be performed with a small force. At the same time, the division can be accurately performed along the division grooves 17a and 17b, and the wiring board A having a predetermined shape can be obtained accurately.
[0035]
When the diameter of the through hole 16 is smaller than 0.1 mm, it is effective that the seal metal layers 3 adjacent to each other across the central portion of each region 13 of the first dividing groove 17a are adhered to each other. If the thickness is larger than 0.25 mm, the width of the seal metal layer 3 at the portion where the through hole 16 is formed becomes too narrow, and the bonding area between the lid 4 and the seal metal layer 3 is insufficient. Thus, the bonding strength of the lid 4 and the long-term reliability of the hermetic sealing are deteriorated. Therefore, the diameter of the through hole 16 is specified in the range of 0.1 mm to 0.25 mm.
[0036]
In the wiring board A thus obtained, the semiconductor element 5 is mounted on the upper surface of the insulating base 1, the electrodes of the semiconductor element 5 are electrically connected to the wiring conductor 2, and the lid 4 is placed on the sealing metal layer 3 with a brazing material or the like. The semiconductor element 5 is hermetically sealed inside the container 6 composed of the insulating base 1 and the lid body 4 to form a semiconductor device, and is mounted on an external electric circuit. The electrode of the semiconductor element 5 is electrically connected to an external electric circuit.
[0037]
The lid 4 is bonded to the seal metal layer 3 by, for example, positioning and abutting the lid 4 on the seal metal layer 3 via a gold-tin brazing material and heating and melting the brazing material to seal metal. It is carried out by wetting and spreading the surface where the layer 3 and the lid 4 are joined.
[0038]
Further, when the width of the seal metal layer 3 is less than 0.3 mm, the width of the seal metal layer 3 in the through hole 16 formation region becomes too narrow, and the lid 4 and the seal metal layer 3 are firmly bonded. In this case, the bonding strength of the lid and the long-term reliability of the hermetic sealing are deteriorated. If the thickness exceeds 0.6 mm, the wiring board A cannot be reduced in size and the sealing material is the sealing metal layer 3. Compared to the bonding area between the lid body 4 and the lid body 4, the lid body 4 flows too much and the joint strength of the lid body 4 becomes weak, and the joining position of the lid body 4 is likely to shift. Therefore, the width of the seal metal layer 3 is specified in the range of 0.3 mm to 0.6 mm.
[0039]
Further, the sealing metal layer 3 and the wiring conductor 2 of each wiring board A are covered with a plating layer (not shown) made of a metal such as nickel, copper, palladium, gold, tin or an alloy thereof (not shown) to a thickness of 2 μm to 20 μm. If attached, the oxidative corrosion of the seal metal layer 3 and the wiring conductor 2 is effectively prevented, and the bonding property of the bonding wire 7 and the strength of the welded joint of the lid 4 are improved. Therefore, the sealing metal layer 3 and the wiring conductor 2 of each wiring board A have a plating layer (not shown) made of a metal such as nickel, copper, palladium, gold, tin, or an alloy thereof on the surface thereof to a thickness of 2 μm to 20 μm. It is preferable to make it adhere.
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiments, the wiring board of the present invention is replaced with a semiconductor element. Although the example applied to the storage package has been described, this may be applied to a wiring board on which an electronic component such as a surface acoustic wave element is mounted.
[0040]
【The invention's effect】
According to the method for manufacturing a wiring board of the present invention, after forming a through hole having a diameter of 0.1 mm to 0.25 mm in the center of each quadrangular region on the horizontal virtual line of the ceramic green sheet, the ceramic green sheet Since the first divided grooves are sequentially formed on the horizontal imaginary line on the upper surface of the ceramic green sheet and the second divided grooves are formed on the imaginary vertical line on the upper surface of the ceramic green sheet, the second divided grooves are formed. Even when the seal metal layers try to adhere to each other at the center of each side of each quadrangular region due to the narrowing of the width of the first dividing groove during the formation and firing shrinkage of the ceramic green sheet Adhesion is effectively prevented by the formation of a through hole in the center of each region of the first dividing groove. As a result, when dividing into each insulating substrate along the dividing groove, the adhesion can be performed with a small force. Made possible Together enables accurately divided at a predetermined position can be obtained accurately insulation substrate having a predetermined shape.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment when a wiring board of the present invention is applied to a package for housing a semiconductor element.
2 is a plan view for each step for explaining a method of manufacturing a wiring board used in the package for housing a semiconductor element shown in FIG. 1; FIG.
3 is a plan view for each step for explaining a method of manufacturing a wiring board used in the package for housing a semiconductor element shown in FIG. 1. FIG.
4 is a plan view for each step for explaining a method of manufacturing a wiring board used in the package for housing a semiconductor element shown in FIG. 1; FIG.
5 is a plan view for each step for explaining a method of manufacturing a wiring board used in the package for housing a semiconductor element shown in FIG. 1; FIG.
6 is a plan view for each step for explaining a method of manufacturing a wiring board used in the package for housing a semiconductor element shown in FIG. 1. FIG.
7 is a plan view for each step for explaining a method of manufacturing a wiring board used in the package for housing a semiconductor element shown in FIG. 1; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulating base | substrate 1a ... Mounting part 2 ... Wiring conductor 3 ... Seal metal layer A ... Wiring board 4 ... Lid 5 ... Semiconductor element 6 ··· Container 7 ··· Bonding wire 11 · · · Ceramic green sheet 12a · · · horizontal virtual line 12b · · · vertical virtual line 13 · · · region 14 · · · conductor 15 for wiring · · · · Metal layer 16 for sealing ··· Through hole 17a · · First divided groove 17b · · Second divided groove 18 · · · Ceramic substrate

Claims (1)

(1)セラミックグリーンシートを縦方向及び横方向の仮想線によって四角形状をなす複数の領域に区画するとともに各領域に配線用導体を形成する工程と、
(2)前記セラミックグリーンシートの各領域の外周縁に、金属ペーストを0.3〜0.6mmの幅で枠状に印刷塗布し、シール用金属層を形成する工程と、
(3)前記セラミックグリーンシートの横方向の仮想線上で各領域の中央部に直径0.1mm〜0.25mmの貫通孔を形成する工程と、
(4)前記セラミックグリーンシートの上面で横方向の仮想線上に第1の分割溝を形成する工程と、
(5)前記セラミックグリーンシートの上面で縦方向の仮想線上に第2の分割溝を形成する工程と、
(6)前記セラミックグリーンシートを焼成し、セラミック焼結体から成る絶縁基体に配線導体及びシール金属層を被着させた複数個の配線基板を有するセラミック基板を形成する工程と、
(7)前記セラミック基板を第1及び第2の分割溝に沿って切断し、多数の配線基板を個々に分割する工程
とから成る配線基板の製造方法。
(1) a step of partitioning the ceramic green sheet into a plurality of rectangular regions by vertical and horizontal virtual lines and forming a wiring conductor in each region;
(2) A step of printing and applying a metal paste in a frame shape with a width of 0.3 to 0.6 mm on the outer peripheral edge of each region of the ceramic green sheet to form a metal layer for sealing;
(3) forming a through hole having a diameter of 0.1 mm to 0.25 mm in the center of each region on the horizontal imaginary line of the ceramic green sheet;
(4) forming a first divided groove on a horizontal imaginary line on the upper surface of the ceramic green sheet;
(5) forming a second divided groove on the imaginary line in the vertical direction on the upper surface of the ceramic green sheet;
(6) firing the ceramic green sheet and forming a ceramic substrate having a plurality of wiring substrates in which a wiring conductor and a seal metal layer are attached to an insulating base made of a ceramic sintered body;
(7) A method of manufacturing a wiring board, comprising: cutting the ceramic substrate along first and second dividing grooves, and dividing a large number of wiring boards individually.
JP2000330132A 2000-10-30 2000-10-30 Wiring board manufacturing method Expired - Fee Related JP4355097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000330132A JP4355097B2 (en) 2000-10-30 2000-10-30 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330132A JP4355097B2 (en) 2000-10-30 2000-10-30 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2002134646A JP2002134646A (en) 2002-05-10
JP4355097B2 true JP4355097B2 (en) 2009-10-28

Family

ID=18806703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330132A Expired - Fee Related JP4355097B2 (en) 2000-10-30 2000-10-30 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP4355097B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010103A (en) * 2007-06-27 2009-01-15 Ngk Spark Plug Co Ltd Multiple patterning ceramic substrate
US9045332B2 (en) * 2011-11-29 2015-06-02 Qualcomm Mems Technologies, Inc. Thin back glass interconnect

Also Published As

Publication number Publication date
JP2002134646A (en) 2002-05-10

Similar Documents

Publication Publication Date Title
JP4355097B2 (en) Wiring board manufacturing method
JP3764669B2 (en) Seal ring with brazing material and method of manufacturing electronic component storage package using the same
JP3556567B2 (en) Electronic component storage package
JP2005072421A (en) Package for housing electronic component and electronic device
JP2004288737A (en) Substrate for mounting electronic component and electronic device employing it
JP4562301B2 (en) Electronic component storage package
JP4284168B2 (en) Electronic component storage package and electronic device
JP3164802B1 (en) Electronic component storage package
JP4328197B2 (en) Electronic component storage package and electronic device
JP3935054B2 (en) Wiring board
JP3847220B2 (en) Wiring board
JP3881542B2 (en) Wiring board
JP4105968B2 (en) Electronic component mounting substrate and electronic device using the same
JP3427053B2 (en) Electronic component storage package
JP3847219B2 (en) Wiring board
JP3810335B2 (en) Wiring board
JP4028808B2 (en) Electronic component storage package
JP3652320B2 (en) Electronic component storage package and electronic device
JP2003110037A (en) Package for containing electronic part
JP3872400B2 (en) Electronic component storage package
JP3722737B2 (en) Wiring board
JP3780503B2 (en) Wiring board
JP3850338B2 (en) Wiring board
JP2004140111A (en) Wiring board
JP3164800B2 (en) Electronic component storage package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees