JP4327440B2 - 誘電体多層膜の製造装置 - Google Patents

誘電体多層膜の製造装置 Download PDF

Info

Publication number
JP4327440B2
JP4327440B2 JP2002317999A JP2002317999A JP4327440B2 JP 4327440 B2 JP4327440 B2 JP 4327440B2 JP 2002317999 A JP2002317999 A JP 2002317999A JP 2002317999 A JP2002317999 A JP 2002317999A JP 4327440 B2 JP4327440 B2 JP 4327440B2
Authority
JP
Japan
Prior art keywords
film
dielectric multilayer
film thickness
monitoring
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002317999A
Other languages
English (en)
Other versions
JP2004151493A (ja
Inventor
晴夫 高橋
幸一 半沢
孝文 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002317999A priority Critical patent/JP4327440B2/ja
Priority to US10/394,667 priority patent/US7247345B2/en
Priority to TW092106852A priority patent/TWI255906B/zh
Priority to CN2007101121450A priority patent/CN101078107B/zh
Priority to CNB031082297A priority patent/CN100398694C/zh
Priority to KR1020030018487A priority patent/KR100972769B1/ko
Priority to CN2007101121446A priority patent/CN101078106B/zh
Publication of JP2004151493A publication Critical patent/JP2004151493A/ja
Priority to US11/819,838 priority patent/US7927472B2/en
Application granted granted Critical
Publication of JP4327440B2 publication Critical patent/JP4327440B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学薄膜を主用途とし、その形成に際して高精度の膜厚制御を行い得る誘電体多層膜の製造装置に関する。光学薄膜は、導波路、回折格子、発光、表示素子、光メモリ、太陽電池などの各種光学部品や光素子に用途が拡大している。特に、光通信などの通信技術分野では、稠密波長多重通信(DWDM)システムにおいて合分波器などのデバイス用光学薄膜の多層化傾向が顕著であり、これに伴い、このような多層構造の光学薄膜の製造に際して、その各構成層の光学膜厚を高精度に制御することが求められている。
【0002】
【従来の技術】
薄膜成長中の膜厚測定は堆積速度や膜厚の制御のために重要であり、また、光学薄膜においては、物理的膜厚よりも反射率あるいは透過率などの光学的性質を決める光学膜厚(屈折率と物理的膜厚との積)が有用である。このため、薄膜の光学的性質を測定する、いわゆる光学式膜厚制御方法により、薄膜成長中に光学的性質を測定して光学膜厚をモニタすることが広く行われている。光学式膜厚制御方法には、単色測光法、二色測光法、多色測光法などがあり、これらの光学式膜厚制御方法のうち、単色測光法が最も簡便である。
【0003】
これは、成長中の薄膜の光学膜厚において、λ/4(λ:入射単色光の波長)の整数倍となる際のピーク(ボトムをも含み、また、極大及び極小と同義。以下同じ)を利用するものである。このようなピークは、成長中の最新表面層膜がその付着面を介して積層する基板側の隣接層が上記λ/4の整数倍にならないような光学膜厚で形成される場合や、この隣接層をも含んだ系のアドミッタンスが数学的に実数でない場合は、成長開始からの光学膜厚が最初にλ/4の整数倍に到達したときに出現するとは限らない。ただ、これらの場合でも、ピーク自体はその出現後、λ/4の整数倍に相当する光学膜厚間隔で周期的に現れる。
【0004】
しかし、単色測光法を用いる場合、上記のように出現するピークを用いてピーク制御を行う従来の方法では、ピーク近傍において成長する光学膜厚に対する光量変化が小さく、原理的に制御精度が悪化することは避けられない。
【0005】
このような場合、制御対象の所望の波長と若干異なるモニタ波長の干渉フィルタを使用してピーク近傍以外の光量変化の大きいところで成膜を停止するなどして、精度を向上させることができる。この種の装置として、光学的性質たる光量(透過率の逆数)を測定して成長する光学膜厚の制御精度が良好に得られるような光学位相角領域を選択し、成膜停止時点を決定するものがある。(例えば、特許文献1)。
【0006】
これに対し、例えば、特許文献2に示す装置は、所望のモニタ波長をそのまま用いて従来の単色測光法を追求するものである。このものは、測定される光量(透過率)が、上記のλ/4の整数倍の光学膜厚成長に対応してピークを形成する直前の実測データ群を最小二乗法により二次関数回帰し、この回帰関数上のピークに到達する時点を予測する。このとき、予測時点自体が最も好適であるが、個別の条件を勘案する必要がある場合は、これを基準時点として成膜停止のタイミングを決定している。
【0007】
ところで、光学薄膜の多層化の要請は、上記したように通信技術分野で顕著であり、特に、光通信に用いられるDWDMシステム用デバイス(例えば、バンドパスフィルタ、以下BPFとも言う。)の光学薄膜の多層構造は100層以上から成ることもある。このような多層構造は、それぞれ上記λ/4の奇数倍の光学膜厚を有する高屈折率層と低屈折率層とから成る交互層で構成される。(ただし、BPFの場合は、交互層中の高屈折率層及び低屈折率層の光学膜厚を上記λ/4の偶数倍としたものでキャビティ層を構成しても良い。)このとき、多層構造の構成薄膜ごとに、これに対応するモニタ基板を交換しながら膜厚を制御する通常の方法では工程が煩雑になり実用的でない。
【0008】
そこで、多層構造の光学薄膜に対しては、製品基板上に積層形成される多数の交互層そのものをモニタする直接監視法により膜厚制御を行うことが多い。図1は、直接監視法による膜厚制御装置の一例を示す。図1(a)に示す真空チャンバ1内に、電子銃2とイオンガン3とがともに回転基板4に対向して並置されており、さらに、チャンバ1外の投光5が回転基板4の対向位置に配置されており、投光器5から回転基板4の回転軸4aに照射される光が下部光導入窓6と上部光導入窓7とを介してチャンバ1外の受光器8で受光される。本装置で膜厚制御を行うに際しては、まず、駆動モ−タ9の駆動により製品基板4を回転させ、次に、投光器5から下部光導入窓6を介して、1本の監視用単色光光束を回転軸4aに沿って通過させる。この状態でシャッタ2aを開放して電子銃2により製品基板4上に蒸着膜形成を行う。このとき、干渉による光強度変化が下部光導入窓6と上部光導入窓7とを介して受光器8で観測される。さらに、この光強度変化に基づき蒸着膜形成時の膜厚を制御し、即ち、例えば特許文献1や特許文献2で示す膜厚制御法により成膜停止時点を決定し、シャッタ2aにより電子銃2による成膜を遮断することにより膜厚成長を終了させる。このようにして、製品基板中心付近で良好な分光特性を有する誘電体多層膜が生産される。
【0009】
ところが、この場合、積層が進行するに伴って成長中の多層構造中の反射率が増加し、即ち、透過率が次第に減少して測定値の信頼度が低下する。この影響は、特に、高屈折率のλ/4膜と低屈折率のλ/4膜からなる交互層を連続的に多数積層して形成される狭帯域BPFにおいて深刻である。さらに、この交互層が多層になるほど、膜厚成長とともに変化する透過光量変化曲線が、そのピ−ク及びボトム近傍で二次回帰関数から乖離して精度の高い膜厚制御が困難になる。図2は、このような二次回帰関数の乖離を示すものであり、透過光量が低下するとき(低屈折率層L上の高屈折率層Hが最新表面層となる場合)と増大するとき(高屈折率層H上の高屈折率層Hが最新表面層となる場合)とで、二次関数回帰したときに予測されるピ−ク/ボトム位置は大きく異なって誤差がばらつく。これにより、成膜停止時点は、透過光量が低下するときは早く予測され、透過光量が増大するときは遅く予測される。
【0010】
さらに、今日の光通信市場においては、例えば、DWDMシステムの合分波器に用いられる狭帯域BPFは、4、8、16・・・128種類という具合に、ITU−T(国際通信連合電気通信標準化セクタ)で決められた波長ごとに多種類の中心波長に対応したBPFのセット搭載が要求される。このため、多種類の中心波長を持つフィルタを同時にかつ多量に製造することが要望されている。
【0011】
ところが、図1に示す多層膜製造装置では、監視用単色光光束を回転中心軸のみに沿って通過させるため、直接監視法が有効であるのは図1(b)において11で示す中心領域部分のみであり、11で示す中心から離れた基板領域から得られる光学薄膜製品は、蒸発分布揺らぎ、製品基板と蒸発源との相対距離差、あるいは製品基板面の温度不均一などにより、波長特性の差異などが生じて直接監視法のモニタ波長に対応する良好な特性を示すことにならない。
【0012】
そこで、監視用単色光光束の照射通過位置を、回転中心軸ではなく回転基板領域内の同心円位置に変更して、この円周上に帯状に形成される環状領域を直接監視法の有効部分とすることも行われるが、このようにしても有効部分面積に多少の改善が得られるに過ぎない。その一方で、直接監視法による監視用単色光光束の通過領域では、仮に最新表面層の直前層の制御精度が悪くてもその次の最新層の成膜停止時点をピ−ク及びボトムで正確に制御することが出来れば、自然と誤差が補正されるので誤差が緩和される。それゆえ、良好な光学薄膜製品を得るには監視領域部分の有利さが際立っており、この領域を拡大することが重要である。
【0013】
この種の拡大監視領域を備える誘電体多層膜製造装置として本発明者らによる特許文献3のものがある。このものは、高速回転する基板上に多点の監視ポイントを設け、そこに同一波長の監視用単色光光束を通過させて成膜停止時点を予測制御し、可動自在なシャッタと連動させる。そして、多点に設けた監視ポイントに対応して拡大された監視領域のすべてから良好な光学薄膜製品を得られる。しかしながら、この装置では1種類の波長特性を有する誘電体多層膜の量産はできるが、多種類のモニタ波長に対応した光学薄膜製品が得られないという不利は解消されないままである。また、基板の半径方向に一様に増加または減少するような膜厚分布を作り出してしまう、という難しさが残る。
【0014】
【特許文献1】
特開昭58−140605号公報(第2〜3頁、第1図)
【特許文献2】
特開昭63−28862号公報(第2〜6頁、第1、2図)
【特許文献3】
特願2002−083260号明細書(図1)
【0015】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑み、高精度の膜厚制御を行うことができ、また、所望の多種類のモニタ波長での直接監視法を用いることを可能とした量産化対応の誘電体多層膜製造装置を提供することを課題としている。そして、この誘電体多層膜は、とりわけ、狭帯域BPF用途に堪え得ることを想定している。
【0016】
【課題を解決するための手段】
上記課題を解決するため、本発明は、ともに回転基板に対向させて並設した成膜源と反応源とを備える真空室内で誘電体多層膜を製造する装置において、前記回転基板上に成膜される誘電体多層膜の成膜速度を規制するための開口部を有する成膜速度規制部材と、前記回転基板上に成膜される誘電体多層膜の膜厚を補正するため、前記回転基板の回転時に回転基板の半径に沿った複数の監視点のそれぞれの軌跡による各同心円の円周に沿って円弧帯状に形成された開口領域をおのおの独立に開閉する分割シャッタとを、前記回転基板と前記成膜源との間に設けると共に、前記回転基板の半径に沿った複数の監視点を通過する監視用単色光の強度を計測する光強度計測手段を設け、1種類以上の波長から成る監視用単色光光束のそれぞれが前記監視点を通過する際に、前記光強度計測手段により計測される光強度変化に応じて、前記分割シャッタを前記円弧帯状の開口領域に独立して出し入れすることにより開閉するための制御系を備えるものとした。
【0017】
これによれば、基板上に形成される誘電体多層膜の最新表面層膜の膜厚増加に対応して変化する光強度を光強度計測手段により検出し、これに応じて膜厚補正部材の開口部を可動することにより、誘電体多層膜の膜厚増加を補正できる。即ち、高い精度で誘電体多層膜の最新表面層膜の膜厚制御を行うことができる。また、この際に、1種類以上の波長の単色光を監視用光束として用いているため、多種類のモニタ波長に対応した直接監視法により膜厚制御を行って誘電体多層膜を製造することができる。
【0018】
そして、膜厚補正部材の可動開口部として、回転基板の回転時に監視点のそれぞれの軌跡が描く各同心円の円周に沿って、円弧帯状に形成される開口領域のそれぞれを独立に開閉する分割シャッタを用いる。
【0019】
これにより、監視点での通過の際の異なる波長種類の単色光ごとに上記円弧帯状に形成される同質の誘電体多層膜に対して、同一条件で成膜の遮断を行うことができる。したがって、円弧帯状の各監視領域で得られる高品質誘電体多層膜の多品種量産が可能となる。
【0020】
さらに、誘電体多層膜製造装置の制御系により、まず、回転基板上の誘電体多層膜の成膜期間に亘って、1種類以上の波長から成る監視用単色光光束を複数の監視点のそれぞれに通過させる際に、光強度計測手段により計測される光強度変化を誘電体多層膜の透過率変化として測定すると共に、この透過率の逆数を逆透過率として算出する。
【0021】
このとき、これらのような構造の境界条件(電場、磁場のそれぞれの接線成分B、Cが連続)より、基板系のアドミッタンスYは、単層膜の特性マトリックスを用いて、
【0022】
【式1】
Figure 0004327440
[式1]((1)式)と表される。(ここで、Nは単層膜の屈折率、θは単層膜上の異なる界面における位相差を示す。)
このとき、単層膜の透過率Tは、
T=4Y/(B+C)(B+C)* ・・・(2)
(ここで、*は共役する複素数を示す。)
で表されるので、(1)式と(2)式とにより
T=4Y/[(1+Y)2+{(Y/N+N)2−(1+Y)2}sin2θ] ・・・(3)
となる。ただし、空気あるいは真空の屈折率は1としている。
【0023】
本発明においては、さらに、付着成長中の最新表面層膜の光学膜厚Nd(Nは薄膜の屈折率、dは薄膜の物理的膜厚)を、
θ=2πNd/λ ・・・(4)
として、光学膜厚と単色光の波長とを算入して成る光学位相角として表す。
【0024】
さらに、光学膜厚の増加に要する表面層膜の成長時間(t)と逆透過率(1/T)との2変数の実測データ群を用いた最小二乗法により、実測データ群が極大または極小に到達する以前に二次関数回帰を行って、二次回帰関数
1/T=A0+B0(t−tp2 ・・・(5)
として算出する。(ここで、A0及びB0は定数、tpは極大または極小に到達するときの成長時間を表す。)
このとき、回帰関数の相関を高くするため、関数曲線の極大または極小に到達すべき表面層膜の光学膜厚が、この極大または極小まで残すところλ/4相当の光学膜厚のおおむね25%から10%となった時点からの実測データ群を用いて関数回帰することが望ましい。(λ:単色光の波長)
ところで、(3)式を変形して、
1/T=(1+Y)2/4Y+{(Y/N+N)2−(1+Y)2}sin2θ/4Y ・・・(6)
としたとき、最新表面層膜の成長開始時点の透過率をT0と、最新表面層膜の光学膜厚がλ/4に達するときの成長時間経過時の透過率T90とは、
0=4Y/(1+Y)2 ・・・(7)
90=4Y/(Y/N+N)2 ・・・(8)
として表される。
【0025】
さらに、これらによりアドミッタンスYが実数であるとき、
(1/T0−1/T)/(1/T0−1/T90)=sin2θ ・・・(9)
が得られ、逆透過率は光学位相角のみの関数で示すことができる。
【0026】
上記したような干渉の原理に基づいて逆透過率は、単色光の波長の1/4に相当する光学膜厚間隔で周期分布する。そして、逆透過率の極大点及び極小点の近傍においては、(9)式を展開して得られる逆透過率の関数(θを変数とし、 sin2θ項を含む関数)は二次関数に近似できる。したがって、極大点及び極小点における光学膜厚に到達するときの最新表面層膜の膜厚到達予測時間として、二次回帰関数上の極大点または極小点に対応する成長時間を用いることができる。そして、この膜厚到達予測時間に表面層膜に対する成膜を停止する。この際、相関の良好な二次回帰関数によるピーク制御をおこなうため、単色光の波長の1/4に相当する光学膜厚達成のための制御精度がさらに向上する。
【0027】
この場合、表面層膜の光学膜厚は、上記のように(9)式を展開して得られる逆透過率の関数から算出できる。したがって、この時間微分または時間差分を最新表面層膜の成膜速度として算出し、この成膜速度により最新表面層膜が所定の光学膜厚に到達するために要する時間とすることができる。そして、これにより、所望の光学膜厚の膜厚制御が可能となる。即ち、制御すべき光学膜厚は、単色光の波長の1/4相当のものに限定されず、任意の光学膜厚に制御できることになる。
【0028】
この際、上記の成膜源として、少なくとも2種類の異なる材質のスパッタターゲットを選択可能な状態で用いることにより、各ターゲット材質を選択して誘電体多層膜の各構成層の膜材料とすることができ、多層膜製造の利便性が向上する。
【0029】
そして、スパッタターゲットの異なる材質種類として、Ta金属とSi金属とを用いることにより、例えば、BPFのような光学薄膜製品の高屈折率層材料として代表的なTa25などのタンタル化合物膜や、低屈折率層材料として代表的なSiO2膜などのシリコン化合物膜の製造が可能となる。
【0030】
このとき、上記の反応源を、中性ラジカル反応ガスを放出するものとすることにより、表面層膜において上記したような化合物膜の生成時に基板温度の上昇が抑制される。この結果、光学膜厚の制御精度の低下も抑制される。
【0031】
【発明の実施の形態】
図3(a)は、本発明の誘電体多層膜製造装置の略断面図である。図3を参照して、真空チャンバ31内に、成膜源たるスパッタターゲット部32と反応源たるイオンガン部33とがともに回転基板34に対向して並置されている。さらに、チャンバ31外の投光器35が回転基板34の上方位置に配置されており、8チャンネル投光器35からの8本の平行単色光光束が上部光導入窓36と回転基板34と下部光導入窓37とを介してチャンバ1外の8チャンネル受光器38で受光される。
【0032】
さらに、受光器38で受光された8本の単色光光束は、図中点線で示す電気信号ラインを経由して8チャンネルプリアンプ39、8チャンネルA/D変換器40、ディジタルシグナルプロセッサ(DSP)41を介してコンピュータ42に接続されており、このコンピュータ42において、所望膜厚の到達予測時間を算出すると共に、算出された予測時間を成膜停止時点として成膜停止を指示して膜厚制御を行う。
【0033】
スパッタターゲット部32は、回転機構43により上下逆転可能に設けたTaターゲット44とSiターゲット45とを備えており、各ターゲット44、45にはそれぞれ防着板44a、45aが覆設されるとともに、各防着板44a、45aで包囲される空間内に、スパッタガス導入管46が貫入する構造となっている。さらに、各ターゲット44、45が上面位置にあるときに、固定開口47を介して回転基板34と対向する。また、イオンガン部33は、反応ガス導入管48が貫入して成るECRイオンガン49により構成されている。
【0034】
回転基板34は、駆動モータ50の駆動により回転され、回転基板34と成膜源32との間には、成膜速度規制部材たる可変開口51a、51bと、膜厚補正部材たる分割シャッタ52〜55が設けられている。
【0035】
回転基板34と成膜源32との間の構成をさらに詳説すると、基板34とこれに近接して設けられた分割シャッタ52〜55とは、図3(b)に示すように、8本の監視用単色光光束の基板34上通過点(監視点)56a〜56hのそれぞれの軌跡が描く各同心円の円周に沿って、円弧帯状に形成される開口領域のそれぞれを独立の駆動軸52a、53a、54a、55aにより開閉するものとして構成する。
【0036】
さらに、基板34と分割シャッタ52〜55とを含む装置31の上面図を図3(c)として示す。図中、図外のスパッタターゲット44、45を最下位置として、その上方に固定開口47を穿設した平板47aを配置し、次にその上方に可変開口51a、51bを配置し、さらにその上方に分割シャッタ52〜55を配置し、最後に回転基板34を配置した構成である。上記中、固定開口47は、製品基板34への蒸発分布を整えて広い範囲で光学特性を得るためのものであり、固定及び可変開口のいずれでも良い。また、可変開口51a、51bは、成膜終点付近で膜厚を精密に制御するために成膜速度を減速させるためのものであり、スパッタターゲット44、45の出力調整による減速では即効性が得られず時間がかかり生産性が悪くため、これに替るものである。即ち、当初は高い成膜速度で成膜を行い、成膜終点に近づいた時点で可変開口51a、51bの開度を減少することにより、成膜速度を減速させ、膜厚成長を精密制御するのである。さらに、分割シャッタ52〜55は、監視用単色光光束の基板34上の通過点56a〜56h(図示せず)のそれぞれの軌跡が描く各同心円の円周に沿って、円弧帯状に形成される開口領域のそれぞれを、独立の駆動シャフト52a、53a、54a、55aを介して出し入れすることにより開閉し、これにより、上記開口領域における成膜を遮断するためのものである。また、可変開口51a、51bの開度調整や分割シャッタ52〜55の開閉は、受光器38に連なるコンピュータ42の指示により装置外部から制御される。
【0037】
図3(a)に示す誘電体多層膜製造装置で膜厚制御を行うに際しては、まず、図外の真空ポンプの作動によりチャンバ31内を所定の圧力状態に到達させる。そして、駆動モ−タ50の駆動により製品基板34を回転させ、次に、投光器35から上部光導入窓36と回転基板34と下部光導入窓37とを介して、8本の監視用単色光光束を受光部38に通過させる。このとき、8本の監視用単色光は、2チャンネルずつ同一モニタ波長の単色光として計4種類のモニタ波長を用いる設計とした。さらに、可変開口51a、51bを所定の開度に保ち、また、分割シャッタ52〜55を全開にし、回転基板34とTaターゲット44またはSiターゲット45との間を遮断せずに両者を対向させる。そして、ターゲット44または45の近傍にスパッタガス導入管43を介してアルゴンガスを導入し、所定のカソード電力を投入してスパッタ成膜を開始する。その際に、反応ガス導入管48より酸素ガスとアルゴンガスとの混合ガスを導入しながらECRイオンガン49から中性ラジカル酸素を発し、これにより、基板34上に堆積するTaまたはSiから成る金属種の酸化反応を行う。
さらに、Taターゲット44とSiターゲット45とを選択的に作動させることにより、製品基板34上に高屈折率層のTa25膜と、低屈折率層のSiO2膜とから成る交互多層膜が形成されるが、上記したように交互多層膜の各構成層の光学膜厚を高精度で制御することが重要である。このため、上記のターゲット44または45によるスパッタ成膜開始時点を膜厚増加に要する成長時間の始点とする。
【0038】
そして、上記4種類のモニタ波長を2本ずつ割り当てて計8本の平行光束とした監視用単色光が回転基板34を通過した後に受光器38で受光される。その後、各単色光は8チャンネルプリアンプ39で電圧信号に変換され、さらに、8チャンネルA/D変換器40でデジタル数値信号とされ、DSP41に入力されて、式(5)に基づき成長時間を定義域とする二次関数に回帰演算される。
【0039】
そして、この二次回帰関数の極大または極小に対応する成長時間を膜厚到達予測時間として、これを、各モニタ波長の監視領域の成膜停止時点として、コンピュータ42の指示により分割シャッタ52〜55を閉じることにより、円弧帯状の該当監視領域の成膜が遮断される。
【0040】
すべてのモニタ波長の監視領域での成膜が停止した後に、ターゲット部32において、次の最新表面層膜積層のため、下面で待機していたターゲット45または44を上面に逆転させ、上記と同様にして次の成膜工程に備える。そして、このような工程を繰り返すことにより、それぞれの監視領域における積層が独立に終了する。
【0041】
さらに、以下各[実施例]において、本発明の誘電体多層膜製造装置により得られる光学薄膜製品の光学膜厚の制御精度を検討する。
【0042】
【実施例】
[実施例1]
図3の誘電体多層膜製造装置を用い、Ta25膜を高屈折率層とし、SiO2膜を低屈折率層とし、全構成層の光学膜厚がλ/4(λはモニタ波長)の整数倍である交互多層膜を積層形成して中帯域BPFを製作した。このときに用いるモニタ波長は、それぞれ1552.52nm、1554.12nm、1555.72nm及び1557.32nmであり、光学薄膜設計は以下の通りである。
反射防止膜付きガラス製品基板(BK7)|(HL)3L(HL)6L(HL)6L(HL)3|空気
なお、屈折率の設計値は、低屈折率層において1.444、及び、高屈折率層において2.08、製品基板(BK7)を1.5とした。
【0043】
即ち、図3において、φ300mmの製品基板34の外周縁から5mm内側の位置に監視用単色光通過路チャンネル1に対応する監視点を設定し、この監視点から回転円中心方向に10mm間隔でチャンネル2〜8を設定した。
【0044】
そして、図3の投光器35に相当する波長可変レ−ザ−光源からの8本の単色光光束に対し、モニタ波長1552.52nmの単色光通過路としてチャンネル1及び2を割り当て、モニタ波長1554.12nmの単色光の光束路としてチャンネル3及び4を割り当て、モニタ波長1555.72nmの単色光の光束路としてチャンネル5及び6を割り当て、モニタ波長1557.32nmの単色光の光束路としてチャンネル7及び8を割り当てた。そして、受光部38で受光されてDSP41で計測される透過率を用いて、透過率曲線のピ−ク近傍で二次関数回帰を行い、各ピ−クに到達する到達予測時間を算出して成膜停止時点とした。この工程を繰り返した後の製品基板34上の特性分布を図4に示す。図4に示すように、約10mm程度の幅の環状帯領域57〜60においてそれぞれ同質の光学特性が分布することが分る。
【0045】
また、図5は、チャンネル1〜8に対応する基板上監視領域の分光透過率特性であり、それぞれ中帯域BPFとして良好な光学製品が得られていることが分る。
【0046】
[実施例2]
図3の誘電体多層膜製造装置を用い、Ta25膜を高屈折率層とし、SiO2膜を低屈折率層とし、全構成層の光学膜厚がλ/4(λはモニタ波長)の整数倍である交互多層膜を積層形成して狭帯域BPFを製作した。このときに用いるモニタ波長は、それぞれ1552.52nm、1553.32nm、1554.12nm及び1554.92nmであり、光学薄膜設計は以下の通りである。
反射防止膜付きガラス製品基板(BK7)|(HL)8L(HL)16L(HL)16L(HL)8|空気
なお、屈折率の設計値は、低屈折率層において1.444、及び、高屈折率層において2.08、製品基板(BK7)を1.5とした。
【0047】
即ち、図3において、φ300mmの製品基板34の外周縁から5mm内側の位置に監視用単色光通過路チャンネル1に対応する監視点を設定し、この監視点から回転円中心方向に10mm間隔でチャンネル2〜8を設定した。
【0048】
そして、図3の投光器35に相当する波長可変レ−ザ−光源からの8本の単色光光束に対し、モニタ波長1552.52nmの単色光通過路としてチャンネル1及び2を割り当て、モニタ波長1553.32nmの単色光の光束路としてチャンネル3及び4を割り当て、モニタ波長1554.12nmの単色光の光束路としてチャンネル5及び6を割り当て、モニタ波長1554.92nmの単色光の光束路としてチャンネル7及び8を割り当てた。そして、受光部38で受光されてDSP41で計測される透過率により逆透過率を算出し、これを用いて逆透過率曲線のピ−ク近傍で二次関数回帰を行い、各ピ−クに到達する到達予測時間を算出して成膜停止時点とした。
【0049】
図6は、チャンネル1〜8に対応する基板上監視領域の分光透過率特性であり、それぞれ狭帯域BPFとして良好な光学製品が得られていることが分る。
【0050】
[実施例3]
図3の誘電体多層膜製造装置を用い、Ta25膜を高屈折率層とし、SiO2膜を低屈折率層とし、第1層及び第2層の光学膜厚はλ/4(λはモニタ波長)の整数倍とは異なるが、最終的な表面層(第2層)の成膜停止時点はピーク制御により予測した交互多層膜で反射防止膜膜を製作した。このときに用いるモニタ波長は、それぞれ1550nm、1555nm、1560nm、1565nmであり、光学薄膜設計は以下の通りである。
反射防止膜付きガラス製品基板(BK7)|0.35H、1.288L|空気
なお、屈折率の設計値は、低屈折率層において1.444、及び、高屈折率層において2.08、製品基板(BK7)を1.5とした。
【0051】
即ち、図3において、φ300mmの製品基板34の外周縁から5mm内側の位置に監視用単色光通過路チャンネル1に対応する監視点を設定し、この監視点から回転円中心方向に10mm間隔でチャンネル2〜8を設定した。
【0052】
そして、図3の投光器35に相当する波長可変レ−ザ−光源からの8本の単色光光束に対し、モニタ波長1550nmの単色光通過路としてチャンネル1及び2を割り当て、モニタ波長1555nmの単色光の光束路としてチャンネル3及び4を割り当て、モニタ波長1560nmの単色光の光束路としてチャンネル5及び6を割り当て、モニタ波長1565nmの単色光の光束路としてチャンネル7及び8を割り当てた。そして、受光部38で受光されてDSP41で計測される透過率により逆透過率を算出し、第1層においては、逆透過率を用いて0.35Hに相当する成膜停止時点を予測し、また、第2層においては、逆透過率曲線のピ−ク近傍で二次関数回帰を行い、ピ−クに到達する到達予測時間を算出して成膜停止時点とした。
【0053】
図7は、チャンネル1〜8に対応する基板上監視領域の分光反射率特性であり、それぞれ反射防止膜として良好な光学製品が得られていることが分る。
【0054】
【発明の効果】
以上の説明から明らかなように、本発明によれば、透過率または逆透過率のピーク近傍で二次関数回帰したときの極大または極小に対応する成長時間を膜厚到達予測時間として用いることができるため、高精度で光学膜厚の膜厚成長を制御できる。また、多種類のモニタ波長による直接監視法を用い、良好な特性の誘電体薄膜が得られる監視領域を拡大することができる。このため、例えば狭帯域バンドパスフィルタなど、稠密波長多重通信システム用デバイスとして高品質の光学薄膜製品の量産化が可能となる。
【図面の簡単な説明】
【図1】(a)直接監視法を用いる従来の誘電体多層膜製造装置の略断面図
(b)(a)の製造装置で得られる基板上の光学特性領域の概念図
【図2】従来の光学膜厚制御法による二次回帰関数の乖離を示すグラフ図
【図3】(a)本発明の誘電体誘電体多層膜製造装置の略断面図
(b)(a)の製造装置中の基板と分割シャッタとを示す上面図
(c)(a)の製造装置の上面図
【図4】[実施例1]で得られる基板上の光学特性領域の概念図
【図5】[実施例1]で得られる中帯域BPFの分光透過率特性を示すグラフ図
【図6】[実施例2]で得られる狭帯域BPFの分光透過率特性を示すグラフ図
【図7】[実施例3]で得られる反射防止膜の分光反射率特性を示すグラフ図
【符号の説明】
1 31 真空チャンバ
2 電子銃 2a シャッタ
4 34 回転基板
32 スパッタターゲット部(成膜源)
33 イオンガン部(反応源)
35 投光器
36 上部光導入窓
37 下部光導入窓
38 受光器(光強度計測手段)
39 8チャンネルプリアンプ
40 8チャンネルA/D変換器
41 ディジタルシグナルプロセッサ(DSP)
42 コンピュータ
44 Taターゲット
45 Siターゲット
46 スパッタガス導入管
47 固定開口部
48 反応ガス導入管
49 ECRイオンガン
51a、51b 可変開口(成膜速度規制部材)
52、53、54、55 分割シャッタ(膜厚補正部材)
56a〜56h 監視点

Claims (6)

  1. ともに回転基板に対向させて並設した成膜源と反応源とを備える真空室内で誘電体多層膜を製造する装置において、前記回転基板上に成膜される誘電体多層膜の成膜速度を規制するための開口部を有する成膜速度規制部材と、前記回転基板上に成膜される誘電体多層膜の膜厚を補正するため、前記回転基板の回転時に回転基板の半径に沿った複数の監視点のそれぞれの軌跡による各同心円の円周に沿って円弧帯状に形成された開口領域をおのおの独立に開閉する分割シャッタとを、前記回転基板と前記成膜源との間に設けると共に、前記回転基板の半径に沿った複数の監視点を通過する監視用単色光の強度を計測する光強度計測手段を設け、1種類以上の波長から成る監視用単色光光束のそれぞれが前記監視点を通過する際に、前記光強度計測手段により計測される光強度変化に応じて、前記分割シャッタを前記円弧帯状の開口領域に独立して出し入れすることにより開閉するための制御系を備えることを特徴とする誘電体多層膜の製造装置。
  2. 前記制御系は、前記回転基板上の誘電体多層膜の成膜期間に亘って、前記1種類以上の波長から成る監視用単色光光束を前記複数の監視点のそれぞれに通過させる際に、前記光強度計測手段により計測される光強度変化を前記誘電体多層膜の透過率変化として測定すると共に、該透過率の逆数を逆透過率として算出し、付着成長中の最新表面層膜の膜厚増加に要する成長時間と前記逆透過率との2変数の実測データ群を用いた最小二乗法により、前記実測データ群が極大または極小に到達する以前に二次関数回帰を行い、干渉の原理に基づいて前記監視用単色光の波長の1/4相当の光学膜厚間隔で周期分布する前記逆透過率の極大及び極小における光学膜厚に到達するときの前記最新表面層膜の膜厚到達予測時間として、前記二次回帰関数上の極大点または極小点に対応する成長時間を用いることを特徴とする請求項1に記載の誘電体多層膜の製造装置。
  3. 前記誘電体多層膜の最新表面層膜の膜厚成長に伴い、前記監視用単色光の波長の1/4波長相当の光学膜厚間隔で周期分布する前記透過率の逆数である逆透過率から算出される光学膜厚により、前記最新表面層膜が所定の光学膜厚に到達した事を検知して、前記膜厚成長を制御することを特徴とする請求項2に記載の誘電体多層膜の製造装置。
  4. 前記成膜源が、少なくとも2種類の異なる材質のスパッタターゲットから成り、該スパッタターゲットを選択可能に設けたことを特徴とする請求項1乃至3のいずれか1項に記載の誘電体多層膜の製造装置。
  5. 前記スパッタターゲットの異なる材質種類として、Ta金属とSi金属とを用いることを特徴とする請求項4に記載の誘電体多層膜の製造装置。
  6. 前記反応源は、中性ラジカル反応ガスを放出することを特徴とする請求項1乃至5のいずれか1項に記載の誘電体多層膜の製造装置。
JP2002317999A 2002-03-25 2002-10-31 誘電体多層膜の製造装置 Expired - Fee Related JP4327440B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002317999A JP4327440B2 (ja) 2002-10-31 2002-10-31 誘電体多層膜の製造装置
US10/394,667 US7247345B2 (en) 2002-03-25 2003-03-24 Optical film thickness controlling method and apparatus, dielectric multilayer film and manufacturing apparatus thereof
CN2007101121450A CN101078107B (zh) 2002-03-25 2003-03-25 绝缘多层薄膜制造装置
CNB031082297A CN100398694C (zh) 2002-03-25 2003-03-25 光学薄膜厚度控制方法及装置,绝缘多层薄膜及制造装置
TW092106852A TWI255906B (en) 2002-03-25 2003-03-25 Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
KR1020030018487A KR100972769B1 (ko) 2002-03-25 2003-03-25 광학 막 두께 제어 방법, 광학 막 두께 제어 장치, 유전체 다층막 제조 장치, 및 이러한 제어 장치 또는 제조 장치로 제조된 유전체 다층막
CN2007101121446A CN101078106B (zh) 2002-03-25 2003-03-25 绝缘多层薄膜制造装置
US11/819,838 US7927472B2 (en) 2002-03-25 2007-06-29 Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317999A JP4327440B2 (ja) 2002-10-31 2002-10-31 誘電体多層膜の製造装置

Publications (2)

Publication Number Publication Date
JP2004151493A JP2004151493A (ja) 2004-05-27
JP4327440B2 true JP4327440B2 (ja) 2009-09-09

Family

ID=32461247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317999A Expired - Fee Related JP4327440B2 (ja) 2002-03-25 2002-10-31 誘電体多層膜の製造装置

Country Status (1)

Country Link
JP (1) JP4327440B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838045B1 (ko) 2007-11-28 2008-06-12 심문식 스퍼터링과 이온 빔 증착을 이용한 산화박막 증착장치
JP6789082B2 (ja) * 2016-11-21 2020-11-25 日本放送協会 光電変換膜、光電変換膜の製造方法、光電変換素子
JP7127432B2 (ja) 2018-08-30 2022-08-30 セイコーエプソン株式会社 光学装置、及び電子機器
JP7303701B2 (ja) * 2019-08-19 2023-07-05 株式会社オプトラン 光学膜厚制御装置、薄膜形成装置、光学膜厚制御方法および薄膜形成方法

Also Published As

Publication number Publication date
JP2004151493A (ja) 2004-05-27

Similar Documents

Publication Publication Date Title
US7927472B2 (en) Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
US10418231B2 (en) Method for producing a multilayer coating and device for carrying out said method
CA2214546C (en) Method and apparatus for the high rate automated manufacture of thin films
CN110737040B (zh) 3d识别滤光片
EP0832443A1 (en) Optical multiplexing device and method
JP4327440B2 (ja) 誘電体多層膜の製造装置
JP4327439B2 (ja) 誘電体多層膜の製造装置
JP5697829B2 (ja) 多層膜を製造する方法および前記方法を実施するための装置
JP4034979B2 (ja) 光学膜厚制御方法及び光学膜厚制御装置並びに該光学膜厚制御方法を用いて作製した誘電体薄膜
JP2004176081A (ja) 原子層堆積法による光学多層膜の製造方法
JP2005107010A (ja) 多層膜光学フィルターの製造方法および多層膜光学フィルター
JP4280890B2 (ja) スパッタ装置及びスパッタ成膜方法
JP2004061810A (ja) 多層膜光学フィルター形成装置、および多層膜光学フィルターの製造方法
JP4418179B2 (ja) 薄膜形成装置及び薄膜形成方法
JP2004233646A (ja) 薄膜フィルターの製造方法、薄膜フィルターの製造装置、薄膜フィルター基板、および波長可変フィルター
JP2005154855A (ja) 光学多層膜用真空製膜装置と光学多層膜の製膜方法
JP3737408B2 (ja) 膜厚モニタリング装置および方法
JP2005121699A (ja) 薄膜フィルターの製造方法、薄膜フィルターの製造装置、薄膜固定フィルター、および波長可変フィルター
JP2004177762A (ja) 波長可変フィルターモジュール
JP2004177761A (ja) 波長可変フィルターモジュール
JP2003215333A (ja) 光学式膜厚モニター、これを装着した成膜装置、多層膜光学フィルターおよび光合分波器
JPH10170717A (ja) 誘電体多層膜干渉フィルタの製造方法
KR100397598B1 (ko) 전자빔에의한다중박막형성방법
JPS63157104A (ja) バンド・パス・フイルタの製造方法
Gibson et al. High throughput deposition of precision optical coatings using closed field magnetron sputtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4327440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees