JP4332322B2 - 排ガス分解処理用プラズマ発生装置 - Google Patents

排ガス分解処理用プラズマ発生装置 Download PDF

Info

Publication number
JP4332322B2
JP4332322B2 JP2002164480A JP2002164480A JP4332322B2 JP 4332322 B2 JP4332322 B2 JP 4332322B2 JP 2002164480 A JP2002164480 A JP 2002164480A JP 2002164480 A JP2002164480 A JP 2002164480A JP 4332322 B2 JP4332322 B2 JP 4332322B2
Authority
JP
Japan
Prior art keywords
exhaust gas
frequency
frequency power
high frequency
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002164480A
Other languages
English (en)
Other versions
JP2004008893A (ja
Inventor
照一 三好
登 佐伯
悦男 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pearl Kogyo Co Ltd
Original Assignee
Pearl Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pearl Kogyo Co Ltd filed Critical Pearl Kogyo Co Ltd
Priority to JP2002164480A priority Critical patent/JP4332322B2/ja
Publication of JP2004008893A publication Critical patent/JP2004008893A/ja
Application granted granted Critical
Publication of JP4332322B2 publication Critical patent/JP4332322B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス分解処理用プラズマ発生装置に関する。詳しくは、主として化学気相成長(CVD)プロセス、プラズマCVDプロセス、プラズマエッチングプロセス等の各種半導体製造用プロセスチャンバーから排出される排ガスを、プラズマを利用した放電方式により無害化処理する排ガス分解処理用プラズマ発生装置に関するものである。
【0002】
【従来の技術】
上例のような各種の半導体プロセスで使用される種々の反応性ガスは、毒性、引火性、腐蝕性等を有するものが多く、これら反応性ガスの一部は半導体プロセス中に消費されるが、残りの反応性ガスは未反応ガスとして系外に排出される。この未反応の排ガスは、例えばCF,C,C,C14等のPCF(過フッ素化炭素)ガス、NF等のフッ素化窒素ガス、SF等のフッ素化硫黄ガスなどのフッ素系ガス及びそれらの混合ガスであり、これらを処理しないでそのまま大気中に放出すると、大気汚染等の公害や災害、さらには環境破壊を招く原因となる。そのため、近年では、半導体製造用プロセスチャンバーから排出される排ガス中の有害成分を除去する無害化処理を施したのちに大気に放出することが要求され法的にも義務づけられている。
【0003】
かかる半導体プロセス用排ガス等の有害排ガスの無害化処理の一般的な方法としては、大過剰の不活性ガスを用いて排ガス中の有害成分を希釈する希釈処理方法、排ガスを燃料及び空気を用いて燃焼させる燃焼処理方法、高温加熱分解や高温反応物質との接触分解による高温処理方法等が知られているが、それら処理方法のうち希釈処理方法は、高圧ガス・特殊材料ガスの法改正等に伴い採用不可であり、燃焼処理方法は、燃焼の副産物として環境に有害な多量の微粒子(粉塵)を生じるために、その微粒子の集塵に水によるガス洗浄、洗浄水の処理といった多大な付帯設備を要するたけでなく、微粒子が燃焼系の種々の噴出口やバーナーを塞いで燃焼系に故障を生じやすいなど実用面で多くの問題があり、また、高温処理方法は、例えばSiH等と排ガス中に含まれるNFとの高温下での混合に伴い爆発の危険を有する等の問題がある。
【0004】
これら一般的な処理方法が有する種々の問題を発生しないで排ガスを無害化処理する方法として、例えば特開平6−226032号公報等に開示されているように、半導体製造用プロセスチャンバー等から排出される排ガスを絶縁性管状容器内に導入し、この管状容器の外周に誘導結合方式の高周波放電用電極を螺旋コイル状に巻回させてなる高周波放電管のコイル状電極に高周波電力を印加することにより上記容器内にプラズマを発生させて排ガスを分解処理するようにした誘導結合プラズマ方式の排ガス分解処理装置が従来より提案されている。
【0005】
ところで、従来より提案されている誘導結合プラズマ方式の排ガス分解処理装置におけるプラズマ発生用高周波電力発生源(電源)として、従来一般には、その発振周波数が工業用等に割当てられた固定周波数の発振器と、この発振器による固定発振周波数のもとで高周波放電管に印加される高周波電力の出力インピーダンスを、サーボモータ等の位相・インピーダンス調整機構を介して自動的に高周波放電管の負荷インピーダンスに整合させるように可変制御する高周波電力整合回路とを備えたものが用いられていた。
【0006】
【発明が解決しようとする課題】
上記した誘導結合プラズマ方式の排ガス分解処理装置は、プラズマ発生のための高周波放電用電極をプラズマ領域内、つまり、減圧下の管状容器内に配置して排ガスを同様にプラズマで分解処理する方法に比べて、電極やその保護材を励起状態にあるNF等に起因して生成されるフッ素ラジカルやフッ素イオン等と直接接触させないですみ、電極等の消耗、損傷が少なくて処理装置の耐久性向上が図れるという優れた特長を有している。
【0007】
反面、この種の排ガス分解処理用プラズマ発生装置においては、使用する反応性ガスの種類や濃度、使用圧力範囲等の変更、あるいは、放電プラズマ着火前後のプラズマが不安定な過渡状況下におけるキャパシタンスの変動等により負荷インピーダンスが大きく変動する場合があり、この場合、従来の装置では、高周波電力整合回路の構成要素であるキャパシタンスまたはインダクタンスをサーボモータ等の位相・インピーダンス調整機構を介して共振条件が成立するように調整して出力インピーダンスを負荷インピーダンスに自動整合させるものであるために、多くのメカニカル要素を必要としコストアップ及び装置の大型化が避けられないばかりでなく、サーボモータ等の可動メカニカル要素の慣性等の影響を受けて整合完了までに時間がかかり、安定したプラズマを発生させるための応答性に欠け、その結果、不安定なプラズマのもとでの処理時間が長くなるだけでなく、整合に要する時間は所定の分解処理にとってのロスタイムであり、排ガス分解性能及び処理効率の低下を招くという問題がある。さらに、サーボモータ及びそれに連係動作するリンク機構等の可動メカニカル要素の摩耗や損傷等によって装置全体の耐久性(耐用寿命)が短かくなるという問題もあった。
【0008】
本発明は上記実情に鑑みてなされたもので、電極等の消耗、損傷や可動メカニカル要素の摩耗等による耐久性の低下を抑制し、かつ、全体をコンパクトで、低コストに構成しながらも、負荷インピーダンスの急激な変動に対する応答性を改善して所定の排ガス分解処理を非常に高性能かつ効率よく行なうことができる排ガス分解処理用プラズマ発生装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る排ガス分解処理用プラズマ発生装置は、絶縁性管状容器の外周に誘導結合方式の高周波放電用電極を螺旋コイル状に巻回させて構成される高周波放電管と、この高周波放電管のコイル状高周波放電用電極に高周波電力を印加して上記容器内にプラズマを発生させる高周波電力発生源と、この高周波電力発生源の出力インピーダンスを上記高周波放電管の負荷インピーダンスに整合させる高周波電力整合回路とを備えている排ガス分解処理用プラズマ発生装置であって、上記高周波電力整合回路はインピーダンスを予め設定された値に固定保持する固定式または手動で微調整可能な半固定式に構成されているとともに、上記高周波電力発生源の発振器は周波数可変式に構成され、かつ、この発振器による発振周波数を負荷インピーダンスに高周波電力発生源の出力インピーダンスが整合されるように制御する周波数制御回路が設けられており、上記高周波放電用電極が、内部に冷却水を流通可能な状態で絶縁性管状容器の外周に螺旋コイル状に巻回された大径の導電性金属管と、この大径導電性金属管の螺旋ピッチ間に配置されて上記絶縁性管状容器の外周に螺旋コイル状に巻回された小径の高周波電力線とから構成され、上記大径導電性金属管の排ガス導出口側の端部と小径高周波電力線の排ガス導入口側の端部とは電気的に接続されていることを特徴とするものである。
【0010】
上記のような特徴構成を有する本発明によれば、プラズマ発生のための高周波放電用電極が絶縁性管状容器の外周に螺旋コイル状に巻回されてプラズマ領域外に配置されているために、励起状態のNF等の存在に起因して生成されるフッ素ラジカルやフッ素イオン等に高周波放電用電極やその保護材が直接接触することに伴う電極等の消耗、損傷が極力、減少されるとともに、高周波電力整合回路が固定式または半固定式に構成されサーボモータ等のような摩耗や損傷しやすい可動メカニカル要素を用いていないので、装置全体の耐久性向上を図ることが可能である。しかも、使用する反応性ガスの種類や濃度、使用圧力範囲等の変更、あるいは、放電プラズマ着火前後のプラズマが不安定な過渡状況下におけるキャパシタンスの変動等により負荷インピーダンスが急激に変動した場合、周波数制御回路を介して高周波電力発生源における発振器の発振周波数を負荷インピーダンスに高周波電力発生源の出力インピーダンスが整合されるように制御することによって、サーボモータ及びその制御回路などのメカニカル要素を用いて高周波電力整合回路の構成要素であるキャパシタンスまたはインダクタンスを共振条件が成立するように自動調整する従来のものに比べて、装置全体のコンパクト化及び低コスト化を図りつつ、負荷インピーダンスの急激な変動に対して応答性よく追随させて放電プラズマを速やかに発生させるとともに、その発生プラズマを安定状態に維持させて所定の排ガス分解処理を高性能に、かつ非常に効率よく行なうことが可能である。
【0011】
さらに、その高周波放電用電極が、内部に冷却水を流通可能な状態で絶縁性管状容器の外周に螺旋コイル状に巻回された大径の導電性金属管と、この大径導電性金属管の螺旋ピッチ間に配置されて上記絶縁性管状容器の外周に螺旋コイル状に巻回された小径の高周波電力線とから構成され、上記大径導電性金属管の排ガス導出口側の端部と小径高周波電力線の排ガス導入口側の端部とが電気的に接続されている。この場合は、プラズマ発生時に大径導電性金属管の内部に冷却水を流通させることにより、誘導結合によるプラズマ発生効率を高めるために電極への印加電力の中心周波数を高く設定したとしても、表皮効果による発熱を抑制して電力損失の低減が図れるとともに、大径導電性金属管の螺旋ピッチ間というデッドスペースに小径高周波電力線が配置されているために小径高周波電力線に対する冷却作用も保たれ、かつ、全長の短い高周波放電管を用いながらも、高周波放電用電極全体の巻数の増大化が図れ、安定よいプラズマ発生のための実効電力の低下及び電極の耐久性を一層向上することができる。また、安定よいプラズマの発生状況ではコイル状両電極の冷却作用によって反射電力の増大が抑制され、特別な電力調整装置や磁界印加装置等を付設しなくても、排ガスを常に効率よく分解し無害化処理することができる。
0012
上記構成の本発明に係る排ガス分解処理用プラズマ発生装置において、請求項2に記載のように、高周波放電用電極に印加する高周波電力の反射波を検出し、その検出反射波電力が予め設定された値以上になったとき、高周波電力の進行波電力を低下させる進行波射電力抑制回路を付設することにより、プラズマによる排ガス分解処理時に発生することの避けられない反射波電力が設定値以上に増大したとき、進行波電力を低下させて、つまり、実効電力が一定以上に上昇することを制限して高周波電力発生源を保護し装置全体の耐久性を一層向上することができるとともに、電力発生源周辺への悪影響を回避することができる。
0013
また、上記構成の本発明に係る排ガス分解処理用プラズマ発生装置において、請求項3に記載のように、高周波電力発生源の発振器による発振周波数を負荷インピーダンスに高周波電力発生源の出力インピーダンスが整合されるように可変制御する状態と設定周波数に固定する状態とに切替え可能な周波数切替回路を付設することによって、半導体プロセスガスのように、負荷インピーダンスが急激に変動しやすい条件の排ガスを処理対象とする際は、発振器の発振周波数を可変制御状態に切替え使用することで変動する負荷インピーダンスに速やかに応答させて所定の排ガス分解処理を効率よく行えるのはもとより、負荷インピーダンスの変動がない、あるいは、変動が非常に少ない条件の排ガスを処理対象とする際は、発振器の発振周波数を固定状態に切替え使用することで、発振周波数のフィードバック可変制御に伴う不安定要素をなくして所定の排ガス分解処理を常に安定よく行えるといったように、処理対象となる排ガスの性状や処理条件等に対応して発振周波数を可変制御する状態と発振周波数を固定する状態との二通りの使用態様を任意に選択することができ、当該プラズマ発生装置の適用性拡大を図ることができる。
0014
また、上記構成の本発明に係る排ガス分解処理用プラズマ発生装置による分解処理対象となる排ガスとしては、請求項4に記載のように、半導体プロセスチャンバーから排出されるCF,C,C,C14等のPCF(過フッ素化炭素)ガス、NF等のフッ素化窒素ガス、SF等のフッ素化硫黄ガス及びそれらの混合ガスといったフッ素系排ガスが最適であり、さらに、このフッ素系排ガスのガス種に対応して、請求項5に記載のように、HO、Oを含むガスを添加して高周波放電管を構成する管状容器内に導入するように構成することにより、多種の未反応ガスを確実に分解処理することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明に係る排ガス分解処理用プラズマ発生装置として適用される半導体プロセス用排ガス分解処理用プラズマ発生装置の概略構成図であり、化学気相成長(CVD)プロセス、プラズマCVDプロセス、プラズマエッチングプロセス等の各種の半導体プロセスチャンバー1から排出される未反応のフッ素系排ガスはターボ分子ポンプ2により排ガス用配管3を通して高周波放電管4内に導入される。ここで、処理対象となる未反応のフッ素系排ガスとしては、例えばCF,C,C,C14等のPCF(過フッ素化炭素)ガス、NF等のフッ素化窒素ガス、SF等のフッ素化硫黄ガスなどのフッ素系ガス及びそれらの混合ガスであり、このフッ素系排ガスが高周波放電管4内に導入される前に該フッ素系排ガスにHO、Oを含むガスを添加することにより、例えば2NFやCF+2HO等に化学反応させて高周波放電管4内に導入される。
【0016】
上記高周波放電管4は、図2に示されているように、排ガス用配管3に接続される排ガス導入口5aと大気排出用の真空ポンプ6に配管7を介して接続される導出口5bを有する、例えば耐熱セラミックあるいは石英ガラス等の絶縁性管状容器5と、この絶縁性管状容器5の外周に螺旋コイル状に巻回されて後述する高周波電力発生源8から高周波電力を印加することにより管状容器5内にプラズマを発生させることが可能な誘導結合方式の高周波放電用電極9とにより構成されている。
【0017】
ここで、上記高周波放電用電極9の一例しては、例えば図3に明示のように、内部に冷却水CWを流通可能な状態で絶縁性管状容器5の外周に螺旋コイル状に巻回された銅管等の大径の導電性金属管10と、該大径導電性金属管10の螺旋ピッチ間のデッドスペースの全てに一本づつ配置されて上記絶縁性管状容器5の外周に螺旋コイル状に巻回されたリッツ線等の小径の高周波電力線11とからなり、大径導電性金属管10の排ガス導出口5b側の端部10bと小径高周波電力線11の排ガス導入口5a側の端部11aとをリード線12を介して電気的に接続するとともに、大径導電性金属管10の排ガス導入口5a側の端部10a及び小径高周波電力線11の排ガス導出口5b側の端部11bを高周波電源8に接続し、これによって、高周波放電用電極9全体のコイル巻数Nを大径導電性金属管10のコイル巻数の2倍に構成したものを用いる。なお、高周波放電用電極9は、図3に明示した構成のもの以外に、例えば高周波電力線を単に絶縁性管状容器の外周に螺旋コイル状に巻回した構成のものを用いてもよい。
【0018】
図4は上記のような基本構成を有する半導体プロセス用排ガス分解処理用プラズマ発生装置における高周波電力管4の高周波放電用電極9に高周波電力を印加する高周波電力発生源(電源)8の構成図である。同図において、13は周波数可変式の水晶発振器で、その発振周波数は中心周波数が2MHz又は4MHzであり、その中心周波数に対して±0.5MHzの範囲、つまり、1.5〜2.5MHz又は3.5〜4.5MHzの範囲で可変制御可能に構成されている。14は位相同期回路(PLL)で、発振器13の発振周波数をその中心周波数2MHzまたは4MHzに固定する状態と上記範囲(1.5〜2.5MHz又は3.5〜4.5MHz)で可変制御する状態とに切替え可能に構成されている周波数切替回路15を固定周波数側に切り替えたとき、出力周波数をフィードバックさせて発振周波数を放電プラズマの発生に必要な固定周波数に自動調整する機能を有している。
【0019】
16,17は電力増幅器で、電力設定器18により予め設定されている設定電力Ptfと電力方向性結合器19で検出され帰還される進行波電力Pfとの偏差を演算アンプ20で演算し、その偏差に相当する電力増幅率を算出する実効電力自動調整回路21の出力信号に基づいて発振周波数を電力増幅して高周波電力を出力する。22は上記電力方向性結合器19で検出され帰還される反射波電力Prと反射電力設定器23により予め上限が設定されている設定反射波電力Ptrとの偏差を演算アンプ24で演算し、その偏差がゼロ以下となるように進行波電力を低下(垂下)させる進行波電力抑制回路であり、以上の各構成要素13〜24により高周波電力発生源(電源)8が構成されている。
【0020】
25は高周波電力の電圧Vと電流Iの位相差を検出するV−I位相差検出回路であり、上記周波数切替回路15が周波数可変側に切り替えられているとき、このV−I位相差検出回路25による高周波電力の電圧と電流の位相差を検出する演算アンプ28による検出信号Sに基づいて上記発振器13による発振周波数を上記した範囲(1.5〜2.5MHz又は3.5〜4.5MHz)で可変制御する電圧可変周波数制御回路(VCO)26が周波数可変ループのフィードバック系に介在されている。27はキャパシタンスとインダクタンスで構成される高周波電力整合回路であり、高周波電力管4の負荷インピーダンスに高周波電力発生源(電源)8の出力インピーダンスを整合させるものであり、その構成要素であるキャパシタンス及びインダクタンスの値を予め設定された値に固定保持する固定式あるいは手動により微調整可能な半固定式に構成されている。
【0021】
上記のように構成されている半導体プロセス用排ガス分解処理用プラズマ発生装置においては、半導体プロセスチャンバー1から排出される未反応のPFCガス、フッ素化窒素ガス、フッ素化硫黄ガスなどのフッ素系ガス及びそれらの混合ガスがターボ分子ポンプ2により排ガス用配管3を通して高周波放電管4内に導入される前にHO、Oを含むガスが添加され、例えば2NFやCF+2HO等に化学反応されて高周波放電管4の絶縁性管状容器内に導入される。この高周波放電管4における高周波放電用電極9には、高周波電力発生源8から中心周波数が2MHz又は4MHzの高周波電力が印加されることに伴い管状容器内に誘導結合によってプラズマが発生し、このプラズマに上記の導入排ガスが接触することにより、例えばN+6FやCO+4HF等に分解されて無害化処理された上、真空ポンプ6により大気に排出される。
【0022】
このような誘導結合プラズマによる半導体プロセス用排ガスの無害化処理時において、通常は周波数切替回路15が可変周波数側に切り替えられており、半導体プロセスで使用する反応性ガスの種類や濃度、使用圧力範囲等の変更あるいはプラズマ着火前後のプラズマが不安定な過渡状況下での高周波放電管4のキャパシタンスの変動等によって負荷インピーダンスが急激に変動した場合、V−I位相差検出回路25による高周波電力の電圧と電流の位相差検出信号Sが電圧可変周波数制御回路(VCO)26に帰還(フィードバック)入力され、その帰還信号に応じて、高周波電力発生源8の発振器13の発振周波数が負荷インピーダンスに高周波電力発生源8の出力インピーダンスを整合させるように可変制御される。これによって、高周波電力整合回路27が固定式あるいは半固定式のものであっても負荷インピーダンスの急激な変動に応答性よく追随させて放電プラズマを速やかに発生させるとともに、その発生した放電プラズマは安定状態に維持させて所定の排ガス分解処理を高性能かつ効率よく行なうことができる。
【0023】
また、このような処理動作時において、高周波放電用電極9に印加される高周波電力の反射波は常に検出されており、その検出反射波電力Prが予め設定された値Ptr以上になったとき、進行波電力抑制回路22を介してその偏差がゼロ以下となるように進行波電力Pfを低下(垂下)させることが可能であり、これによって、放電プラズマによる排ガスの分解処理時に発生不可避な反射波電力が設定値以上に増大することに伴う進行波電力の上昇、つまりは、実効電力の異常な上昇を抑制し、高周波電力発生源8を保護して装置全体の耐久性を向上することができるとともに、高周波電力発生源8周辺への悪影響を回避することができる。
【0024】
また、高周波放電管4の高周波放電用電極9を構成する大径導電性金属管10の内部に冷却水CWを流通させておくことによって、電極9への印加電力の周波数を2または4MHz程度に高く設定したとしても、表皮効果による発熱を抑制して電力損失の低減が図れるとともに、大径導電性金属管10の螺旋ピッチ間というデッドスペースに小径高周波電力線11が配置されているので、小径高周波電力線11に対する冷却作用も良好に保ち、かつ、高周波放電管4の全長Lを短くして装置全体のコンパクト化を可能としながらも、高周波放電用電極9全体のコイル巻数Nを増大化することが可能である。これによって、プラズマ着火電力の低下及び電極9の耐久性向上も図ることができる。
【0025】
なお、上記実施の形態では、高周波放電管4の負荷インピーダンスが使用反応ガスの種類の変更等により急激に変動しやすい半導体プロセス用排ガス分解処理用プラズマ発生装置に適用した関係から、周波数切替回路15を常に可変制御側に切り替えて使用するものについて説明したが、負荷インピーダンスの変動がないあるいは非常に少ない装置に適用する場合は、周波数切替回路15を固定側に切り替えて使用することにより、発振周波数の可変制御に伴う不安定要素をなくして常に安定したプラズマを保持させることが可能である。このように周波数切替回路15を設けることによって、当該プラズマ発生装置の適用性を拡大することができる。
【0026】
【発明の効果】
以上のように、本発明によれば、誘導結合方式の高周波放電用電極を採用することにより電極やその保護材の消耗、損傷を極力減少するとともに、固定式又は半固定式の高周波電力整合回路を用いてサーボモータ等のような摩耗、損傷や故障しやすい可動メカニカル要素の使用を省くことで、装置全体の耐久性の著しい向上を図ることができる。しかも、使用する反応性ガスの種類や濃度、使用圧力範囲等の変更、あるいは、プラズマ着火前後のプラズマが不安定な過渡状況下におけるキャパシタンスの変動等による負荷インピーダンスの急激な変動に対しては高周波電力発生源の発振器の発振周波数制御により、この高周波電力発生源の出力インピーダンスを負荷インピーダンスに整合させることが可能であり、サーボモータ等のメカニカル要素を必要とする従来の自動整合回路を用いる場合に比べて、装置全体のコンパクト化及び低コスト化を図りつつ、負荷インピーダンスの急激な変動に応答性よく追随させて放電プラズマを速やかに発生させるとともに、発生プラズマを常に安定状態に維持させて所定の排ガス分解処理を高性能かつ効率的に行なうことができるという効果を奏する。
【0027】
また、請求項2に記載のような進行波電力抑制回路を付設することにより、プラズマによる排ガスの分解処理時に発生することの避けられない反射波電力が設定値以上に増大することによる実効電力の異常な上昇を抑制し、高周波電力発生源を保護して装置全体の耐久性を一層向上することができるとともに、周辺への悪影響を回避することができる。
【0028】
また、請求項3に記載のような周波数切替回路を付設することによって、半導体プロセスガスのように、負荷インピーダンスが急激に変動しやすい条件の排ガスを処理対象とする場合は、変動する負荷インピーダンスに速やかに応答させて所定の排ガス分解処理を効率よく行えるとともに、負荷インピーダンスの変動がない、あるいは、非常に少ない条件の排ガスを処理対象とする場合は、発振器の発振周波数を固定して使用することでフィードバック制御に伴う不安定要素をなくして所定の排ガス分解処理を常に安定よく行えるといったように、処理対象となる排ガスの性状等に対応した適切な二つの使用態様が得られ、当該プラズマ発生装置の適用性を拡大することができる。
【0029】
さらに、高周波放電用電極が、内部に冷却水を流通可能な状態で絶縁性管状容器の外周に螺旋コイル状に巻回された大径の導電性金属管と、この大径導電性金属管の螺旋ピッチ間に配置されて上記絶縁性管状容器の外周に螺旋コイル状に巻回された小径の高周波電力線とから構成され、上記大径導電性金属管の排ガス導出口側の端部と小径高周波電力線の排ガス導入口側の端部とが電気的に接続されているので、プラズマ発生時に大径導電性金属管の内部に冷却水を流通させることにより、誘導結合によるプラズマ発生効率を高めるために電極への印加電力の中心周波数を高く設定したとしても、表皮効果による発熱を抑制して電力損失の低減が図れるとともに、大径導電性金属管の螺旋ピッチ間というデッドスペースに小径高周波電力線が配置されているために小径高周波電力線に対する冷却作用も保たれ、かつ、全長の短い高周波放電管を用いながらも、高周波放電用電極全体の巻数の増大化が図れ、安定よいプラズマ発生のための実効電力の低下及び電極の耐久性を一層向上することができる。また、安定よいプラズマの発生状況ではコイル状両電極の冷却作用によって反射電力の増大が抑制され、特別な電力調整装置や磁界印加装置等を付設しなくても、排ガスを常に効率よく分解し無害化処理することができる。これにより誘導結合によるプラズマ発生効率を高めるために電極への印加電力の中心周波数を高く設定したとしても、表皮効果による発熱を抑制して電力損失の低減を図れるとともに、大径導電性金属管の螺旋ピッチ間というデッドスペースに小径高周波電力線が配置されているために小径高周波電力線に対する冷却作用も保たれ、かつ、全長の短い高周波放電管を用いながらも、高周波放電用電極全体の巻数の増大化が図れ、安定よいプラズマ発生のための実効電力の低下及び電極の耐久性の一層の向上を図ることができる。
【図面の簡単な説明】
【図1】 本発明に係る排ガス分解処理用プラズマ発生装置として適用される半導体プロセス用排ガス分解処理用プラズマ発生装置の概略構成図である。
【図2】 同上装置における高周波放電管の構成を示す正面図である。
【図3】 図2の要部の拡大正面図である。
【図4】 同上装置における高周波電力発生源の構成図である。
【符号の説明】
1 半導体プロセスチャンバー
4 高周波放電管
5 絶縁性管状容器
8 高周波電力発生源
9 高周波放電用電極
10 大径導電性金属管
11 小径高周波電力線
13 周波数可変式発振器
15 周波数切替回路
22 反射電力抑制回路
26 周波数制御回路
27 高周波電力整合回路

Claims (5)

  1. 絶縁性管状容器の外周に誘導結合方式の高周波放電用電極を螺旋コイル状に巻回させて構成される高周波放電管と、この高周波放電管のコイル状高周波放電用電極に高周波電力を印加して上記容器内にプラズマを発生させる高周波電力発生源と、この高周波電力発生源の出力インピーダンスを上記高周波放電管の負荷インピーダンスに整合させる高周波電力整合回路とを備えている排ガス分解処理用プラズマ発生装置であって、
    上記高周波電力整合回路はインピーダンスを予め設定された値に固定保持する固定式または手動で微調整可能な半固定式に構成されているとともに、上記高周波電力発生源の発振器は周波数可変式に構成され、かつ、この発振器による発振周波数を負荷インピーダンスに高周波電力発生源の出力インピーダンスが整合されるように制御する周波数制御回路が設けられており、上記高周波放電用電極が、内部に冷却水を流通可能な状態で絶縁性管状容器の外周に螺旋コイル状に巻回された大径の導電性金属管と、この大径導電性金属管の螺旋ピッチ間に配置されて上記絶縁性管状容器の外周に螺旋コイル状に巻回された小径の高周波電力線とから構成され、上記大径導電性金属管の排ガス導出口側の端部と小径高周波電力線の排ガス導入口側の端部とは電気的に接続されていることを特徴とする排ガス分解処理用プラズマ発生装置。
  2. 上記高周波放電用電極に印加する高周波電力の反射波を検出し、その検出反射波電力が予め設定された値以上になったとき、高周波電力の進行波電力を低下させる進行波電力抑制回路が付設されている請求項1に記載の排ガス分解処理用プラズマ発生装置。
  3. 上記高周波電力発生源の発振器による発振周波数を、負荷インピーダンスに高周波電力発生源の出力インピーダンスが整合されるように可変制御する状態と設定周波数に固定する状態とに切替え可能な周波数切替回路が付設されている請求項1または2に記載の排ガス分解処理用プラズマ発生装置。
  4. 分解処理対象となる排ガスが、半導体プロセスチャンバーから排出されるフッ素系排ガスである請求項1ないし3のいずれかに記載の排ガス分解処理用プラズマ発生装置。
  5. 上記フッ素系排ガスのガス種に対応して、HO、Oを含むガスを添加して上記高周波放電管を構成する管状容器内に導入するように構成されている請求項4に記載の排ガス分解処理用プラズマ発生装置。
JP2002164480A 2002-06-05 2002-06-05 排ガス分解処理用プラズマ発生装置 Expired - Fee Related JP4332322B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164480A JP4332322B2 (ja) 2002-06-05 2002-06-05 排ガス分解処理用プラズマ発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164480A JP4332322B2 (ja) 2002-06-05 2002-06-05 排ガス分解処理用プラズマ発生装置

Publications (2)

Publication Number Publication Date
JP2004008893A JP2004008893A (ja) 2004-01-15
JP4332322B2 true JP4332322B2 (ja) 2009-09-16

Family

ID=30432615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164480A Expired - Fee Related JP4332322B2 (ja) 2002-06-05 2002-06-05 排ガス分解処理用プラズマ発生装置

Country Status (1)

Country Link
JP (1) JP4332322B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006458A1 (en) 2012-07-06 2014-01-09 Oezgen Selami A scent apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799947B2 (ja) * 2005-02-25 2011-10-26 株式会社ダイヘン 高周波電源装置および高周波電源の制御方法
US9105449B2 (en) * 2007-06-29 2015-08-11 Lam Research Corporation Distributed power arrangements for localizing power delivery
JP5534365B2 (ja) 2012-06-18 2014-06-25 株式会社京三製作所 高周波電力供給装置、及び反射波電力制御方法
JP5850581B2 (ja) 2013-11-29 2016-02-03 株式会社京三製作所 プラズマ未着火状態判別装置およびプラズマ未着火判別方法
KR101897802B1 (ko) * 2017-06-09 2018-09-13 한국화학연구원 아산화질소 함유 기체화합물의 고주파 유도 열분해 장치
JP7348101B2 (ja) 2020-02-18 2023-09-20 株式会社京三製作所 高周波電源装置の制御方法及び高周波電源装置
KR102473331B1 (ko) * 2020-10-08 2022-12-02 임태영 다기능 에어 타워 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006458A1 (en) 2012-07-06 2014-01-09 Oezgen Selami A scent apparatus

Also Published As

Publication number Publication date
JP2004008893A (ja) 2004-01-15

Similar Documents

Publication Publication Date Title
US6326584B1 (en) Methods and apparatus for RF power delivery
JP5027808B2 (ja) ガス流処理方法
US6291938B1 (en) Methods and apparatus for igniting and sustaining inductively coupled plasma
JP5891341B2 (ja) プラズマ生成装置及び方法
US6696662B2 (en) Methods and apparatus for plasma processing
JP4332322B2 (ja) 排ガス分解処理用プラズマ発生装置
JP2004537396A (ja) ガス廃水の処理のために大気圧で生成する濃いプラズマの用途
JP2006320820A (ja) プラズマ式ガス除害装置
KR101881536B1 (ko) 출력전류 제어가 가능한 전력공급장치 및 이를 이용한 전력공급방법
Hong et al. Abatement of CF 4 by atmospheric-pressure microwave plasma torch
KR101520216B1 (ko) 플라즈마 생성용 전원 장치 및 플라즈마 생성 파라미터 설정 방법
JP5039381B2 (ja) プラズマを形成するための装置および方法
JP2000049000A (ja) 周波数整合器
JP5485550B2 (ja) マイクロ波プラズマ除害装置
JP4121320B2 (ja) 堆積チャンバーのリモートプラズマ方式クリーニング装置
US20180247794A1 (en) Power supply apparatus having passive element and power supply method for plasma ignition using the same
JP2004160338A (ja) 半導体プロセス用排ガス処理装置
JP4042363B2 (ja) プラズマ生成用の螺旋共振装置
JP4950763B2 (ja) プラズマ生成装置
JP2004160312A (ja) Pfcガス分解システム及びガス分解方法
JP4596433B2 (ja) 汚染粒子処理装置
JP2002210330A (ja) 半導体プロセス用排ガス処理装置
JP2004154654A (ja) プラズマ反応装置および方法
KR101229131B1 (ko) 가스 스트림 처리 방법
JP2002273168A (ja) 除害装置及び除害方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees