JP4334252B2 - ヒートポンプ装置 - Google Patents

ヒートポンプ装置 Download PDF

Info

Publication number
JP4334252B2
JP4334252B2 JP2003070618A JP2003070618A JP4334252B2 JP 4334252 B2 JP4334252 B2 JP 4334252B2 JP 2003070618 A JP2003070618 A JP 2003070618A JP 2003070618 A JP2003070618 A JP 2003070618A JP 4334252 B2 JP4334252 B2 JP 4334252B2
Authority
JP
Japan
Prior art keywords
power
power generation
output
heat pump
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003070618A
Other languages
English (en)
Other versions
JP2004278901A (ja
Inventor
裕二 中井
泰史 前田
孝生 ▲荏▼開津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003070618A priority Critical patent/JP4334252B2/ja
Publication of JP2004278901A publication Critical patent/JP2004278901A/ja
Application granted granted Critical
Publication of JP4334252B2 publication Critical patent/JP4334252B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプにおける圧縮機がエンジンにて駆動されるヒートポンプ装置に関する。
【0002】
【従来の技術】
従来からヒートポンプ装置においては、ガスエンジンにて駆動される誘導電動機を設け、ガスエンジンにて、圧縮機を駆動しながら、それと合わせて前記誘導電動機を交流発電機として機能させるように駆動し、その誘導電動機にて発電される交流電力を整流手段にて直流電力に変換して、その直流電力をヒートポンプにおける電動式の補機に供給するように構成したものがあった。
つまり、圧縮機を駆動するガスエンジンの駆動力を有効利用して、前記誘導電動機を交流発電機として機能させるように駆動して、ガスエンジンを高効率運転にて駆動させるのを可能にしたものである。
尚、誘導電動機を交流発電機として機能させるためには、誘導電動機に外部から誘導電動機の回転速度の角周波数よりも低い角周波数の励磁用交流電圧を供給する必要があるが、上記従来のヒートポンプ装置では、誘導電動機を交流発電機として機能させるための駆動方法は記載されていない(例えば、特許文献1を参照)。
【0003】
【特許文献1】
特開2001−272135号公報
【0004】
【発明が解決しようとする課題】
ところで、ヒートポンプ装置においては、ヒートポンプに対する負荷の変動に伴って、ガスエンジンの回転速度が増減される場合がある。例えば、ヒートポンプに対する負荷に応じて圧縮機の回転速度を調整するために、ガスエンジンの回転速度を増減調整する場合がある。あるいは、ガスエンジンを定格回転速度で運転する状態で、ヒートポンプに対する負荷に応じて変速装置にて圧縮機の回転速度を増減調整する場合においても、圧縮機の回転速度の増減調整に起因する負荷変動により、ガスエンジンの回転速度が増減される場合がある。
【0005】
上記従来のヒートポンプ装置において、誘導電動機を交流発電機として機能させるための構成として、例えば、商用電源にて、誘導電動機に励磁用交流電圧を供給して、誘導電動機を交流発電機として機能させるように構成することが考えられる。
【0006】
従来では、商用電源から単純に一定の周波数の励磁用交流電圧を誘導電動機に供給するものとすると、ヒートポンプに対する負荷の変動に伴うガスエンジンの回転速度の増減に伴って、そのガスエンジンにて駆動される誘導電動機の回転速度が増減変化すると、誘導電動機を交流発電機として適切に機能させることができなくなる場合があるという問題があった。
【0007】
また、励磁用交流電圧の周波数が可変であったとしても、産業上の利用の観点からはその周波数制御方法が最も重要であり、この方法が確立されていない限りは実現できないこととなる。即ち、発電が可能になったとしてもその発電は成り行きであり、所望の電力を得ることはできないという問題があった。
【0008】
更に、ヒートポンプの直流電動式の補機に電力を供給する場合、その補機の動作電圧に応じた電圧の直流電力を供給する必要がある。そのような補機に対して直流電力を誘導電動機側からのみ供給する場合には、誘導電動機側からの発電電力の電圧を適切に制御することが必要になるが、そのような電圧制御方法は特許文献1には記載されていない。
【0009】
本発明は上記の問題点に鑑みてなされたものであり、その目的は、エンジンの駆動力を用いて発電を行うことで高効率なエンジンの運転を行いながら、ヒートポンプの負荷の変動に伴ってエンジンの回転速度が増減される場合においても適切に発電し、その電力を直流電動式の補機に供給可能なヒートポンプ装置を提供する点にある。
【0010】
【課題を解決するための手段】
上記課題を解決するための本発明に係るヒートポンプ装置の特徴構成は、ヒートポンプにおける圧縮機がエンジンにて駆動されるヒートポンプ装置であって、前記エンジンにて駆動される誘導電動機とその誘導電動機の発電のために励磁用交流電圧を出力する電動機側インバータとを備える発電手段が設けられ、運転を制御する運転制御手段が、前記電動機側インバータが出力する励磁用交流電圧の周波数を前記誘導電動機を発電機能させることが可能な周波数に調整制御する状態で、前記エンジンにて前記誘導電動機を前記圧縮機と同時に駆動し、且つ前記発電手段にて発電された直流電力を前記ヒートポンプにおける直流電動式の補機に供給するように運転を制御するように、及び前記補機の消費電力に応じて前記発電手段の出力電力を調整するように前記発電手段を制御するように構成され、外部商用電源からの交流電力を整流する整流手段が、前記補機の消費電力のうち前記発電手段の出力電力を超える超過分を前記外部商用電源にて補うように、整流した直流電力を前記発電手段にて発電された直流電力に加えるように構成されている点にある。
【0011】
この特徴構成により、運転制御手段によって、電動機側インバータが出力する励磁用交流電圧の周波数が誘導電動機を発電機能させることが可能な周波数に調節制御される状態で、エンジンにて誘導電動機が圧縮機と同時に起動され発電手段にて発電された直流電力を上記ヒートポンプにおける直流電動式の補機に供給されるように運転が制御される。
【0012】
すなわち、ヒートポンプに対する負荷の変動に伴ってエンジンの回転速度が増減されると、そのエンジンにて駆動される誘導電動機の回転速度が増減変化することになるが、その誘導電動機の回転速度の変化に応じて、電動機側インバータが出力する励磁用交流電圧の周波数が誘導電動機を発電機能させることが可能な周波数に調節制御されるので、ヒートポンプに対する負荷の変動に伴うエンジンの回転速度の増減に拘わらず、発電手段にて適切に発電させることが可能となる。
【0013】
説明を加えると、エンジンにて駆動される誘導電動機の回転速度をMf(Hz換算したもの)とし、電動機側インバータが出力する励磁用交流電圧の周波数をP1f(Hz)とし、誘導電動機の極数をNとすると、Mf>(P1f/N)×2の関係を維持するように、誘導電動機の回転速度Mfの変動に応じて、励磁用交流電圧の周波数P1fを調整することにより、誘導電動機をその回転速度の変動にかかわらず適正に発電機能させることが可能となるのである。そして、エンジン回転速度の増減にかかわらず適正に発電機能する発電手段からの直流電力が、ヒートポンプにおける直流電動式の補機に供給される。
従って、エンジンの駆動力を用いて発電してエンジンを高効率にて駆動しながら、ヒートポンプに対する負荷の変動に伴ってエンジンの回転速度が増減される場合においても適切に発電し得るヒートポンプ装置を提供することができるようになった。
【0014】
更に、エンジンの動力不足時、エンジン回転数により制限される発電手段の出力不足時、発電手段の故障時等の理由から補機の消費電力が発電手段の出力電力を超過すると、運転制御手段により、発電手段の出力電力を調整するように発電手段が制御され、外部商用電源からの交流電力が整流手段にて整流されて、発電手段にて発電された直流電力に加えられて、補機に供給されることになり、補機の消費電力のうち発電手段の出力電力を越える超過分(以下、単に発電出力超過分と略記する場合がある)が、外部商用電源にて補われる。
つまり、エンジンにて誘導電動機が圧縮機と同時に駆動されるものであることから、ヒートポンプに対する負荷によって、発電手段にまわせるエンジンの余力が少なくなったり、無くなったりしても、発電出力超過分が、外部商用電源にて補われるので、エンジンの余力を有効利用して発電した電力を補機に供給することにより、外部商用電源の消費を少なくして、ランニングコストの低廉化を図りながら、ヒートポンプ装置を適切に運転することが可能となる。
【0015】
しかも、発電出力超過分が外部商用電源にて補われるので、発電手段として、不必要に高能力のものを設置する必要がなくなり、又、外部商用電源からの交流電力が整流手段にて整流された後、発電手段にて発電された直流電力に加えられるようになっているので、発電電力が商用電源系統に逆潮流することが無く、電力系統連系技術要件ガイドラインに定められた多種の保護機能が不要となる。つまり、発電手段として不必要に高能力のものを設置する必要がないこと、及び、電力系統連系技術要件ガイドラインに定められた多種の保護機能が不要となることの相乗作用により、ヒートポンプ装置の低廉化が可能となる。
従って、装置価格及びランニングコストの低廉化を図ることができるようになった。
【0016】
上記課題を解決するための本発明に係るヒートポンプ装置の別の特徴構成は、前記運転制御手段は、前記補機の消費電力に応じた前記発電手段の出力電力の調整として、発電能力に余裕があるときには、前記発電手段の直流出力電圧を前記整流手段にて整流された後の前記外部商用電源の直流入力電圧よりも高くし、且つ、発電能力に余裕が無いときには、前記発電手段の直流出力電圧が低下することを許容する形態で、前記発電手段を制御するように構成されている点にある。
【0017】
この特徴構成により、運転制御手段によって、補機の消費電力に応じた発電手段の出力電力の調整として、発電能力に余裕があるときには、発電手段の直流出力電圧を整流手段にて整流された後の外部商用電源の直流入力電圧よりも高くし、且つ、発電能力に余裕が無いときには、発電手段の直流出力電圧が低下することを許容する形態で、発電手段が制御される。ちなみに、発電能力とは、エンジンの余力を用いて発電手段にて発電することができる能力から判断される発電可能な能力である。つまり、エンジンに余力があっても、発電手段の発電が限界になれば、発電能力に余裕が無いと判断され、発電手段の発電に余裕があっても、エンジンに余力が無ければ、発電能力に余裕が無いと判断される。
【0018】
つまり、補機の消費電力に対して発電能力に余裕があるときには、発電手段の直流出力電圧を整流手段にて整流された後の外部商用電源の直流入力電圧よりも高くするように、発電手段が制御されるので、外部商用電源からの電力供給が阻止される状態で、補機の消費電力の増減に応じて、P(電力)=V(一定電圧)×I(電流)の特性に従って、前記補機が必要とする電流を出力するように前記電動機側インバータの発電出力を制御することとなり、発電手段により、補機の消費電力に対して過不足なく発電する状態で、補機の消費電力に応じて、発電能力の上限に至るまで安定して発電することが可能となり、エンジンを一段と高効率にて駆動することが可能となる。
【0019】
そして、補機の消費電力に対して発電能力に余裕が無いときには出力電力Pが頭打ちとなることから、P(一定電力)=V(電圧)×I(電流)の関係に従い、補機が必要とする電流を出力するには電圧を一定に保つことができなくなるため、発電手段の直流出力電圧が低下することを許容する形態で発電手段が制御されるので、発電手段の直流出力電圧が前記外部商用電源の直流入力電圧まで低下し、この時点で、P(一定電力)=V(一定電圧、即ち、外部商用電源の直流入力電圧)×I(電流)の関係に従い、補機の消費電力に対して発電能力までは発電手段より供給され、発電手段の出力電力が不足する分のみが外部商用電源からの交流電力が整流手段にて整流されて、発電手段にて発電された直流電力に加えられて、補機に供給されることになり、発電出力超過分が外部商用電源にて補われる。
【0020】
又、発電手段の直流出力電圧が設定電圧以下となるように制御されるので、内部の電気回路に印加される電圧が高くなり過ぎるのを防止することができるようになり、もって、内部の電気回路の耐電圧を低くすることが可能となって、ヒートポンプ装置を低廉化することが可能となる。従って、エンジンを一段と高効率にて駆動することが可能となると共に、ヒートポンプ装置の低廉化が可能となる。
【0021】
上記課題を解決するための本発明に係るヒートポンプ装置の更に別の特徴構成は、前記運転制御手段は、前記補機の消費電力に応じた前記発電手段の出力電力の調整として、発電能力に余裕があるときには、前記発電手段の出力電力と前記補機の消費電力とを比較して、出力電力が前記補機の消費電力の全て又は大部分に相当する電力となるようにし、且つ、発電能力に余裕が無いときには、出力電力が前記補機の消費電力の全て又は大部分に相当する電力よりも低下することを許容する形態で、前記発電手段を制御するように構成されている点にある。
【0022】
この特徴構成により、運転制御手段によって、補機の消費電力に応じた発電手段の出力電力の調整として、発電能力に余裕があるときには、発電手段の出力電力と補機の消費電力とを比較して、出力電力が補機の消費電力の全て又は大部分に相当する電力となるようにし、且つ、発電能力に余裕が無いときには、出力電力が補機の消費電力の全て又は大部分に相当する電力よりも低下することを許容する形態で、発電手段が制御される。
つまり、補機の消費電力に対して発電能力に余裕があるときには、発電手段の出力電力と補機の消費電力とを比較して、出力電力が補機の消費電力の全て又は大部分に相当する電力となるように、発電手段が制御されることから、補機の消費電力に応じて、発電能力の上限又は略上限に至るまで安定して発電することが可能となり、エンジンを一段と高効率にて駆動することが可能となる。
【0023】
そして、補機の消費電力に対して発電能力に余裕が無いときには、出力電力が補機の消費電力の全て又は大部分に相当する電力よりも低下することを許容する形態で、発電手段が制御されるので、補機の消費電力に対して発電手段の出力電力が不足する分が、外部商用電源からの交流電力が整流手段にて整流されて、発電手段にて発電された直流電力に加えられて、補機に供給されることになり、発電出力超過分が外部商用電源にて補われる。
【0024】
又、補機の消費電力に対して発電能力に余裕がないときは勿論のこと、余裕があるときも、発電手段にて、その出力電力が補機の消費電力以下になるように発電されて、発電手段の出力電力が補機の消費電力よりも高くなることが防止されることになるので、直流電圧の上昇が抑えられ、内部の電気回路における耐電圧を低くすることが可能となり、ヒートポンプ装置の低廉化を図ることが可能となる。
ちなみに、発電手段の出力電力が補機の消費電力よりも高くなると、内部の電気回路に印加される電圧が高くなり易いので、耐電圧を高くする必要があり、ヒートポンプ装置の価格の高騰化の原因となる。従って、エンジンを一段と高効率にて駆動することが可能となると共に、ヒートポンプ装置の低廉化が可能となる。
【0025】
上記課題を解決するための本発明に係るヒートポンプ装置の更に別の特徴構成は、前記運転制御手段は、運転開始指令に基づいて、前記誘導電動機を前記外部商用電源にて力行運転させて前記エンジンを始動させるように構成されている点にある。
【0026】
この特徴構成により、運転開始指令に基づいて、運転制御手段によって、誘導電動機が外部商用電源にて力行運転されて、そのように力行運転される誘導電動機によりエンジンが回転されて、エンジンが始動させられる。
つまり、外部商用電源からの交流電力が整流手段にて整流されて、電動機側インバータに入力され、その入力直流電力が電動機側インバータにて交流に変換されて、その変換された交流電力にて誘導電動機が力行運転されて、エンジンが始動させられる。
【0027】
従って、エンジンの余力を利用して補機に電力を供給すべく発電するように設けた誘導電動機を、エンジンのスタータとして兼用するようにして、エンジンの始動用として、スタータを別個に設ける必要がないようにしているので、ヒートポンプ装置の価格の低廉化が可能となる。
【0028】
上記課題を解決するための本発明に係るヒートポンプ装置の更に別の特徴構成は、前記運転制御手段は、運転開始指令に基づいて、先ず、前記補機に対して前記外部商用電源から電力を漸増させる状態で給電して前記補機の運転を開始し、続いて、前記誘導電動機を前記外部商用電源にて力行運転させて前記エンジンを始動させるように構成されている点にある。
【0029】
この特徴構成により、運転開始指令に基づいて、運転制御手段によって、先ず、補機に対して外部商用電源から電力が漸増される状態で給電されて、補機の運転が開始され、続いて、誘導電動機が外部商用電源にて力行運転されて、そのように力行運転される誘導電動機によりエンジンが回転されて、エンジンが始動させられる。
つまり、電動機を用いた補機の場合、回転速度が漸増する状態、所謂、ソフトスタートにて運転が開始させられるので、突入電流を防止することが可能となって、遮断器容量の低減、配電系統容量の低減による初期費用の低廉化に加え、配電系統の電圧変動を小さくすることが可能となる。
又、エンジンの余力を利用して補機に電力を供給すべく発電するように設けた誘導電動機を、エンジンのスタータとして兼用するようにして、エンジンの始動用として、スタータを別個に設ける必要がないようにしている。
従って、装置価格及びランニングコストの低廉化を図ることができるようになった。
【0030】
上記課題を解決するための本発明に係るヒートポンプ装置の更に別の特徴構成は、前記運転制御手段は、発電能力に余裕が無いときには、発電可能な能力に合わせて前記発電手段の発電出力を調整し、且つ、その調整により発電出力が零又はそれに近くなった状態において前記エンジンの出力に余裕が無いときには、前記誘導電動機を前記外部商用電源にて力行運転させるように前記発電手段を制御するように構成されている点にある。
【0031】
この特徴構成により、運転制御手段によって、発電能力に余裕が無いときには、発電可能な能力に合わせて発電手段の発電出力が調整され、且つ、その調整により発電出力が零又はそれに近くなった状態においてエンジンの出力に余裕が無いときには、誘導電動機を外部商用電源にて力行運転させるように発電手段が制御される。
つまり、エンジンの出力がヒートポンプに対する負荷に応じて増減調整され、ヒートポンプに対する負荷が大きくなると、発電手段による発電に回せるエンジンの余力が少なくなり、それに伴って、負荷の消費電力に対して、発電能力に余裕がなくなると、発電可能な能力に合わせて発電手段の発電出力が調整される。そして、その調整により発電出力が零又はそれに近くなった状態においてエンジンの出力に余裕がないとき、即ち、エンジンの出力がヒートポンプに対する負荷に対応しきれなくなると、誘導電動機が外部商用電源にて力行運転されて、そのように力行運転される誘導電動機により、エンジンの回転が補助されるので、ヒートポンプの出力が増加して、負荷に対応することが可能となる。
【0032】
従って、エンジンの出力に余裕があるときには、その余力を利用して発電手段にて適正に発電でき、エンジンの出力に余裕がないときには、発電手段を構成する誘導電動機を用いて、エンジンの回転を補助して、ヒートポンプの出力を増大することができるようになった。
【0033】
上記課題を解決するための本発明に係るヒートポンプ装置の更に別の特徴構成は、前記整流手段が、外部商用電源からの電力を整流した後の直流出力電圧を調整する電圧調整機能を有する点にある。
【0034】
この特徴構成により、ヒートポンプにおける直流電動式の補機の動作電圧に応じた電圧で、外部商用電源から整流手段を介して補機に直流電力を供給することができる。
【0035】
上記課題を解決するための本発明に係るヒートポンプ装置の更に別の特徴構成は、ヒートポンプにおける圧縮機がエンジンにて駆動されるヒートポンプ装置であって、前記エンジンにて駆動される誘導電動機とその誘導電動機の発電のために励磁用交流電圧を出力する電動機側インバータとを備える発電手段と、運転を制御する運転制御手段が、前記電動機側インバータが出力する励磁用交流電圧の周波数を前記誘導電動機を発電機能させることが可能な周波数に調節制御する状態で、前記エンジンにて前記誘導電動機を前記圧縮機と同時に駆動し且つ前記発電手段にて発電された直流電力を、その直流出力電圧が設定電圧になるように制御して、前記ヒートポンプにおける直流電動式の補機に供給するように運転を制御するように構成されている点にある。
【0036】
上記特徴構成により、ヒートポンプに対する負荷の変動に伴ってエンジンの回転速度が増減されると、そのエンジンにて駆動される誘導電動機の回転速度が増減変化することになるが、その誘導電動機の回転速度の変化に応じて、電動機側インバータが出力する励磁用交流電圧の周波数が誘導電動機を発電機能させることが可能な周波数に調節制御されるので、ヒートポンプに対する負荷の変動に伴うエンジンの回転速度の増減にかかわらず、発電手段にて適切に発電させることが可能となる。
【0037】
説明を加えると、エンジンにて駆動される誘導電動機の回転速度をMf(回転周波数に換算したもの)とし、電動機側インバータが出力する励磁用交流電圧の周波数をP1f(Hz)とし、誘導電動機の極数をNとすると、Mf>(P1f/N)×2の関係を維持するように、誘導電動機の回転速度Mfの変動に応じて、励磁用交流電圧の周波数P1fを調整することにより、誘導電動機をその回転速度の変動にかかわらず適正に発電機能させることが可能となるのである。
【0038】
従って、エンジンの駆動力を用いて発電してエンジンを高効率にて駆動しながら、ヒートポンプに対する負荷の変動に伴ってエンジンの回転速度が増減される場合においても適切に発電し得るヒートポンプ装置を提供することができるようになった。
【0039】
更に、運転制御手段によって、励磁用交流電圧の周波数P1fを調整することで、発電手段からの直流出力電圧が設定電圧(例えば直流電動式の補機の動作電圧)になるように制御されることから、補機の消費電力に対して過不足なく発電する状態でエンジンの余力を十分に用いて発電することが可能となり、エンジンを一段と高効率にて駆動することが可能となる。
又、発電手段の直流出力電圧が設定電圧になるように制御されるので、内部の電気回路に印加される電圧が高くなり過ぎるのを防止することができるようになり、もって、内部の電気回路の耐電圧を低くすることが可能となって、ヒートポンプ装置を低廉化することが可能となる。
従って、エンジンを一段と高効率にて駆動することが可能となると共に、ヒートポンプ装置の低廉化が可能となる。
【0040】
上記課題を解決するための本発明に係るヒートポンプ装置の更に別の特徴構成は、前記直流出力電圧が前記設定電圧に満たない場合、前記運転制御手段が前記エンジンの回転速度を増大させるように運転を制御する点にある。
【0041】
上記特徴構成により、エンジン回転速度を増大させるように制御して、発電手段を構成する誘導電動機を駆動するためのエンジンの余力を十分に確保することができるので、上記直流出力電圧が上記設定電圧になるように制御することが可能となり、ヒートポンプにおける直流電動式の補機を発電手段からの電力で円滑に運用することができる。
【0042】
【発明の実施の形態】
以下、図面に基づいて、本発明の第1実施形態を説明する。
図1に示すように、ヒートポンプ装置は、例えば空調装置用として用いる場合に、空調対象室内に設置する室内機Uiと、屋外等の空調対象室外に設置する室外機Uoと、ヒートポンプ装置の各種制御指令を指令するリモコン操作部Rとから構成し、ヒートポンプHPを構成する各機器を室内機Uiと室外機Uoとにわたって組み付けてある。
【0043】
室外機Uoには、圧縮機1と、その圧縮機1を駆動するガスエンジン2と、冷房運転と暖房運転との切換等による冷媒流れ方向の切り換えにより凝縮器として機能する状態と蒸発器として機能する状態とに切り換わる室外用熱交換器3と、膨張弁4と、アキュムレータ5と、冷媒通流経路切り換え用の四方弁6と、ガスエンジン2を冷却する冷却水ジャケット2jに冷却水を循環供給する冷却水ポンプ7と、ガスエンジン2の排ガスの保有熱を冷却水に回収する排ガス用熱交換器8と、冷却水の保有熱を冷媒に回収する冷媒加熱用熱交換器9と、冷却水の保有熱を放熱する放熱器10と、冷却水通流経路切り換え用の三方弁11と、室外用熱交換器3及び放熱器10に対して外気等の熱交換用空気を通風する3台の室外用送風機12と、エンジンルームに通風するエンジンルーム用送風機13と、ヒートポンプHPにおける後述する直流電動式の補機に駆動電力を供給する給電部Cと、ヒートポンプ装置の各種制御を司るメインコントローラ14等を設けてある。尚、本実施形態ではガスエンジンを例にして本発明に係るヒートポンプの説明を行うが、他のエンジン(ガソリンエンジン、ディーゼルエンジン等)であっても同様である。
【0044】
室内機Uiには、冷媒流れ方向の切り換えにより室外用熱交換器3とは逆に蒸発器として機能する状態と凝縮器として機能する状態とに切り換わる室内用熱交換器15、その室内用熱交換器15に室内気等の熱交換用の空気を通風する室内用送風機16、その室内用送風機16にて吸込まれる空調対象室の空気の温度を検出する室温センサ36、及び、リモコン操作部Rからの送信信号を受信する機能を備えると共に室内機Uiの制御を司る室内機用コントローラ17等を設けてある。
【0045】
また、所定の循環経路で冷媒を循環させるように、圧縮機1、四方弁6、室外用熱交換器3、膨張弁4、室内用熱交換器15、冷媒加熱用熱交換器9及びアキュムレータ5を冷媒流路18にて接続してある。以下に、冷媒の循環経路について説明する。
【0046】
冷房運転時には、四方弁6を、圧縮機1から吐出される高圧気相冷媒が室外用熱交換器3に対して送出され、室内用熱交換器15から送出される低圧気相冷媒がアキュムレータ5に対して送出される冷房運転流路状態に切り換えられる。具体的には、圧縮機1から吐出される高圧気相冷媒が、四方弁6を介して凝縮器として機能する室外用熱交換器3に供給されて、その室外用熱交換器3において室外用送風機12による通風空気との熱交換により凝縮し、その凝縮した液相冷媒が膨張弁4を介して蒸発器として機能する室内用熱交換器15に供給されて、その室内用熱交換器15において室内用送風機16による通風空気との熱交換により蒸発し、その蒸発した低圧気相冷媒が四方弁6及びアキュムレータ5を介して圧縮機1に戻るように冷媒が循環する循環経路を形成してある。
【0047】
又、暖房運転時には、四方弁6を、圧縮機1から吐出される高圧気相冷媒が室内用熱交換器15に対して送出され、室外用熱交換器3から送出される低圧気相冷媒がアキュムレータ5に対して送出される暖房運転流路状態に切り換えられる。具体的には、圧縮機1から吐出される高圧気相冷媒が、四方弁6を介して凝縮器として機能する室内用熱交換器15に供給されて、その室内用熱交換器15において、室内用送風機16による通風空気との熱交換により凝縮し、その凝縮した液相冷媒が膨張弁4を介して蒸発器として機能する室外用熱交換器3に供給されて、その室外用熱交換器3において室外用送風機12による通風空気との熱交換により蒸発し、その蒸発した低圧気相冷媒が四方弁6を通過後、冷媒加熱用熱交換器9による加熱により完全に蒸発し、アキュムレータ5を介して圧縮機1に戻るように冷媒が循環する循環経路を形成してある。
【0048】
更に、冷房運転時に、圧縮機1に戻る低圧気相冷媒の圧力を検出すべく、低圧用冷媒圧力センサ37dを冷媒循環経路に設け、又、暖房運転時に、圧縮機1から吐出される高圧気相冷媒の圧力を検出すべく、高圧用冷媒圧力センサ37uを設けてある。
【0049】
又、所定の経路で冷却水を循環させるように、冷却水ポンプ7、排ガス用熱交換器8、冷却水ジャケット2j、三方弁11、放熱器10、冷媒加熱用熱交換器9を、冷却水流路19にて接続してある。
具体的には、ヒートポンプ装置が冷房運転されるときに、冷却水が排ガス用熱交換器8、冷却水ジャケット2j、放熱器10を記載順に順次巡って、冷却水の保有熱を放熱器10にて放熱させる放熱用循環経路を形成するように、排ガス用熱交換器8、冷却水ジャケット2j、放熱器10を冷却水流路19の主流路部分19mにて接続すると共に、その主流路部分19mの排ガス用熱交換器8の上流側におけるその排ガス用熱交換器8と放熱器10との間の箇所に、冷却水ポンプ7を設けてある。
【0050】
又、ヒートポンプ装置が暖房運転されるときに、冷却水ジャケット2jから流出した冷却水が放熱器10を迂回して、冷媒加熱用熱交換器9、排ガス用熱交換器8を記載順に順次巡って、冷却水の保有熱を冷媒加熱用熱交換器9にて冷媒に回収する排熱回収用循環経路を形成するように、主流路部分19mの冷却水ジャケット2jの下流側におけるその冷却水ジャケット2jと放熱器10との間の箇所に、三方弁11を設けると共に、その三方弁11と、主流路部分19mにおける放熱器10と冷却水ポンプ7との間の箇所とを、冷却水流路19の排熱回収用流路部分19cにて接続し、その排熱回収用流路部分19cに冷媒加熱用熱交換器9に設けてある。
そして、冷媒加熱用熱交換器9において、蒸発器として機能する室外用熱交換器3からアキュムレータ5へ戻る冷媒を冷却水にて加熱して、効率を向上させている。
【0051】
つまり、冷房運転時には、三方弁11を、冷却水が放熱用循環経路を通流する冷房運転流路状態に切り換え、暖房運転時には、三方弁11を、冷却水が排熱回収用循環経路を通流する暖房運転流路状態に切り換えることになる。
【0052】
更に、始動時等のように、冷却水の温度が放熱開始用設定温度(例えば、60°C)以下のときに、冷却水が放熱器10及び冷媒加熱用熱交換器9を迂回して、排ガス用熱交換器8、冷却水ジャケット2jを順に巡る始動時用循環経路を形成するように、主流路部分19mにおける冷却水ジャケット2jと三方弁11との間の箇所に、サーモスタット式の温度制御弁20を設けると共に、その温度制御弁20と、主流路部分19mにおける排熱回収用流路部分19cの接続部と冷却水ポンプ7との間の箇所を、冷却水流路19のバイパス流路部分19bにて接続してある。温度制御弁20は、冷却水の温度が前記放熱開始用設定温度以下の間は、冷却水がバイパス流路部分19b側に通流するように流路が切り換わり、冷却水の温度が前記放熱開始用設定温度より高くなると、冷却水が主流路部分19m側に通流するように流路が切り換わるように構成してある。
【0053】
ガスエンジン2には、都市ガス等のガス燃料を供給する燃料供給路21を接続し、その燃料供給路21には、ガスエンジン2への燃料供給を断続する開閉弁22、及び、ガスエンジン2への燃料供給量を調節する比例弁23を介装してある。ヒートポンプ装置の出力の調節は、比例弁23により、ガスエンジン2への燃料供給量を調節することにより行う。
【0054】
メインコントローラ14と室内機用コントローラ17とは、制御信号を互いに送受信可能な信号線24にて接続してある。メインコントローラ14には、電線25にて外部商用電源26(例えば3相200V)を接続して、室外機Uoに給電し、室内機用コントローラ17には電線25にて商用電源27(例えば単相200V)を接続して、室内機Uiに給電するように構成してある。また、図示していないが、給電部Cについても電線25にて外部商用電源26に接続されている。
【0055】
上述のように室外機Uo及び室内機Ui夫々に設けられてヒートポンプHPを構成する機器のうち、冷却水ポンプ7、室外用送風機12、エンジンルーム用送風機13、ガスエンジン2を始動させる点火プラグ(図示省略)を備えて構成した点火器28、四方弁6、三方弁11、開閉弁22及び比例弁23等が、ヒートポンプHPの直流電動式の補機に相当する。
【0056】
図2に示すように、本発明においては、ガスエンジン2にて駆動される誘導電動機30とその誘導電動機30の発電のために励磁用交流電圧を出力する電動機側インバータ33とを備える発電手段Gとを設け、メインコントローラ14を、電動機側インバータ33が出力する励磁用交流電圧の周波数を誘導電動機30を発電機能させることが可能な周波数に調節制御する状態で、ガスエンジン2にて誘導電動機30を圧縮機1と同時に駆動し且つ発電手段Gにて発電された直流電力を直流電動式の補機うちの一部に供給するように運転を制御するように構成してある。つまり、運転を制御する運転制御手段は、メインコントローラ14を用いて構成してある。
【0057】
図2に基づいて、発電手段G及び給電部Cについて説明を加える。
ガスエンジン2の回転軸と圧縮機1の回転軸と誘導電動機30の回転軸とを、ベルト31にて伝動連結してある。ガスエンジン2には、その回転速度を検出するエンジン回転速度センサ38eを設け、誘導電動機30には、その回転速度を検出する電動機回転速度センサ38gを設けてある。
【0058】
給電部Cは、前記の発電手段Gと、外部商用電源26からの交流電力を整流する整流手段32と、整流手段32及び発電手段Gから電力供給対象の補機への給電を断続する複数のスイッチ35とを備えて構成され、メインコントローラ14にて、電動機側インバータ33の作動を制御すると共に、各スイッチ35を開閉操作するように構成される。図3には、整流手段32及び電動機側インバータ33の夫々の回路構成を示す。
【0059】
図2に示すように、本第1実施形態では、電動機側インバータ33の回生電力(直流部)を検出する回生電力センサ39r、及び補機への入力電力を検出する補機入力電力センサ39iを設けてある。
【0060】
そして、各スイッチ35に、給電部Cから給電する対象の補機(以下、直流電動式の補機又は発電機駆動補機Sgと称する場合がある)を接続して、発電機駆動補機Sgに給電するように構成してあるが、本実施形態では、複数のスイッチ35の夫々に、ヒートポンプHPの補機のうち、3台の室外用送風機12、エンジンルーム用送風機13、冷却水ポンプ7及び点火器28の夫々を発電機駆動補機Sgとして接続して、それら発電機駆動補機Sgに給電部Cから給電するようにしてある。
【0061】
ちなみに、ヒートポンプHPの補機のうち、3台の室外用送風機12、エンジンルーム用送風機13、冷却水ポンプ7及び点火器28以外の、四方弁6、三方弁11、開閉弁22及び比例弁23等(図2においては、その他補機Soにて示す)には、外部商用電源26から直接給電するように構成してある。
【0062】
メインコントローラ14の制御構成について説明を加える。
メインコントローラ14は、発電機駆動補機Sgの消費電力に応じて発電手段Gの出力電力を調整するように、発電手段Gを制御するように構成し、前記整流手段32は、発電機駆動補機Sgの消費電力のうち発電手段Gの出力電力を越える超過分を外部商用電源26にて補うように、整流した直流電力を発電手段Gにて発電された直流電力に加えるように構成してある。
そして、第1実施形態においては、メインコントローラ14は、発電機駆動補機Sgの消費電力に応じた発電手段Gの出力電力の調整として、発電能力に余裕があるときには、発電手段Gの出力電力と発電機駆動補機Sgの消費電力とを比較して、出力電力が発電機駆動補機Sgの消費電力の大部分に相当する電力となるようにし、且つ、発電能力に余裕が無いときには、出力電力が発電機駆動補機Sgの消費電力の大部分に相当する電力よりも低下することを許容する形態で、発電手段Gを制御するように構成してある。
具体的には、メインコントローラ14は、発電手段Gの出力電力を、発電機駆動補機Sgの消費電力に応じて設定される所定の範囲になるように調整すべく、電動機側インバータ33の作動を制御する。
【0063】
又、メインコントローラ14は、運転開始指令に基づいて、先ず、電動機側インバータ33を停止させた状態で、発電機駆動補機Sgに対して外部商用電源26から電力を漸増させる状態で給電して発電機駆動補機Sgの運転を開始し、続いて、誘導電動機30を外部商用電源26にて力行運転させるように電動機側インバータ33の作動を制御して、ガスエンジン2を始動させる。
つまり、メインコントローラ14は、運転開始指令に基づいて、先ず、発電機駆動補機Sgに対して外部商用電源26から電力を漸増させる状態で給電して発電機駆動補機Sgの運転を開始し、続いて、誘導電動機30を外部商用電源26にて力行運転させてガスエンジン2を始動させるように構成してある。
【0064】
次に、図1及び図2に基づいて、メインコントローラ14及び室内機側コントローラ17の制御動作について説明する。
リモコン操作部Rから冷房運転の運転開始が指令されると、室内機側コントローラ17は、冷房運転の運転開始指令の信号をメインコントローラ14に送信すると共に、室内用送風機16の運転を開始させ、冷房運転中は、室温センサ36の検出温度とリモコン操作部Rから送信される冷房目標温度との偏差に応じて送風量を調整するように、室内用送風機16の運転を制御する。
一方、メインコントローラ14は、室内機側コントローラ17から冷房運転の運転開始指令の信号が送信されてくるのに基づいて、四方弁6及び三方弁11夫々を冷房運転流路状態に切り換えた後、室外用送風機12、エンジンルーム用送風機13及び冷却水ポンプ7の運転を開始し、続いて、ガスエンジン2を始動させる運転開始制御を実行し、続いて、低圧用冷媒圧力センサ37dの検出圧力を所定に範囲に維持するように比例弁23の開度を調節してガスエンジン2の回転速度を制御する、即ち、ヒートポンプHPに対する負荷に応じてガスエンジン2の出力を増減調整すると共に、発電手段Gの出力電力を、発電機駆動補機Sgの消費電力に応じて調整する通常運転制御を実行する。
【0065】
リモコン操作部Rから暖房運転の運転開始が指令されると、室内機側コントローラ17は、暖房運転の運転開始指令の信号をメインコントローラ14に送信すると共に、室内用送風機16の運転を開始させ、暖房運転中は、室温センサ36の検出温度とリモコン操作部Rから送信される暖房目標温度との偏差に応じて送風量を調整するように、室内用送風機16の運転を制御する。
一方、メインコントローラ14は、室内機側コントローラ17から暖房運転の運転開始指令の信号が送信されてくるのに基づいて、四方弁6及び三方弁11夫々を暖房運転流路状態に切り換えた後、室外用送風機12、エンジンルーム用送風機13及び冷却水ポンプ7の運転を開始し、続いて、ガスエンジン2を始動させる運転開始制御を実行し、続いて、高圧用冷媒圧力センサ37uの検出圧力を所定に範囲に維持するように比例弁23の開度を調節してガスエンジン2の回転速度を制御する、即ち、ヒートポンプHPに対する負荷に応じてガスエンジン2の出力を増減調整すると共に、発電手段Gの出力電力を、発電機駆動補機Sgの消費電力に応じて調整する通常運転制御を実行する。
【0066】
次に、図4に示すフローチャートに基づいて、運転開始制御について説明を加える。
運転開始指令があると、運転を開始すべき室外用送風機12に対応するスイッチ35、エンジンルーム用送風機13に対応するスイッチ35及び冷却水ポンプ7に対応するスイッチ35をオンにした後、室外用送風機12、エンジンルーム用送風機13及び冷却水ポンプ7に対して外部商用電源26から電力を漸増させる状態で給電して、それら室外用送風機12、エンジンルーム用送風機13及び冷却水ポンプ7を所謂ソフトスタートさせる(ステップ#1〜#3)。
続いて、電動機側インバータ33を運転開始させると共に、電動機側インバータ33をその出力周波数を漸増させるように制御することにより、誘導電動機30に外部商用電源26から電力を漸増させる状態で給電して、誘導電動機30をソフトスタートにて力行運転させて、ガスエンジン2を回転させ、続いて、点火器8に対応するスイッチ35をオンさせて、ガスエンジン2を始動させ、運転開始制御を完了する(ステップ#3及び#4)。ちなみに、誘導電動機30のソフトスタートでは、誘導電動機30の回転速度を、5秒程度で0から800rpmにまで上昇させる。
以上のようにして運転開始制御が完了すると、通常運転制御を実行する(#5)。
【0067】
次に、図5に示すフローチャートに基づいて、通常運転制御について説明を加える。尚、図5のフローチャートに示す各符号は、以下のように定義する。
Ef :ガスエンジン2の回転速度(Hz換算値)
Mf :誘導電動機30の回転速度(Hz換算値)
P1f :電動機側インバータ33の電動機側出力周波数
P1rev :電動機側インバータ33の回生電力(直流部)
P1revmax:回生電力の上限指令値
P2in :発電機駆動補機Sgへの入力電力(直流部)
Kb :電動機側インバータ33の回生電力P1revを発電機駆動補機Sgへの入力電力P2inよりも小さく調整するときの下位余裕代
Ku :電動機側インバータ33の回生電力P1revを発電機駆動補機Sgへの入力電力P2inよりも小さく調整するときの上位余裕代
Pf :室外用送風機12の1台当たりの電力
【0068】
尚、Ku>Kb>0である。
回生電力の上限指令値P1revmaxは、発電手段Gによる発電にまわせるガスエンジン2の余力であり、メインコントローラ14により、エンジン回転速度センサ38eにより検出されるガスエンジン2の回転速度及び比例弁23の開度等から定められるヒートポンプHPに対する負荷(空調負荷)に基づいて計算され、過負荷状態では、負の値になる。但し、回生電力の上限指令値P1revmaxは、発電手段Gの発電可能範囲内で指令されることになる。
【0069】
先ず、電動機回転速度センサ38gによる誘導電動機30の回転速度Mfの検出情報に基づいて、電動機側インバータ33の出力周波数P1fを誘導電動機30と同期させるように電動機側インバータ33の作動を制御して、電動機側インバータ33を回生運転モードに切り換え、以降、電動機側インバータ33の出力周波数P1fを誘導電動機30を発電機能させることが可能な周波数に調節制御して、回生運転モードを継続する(ステップ#11)。例えば、誘導電動機30として4極の誘導電動機30を用いる場合には、電動機側インバータ33の出力周波数P1fを、P1f<2Mfになるように調整する。
【0070】
続いて、低圧用冷媒圧力センサ37d又は高圧用冷媒圧力センサ37uの検出圧力に基づいて、ガスエンジン2の回転速度Efの上昇指令が有ると、そのガスエンジン2の回転速度Efの上昇指令値に従って、電動機側インバータ33の出力周波数P1fを上昇させ、又、低圧用冷媒圧力センサ37d又は高圧用冷媒圧力センサ37uの検出圧力に基づいて、ガスエンジン2の回転速度Efの低下指令が有ると、そのガスエンジン2の回転速度Efの低下指令値に従って、電動機側インバータ33の出力周波数P1fを低下させる(ステップ#12〜#15)。
つまり、空調負荷に合わせてヒートポンプHPの出力を調整すべく、ガスエンジン2の回転速度が変更調整されるが、ガスエンジン2の回転速度が変更調整されても、電動機側インバータ33の回生運転モードを維持するように、電動機側インバータ33の出力周波数P1fをガスエンジン2の回転速度Efに応じて調整するのである。
【0071】
続いて、補機入力電力センサ39iにて発電機駆動補機Sgへの入力電力P2inを計測すると共に、回生電力センサ39rにて電動機側インバータ33の回生電力P1revを計測し、空調負荷に応じて3台の室外用送風機12のうちのいずれかの停止指令が有るか否かを判別して、停止指令が有ると、P2in=P1rev+Ku+Pfとなるように、電動機側インバータ33の回生電力P1revを調整するように、電動機側インバータ33をその電動機側出力周波数P1fを上昇させるように制御した後、停止対象の室外用送風機12に対応するスイッチ35をオフにして、室外用送風機12を停止させる(ステップ#16〜#19)。
【0072】
つまり、電動機側インバータ33の回生電力P1revを停止対象の室外用送風機12が作動しているときの調整状態に維持したままで、スイッチ35をオフにして停止対象の室外用送風機12を停止させると、負荷が軽くなって発電機駆動補機Sgへの入力電圧が上昇する。
そこで、室外用送風機12を停止させる前に、電動機側インバータ33の回生電力P1revを、室外用送風機12の電力Pfに上位余裕代Kuを加えた分だけ低下させた後、室外用送風機12を停止させるようにして、発電機駆動補機Sgへの入力電圧の上昇を防止している。尚、室外用送風機12を停止させるまでは、電動機側インバータ33の回生電力P1revの低下分は、外部商用電源26から給電される。
【0073】
続いて、P1rev>P1revmaxであって発電能力に余裕が無いときは、P1rev=P1revmaxとなるように、電動機側インバータ33の回生電力P1revを低下させるべく、電動機側インバータ33の電動機側出力周波数P1fを上昇調整し、P1rev≦P1revmaxであって発電能力に余裕があるときは、何も実行せず(ステップ#20〜#21)、続いて、P2in>P1rev+Kuの場合は、P2in≦P1rev+Kuになるように、電動機側インバータ33の回生電力P1revを上昇させるべく、電動機側インバータ33の電動機側出力周波数P1fを低下調整し、続いて、P2in<P1rev+Kbの場合は、P2in≧P1rev+Kbになるように、電動機側インバータ33の回生電力P1revを低下させるべく、電動機側インバータ33の電動機側出力周波数P1fを上昇調整する(ステップ#22〜#25)。
つまり、発電能力に余裕があるときには、P2in−Ku≦P1rev≦P2in−Kbの関係を維持するように、電動機側インバータ33の回生電力P1revを調整すべく、電動機側インバータ33の電動機側出力周波数P1fを調整し、発電能力に余力が無いときには、電動機側インバータ33の回生電力P1revがP2in−Kuよりも低下するのを許容することになる。
終了指令があると(ステップ#26)、図4に示すメインのフローに戻って、運転を終了する。
【0074】
上述のように誘導電動機30の回転速度Mfに応じて電動機側インバータ33の電動機側出力周波数P1fを調整して誘導電動機30を制御するための制御方式としては、電動機回転速度センサ38gにて検出される誘導電動機30の回転速度Mfに基づいて実行する周知のベクトル制御又はV/F制御を適用する。
【0075】
次に、図6に基づいて、上述のように構成したヒートポンプ装置により発電効率を求めた結果を説明する。尚、図6には、冷房運転及び暖房運転の両方の場合について示しているが、以下では、冷房運転の場合について説明して、暖房運転の場合は、冷房運転の場合と同様に理解できるので説明を省略する。
検証に用いたヒートポンプ装置は、能力が56kWのときの消費電力は1.33kWであり、ガス燃料の消費量は53kWである。
発電手段Gを設けていない従来の場合は、ガスエンジン2の性能は、出力が15.9kW、入力が49.7kWであり、エンジン効率は32%(LHV)であった。
本発明の場合は、発電手段Gの誘導電動機30をガスエンジン2にて駆動するので、出力は誘導電動機30を駆動する分高くなって、17.4kWであり、入力も誘導電動機30を駆動する分多くなって52.7kWであり、エンジン効率は33%(LHV)と従来の32%(LHV)に比べて高くなる。
従来に比べて、入力が3kW増加したが、その増加分で、1.33kWの電力を発電することができ、その発電効率は、44.7%(LHV)である。発電効率は、通常は20%程度であるので、高発電効率にて発電することができる。
【0076】
以下、第2ないし第5の各実施形態を説明するが、各実施形態においては、第1実施形態と同じ構成要素や同じ作用を有する構成要素については、重複説明を避けるために、同じ符号を付すことにより説明を省略し、主として、第1実施形態と異なる構成を説明する。
【0077】
〔第2実施形態〕
以下、第2実施形態を説明する。
第2実施形態においては、メインコントローラ14の制御構成として、発電能力に余裕が無いときには、発電可能な能力に合わせて発電手段Gの発電出力を調整し、且つ、その調整により発電出力が零又はそれに近くなった状態においてガスエンジン2の出力に余裕が無いときには、誘導電動機30を外部商用電源26にて力行運転させるように発電手段Gを制御する構成を追加した以外は、第1実施形態と同様に構成してある。
【0078】
以下、図7に示すフローチャートに基づいて、通常運転制御について説明する。
ステップ#31〜#39の制御動作は、第1実施形態における制御動作である図5のフローチャートにおけるステップ#11〜#19と同様であるので、説明を省略する。
【0079】
ステップ#40にて、P1revmax≦0であるか否かを判別して、P1revmax≦0でないときは、ステップ#45〜#50において、P2in−Ku≦P1rev≦P2in−Kbの関係を維持するように、電動機側インバータ33の回生電力P1revを調整すべく、電動機側インバータ33の電動機側出力周波数P1fを調整する制御を実行する。
【0080】
ステップ#40〜#44においては、P1revmax≦0であり、且つ、P1rev>P1revmaxである間は、P1revmaxの値に基づき電動機側インバータ33の電動機側出力周波数P1fを上昇させ、P1revmax≦0であり、且つ、P1rev<P1revmaxである間は、P1revmaxの値に基づき電動機側インバータ33の電動機側出力周波数P1fを低下させ、これ以外のときは何も実行しない。つまり、P1revmax≦0となった場合は、電動機側インバータ33の電動機側出力周波数P1fが上昇されて、発電出力が低下されて、力行運転に移行され、その力行運転において、誘導電動機30の力行運転の出力が上昇され、P1revmaxの値に基づいて力行運転される状態が維持される。
尚、図7には記載していないが、誘導電動機30の回転速度Mfと誘導電動機30のトルク出力の限界値との関係から定まる力行電力の上限に達した場合には、これを超える状態の力行運転は行わない。
【0081】
〔第3実施形態〕
以下、第3実施形態を説明する。
第3実施形態においては、給電部Cの構成、及び、メインコントローラ14の制御構成のうちの発電手段Gの出力電力調整の制御構成が異なる以外は、第1実施形態と同様に構成してある。
つまり、ヒートポンプ装置の全体構成は、第1実施形態と同様に図1にて示され、整流手段32及び電動機側インバータ33夫々の回路構成は、第1実施形態と同様に図3にて示される。
【0082】
図8に基づいて、給電部Cの構成について説明を加える。第3実施形態では、第1実施形態において設けた回生電力センサ39r及び補機入力電力センサ39iを省略して、新たに、発電手段Gの直流出力電圧を計測する電圧計測点40を設けてある。
【0083】
また、変速運転を行う室外用送風機12やヒートポンプ装置の運転中は常に運転されるエンジンルーム用送風機13及び冷却水ポンプ7のような補機に対してはスイッチ35を省略することで、装置全体の低廉化を実現している。又、点火器28には、外部商用電源26から直接給電するようにしてあるが、図8では、点火器28の図示を省略している。
【0084】
メインコントローラ14は、第1実施形態と同様に、発電機駆動補機Sgの消費電力に応じて発電手段Gの出力電力を調整するように、発電手段Gを制御するように構成し、前記整流手段32は、発電機駆動補機Sgの消費電力のうち発電手段Gの出力電力を越える超過分を外部商用電源26にて補うように、整流した直流電力を発電手段Gにて発電された直流電力に加えるように構成してある。
そして、第3実施形態においては、メインコントローラ14は、発電機駆動補機Sgの消費電力に応じた発電手段Gの出力電力の調整として、発電能力に余裕があるときには、発電手段Gの直流出力電圧(以下、直流部電圧と略称する場合がある)を整流手段32にて整流された後の外部商用電源26の直流入力電圧(以下、外部直流入力電圧と略称する場合がある)よりも高くし、且つ、発電能力に余裕が無いときには、発電手段Gの直流部電圧が低下することを許容する形態で、発電手段Gを制御するように構成してある。
【0085】
具体的には、メインコントローラ14は、電圧計測点40にて計測される発電手段Gの直流部電圧Vdcが、外部直流入力電圧よりも高い値に設定された直流部設定電圧Vdcsetになるように、電動機側インバータ33の作動を制御する。ちなみに、外部商用電源26が200Vの場合、その外部商用電源26の交流電力の全波整流後の直流電圧は270V程度であるので、直流部設定電圧Vdcsetとしては、270Vよりも高い値、例えば320Vに設定する。
【0086】
次に、メインコントローラ14の制御動作について説明する。
運転開始指令に基づく運転開始制御は、図4に示すように、第1実施形態と同様であるので、説明を省略する。
通常運転制御において、低圧用冷媒圧力センサ37dや高圧用冷媒圧力センサ37uの検出圧力に基づくガスエンジン2の回転速度制御は、第1実施形態と同様であるので、説明を省略し、発電手段Gの出力電力の調整制御について、図9に示すフローチャートに基づいて説明する。
尚、図9のフローチャートに示す各符号のうち、Vdc、Vdcsetは上述したように、それぞれ、直流部電圧、直流部設定電圧を示し、Tは回生運転時の誘導電動機30のトルク、Tmaxはトルクの上限指令値を示し、それら以外の符号は、第1実施形態と同様に定義してある。
尚、回生運転時の誘導電動機30のトルクTは、誘導電動機30の回転速度Mf、電動機側インバータ33の電動機側出力電力により求められ、メインコントローラ14にフィードバックされる。
又、トルクの上限指令値Tmaxは、発電手段Gによる発電にまわせるガスエンジン2の余力であり、メインコントローラ14により、エンジン回転速度センサ38eにより検出されるガスエンジン2の回転速度及び比例弁23の開度等から求められるヒートポンプHPに対する負荷(空調負荷)に基づいて計算され、過負荷状態では、負の値になる。但し、トルクの上限指令値Tmaxは、発電手段Gの発電可能範囲内で指令されることになる。
【0087】
先ず、電動機回転速度センサ38gによる誘導電動機30の回転速度Mfの検出情報に基づいて、電動機側インバータ33の出力周波数P1fを誘導電動機30と同期させるように電動機側インバータ33の作動を制御して、電動機側インバータ33を回生運転モードに切り換え、以降、電動機側インバータ33の出力周波数P1fを誘導電動機30を発電機能させることが可能な周波数に調節制御して、回生運転モードを継続する(ステップ#61)。例えば、誘導電動機30として4極の誘導電動機30を用いる場合には、電動機側インバータ33の出力周波数P1fを、P1f<2Mfになるように調整する。
【0088】
続いて、T>Tmaxであって発電能力を超過しているときは、電動機側インバータ33の回生電力P1revを減少させ、T≦Tmaxであって発電能力に余裕があるときは、電圧計測点40にて検出される直流部電圧Vdcが直流部設定電圧Vdcsetより小さい場合は、電動機側インバータ33の回生電力P1revを増大させ、電圧計測点40にて検出される直流部電圧Vdcが直流部設定電圧Vdcsetより大きい場合は、電動機側インバータ33の回生電力P1revを減少させるようにして、直流部電圧Vdcが直流部設定電圧Vdcsetになるように電動機側インバータ33を制御する(ステップ#62〜#68)。
尚、図示はしていないが、ステップ#66では、電動機側インバータ33の回生電力P1revは、T≦Tmaxの関係が成立する範囲で増大される。
終了指令があると(ステップ#69)、図4に示すメインのフローに戻って、運転を終了する。
【0089】
具体的には、直流部電圧Vdcと直流部設定電圧Vdcsetとの偏差を計算して、PI制御又はPID制御により、直流部電圧Vdcが直流部設定電圧Vdcsetになるように、電動機側インバータ33の出力周波数P1fを増減調節して、電動機側インバータ33の回生電力P1revを増減調節するフィードバック制御を実行する。
【0090】
つまり、発電手段Gの発電能力に余裕があるときは、直流部電圧Vdcが外部直流入力電圧よりも高い直流部設定電圧Vdcsetに維持されるので、発電機駆動補機Sgの消費電力の増減に応じて、P(電力)=V(一定電圧)×I(電流)の特性に従って、発電機駆動補機Sgが必要とする電流を出力するように発電手段Gからの発電出力を制御することになるので、発電手段Gにより、発電機駆動補機Sgの消費電力に対して過不足なく発電されて、発電機駆動補機Sgの消費電力が発電手段Gのみにて賄われることになる。一方、発電手段Gの発電能力に余裕が無いときには出力電力Pが頭打ちとなることから、P(一定電力)=V(電圧)×I(電流)の関係に従い、発電機駆動補機Sgが必要とする電流を出力するには電圧を一定に保つことができなくなるため、発電手段Gの直流部電圧Vdcが低下するので、直流部電圧Vdcが外部直流入力電圧まで低くなることが許容され、P(一定電力)=V(一定電圧、即ち、外部直流入力電圧)×I(電流)の関係に従い、発電機駆動補機Sgの消費電力に対して発電能力までは発電手段Gより供給され、発電手段Gの出力電力が不足する分は外部商用電源26からの交流電力が整流手段32にて整流されて、発電手段Gにて発電された直流電力に加えられて、発電機駆動補機Sgに供給されることになり、発電出力超過分のみが外部商用電源26にて補われる。
【0091】
〔第4実施形態〕
以下、第4実施形態を説明する。
第4実施形態においては、給電部Cの構成、及び、メインコントローラ14の制御構成のうちの発電手段Gの出力電力調整の制御構成が異なる以外は、第1実施形態と同様に構成してある。
つまり、ヒートポンプ装置の全体構成は、第1実施形態と同様に図1にて示され、整流手段32及び電動機側インバータ33夫々の回路構成は、第1実施形態と同様に図3にて示される。
給電部Cは、図8にて示され、第3実施形態と同様であり、第1実施形態において設けた回生電力センサ39r及び補機入力電力センサ39iを省略して、新たに、発電手段Gの直流出力電圧を計測する電圧計測点40を設けてある。
又、点火器28には、外部商用電源26から直接給電するようにしてあり、図8では、点火器28の図示を省略している。
【0092】
メインコントローラ14は、第1実施形態と同様に、発電機駆動補機Sgの消費電力に応じて発電手段Gの出力電力を調整するように、発電手段Gを制御するように構成し、前記整流手段32は、発電機駆動補機Sgの消費電力のうち発電手段Gの出力電力を越える超過分を外部商用電源26にて補うように、整流した直流電力を発電手段Gにて発電された直流電力に加えるように構成してある。
そして、第4実施形態においては、メインコントローラ14は、発電機駆動補機Sgの消費電力に応じた発電手段Gの出力電力の調整として、発電能力に余裕があるときには、発電手段Gの直流部電圧を整流手段32にて整流された後の外部商用電源26の直流入力電圧、即ち、外部直流入力電圧よりも高くし、且つ、発電能力に余裕が無いときには、発電手段Gの直流部電圧が低下することを許容する形態で、発電手段Gを制御するように構成してある。
更に、第4実施形態においては、メインコントローラ14は、発電能力に余裕が無いときには、発電可能な能力に合わせて発電手段Gの発電出力を調整し、且つ、その調整により発電出力が零又はそれに近くなった状態においてガスエンジン2の出力に余裕が無いときには、誘導電動機30を外部商用電源26にて力行運転させるように発電手段Gを制御するように構成してある。
【0093】
次に、メインコントローラ14の制御動作について説明する。
運転開始指令に基づく運転開始制御は、図4に示すように、第1実施形態と同様であるので、説明を省略する。
通常運転制御において、低圧用冷媒圧力センサ37dや高圧用冷媒圧力センサ37uの検出圧力に基づくガスエンジン2の回転速度制御は、第1実施形態と同様であるので、説明を省略し、発電手段Gの出力電力の調整制御について、図10に示すフローチャートに基づいて説明する。
尚、図10のフローチャートに示す各符号は、第3実施形態と同様に定義してある。ちなみに、直流部設定電圧Vdcsetとしては、外部商用電源26が200Vの場合、第3実施形態と同様に、外部商用電源26の全波整流後の直流電圧である270Vよりも高い値、例えば320Vに設定する。
【0094】
先ず、電動機回転速度センサ38gによる誘導電動機30の回転速度Mfの検出情報に基づいて、電動機側インバータ33の出力周波数P1fを誘導電動機30と同期させるように電動機側インバータ33の作動を制御して、電動機側インバータ33を回生運転モードに切り換え、以降、電動機側インバータ33の出力周波数P1fを誘導電動機30を発電機能させることが可能な周波数に調節制御して、回生運転モードを継続する(ステップ#71)。例えば、誘導電動機30として4極の誘導電動機30を用いる場合には、電動機側インバータ33の出力周波数P1fを、P1f<2Mfになるように調整する。
【0095】
続いて、0≦Tmaxの場合で、T≦Tmaxであって発電能力に余裕があるときは、電圧計測点40にて検出される直流部電圧Vdcが直流部設定電圧Vdcsetより小さい場合は、電動機側インバータ33の回生電力P1revを上昇させ、電圧計測点40にて検出される直流部電圧Vdcが直流部設定電圧Vdcsetより大きい場合は、電動機側インバータ33の回生電力P1revを減少させ、直流部電圧Vdcが直流部設定電圧Vdcsetになるように電動機側インバータ33を制御する(ステップ#72〜#79)。
尚、図示はしていないが、ステップ#77では、電動機側インバータ33の回生電力P1revは、T≦Tmaxの関係が成立する範囲で増大される。
【0096】
具体的には、直流部電圧Vdcと直流部設定電圧Vdcsetとの偏差を計算して、PI制御又はPID制御により、直流部電圧Vdcが直流部設定電圧Vdcsetになるように、電動機側インバータ33の出力周波数P1fを増減調節して、電動機側インバータ33の回生電力P1revを増減調節するフィードバック制御を実行する。
【0097】
0>Tmaxの場合は、T<Tmaxのときは電動機側インバータ33の回生電力P1revを増大させ、T>Tmaxのときは電動機側インバータ33の回生電力P1revを減少させ、T=Tmaxのときは何も実行しない。(ステップ#72、#80〜#83)。
尚、図10には記載していないが、誘導電動機30の回転速度Mfと誘導電動機30のトルク出力の限界値との関係から定まる力行電力の上限に達した場合には、これを超える状態の力行運転は行わない。
終了指令があると(ステップ#84)、図4に示すメインのフローに戻って、運転を終了する。
【0098】
つまり、トルクの上限指令値Tmaxが負の値をとる間は、誘導電動機30が回生運転されているときは、電動機側インバータ33の回生電力P1revが低下され、やがて、力行運転に移行され、その力行運転において、電動機側インバータ33の回生電力P1revが負方向に減少され、即ち、誘導電動機30の力行運転の出力が上昇され、誘導電動機30に力行運転での余力がなくなると、誘導電動機30を最大定格にて力行運転させる状態が維持される。
【0099】
つまり、発電手段Gの発電能力に余裕があるときは、直流部電圧Vdcが外部直流入力電圧よりも高い直流部設定電圧Vdcsetに維持されるので、発電機駆動補機Sgの消費電力の増減に応じて、P(電力)=V(一定電圧)×I(電流)の特性に従って、発電機駆動補機Sgが必要とする電流を出力するように発電手段Gからの発電出力を制御することになるので、発電手段Gにより、発電機駆動補機Sgの消費電力に対して過不足なく発電されて、発電機駆動補機Sgの消費電力が発電手段Gのみにて賄われることになる。一方、発電手段Gの発電能力に余裕が無いときには出力電力Pが頭打ちとなることから、P(一定電力)=V(電圧)×I(電流)の関係に従い、発電機駆動補機Sgが必要とする電流を出力するには電圧を一定に保つことができなくなるため、発電手段Gの直流部電圧Vdcが低下するので、直流部電圧Vdcが外部直流入力電圧まで低くなることが許容され、P(一定電力)=V(一定電圧、即ち、外部直流入力電圧)×I(電流)の関係に従い、発電機駆動補機Sgの消費電力に対して発電能力までは発電手段Gより供給され、発電手段Gの出力電力が不足する分は外部商用電源26からの交流電力が整流手段32にて整流されて、発電手段Gにて発電された直流電力に加えられて、発電機駆動補機Sgに供給されることになり、発電出力超過分のみが外部商用電源26にて補われる。
更に、電動機側インバータ33の回生電力P1revの減少調節により、電動機側インバータ33の回生電力P1revが零になった状態において、ガスエンジン2の出力に余裕が無いときには、誘導電動機30が外部商用電源26にて力行運転されることになる。
【0100】
〔第5実施形態〕
本実施形態では、図1に示したメインコントローラ14と室内機用コントローラ17とは、制御信号を互いに送受信可能な信号線24にて接続してある。メインコントローラ14には電線25にて外部商用電源26(例えば3相200V)を接続して、室外機Uoの一部に給電し、室内機用コントローラ17には電線25にて商用電源27(例えば単相200V)を接続して、室内機Uiに給電するように構成してある。
【0101】
上述のように室外機Uo及び室内機Uiの夫々に設けられてヒートポンプHPを構成する機器のうち、冷却水ポンプ7、室外用送風機12、エンジンルーム用送風機13、ガスエンジン2を始動させる点火プラグ(図示省略)を備えて構成した点火器28が、ヒートポンプHPの直流電動式の補機に相当する。また、四方弁6、三方弁11、開閉弁22及び比例弁23などの補機には、商用電源26から給電されるように構成されている。
【0102】
図11に示すのは、ガスエンジン2によって駆動される発電手段Gが、誘導電動機30とその誘導電動機30の発電のために励磁用交流電圧を出力する電動機側インバータ33とを備えて構成される場合の例である。
この場合、メインコントローラ14が、電動機側インバータ33が出力する励磁用交流電圧の周波数を、誘導電動機30を発電機能させることが可能な周波数に調節制御する状態で、ガスエンジン2にて誘導電動機30を圧縮機1と同時に駆動し且つ発電手段Gにて発電された直流電力を、その直流出力電圧が設定電圧になるように制御して、直流電動式の補機に供給するべく運転制御するように構成してある。つまり、運転を制御する運転制御手段は、メインコントローラ14を用いて構成してある。
【0103】
次に、図11に基づいて、発電手段G及び給電部Cについて説明を加える。
ガスエンジン2の回転軸と圧縮機1の回転軸と誘導電動機30の回転軸とを、ベルト31にて伝動連結してある。ガスエンジン2には、その回転速度を検出するエンジン回転速度センサ38eを設け、誘導電動機30には、その回転速度を検出する電動機回転速度センサ38gを設けてある。
【0104】
給電部Cは、上記発電手段Gと、上記発電手段Gから電力供給対象の補機への給電を断続する複数のスイッチ35とを備えて構成され、メインコントローラ14にて、電動機側インバータ33の作動を制御すると共に、各スイッチ35を開閉操作するように構成される。図12には、電動機側インバータ33の回路構成を示す。
【0105】
そして、各スイッチ35に、給電部Cから給電する対象の補機(以下、直流電動式の補機又は発電機駆動補機Sgと称する場合がある)を接続して、発電機駆動補機Sgに給電するように構成してあるが、本実施形態では、複数のスイッチ35の夫々に、ヒートポンプHPの補機のうち、3台の室外用送風機12、エンジンルーム用送風機13、冷却水ポンプ7及び点火器28の夫々を発電機駆動補機Sgとして接続して、それら発電機駆動補機Sgに給電部Cからの直流電力を給電するようにしてある。また、発電手段Gからの直流出力電圧を計測する電圧計測点40を設けてある。
【0106】
ちなみに、ヒートポンプHPの補機のうち、3台の室外用送風機12、エンジンルーム用送風機13、冷却水ポンプ7及び点火器28以外の、四方弁6、三方弁11、開閉弁22及び比例弁23などの補機(図11においては、その他補機Soにて示す)には、外部商用電源26から直接給電するように構成してある。
【0107】
図11に示すように、本発明に係るヒートポンプ装置では、発電機駆動補機Sgと外部商用電源26とは接続されておらず、発電機駆動補機Sgには発電手段Gにおいて発電された直流電力が供給される構成となっている。従って、発電手段Gとしては、発電機駆動補機Sgの消費電力を十分に賄える発電能力を備えたものが設けられている。又、発電手段Gにおいて発電された直流電力をバッテリ41に蓄電可能に構成してある。
【0108】
次に、運転開始指令に基づくメインコントローラ14の運転開始制御動作について説明する。
リモコン操作部Rから暖房運転の運転開始が指令されると、室内機側コントローラ17は、暖房運転の運転開始指令の信号をメインコントローラ14に送信すると共に、室内用送風機16の運転を開始させ、暖房運転中は、室温センサ36の検出温度とリモコン操作部Rから送信される暖房目標温度との偏差に応じて送風量を調整するように、室内用送風機16の運転を制御する。
【0109】
一方、メインコントローラ14は、室内機側コントローラ17から暖房運転の運転開始指令の信号が送信されてくるのに基づいて、四方弁6及び三方弁11の夫々を暖房運転流路状態に切り換えた後、直流電動式の補機である室外用送風機12、エンジンルーム用送風機13及び冷却水ポンプ7の運転を開始し、続いて、ガスエンジン2を始動させる運転開始制御を実行し、続いて、高圧用冷媒圧力センサ37uの検出圧力を所定に範囲に維持するように比例弁23の開度を調節してガスエンジン2の回転速度を制御する、即ち、ヒートポンプHPに対する負荷に応じてガスエンジン2の出力を増減調整すると共に、発電手段Gの出力電力を、発電機駆動補機Sgの消費電力に応じて調整する通常運転制御を実行する。
【0110】
次に、図4に示したフローチャートを参照して、メインコントローラ14によって実行される上記運転開始制御と上記通常運転制御について説明する。
まず、運転開始指令があると、運転を開始すべき室外用送風機12に対応するスイッチ35、エンジンルーム用送風機13に対応するスイッチ35及び冷却水ポンプ7に対応するスイッチ35をオンにした後、充放電制御手段42を制御して、室外用送風機12、エンジンルーム用送風機13及び冷却水ポンプ7に対してバッテリ41から電力を漸増させる状態で給電して、それら室外用送風機12、エンジンルーム用送風機13及び冷却水ポンプ7を所謂ソフトスタートさせる(ステップ#1〜#3)。
【0111】
続いて、電動機側インバータ33を運転開始させると共に、電動機側インバータ33をその出力周波数を漸増させるように制御することにより、誘導電動機30にバッテリ41から電力を漸増させる状態で給電して、誘導電動機30をソフトスタートにて力行運転させて、ガスエンジン2を回転させ、続いて、点火器28に対応するスイッチ35をオンさせて、ガスエンジン2を始動させ、運転開始制御を完了する(ステップ#3及び#4)。ちなみに、誘導電動機30のソフトスタートでは、誘導電動機30の回転速度を、5秒程度で0から800rpmにまで上昇させる。
以上のようにして運転開始制御が完了すると、通常運転制御を実行する(#5)。
【0112】
以下に、低圧用冷媒圧力センサ37dや高圧用冷媒圧力センサ37uの検出圧力に基づいてガスエンジン2の回転速度を制御しながら、発電手段Gの出力電力を、その直流出力電圧が設定電圧になるように調整制御して、補機に給電する通常運転制御の説明を図13に示すフローチャートに基づいて行う。
【0113】
まず、電動機回転速度センサ38gによる誘導電動機30の回転速度Mfの検出情報に基づいて、電動機側インバータ33の出力周波数P1fを誘導電動機30と同期させるように電動機側インバータ33の作動を制御して、電動機側インバータ33を回生運転モードに切り換え、以降、電動機側インバータ33の出力周波数P1fを誘導電動機30を発電機能させることが可能な周波数に調節制御して、回生運転モードを継続する(ステップ#91)。例えば、誘導電動機30として4極の誘導電動機30を用いる場合には、電動機側インバータ33の出力周波数P1fを、P1f<2Mfになるように調整する。
【0114】
続いて、電圧計測点40にて検出される直流部電圧Vdcが直流部設定電圧Vdcsetより小さい場合は、電動機側インバータ33の回生電力P1revを上昇させ、電圧計測点40にて検出される直流部電圧Vdcが直流部設定電圧Vdcsetより大きい場合は、電動機側インバータ33の回生電力P1revを減少させ、直流部電圧Vdcが直流部設定電圧Vdcsetになるように電動機側インバータ33を制御する(ステップ#92〜#96)。
終了指令があると(ステップ#97)、図4に示すメインのフローに戻って、運転を終了する。
【0115】
具体的には、直流部電圧Vdcと直流部設定電圧Vdcsetとの偏差を計算して、PI制御又はPID制御により、直流部電圧Vdcが直流部設定電圧Vdcsetになるように、電動機側インバータ33の出力周波数P1fを増減調節して、電動機側インバータ33の回生電力P1revを増減調節するフィードバック制御を実行する。
【0116】
つまり、直流部電圧Vdcが直流部設定電圧Vdcsetに維持されるので、発電機駆動補機Sgの消費電力の増減に応じて、P(電力)=V(一定電圧)×I(電流)の特性に従って、発電機駆動補機Sgが必要とする電流を出力するように発電手段Gからの発電出力を制御することになるので、発電手段Gにより、発電機駆動補機Sgの消費電力に対して過不足なく発電されて、発電機駆動補機Sgの消費電力が発電手段Gのみにて賄われることになる。
【0117】
上述のように誘導電動機30の回転速度Mfに応じて電動機側インバータ33の電動機側出力周波数P1fを調整して誘導電動機30を制御するための制御方式としては、電動機回転速度センサ38gにて検出される誘導電動機30の回転速度Mfに基づいて実行する周知のベクトル制御又はV/F制御を適用する。
【0118】
以上のように、ヒートポンプHPに対する負荷の変動に伴ってガスエンジン2の回転速度が増減されると、そのガスエンジン2にて駆動される誘導電動機30の回転速度が増減変化することになるが、その誘導電動機30の回転速度の変化に応じて、電動機側インバータ33が出力する励磁用交流電圧の周波数が誘導電動機30を発電機能させることが可能な周波数に調節制御されるので、ヒートポンプHPに対する負荷の変動に伴うガスエンジン2の回転速度の増減にかかわらず、発電手段Gにて適切に発電させることが可能となる。更に、運転制御手段14によって、励磁用交流電圧の周波数P1fを調整することで、発電手段Gからの直流出力電圧が設定電圧(例えば直流電動式の補機の動作電圧)になるように制御されることから、補機Sgの消費電力に対して過不足なく発電する状態で、ガスエンジン2の余力を十分に用いて発電することが可能となりガスエンジン2を一段と高効率にて駆動することが可能となる。
【0119】
〔第6実施形態〕
上述の実施形態は、電圧計測点40にて検出される直流部電圧Vdcが直流部設定電圧Vdcsetに満たない場合に、発電手段Gにまわせるだけの余力(電動機側インバータ33の回生電力P1revを上昇させることができるだけの余力)がガスエンジン2にある場合の制御例であるが、以下の実施形態には、発電手段にまわせるエンジンの余力が少ないか、或いは無い場合の制御例について図14のフローチャートを参照して説明する。
【0120】
尚、以下の例において回生電力の上限指令値P1revmaxとは、発電手段Gによる発電にまわせるガスエンジン2の余力であり、メインコントローラ14により、エンジン回転速度センサ38eにより検出されるガスエンジン2の回転速度及び比例弁23の開度等から定められるヒートポンプHPに対する負荷(空調負荷)に基づいて計算され、過負荷状態では、負の値になる。但し、回生電力の上限指令値P1revmaxは、発電手段Gの発電可能範囲内で指令されることになる。
【0121】
まず、電動機回転速度センサ38gによる誘導電動機30の回転速度Mfの検出情報に基づいて、電動機側インバータ33の出力周波数P1fを誘導電動機30と同期させるように電動機側インバータ33の作動を制御して、電動機側インバータ33を回生運転モードに切り換え、以降、電動機側インバータ33の出力周波数P1fを誘導電動機30を発電機能させることが可能な周波数に調節制御して、回生運転モードを継続する(ステップ#101)。例えば、誘導電動機30として4極の誘導電動機30を用いる場合には、電動機側インバータ33の出力周波数P1fを、P1f<2Mfになるように調整する。
【0122】
続いて、電圧計測点40にて検出される直流部電圧Vdcが直流部設定電圧Vdcsetより大きい場合は、電動機側インバータ33の回生電力P1revを減少させ、直流部電圧Vdcが直流部設定電圧Vdcsetになるように電動機側インバータ33を制御する(ステップ#102、#103、#105、#106)。他方で、電圧計測点40にて検出される直流部電圧Vdcが直流部設定電圧Vdcsetより小さい場合は、電動機側インバータ33の回生電力P1revが回生電力の上限指令値P1revmaxより小さいか否かが判定される(ステップ#108)。
【0123】
P1rev≧P1revmaxであって発電手段Gの発電能力に余力が無い場合、エンジン回転数Efを上昇させる(ステップ#109)。従って、発電手段Gに発電余力が生じ、回生電力の上限指令値P1revmaxが増大される。そして、電動機側インバータ33の回生電力P1revを増大させ、直流部電圧Vdcが直流部設定電圧Vdcsetになるように電動機側インバータ33を制御する(ステップ#104)。また、ステップ#108においてP1rev<P1revmaxであって発電手段Gの発電能力に余力がある場合には、電動機側インバータ33の回生電力P1revを増大させ、直流部電圧Vdcが直流部設定電圧Vdcsetになるように電動機側インバータ33を制御する(ステップ#104)。
終了指令があると(ステップ#107)、図4に示すメインのフローに戻って、運転を終了する。
【0124】
尚、ガスエンジン2の回転軸と圧縮機1の回転軸とはベルト31にて伝導連結されているため、ガスエンジン2の回転数の上昇に伴って圧縮機1も過運転される可能性があるのだが、圧縮機1の回転軸側にクラッチを設けておけば、圧縮機1に発生し得る上記問題を回避することが出来る。
【0125】
〔別実施形態〕
次に別実施形態を説明する。
(1) 上記の第1及び第2の各実施形態において、メインコントローラ14の制御構成として、発電能力に余裕があるときには、発電手段Gの出力電力と発電機駆動補機Sgの消費電力とを比較して、出力電力が発電機駆動補機Sgの消費電力の大部分に相当する電力となるように発電手段Gを制御する構成に代えて、発電手段Gの出力電力と発電機駆動補機Sgの消費電力とを比較して、出力電力が発電機駆動補機Sgの消費電力に等しくなるように発電手段Gを制御する構成を採用しても良い。
【0126】
(2) 上記の各実施形態においては、メインコントローラ14を、発電機駆動補機Sgにおける消費電力に応じて、発電手段Gの出力電力を調整するように構成する場合について例示したが、これに代えて、メインコントローラ14を、発電手段Gの出力電力を設定値に調整するように構成しても良い。この場合は、発電機駆動補機Sgの消費電力に対して、発電手段Gの出力電力が不足する場合は、その不足分が外部商用電源26から発電機駆動補機Sgに供給されることになる。 又、この場合は、発電機駆動補機Sgの消費電力に対して発電手段Gの出力電力が多くなる分を蓄電する蓄電部を設けるのが好ましい。
この場合、発電機駆動補機Sgの消費電力に対して発電手段Gの出力電力が不足するときは、その不足分を蓄電部から供給するように構成しても良い。
【0127】
(3) 上記の各実施形態においては、図3に例示するようにサイリスタなどの整流機能と電圧調整機能とを併せ持った整流素子を用いて整流手段32を構成することで、商用電源からの交流電力を整流するだけでなく、サイリスタの位相制御角をコントローラ14によって制御して、整流手段32からの直流出力電圧を調整しているが、他の構成例として図15に例示するようにダイオードを用いた構成例もある。但し、この場合は整流手段32’からの直流出力電圧の大きさは調整できなくなる。
【0128】
(4) 発電手段Gの発電電力を調整したり、誘導電動機30の力行運転での出力を調整したりするために、誘導電動機30の回転速度Mfに応じて電動機側インバータ33の電動機側出力周波数P1fを調整して誘導電動機30を制御するための制御方式としては、周知の種々の方式を適用することが可能である。
上記の各実施形態のように、誘導電動機30の回転速度Mfを検出する電動機回転速度センサ38gを設けてベクトル制御又はV/F制御を適用する他に、例えば、周知のセンサレスベクトル制御を適用することができる。センサレスベクトル制御を適用すると、上記の各実施形態の如き誘導電動機30の回転速度Mfを検出するための電動機回転速度センサ38gを設けることなく、誘導電動機30を制御することが可能となるので、コスト面で有利となる。
尚、ベクトル制御又はV/F制御を適用する場合において、エンジン回転速度センサ38eにて検出されるガスエンジン2の回転速度、及び、ガスエンジン2と誘導電動機30とのプーリー比から、誘導電動機30の回転速度Mfを求めて、そのように求めた誘導電動機30の回転速度Mfを用いるように構成することにより、ベクトル制御又はV/F制御を適用する場合においても、電動機速度センサ38gを省略することが可能になる。
【0129】
(5) 上記の各実施形態においては、誘導電動機30をガスエンジン2のスタータに兼用するように構成する場合について例示したが、外部商用電源26にて駆動される専用のスタータを設けても良い。
【0130】
(6) 発電手段Gから電力を供給する電動式の補機の具体例としては、上記の各実施形態において例示したものに限定されるものではなく、上記の各実施形態において例示したものから一部を除いたり、あるいは、四方弁6、三方弁11、開閉弁22及び比例弁23等のうちの一部又は全部を加えても良い。
【0131】
(7) 上述の実施形態では発電機駆動補機Sgに電力を供給することを目的として発電手段Gを発電機能させるという運転制御について説明したが、電圧計測点40において計測されるバッテリの電圧が所定値以下になった場合に、バッテリに蓄電することを目的として発電手段Gを発電機能させることもできる。
【図面の簡単な説明】
【図1】第1ないし第6の各実施形態に係るヒートポンプ装置の全体構成を示すブロック図である。
【図2】第1及び第2の各実施形態に係るヒートポンプ装置の給電部を示すブロック図である。
【図3】第1ないし第4の各実施形態に係るヒートポンプ装置の発電手段及び整流手段の回路構成を示す図である。
【図4】第1ないし第6の各実施形態に係るヒートポンプ装置の制御動作のフローチャートを示す図である。
【図5】第1実施形態に係るヒートポンプ装置の制御動作のフローチャートを示す図である。
【図6】第1実施形態に係るヒートポンプ装置のランニングコストメリットを説明する図である。
【図7】第2実施形態に係るヒートポンプ装置の制御動作のフローチャートを示す図である。
【図8】第3及び第4の各実施形態に係るヒートポンプ装置の給電部を示すブロック図である。
【図9】第3実施形態に係るヒートポンプ装置の制御動作のフローチャートを示す図である。
【図10】第4実施形態に係るヒートポンプ装置の制御動作のフローチャートを示す図である。
【図11】第5及び第6の各実施形態に係るヒートポンプ装置の給電部を示す機能ブロック図である。
【図12】第5及び第6の各実施形態に係る発電手段の回路構成を示す図である。
【図13】第5の各実施形態に係るヒートポンプ装置の制御動作のフローチャートである。
【図14】第6の各実施形態に係るヒートポンプ装置の制御動作のフローチャートである。
【図15】第5及び第6の各実施形態に係るヒートポンプ装置の発電手段及び整流手段の別の回路構成を示す図である。
【符号の説明】
1 圧縮機
2 ガスエンジン
14 運転制御手段
26 外部商用電源
30 誘導電動機
32 整流手段
33 電動機側インバータ
G 発電手段
HP ヒートポンプ
Sg 発電機駆動補機(直流電動式の補機)

Claims (9)

  1. ヒートポンプにおける圧縮機がエンジンにて駆動されるヒートポンプ装置であって、
    前記エンジンにて駆動される誘導電動機と、その誘導電動機の発電のために励磁用交流電圧を出力する電動機側インバータとを備える発電手段が設けられ、
    運転を制御する運転制御手段が、前記電動機側インバータが出力する励磁用交流電圧の周波数を前記誘導電動機を発電機能させることが可能な周波数に調整制御する状態で、前記エンジンにて前記誘導電動機を前記圧縮機と同時に駆動し、且つ前記ヒートポンプにおける直流電動式の補機に、前記発電手段から出力される直流電力を前記補機の消費電力に応じて調整して供給し、
    外部商用電源からの交流電力を整流する整流手段が、前記補機の消費電力のうち前記発電手段の出力電力を超える超過分を前記外部商用電源にて補うように、整流した直流電力を前記発電手段にて発電された直流電力に加えるように構成されているヒートポンプ装置。
  2. 前記運転制御手段は、前記補機の消費電力に応じた前記発電手段の出力電力の調整として、発電能力に余裕があるときには、前記発電手段の直流出力電圧を前記整流手段にて整流された後の前記外部商用電源の直流入力電圧よりも高くし、且つ、発電能力に余裕が無いときには、前記発電手段の直流出力電圧が低下することを許容する形態で、前記発電手段を制御するように構成されている請求項1に記載のヒートポンプ装置。
  3. 前記運転制御手段は、前記補機の消費電力に応じた前記発電手段の出力電力の調整として、発電能力に余裕があるときには、前記発電手段の出力電力と前記補機の消費電力とを比較して、前記出力電力が前記補機の消費電力の全て又は大部分に相当する電力となるようにし、且つ、発電能力に余裕が無いときには、出力電力が前記補機の消費電力の全て又は大部分に相当する電力よりも低下することを許容する形態で、前記発電手段を制御するように構成されている請求項1または請求項2に記載のヒートポンプ装置。
  4. 前記運転制御手段は、運転開始指令に基づいて、前記誘導電動機を前記外部商用電源にて力行運転させて前記エンジンを始動させるように構成されている請求項1から請求項3の何れか1項に記載のヒートポンプ装置。
  5. 前記運転制御手段は、運転開始指令に基づいて、先ず、前記補機に対して前記外部商用電源から電力を漸増させる状態で給電して前記補機の運転を開始し、続いて、前記誘導電動機を前記外部商用電源にて力行運転させて前記エンジンを始動させるように構成されている請求項4に記載のヒートポンプ装置。
  6. 前記運転制御手段は、発電能力に余裕が無いときには、発電可能な能力に合わせて前記発電手段の発電出力を調整し、且つ、その調整により発電出力が零又はそれに近くなった状態において前記エンジンの出力に余裕が無いときには、前記誘導電動機を前記外部商用電源にて力行運転させるように前記発電手段を制御するように構成されている請求項1から請求項5の何れか1項に記載のヒートポンプ装置。
  7. 前記整流手段が、外部商用電源からの電力を整流した後の直流出力電圧を調整する電圧調整機能を有する請求項1から請求項6の何れか1項に記載のヒートポンプ装置。
  8. ヒートポンプにおける圧縮機がエンジンにて駆動されるヒートポンプ装置であって、
    前記エンジンにて駆動される誘導電動機とその誘導電動機の発電のために励磁用交流電圧を出力する電動機側インバータとを備える発電手段と、
    運転を制御する運転制御手段が、前記電動機側インバータが出力する励磁用交流電圧の周波数を前記誘導電動機を発電機能させることが可能な周波数に調節制御する状態で、前記エンジンにて前記誘導電動機を前記圧縮機と同時に駆動し且つ前記発電手段にて発電された直流電力を、その直流出力電圧が設定電圧になるように制御して、前記ヒートポンプにおける直流電動式の補機に供給するように運転を制御するように構成されているヒートポンプ装置。
  9. 前記直流出力電圧が前記設定電圧に満たない場合、前記運転制御手段が前記エンジンの回転速度を増大させるように運転を制御する請求項8に記載のヒートポンプ装置。
JP2003070618A 2003-03-14 2003-03-14 ヒートポンプ装置 Expired - Fee Related JP4334252B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070618A JP4334252B2 (ja) 2003-03-14 2003-03-14 ヒートポンプ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070618A JP4334252B2 (ja) 2003-03-14 2003-03-14 ヒートポンプ装置

Publications (2)

Publication Number Publication Date
JP2004278901A JP2004278901A (ja) 2004-10-07
JP4334252B2 true JP4334252B2 (ja) 2009-09-30

Family

ID=33287320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070618A Expired - Fee Related JP4334252B2 (ja) 2003-03-14 2003-03-14 ヒートポンプ装置

Country Status (1)

Country Link
JP (1) JP4334252B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478959B2 (ja) * 2009-06-30 2014-04-23 三洋電機株式会社 ガスヒートポンプ式空気調和機を用いた系統連系システム
JP5628737B2 (ja) * 2011-04-27 2014-11-19 大阪瓦斯株式会社 空調システムの起動方法、及び、空調システムの起動装置
JP6654594B2 (ja) * 2017-03-16 2020-02-26 ヤンマー株式会社 エンジンシステム

Also Published As

Publication number Publication date
JP2004278901A (ja) 2004-10-07

Similar Documents

Publication Publication Date Title
US20050262865A1 (en) Air-conditioning and electric energy generating system
JP5016894B2 (ja) 空調・発電装置及びその制御方法
JP5628737B2 (ja) 空調システムの起動方法、及び、空調システムの起動装置
EP1691148A2 (en) Method for controlling cogeneration system
JP4529540B2 (ja) 空気調和装置と圧縮機の予熱方法
US20050167090A1 (en) Load management auxiliary power system
JP4179832B2 (ja) ヒートポンプ装置
JP5628736B2 (ja) 発電・空調装置の起動方法、及び、発電・空調装置の起動装置
JP2001272135A (ja) エンジンヒートポンプの排熱回収機構
JP4570127B2 (ja) ヒートポンプ装置
JP4330915B2 (ja) エンジン駆動式空気調和装置
JP4334252B2 (ja) ヒートポンプ装置
JP4958448B2 (ja) ガスヒートポンプ空気調和装置
JP2004271167A (ja) 空気調和装置
KR101893162B1 (ko) 엔진 발전 시스템 및 그 제어 방법
JP5478959B2 (ja) ガスヒートポンプ式空気調和機を用いた系統連系システム
JP2007017026A (ja) 発電機能付きガスヒートポンプ式空気調和装置
JP6152667B2 (ja) 空気調和装置
JP2009264681A (ja) 空調装置及び発電装置
JP2006064299A (ja) ハイブリッド駆動ヒートポンプ式空調装置
JP2011012848A (ja) ガスヒートポンプ式空気調和機を用いた系統連系システム
JP4905293B2 (ja) エンジン駆動式空気調和装置
JP2009079801A (ja) エンジン駆動式空気調和装置
JP4822886B2 (ja) 電源装置およびガスヒートポンプ式空気調和装置
JP3298471B2 (ja) 蓄電式空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150703

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees