JP4323751B2 - 移動位置決め装置及びそれを備える露光装置 - Google Patents

移動位置決め装置及びそれを備える露光装置 Download PDF

Info

Publication number
JP4323751B2
JP4323751B2 JP2002105294A JP2002105294A JP4323751B2 JP 4323751 B2 JP4323751 B2 JP 4323751B2 JP 2002105294 A JP2002105294 A JP 2002105294A JP 2002105294 A JP2002105294 A JP 2002105294A JP 4323751 B2 JP4323751 B2 JP 4323751B2
Authority
JP
Japan
Prior art keywords
moving body
stage
linear motor
moving
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002105294A
Other languages
English (en)
Other versions
JP2003303753A (ja
Inventor
俊哉 浅野
和徳 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002105294A priority Critical patent/JP4323751B2/ja
Publication of JP2003303753A publication Critical patent/JP2003303753A/ja
Application granted granted Critical
Publication of JP4323751B2 publication Critical patent/JP4323751B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体露光装置、検査装置等に使用され、露光原版や被露光物、または被検査物を所定の位置に位置決めする移動位置決め装置に関する。
【0002】
【従来の技術】
従来、半導体素子製造に用いられる露光装置として、ステッパと呼ばれる装置とスキャナと呼ばれる装置が知られている。ステッパは、ステージ装置上の半導体ウエハを投影レンズ下でステップ移動させながら、レチクル上に形成されているパターン像を投影レンズでウエハ上に縮小投影し、1枚のウエハ上の複数箇所に順次露光していくものである。スキャナは、ウエハステージ上の半導体ウエハとレチクルステージ上のレチクルとを投影レンズに対して相対移動させ、走査移動中にスリット上の露光光を照射し、レチクルパターンをウエハに投影するものである。スキャナは、解像度及び重ね合わせ精度の性能面から露光装置の主流と見られている。
【0003】
図13はスキャナにおいて従来用いられているレチクルステージの概観を示す斜視図である。レチクルステージ81本体は、レチクル定盤82の上面及び側面との間に不図示の静圧案内が設けられており、Y方向のみ運動自由に支持されている。レチクルステージ81本体には、不図示のレチクルチャックによりレチクルが搭載される。レチクルステージ81上には、コーナーキューブ83が設けられており、不図示のレーザ干渉計からの計測光を反射し、レチクルステージ81のY方向の位置が計測される。また、レチクルステージ81の両側には磁石から構成される可動子が設けられ、コイル固定子84がステージ定盤82と同じ構造体に取り付けられていて、前記可動子と該コイル固定子84とにより、ローレンツ力を用いたリニアモータが構成されている。これらのリニアモータにより、レチクルステージ81はY方向に駆動力が与えられる。不図示の位置制御系により、レチクルステージ81は高精度に位置決め制御される。
【0004】
【発明が解決しようとする課題】
レチクルステージには装置性能の向上のため、位置決めのより高精度化が求められている。従来のステージ構成においては次の点で問題があった。コイルを並べた固定子と磁石を用いた可動子を組み合わせたリニアモータでは、ステージの移動により電流を流すコイルを順次切り替える必要がある。この切り替えの際、モータの推力にわずかながら変動が生じる。この推力変動のため、ステージを走査した際に目標値からのずれ(偏差)が生じ、露光精度の悪化となってしまっている。
【0005】
本発明は、例えばリニアモータのような駆動源を用いた場合でも、位置決め精度の良いレチクルステージ等の移動位置決め装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を克服するために、本発明に係る移動位置決め装置は、基準面上に置かれた定盤と、前記定盤面上の一方向に移動自由に案内された第1移動体と、前記第1移動体上に6自由度に移動自由に支持された第2移動体と、前記第2移動体を該第2移動体の移動自由方向に移動させる駆動力を発生する第1駆動系と、前記第1移動体を該第1移動体の移動自由方向に移動させる駆動力を発生する第2駆動系と、前記第2移動体を前記第1移動体の移動自由方向に移動させる駆動力を発生する第3駆動系とを有し、前記第2駆動系と前記第3駆動系とは固定子と可動子とからなるリニアモータを含み、前記第2駆動系のリニアモータの固定子と前記第3駆動系のリニアモータの固定子とは前記基準面上に設けられた同一の固定子であり、前記第1駆動系の少なくとも前記第1移動体の移動自由方向への駆動手段が、前記第1移動体と前記第2移動体との間に設けられていることを特徴とする。
【0007】
また、本発明に係る移動位置決め装置は、基準面上に置かれた定盤と、前記定盤面上の一方向に移動自由に案内された第1移動体と、前記定盤面上の平面内3自由度に移動自由に案内された第2移動体と、前記第2移動体を該第2移動体の移動自由方向に移動させる駆動力を発生する第1駆動系と、前記第1移動体を該第1移動体の移動自由方向に移動させる駆動力を発生する第2駆動系と、前記第2移動体を前記第1移動体の移動自由方向に移動させる駆動力を発生する第3駆動系とを有し、前記第2駆動系と前記第3駆動系とは固定子と可動子とからなるリニアモータを含み、前記第2駆動系のリニアモータの固定子と前記第3駆動系のリニアモータの固定子とは前記基準面上に設けられた同一の固定子であり、前記第1駆動系の少なくとも前記第1移動体の移動自由方向への駆動手段が、前記第1移動体と前記第2移動体との間に設けられていることを特徴とする。
【0017】
【発明の実施の形態】
本発明の実施の形態に係る移動位置決め装置及びそれを備えた露光装置について、位置決め対象が原版としてのレチクルである場合を例として、図面を参照しながら詳細に説明する。
【0018】
(第1の実施形態)
図1は本発明の第1の実施形態に係る移動位置決め装置の平面図である。図2はステージ本体部のみを抜き出した三面図である。第1移動体としての粗動ステージ2には定盤1の上面及び側面との間に、静圧案内4,5が設けられており、粗動ステージ2はY方向のみ運動自由に定盤1上に支持されている。この静圧案内4,5は多孔質の空気吹き出し部と磁石与圧部からなり、非常に高い剛性を有している。第2移動体としての微動ステージ3は粗動ステージ2に対して3個所の空気ばね6により弾性支持されている。この空気ばね6は、剛性が非常に小さく設計されており、微動ステージ3は、粗動ステージ2に対して、X方向、Y方向、及びZ方向、並びにその周りの回転方向のωx方向、ωy方向、及びωz方向に非常に低い固有振動数を持って支持されている。この弾性支持系は、空気ばね6以外を用いてもよく、コイルばねや磁石による反発や吸引を用いた支持系でもよい。非常に低い固有振動数と言うのは、支持系の剛性を小さくし、粗動ステージ2の振動を微動ステージ3に伝えない系、すなわち除振系を構成していることを意味する。
【0019】
粗動ステージ2にはレーザ干渉計用の粗動ステージ測定コーナーキューブ10が設けられ、不図示のレーザ干渉計計測基準からのレーザ光を反射し、計測基準からの粗動ステージ2のY方向変位が計測される。微動ステージ3には同様にY方向の位置を計測する2個の微動Y測定コーナーキューブ11a,11bが設けられている。この二つのY方向計測値と微動Y測定コーナーキューブ11a,11bの取り付け位置、及び微動ステージ3の重心座標から、微動ステージ重心位置のY方向及びωz方向の変位が計測される。また、微動ステージ3にはY方向から照射されたレーザ光を45度の角度で水平に反射するX計測反射鏡15が設けられている。不図示のXレーザ干渉計からのレーザ光はこのX計測反射鏡15によってX方向に反射され、外部に設けられた固定のX計測基準鏡16によりレーザ干渉計による位置測定が行なわれる。この干渉計による計測値とX計測反射鏡15の位置、微動ステージ重心座標、及び微動ステージ重心位置のY方向変位から、微動ステージ重心位置のX方向の変位が計測される。
【0020】
図3(a)にレーザ光の光軸の概念図を示す。X方向干渉計17の測定値としては、微動ステージ3のX方向とY方向の位置の和が計測される。すなわち、X方向変位測定値からY方向変位測定値を差し引けばよい。実際には、さらに重心位置におけるX方向変位の算出のため、ωz方向変位の値も用いる。微動ステージ3にはX計測反射鏡15と同様な構成をもつZ計測反射鏡20a,20b,20cが設けられている。これらの3つの反射鏡20a〜20cにより、Y方向からきたレーザ光は一度Z方向に反射され、粗動ステージ2と微動ステージ3からなるレチクルステージ上方に設けられた固定のZ計測基準鏡21に反射される。これらの3つのレーザ干渉計構成により、微動ステージ3の異なる3点での計測が行われる。これらの計測値と、Z計測反射鏡20の位置、微動ステージ重心座標、及び微動ステージ重心位置のY方向変位から、微動ステージ重心位置のZ方向及びωx、ωy方向変位が計測される。
【0021】
図3(b)にZ方向変位計測の概念図を示す。すなわち、微動ステージ3の重心位置は、図3(a)に示したこれら6本の干渉計12a,12b,17,22a,22b,22cにより、X方向、Y方向、Z方向、ωx方向、ωy方向、及びωz方向の6自由度の変位が計測される。この計測方法はこの限りではない。例えば、Z計測反射鏡を一つにし、Z方向計測を1本にすることが可能である。その代わり、Y方向計測において、Z方向に2本のレーザ干渉計を構成し、その差分からωx方向の変位を計測することができる。同様にしてX方向計測においてZ方向に2本のレーザ干渉計を構成し、その差分からωy方向の変位を計測することができる。これらのZ方向、ωx方向、及びωy方向計測値から微動ステージ重心位置のZ方向、ωx方向、及びωy方向変位を算出してもよい。
【0022】
図4はX方向計測干渉計を微動ステージ上に構成した概念図である。この場合はX方向干渉計17は直接にX方向変位を測定でき、Y方向変位を差し引く必要が無い。微動ステージ3の大きさ、質量との兼ね合いから図4の構成を用いても構わない。同様にして、Z方向を計測する干渉計22a〜22cも微動ステージ3上に構成することも可能である。
【0023】
また、Z方向変位はレーザ干渉計でなく、静電容量センサなどの近接位置センサを用いてもよい。図5は近接位置センサを用いたときの概念図である。この図では静圧案内などは省略してある。3個の近接位置センサ24は同一直線上以外の位置に設けられている。すなわち、3個の近接位置センサ24の取り付け箇所はZ情報から見ると3角形を構成している。これらの近接位置センサ24は、粗動ステージ2の孔を通して、定盤1の上面とのZ方向の位置を計測する。図5に示す構成の場合であると、レチクルステージの移動により定盤1は荷重のかかる位置の変動を受け、上盤面1aがわずかながら変化してしまうことが考えられる。この上盤面1aの変形はステージ位置との相関が強いので、ステージ位置を基に計測されたセンサの値を補正することが可能である。
【0024】
図6はステージ移動による近接位置センサのターゲット面の変形をなくす方法の説明用図である。近接位置センサ24のターゲットは、定盤1ではなく、ステージ上方に設けられた構造物のZ計測基準面25を用いる。この構成によると、ステージ移動によるZ計測基準面25の変形がないため、Z方向計測の精度が向上する。
【0025】
レチクルステージの両横にはコイルを並べた粗動リニアモータ固定子27bが構成されている。これらの粗動リニアモータ固定子27bは、定盤1を取り付けているものと同じ構造物上に固定されている。粗動ステージ2には磁石からなる可動子27aが設けられ、粗動リニアモータ固定子27bと対をなし、粗動リニアモータが構成される。この粗動リニアモータのコイルに所定の電流を流すことにより、リニアモータはY方向に推力を発生し、粗動ステージ2はY方向に駆動される。粗動リニアモータの推力の作用する中心線(力線)のZ方向位置は、粗動ステージ2のZ方向重心位置と極力合わせるのが望ましい。力線と重心が合っていない場合、駆動力を発生した際にωx方向のピッチングモーメントが発生してしまうためである。粗動ステージ2の場合は、多少ピッチングが生じても位置決め精度には影響はないが、この振動が計測系の外乱となりうるので、極力ピッチングを抑えるのが望ましい。粗動ステージ2には粗動ステージ位置制御系が構成されており、粗動ステージのY方向変位を用いてフィードバック制御を行ない、粗動ステージは高精度に位置決め制御される。
【0026】
粗動ステージ2と微動ステージ3の間には、2個のX方向微動リニアモータXLM1,XLM2と、2個のY方向微動リニアモータYLM1,YLM2、及び4個のZ方向微動リニアモータZLM1〜ZLM4として、それぞれ単相コイルの微動リニアモータが構成されている。これらの単相コイルリニアモータは、コイル1つと磁石ユニットで1対になっており、可動範囲は少ないがコイルの切り替えの必要が無いため、推力変動がほとんど無い。この単相コイルリニアモータを用いると、コイルを並べた粗動リニアモータに比べてより高精度の位置決め制御ができる。XY平面内ではX方向2個、Y方向2個のリニアモータの力配分によりX方向、Y方向、及びωz方向の駆動力を発生できる。Z方向に関しては4つのZ単相リニアモータによって、Z方向、ωx方向、及びωy方向に駆動力を発生できる。ここでは、重心設計のしやすさから、これらの単相リニアモータを対称的に配置した結果、駆動方向に冗長性が表れている。しかし、この単相リニアモータの配置はこの限りではなく、粗動ステージ2に対して微動ステージ3をX方向、Y方向、Z方向、ωx方向、ωy方向、及びωz方向の6自由度に駆動力を発生できるようになっていればよい。
【0027】
また、X方向と、Y方向の微動リニアモータの力線のZ方向位置は、微動ステージ3のZ方向重心位置に極力合わせるのが望ましい。力線と重心が合っていない場合、X方向、及びY方向に駆動力を発生した際に、ωx方向と、ωy方向のピッチングと、ローリングのモーメントが発生してしまう。これらのモーメントは微動ステージ3のωx方向と、ωy方向の位置決め精度の悪化の要因となる。力線と重心位置のずれ量からこれらのモーメントを相殺する指令をZ微動リニアモータに与えることも出来るが、このような補正には誤差が生じるので、力線と重心を合わせた設計を行なうのが望ましい。これらの8つの単相リニアモータは微動ステージ制御系に接続され、前述した微動ステージ3の6自由度位置計測系とにより、微動ステージ3は高精度に位置決め制御される。また、微動ステージ3には磁石からなる加減速用可動子28aが設けられており、前述した粗動リニアモータ固定子27bとの間で加減速リニアモータが構成されている。加減速リニアモータの力線のZ方向位置は、微動ステージ3のZ方向重心位置と極力合わせるのが望ましい。Z微動リニアモータの場合と同様に、力線と重心のずれはピッチングモーメントを発生するためである。
【0028】
図7にレチクルステージの制御系の概念図を示す。微動ステージ制御系(b)と粗動ステージ制御系(a)には各々微動ステージ目標位置と粗動ステージ目標位置が送られる。粗動ステージ2と微動ステージ3は常に同じ駆動が行われるので、これらの目標位置は相対的に同じである。同様に目標加速度も同じである。粗動ステージ制御系(a)では粗動ステージ目標位置と前述した粗動ステージY方向変位の差分(偏差)を基に、フィードバック補償器32により適宜ゲインを乗じて粗動ステージ系33の粗動リニアモータへ指令が送られる。このフィードバック制御系のみでは加減速時の偏差が大きくなってしまう。そこで、目標加速度に粗動ステージ質量を乗じた値である粗動ステージ加減速力を粗動リニアモータへフィードフォワードを行なうフィードフォワード補償器31が設けられている。このフィードフォワードにより、加減速時の偏差を減少することが出来る。微動ステージ制御系(b)へはX方向、Y方向、Z方向、ωx方向、ωy方向、及びωz方向の6自由度方向の各微動ステージ目標位置が送られる。これらの目標位置は微動ステージ3の重心位置における値である。前述した微動ステージ3の6自由度変位測定値と微動ステージ目標位置との差分(微動ステージ6自由度変位偏差)がフィードバック補償器37により算出される。微動ステージ6自由度変位測定値も微動ステージ3の純真位置における値となっている。微動ステージ6自由度変位偏差に適宜ゲインを乗じ、6自由度方向制御力が算出される。この制御力は微動ステージ3の重心に加えられるべき力を意味する。この6自由度方向制御力を微動ステージ系38の前述した微動リニアモータへ、各々の取り付け位置、推力方向から適宜分配されて指令が送られる。加減速リニアモータへはフィードフォワード補償器36により、微動ステージ目標加速度に微動ステージ質量を乗じた値である微動ステージ加減速力の指令が送られる。すなわち、ステージ駆動時に必要な加減速力は加減速リニアモータにより発生され、微動リニアモータにはこの加減速力は必要としない。従って、微動リニアモータに必要な力は微少な位置決めに必要な分だけであり、小さな形状で構成が可能であり、発熱も非常に小さい。
【0029】
図8に示すように、微動ステージ3上に設けられる真空レチクルチャックの配管41は、一旦粗動ステージ2で受けてから外部へと送られる。微動ステージ3と粗動ステージ2は相対的にほとんど運動しないので、この間の配管41のばね性による外乱は生じない。粗動ステージ2には配管41のばね性による抵抗力の外乱が生じるが、粗動ステージ2自体には超精密な位置決めは必要とされないので問題はない。この配管41と同様に、微動ステージ3に外部から電線等を接続する必要がある場合は、それらの電線等42は一旦粗動ステージ2で受ける。
以上のように粗動ステージと微動ステージとを分離し、共に主方向(Y方向)に駆動すると共に、微動ステージの各方向微駆動用のアクチュエータの少なくとも主方向駆動用のものが粗動ステージと微動ステージとの間になるようにしているので、最終的な位置決めは単相微動リニアモータのような微駆動用アクチュエータにより行なえるので、従来の多相リニアモータを用いた場合より高精度な位置決めが行なえる。また、粗微動の構成にし、微動ステージ系への配管、配線を一旦粗動ステージで受けることにより微動ステージ系に配管、配線からの外乱が伝達しない構造になっている。
図8のような構成にすることにより、レチクルをステージに固定するためのチャックに負圧を用いた真空吸引チャックが用いられる際には、このための配管をステージは引きずって動くことになっていた。この時、配管はばね性を有し、位置決め制御系への外乱の伝達経路となる。ナノメータ次元での位置決めにおいては、この配管の抵抗も影響して偏差の増大をきたしてしまうという課題を解決することが可能となり、ステージに配管がなされたりするような場合でも、これら外乱要因からの外乱伝達の影響を低減することが可能となる。
【0030】
(第2の実施形態)
図9は本発明の第2の実施形態に係る移動位置決め装置を示す平面図であり、図10はステージ部分を抜き出した三面図である。レチクルステージのZ方向の位置決め精度の要求が緩やかなときには、このようにXY平面内のみの構成で本発明を用いることが出来る。粗動ステージ2は、第1の実施形態と同様に、定盤1の上面と側面との間に静圧案内を用いてY方向に運動自由に支持されている。また、粗動ステージ2はY方向変位も同様にレーザ干渉計で計測される。レチクルステージの両横にはコイルを並べた粗動リニアモータ固定子27bが構成されている。これらの粗動リニアモータ固定子27bは定盤1を取り付けているものと同じ構造物上に固定されている。粗動ステージ2には磁石からなる可動子27aが設けられ、粗動リニアモータ固定子27bと対をなし、粗動リニアモータが構成される。この粗動リニアモータは、コイルに所定の電流を流すことにより、Y方向に推力を発生し、粗動ステージ2はY方向に駆動される。微動ステージ3は底面のみに静圧案内8が構成されており、定盤1上をXY平面内に運動自由に支持されている。粗動ステージ2と微動ステージ3の間には単相リニアモータで構成された2個のY微動リニアモータYLM1,YLM2が設けられている。これらの微動リニアモータYLMはY方向に微動ステージ3を駆動することが出来る。微動ステージ3には磁石からなる加減速用可動子28aが設けられており、前述した粗動リニアモータ固定子27bとの間で加減速リニアモータが構成されている。さらに加減速用可動子28aの先端にはX微動リニアモータ可動子磁石XLMaが構成されている。この磁石に対応する粗動リニアモータ固定子27bの部分には細長いコイルにより構成されたX微動リニアモータ固定子コイルXLMbがある。これらの可動子と固定子とによりX微動リニアモータXLMが構成されている。このX微動リニアモータXLMにより微動ステージ3はX方向に駆動力を受けることができる。よって、微動ステージ3は2個のY微動リニアモータYLM1,YLM2とX微動リニアモータXLMにより、X方向、Y方向、及びωz方向に駆動力を受けることが出来る。微動ステージ3には2個のY方向計測用コーナーキューブ11a,11bとX計測反射鏡15が設けられており、第1の実施形態と同様にして微動ステージ重心位置のX方向、Y方向、及びωz方向の変位を計測することが出来る。X計測用のレーザ干渉計は図4のように微動ステージに搭載しても構わない。ステージ制御系は基本的に第1の実施形態と同じである。微動ステージ制御系が第1の実施形態では6自由度であったのが、これに対して本実施形態はX方向、Y方向、及びωz方向の3自由度に縮小された点のみが異なる。この3自由度の目標位置は微動ステージ3の重心周りの値として制御系に入力され、制御系内部では重心周りの偏差情報を基に3自由度の制御指令を生成する。この3自由度の制御指令を基に、2個のY微動リニアモータYLM1,YLM2とX微動リニアモータXLMに適宜指令が与えられる。第1の実施形態と同様に、微動ステージ3への配管は一旦粗動ステージ2で受けることにより、配管のばね性による外乱を微動ステージ3に伝達しない構成が達成できる。
【0031】
(第3の実施形態)
図11は第3の実施形態に係る移動位置決め装置を示す平面図である。図1の構成のレチクルステージではステージの加減速時の反力は固定子から基準構造物に伝わる。このときの振動がステージの位置決め精度に大きく影響する。図11の構成では、粗動リニアモータ固定子27bの底面には静圧案内が設けられており、粗動リニアモータ固定子27bは基準面上をXY方向に自由に運動できるように支持されている。このため、粗動リニアモータ固定子27bは、レチクルステージを加減速する際の粗動ステージ加減速分、及び微動ステージ加減速分の反力を受け、ステージとは逆方向に基準面上を運動する。この時の粗動リニアモータ固定子27bとレチクルステージ系の運動は各々の質量の逆比で起こる。すなわち、ある時の加減速力をFとし、粗動リニアモータ固定子系の質量(簡単化のため、左右を一つで考える)をM、レチクルステージ系の質量(粗動ステージ2と微動ステージ3を一つで考える)をm、各々の加速度をα、βとすると、次の関係が成り立つ。
F=Mα=−mβ
【0032】
しかし、実際には両者に加わる外乱により上式が厳密には成立しない。よって、複数回ステージ移動を繰り返すと、両者の相対的な位置関係が崩れ、ステージの可動範囲が狭くなってしまうという結果となる。この現象を防ぐため、粗動リニアモータ固定子27bにはY方向位置計測用の干渉計用のコーナーキューブ13a,13bが設けられ、粗動リニアモータ固定子27bのY方向変位はレーザ干渉計により計測する。また、粗動リニアモータ固定子27bのX方向変位は、X方向に、ある距離を離して各々2個所に配置したリニアゲージ51と52,53と54により計測する。粗動リニアモータ固定子27bには単相リニアモータを構成するそれぞれ1つのY方向固定子リニアモータYb1,Yb2と、それぞれ2つのX方向固定子リニアモータXb1,Xb2及びXb3,X4bとが設けられており、各々の方向に基準面に対して駆動力が与えられる。不図示の粗動リニアモータ固定子制御系により、夫々の変位計測値及び固定子リニアモータにより、粗動リニアモータ固定子27bはX方向、Y方向、及びωz方向に位置決め制御されるように構成されている。粗動リニアモータ固定子制御系には、X方向と、ωz方向は常に一定の目標値が、Y方向に関してはステージ移動に同期した目標値が与えられる。この結果、粗動リニアモータ固定子27bとレチクルステージは常に相対関係を保った動きとなり、前述したようなステージの可動範囲の縮小は起こらない。固定子リニアモータYb1,Yb2,Xb1,Xb2,Xb3,Xb4の反力は基準面に伝わるが、これらの力は、わずかな外乱を補正する程度であるので、レチクルステージの位置決め精度を悪化させるほどの振動にはならない。ここでは粗動リニアモータ固定子27bの位置計測を干渉計とリニアゲージの組み合わせで示したが、他の組み合わせでも構わない。粗動リニアモータ固定子の位置が計測できるセンサであれば種類は問わない。
【0033】
(第4の実施形態)
図12は第4の実施形態に係る移動位置決め装置の平面図であって、図9及び図10に示した第2の実施形態において図11に示した第3の実施形態の構成を適用した場合を示している。図12に示すこの移動位置決め装置は、レチクルステージの両横に、コイルを並べた粗動リニアモータ固定子27bが構成されている。粗動リニアモータ固定子27bの底面には静圧案内が設けられており、粗動リニアモータ固定子27bは基準面上をXY方向に自由に運動できるように支持されている。このため、粗動リニアモータ固定子27bは、レチクルステージを加減速する際の粗動ステージ加減速分、及び微動ステージ加減速分の反力を受け、ステージとは逆方向に基準面上を運動する。粗動ステージ2には磁石からなる可動子が設けられ、粗動リニアモータ固定子27bと対をなし、粗動リニアモータが構成される。この粗動リニアモータは、コイルに所定の電流を流すことにより、Y方向に推力を発生し、粗動ステージ2はY方向に駆動される。
【0034】
また、粗動リニアモータ固定子27bにはY方向位置計測用の干渉計用のコーナーキューブ13a,13bが設けられ、粗動リニアモータ固定子27bのY方向変位はレーザ干渉計により計測する。また、粗動リニアモータ固定子27bのX方向変位は、X方向に、ある距離を離して各々2個所に配置したリニアゲージ51と52,53と54により計測する。粗動リニアモータ固定子27bには単相リニアモータであるそれぞれ1つのY方向固定子リニアモータYb1,Yb2と、それぞれ2つのX方向固定子リニアモータXb1,Xb2及びXb3,X4bとが設けられており、各々の方向に基準面に対して駆動力が与えられる。不図示の粗動リニアモータ固定子制御系により、夫々の変位計測値及び固定子リニアモータにより、粗動リニアモータ固定子27bは、X方向、Y方向、及びωz方向に位置決め制御されるように構成されている。粗動リニアモータ固定子制御系には、X方向と、ωz方向は常に一定の目標値が、Y方向に関してはステージ移動に同期した目標値が与えられる。この結果、粗動リニアモータ固定子27bとレチクルステージは常に相対関係を保った動きとなり、ステージの可動範囲の縮小は起こらない。
【0035】
(第5の実施形態)
次に、前述した実施形態の移動位置決め装置をレチクルステージとして搭載した走査型露光装置の実施形態を、図14を用いて説明する。
鏡筒定盤96は、床または基盤91からダンパ98を介して支持されている。また、鏡筒定盤96は、レチクルステージ定盤94を支持すると共に、レチクルステージ95とウエハステージ93の間に位置する投影光学系97を支持している。
【0036】
ウエハステージ93は、床または基盤91から支持されたステージ定盤92上に支持され、ウエハを載置して位置決めを行う。また、レチクルステージ95は、鏡筒定盤96に支持されたレチクルステージ定盤94上に支持され、回路パターンが形成されたレチクルを搭載して移動可能である。レチクルステージ95上に搭載されたレチクルをウエハステージ93上のウエハに露光する露光光は、照明光学系99から発生される。
【0037】
なお、ウエハステージ93は、レチクルステージ95と同期して走査される。レチクルステージ95とウエハステージ93の走査中、両者の位置はそれぞれ干渉計によって継続的に検出され、レチクルステージ95とウエハステージ93の駆動部にそれぞれフィードバックされる。これによって、両者の走査開始位置を正確に同期させるとともに、定速走査領域の走査速度を高精度で制御することができる。投影光学系97に対して両者が走査している間に、ウエハ上にはレチクルパターンが露光され、回路パターンが転写される。
【0038】
本実施形態では、前述の実施形態に係る移動位置決め装置をレチクルステージとして用いているため、高精度の位置決めが可能となり、高速・高精度な露光が可能となる。
【0039】
(半導体生産システムの実施形態)
次に、本発明に係る装置を用いた半導体デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の生産システムの例を説明する。これは半導体製造工場に設置された製造装置のトラブル対応や定期メンテナンス、あるいはソフトウェア提供などの保守サービスを、製造工場外のコンピュータネットワークを利用して行うものである。
【0040】
図15は全体システムをある角度から切り出して表現したものである。図中、101は半導体デバイスの製造装置を提供するベンダ(装置供給メーカ)の事業所である。製造装置の実例としては、半導体製造工場で使用する各種プロセス用の半導体製造装置、例えば、前工程用機器(露光装置、レジスト処理装置、エッチング装置等のリソグラフィ装置、熱処理装置、成膜装置、平坦化装置等)や後工程用機器(組立て装置、検査装置等)を想定している。事業所101内には、製造装置の保守データベースを提供するホスト管理システム108、複数の操作端末コンピュータ110、これらを結んでイントラネット等を構築するローカルエリアネットワーク(LAN)109を備える。ホスト管理システム108は、LAN109を事業所の外部ネットワークであるインターネット105に接続するためのゲートウェイと、外部からのアクセスを制限するセキュリティ機能を備える。
【0041】
一方、102〜104は、製造装置のユーザとしての半導体製造メーカの製造工場である。製造工場102〜104は、互いに異なるメーカに属する工場であっても良いし、同一のメーカに属する工場(例えば、前工程用の工場、後工程用の工場等)であっても良い。各工場102〜104内には、夫々、複数の製造装置106と、それらを結んでイントラネット等を構築するローカルエリアネットワーク(LAN)111と、各製造装置106の稼動状況を監視する監視装置としてホスト管理システム107とが設けられている。各工場102〜104に設けられたホスト管理システム107は、各工場内のLAN111を工場の外部ネットワークであるインターネット105に接続するためのゲートウェイを備える。これにより各工場のLAN111からインターネット105を介してベンダの事業所101側のホスト管理システム108にアクセスが可能となり、ホスト管理システム108のセキュリティ機能によって限られたユーザだけにアクセスが許可となっている。具体的には、インターネット105を介して、各製造装置106の稼動状況を示すステータス情報(例えば、トラブルが発生した製造装置の症状)を工場側からベンダ側に通知する他、その通知に対応する応答情報(例えば、トラブルに対する対処方法を指示する情報、対処用のソフトウェアやデータ)や、最新のソフトウェア、ヘルプ情報などの保守情報をベンダ側から受け取ることができる。各工場102〜104とベンダの事業所101との間のデータ通信および各工場内のLAN111でのデータ通信には、インターネットで一般的に使用されている通信プロトコル(TCP/IP)が使用される。なお、工場外の外部ネットワークとしてインターネットを利用する代わりに、第三者からのアクセスができずにセキュリティの高い専用線ネットワーク(ISDNなど)を利用することもできる。また、ホスト管理システムはベンダが提供するものに限らずユーザがデータベースを構築して外部ネットワーク上に置き、ユーザの複数の工場から該データベースへのアクセスを許可するようにしてもよい。
【0042】
さて、図16は本実施形態の全体システムを図15とは別の角度から切り出して表現した概念図である。先の例ではそれぞれが製造装置を備えた複数のユーザ工場と、該製造装置のベンダの管理システムとを外部ネットワークで接続して、該外部ネットワークを介して各工場の生産管理や少なくとも1台の製造装置の情報をデータ通信するものであった。これに対し本例は、複数のベンダの製造装置を備えた工場と、該複数の製造装置のそれぞれのベンダの管理システムとを工場外の外部ネットワークで接続して、各製造装置の保守情報をデータ通信するものである。図中、201は製造装置ユーザ(半導体デバイス製造メーカ)の製造工場であり、工場の製造ラインには各種プロセスを行う製造装置、ここでは例として露光装置202、レジスト処理装置203、成膜処理装置204が導入されている。なお図16では製造工場201は1つだけ描いているが、実際は複数の工場が同様にネットワーク化されている。工場内の各装置はLAN206で接続されてイントラネットを構成し、ホスト管理システム205で製造ラインの稼動管理がされている。
【0043】
一方、露光装置メーカ210、レジスト処理装置メーカ220、成膜装置メーカ230などベンダ(装置供給メーカ)の各事業所には、それぞれ供給した機器の遠隔保守を行うためのホスト管理システム211,221,231を備え、これらは上述したように保守データベースと外部ネットワークのゲートウェイを備える。ユーザの製造工場内の各装置を管理するホスト管理システム205と、各装置のベンダの管理システム211,221,231とは、外部ネットワーク200であるインターネットもしくは専用線ネットワークによって接続されている。このシステムにおいて、製造ラインの一連の製造機器の中のどれかにトラブルが起きると、製造ラインの稼動が休止してしまうが、トラブルが起きた機器のベンダからインターネット200を介した遠隔保守を受けることで迅速な対応が可能であり、製造ラインの休止を最小限に抑えることができる。
【0044】
半導体製造工場に設置された各製造装置はそれぞれ、ディスプレイと、ネットワークインタフェースと、記憶装置にストアされたネットワークアクセス用ソフトウェアならびに装置動作用のソフトウェアを実行するコンピュータを備える。記憶装置としては内蔵メモリやハードディスク、あるいはネットワークファイルサーバーなどである。上記ネットワークアクセス用ソフトウェアは、専用又は汎用のウェブブラウザを含み、例えば図17に一例を示す様な画面のユーザインタフェースをディスプレイ上に提供する。各工場で製造装置を管理するオペレータは、画面を参照しながら、製造装置の機種401、シリアルナンバー402、トラブルの件名403、発生日404、緊急度405、症状406、対処法407、経過408等の情報を画面上の入力項目に入力する。入力された情報はインターネットを介して保守データベースに送信され、その結果の適切な保守情報が保守データベースから返信されディスプレイ上に提示される。またウェブブラウザが提供するユーザインタフェースはさらに図示のごとくハイパーリンク機能410〜412を実現し、オペレータは各項目の更に詳細な情報にアクセスしたり、ベンダが提供するソフトウェアライブラリから製造装置に使用する最新バージョンのソフトウェアを引出したり、工場のオペレータの参考に供する操作ガイド(ヘルプ情報)を引出したりすることができる。ここで、保守データベースが提供する保守情報には、上記説明した本発明に関する情報も含まれ、また前記ソフトウェアライブラリは本発明を実現するための最新のソフトウェアも提供する。
【0045】
次に上記説明した生産システムを利用した半導体デバイスの製造プロセスを説明する。図18は半導体デバイスの全体的な製造プロセスのフローを示す。ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(マスク製作)では設計した回路パターンを形成したマスクを製作する。一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記用意したマスクとウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、これを出荷(ステップ7)する。前工程と後工程はそれぞれ専用の別の工場で行い、これらの工場毎に上記説明した遠隔保守システムによって保守がなされる。また前工程工場と後工程工場との間でも、インターネットまたは専用線ネットワークを介して生産管理や装置保守のための情報がデータ通信される。
【0046】
図19は上記ウエハプロセスの詳細なフローを示す。ステップ11(酸化)ではウエハの表面を酸化させる。ステップ12(CVD)ではウエハ表面に絶縁膜を成膜する。ステップ13(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ14(イオン打込み)ではウエハにイオンを打ち込む。ステップ15(レジスト処理)ではウエハに感光剤を塗布する。ステップ16(露光)では上記説明した露光装置によってマスクの回路パターンをウエハに焼付露光する。ステップ17(現像)では露光したウエハを現像する。ステップ18(エッチング)では現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)ではエッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。各工程で使用する製造機器は上記説明した遠隔保守システムによって保守がなされているので、トラブルを未然に防ぐと共に、もしトラブルが発生しても迅速な復旧が可能であり、従来に比べて半導体デバイスの生産性を向上させることができる。
【0047】
【発明の効果】
本発明は、第1駆動系の少なくとも第1移動体の移動自由方向への微動位置決め用駆動手段が第2駆動系、第3駆動系とは別に、第1移動体と第2移動体との間に設けられていることにより、位置決め精度の良いレチクルステージを提供することができるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態に係る移動位置決め装置を示す平面図である。
【図2】 本発明の第1の実施形態に係る移動位置決め装置の要部を示す三面図であって、(a)が平面図、(b)が正面図、(c)が側面図である。
【図3】 本発明の第1の実施形態に係る微動ステージ干渉計の構成図である。
【図4】 本発明の第1の実施形態に係るX方向計測の干渉計の例を示す図である。
【図5】 本発明の第1の実施形態に係るZ方向計測の近接位置センサの構成を示す図である。
【図6】 本発明の第1の実施形態に係るZ方向計測の近接位置センサの構成の他の例を示す図である。
【図7】 本発明の第1の実施形態に係るレチクルステージ制御系の構成図である。
【図8】 本発明の第1の実施形態に係る配管接続の概念図である。
【図9】 本発明の第2の実施形態に係る移動位置決め装置を示す平面図である。
【図10】 本発明の第2の実施形態に係る移動位置決め装置の三面図であって、(a)が平面図、(b)が正面図、(c)が側面図である。
【図11】 本発明の第3の実施形態に係る移動位置決め装置の平面図である。
【図12】 本発明の第4の実施形態に係る移動位置決め装置の平面図である。
【図13】 従来のレチクルステージの構成を示す斜視図である。
【図14】 本発明の第5の実施形態に係る露光装置の立面図である。
【図15】 本発明に係る装置を用いた半導体デバイスの生産システムをある角度から見た概念図である。
【図16】 本発明に係る装置を用いた半導体デバイスの生産システムを別の角度から見た概念図である。
【図17】 ユーザインタフェースの具体例である。
【図18】 デバイスの製造プロセスのフローを説明する図である。
【図19】 ウエハプロセスを説明する図である。
【符号の説明】
1:定盤、2:粗動ステージ(第1移動体)、3:微動ステージ(第2移動体)、4:静圧案内(定盤の上面との間)、5:静圧案内(定盤の側面との間)、6:空気ばね、8:静圧案内(底面)、10:コーナーキューブ(粗動用)、11a,11b:コーナーキューブ(微動用)、12(12a,12b):Y方向干渉計、13a,13b:コーナーキューブ、15:X計測反射鏡、16:X計測基準鏡、17:X方向干渉計、20(20a,20b,20c):Z計測反射鏡、21:Z計測基準鏡、22(22a,22b,22c):Z方向干渉計、24:近接位置センサ、25:Z計測基準面、27a:粗動リニアモータ可動子、27b:粗動リニアモータ固定子、28a:加減速リニアモータ可動子、31:フィードフォワード補償器、32:フィードバック補償器、33:粗動ステージ系、36:フィードフォワード補償器、37:フィードバック補償器、38:微動ステージ系、41:配管、42:電線類、51〜54:Xリニアゲージ、
XLM1,XLM2(可動子aと固定子b):X方向微動リニアモータ、YLM1,YLM2(可動子aと固定子b):Y方向微動リニアモータ、ZLM1〜ZLM4(可動子aと固定子b):Z方向微動リニアモータ、Xb1〜Xb4:固定子Xリニアモータ、Yb1,Yb2:固定子Yリニアモータ。

Claims (5)

  1. 基準面上に置かれた定盤と、
    前記定盤面上の一方向に移動自由に案内された第1移動体と、
    前記第1移動体上に6自由度に移動自由に支持された第2移動体と、
    前記第2移動体を該第2移動体の移動自由方向に移動させる駆動力を発生する第1駆動系と、
    前記第1移動体を該第1移動体の移動自由方向に移動させる駆動力を発生する第2駆動系と、
    前記第2移動体を前記第1移動体の移動自由方向に移動させる駆動力を発生する第3駆動系とを有し、
    前記第2駆動系と前記第3駆動系とは固定子と可動子とからなるリニアモータを含み、
    前記第2駆動系のリニアモータの固定子と前記第3駆動系のリニアモータの固定子とは前記基準面上に設けられた同一の固定子であり、
    前記第1駆動系の少なくとも前記第1移動体の移動自由方向への駆動手段が、前記第1移動体と前記第2移動体との間に設けられていることを特徴とする移動位置決め装置。
  2. 基準面上に置かれた定盤と、
    前記定盤面上の一方向に移動自由に案内された第1移動体と、
    前記定盤面上の平面内3自由度に移動自由に案内された第2移動体と、
    前記第2移動体を該第2移動体の移動自由方向に移動させる駆動力を発生する第1駆動系と、
    前記第1移動体を該第1移動体の移動自由方向に移動させる駆動力を発生する第2駆動系と、
    前記第2移動体を前記第1移動体の移動自由方向に移動させる駆動力を発生する第3駆動系とを有し、
    前記第2駆動系と前記第3駆動系とは固定子と可動子とからなるリニアモータを含み、
    前記第2駆動系のリニアモータの固定子と前記第3駆動系のリニアモータの固定子とは前記基準面上に設けられた同一の固定子であり、
    前記第1駆動系の少なくとも前記第1移動体の移動自由方向への駆動手段が、前記第1移動体と前記第2移動体との間に設けられていることを特徴とする移動位置決め装置。
  3. 前記第1駆動系が単相リニアモータを用いたものであることを特徴とする請求項1または2に記載の移動位置決め装置。
  4. 前記第2駆動系と前記第3駆動系が多相リニアモータを用いたものであることを特徴とする請求項1または2に記載の移動位置決め装置。
  5. 更に前記第1移動体の移動方向の変位を測定する第1計測系と、
    前記第2移動体の移動方向の変位を測定する第2計測系と、
    前記第1計測系と前記第2駆動系とにより前記第1移動体を位置決め制御する第1制御系と、
    前記第2計測系と前記第1駆動系とにより前記第2移動体を位置決め制御する第2制御系と、
    前記第3駆動系により前記第2移動体に所望の加減速力を指令する第3制御系と、
    を有することを特徴とする請求項1または2に記載の移動位置決め装置。
JP2002105294A 2002-04-08 2002-04-08 移動位置決め装置及びそれを備える露光装置 Expired - Fee Related JP4323751B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105294A JP4323751B2 (ja) 2002-04-08 2002-04-08 移動位置決め装置及びそれを備える露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105294A JP4323751B2 (ja) 2002-04-08 2002-04-08 移動位置決め装置及びそれを備える露光装置

Publications (2)

Publication Number Publication Date
JP2003303753A JP2003303753A (ja) 2003-10-24
JP4323751B2 true JP4323751B2 (ja) 2009-09-02

Family

ID=29390057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105294A Expired - Fee Related JP4323751B2 (ja) 2002-04-08 2002-04-08 移動位置決め装置及びそれを備える露光装置

Country Status (1)

Country Link
JP (1) JP4323751B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199317A (ja) * 2004-11-02 2011-10-06 Nikon Corp ステージ装置及び露光装置並びにデバイス製造方法
US7417714B2 (en) * 2004-11-02 2008-08-26 Nikon Corporation Stage assembly with measurement system initialization, vibration compensation, low transmissibility, and lightweight fine stage
US7352149B2 (en) * 2006-08-29 2008-04-01 Asml Netherlands B.V. Method for controlling the position of a movable object, a positioning system, and a lithographic apparatus
US8988655B2 (en) * 2010-09-07 2015-03-24 Nikon Corporation Exposure apparatus, movable body apparatus, flat-panel display manufacturing method, and device manufacturing method
TWI630463B (zh) * 2013-06-28 2018-07-21 日商尼康股份有限公司 移動體裝置及曝光裝置、以及元件製造方法

Also Published As

Publication number Publication date
JP2003303753A (ja) 2003-10-24

Similar Documents

Publication Publication Date Title
US6859257B2 (en) Stage system
JP4474020B2 (ja) 移動装置及び露光装置
JP3762307B2 (ja) レーザ干渉干渉計システムを含む露光装置
JP3849932B2 (ja) 移動ステージ装置
JP4834439B2 (ja) ステージ装置及びその制御方法、露光装置及びデバイス製造方法
US6654098B2 (en) Stage apparatus, exposure apparatus, and device production method
JP2001304332A (ja) 能動制振装置
JP2002291219A (ja) 電磁アクチュエータ、リニアモータ、露光装置、半導体デバイス製造方法、半導体製造工場および露光装置の保守方法
JP2004095855A (ja) 位置決め装置、荷電粒子線露光装置及びデバイス製造方法
JP3833148B2 (ja) 位置決め装置及びその制御方法、露光装置、デバイスの製造方法、半導体製造工場、露光装置の保守方法
JP3728180B2 (ja) 干渉計搭載ステージ
JPH11243132A (ja) 位置決め装置およびこれを用いた露光装置
JP2003059797A (ja) 移動装置、ステージ装置及び露光装置
JP2002075855A (ja) 自重補償装置およびこれを用いたステージ装置並びに露光装置およびそれを用いたデバイス製造方法
JP4323751B2 (ja) 移動位置決め装置及びそれを備える露光装置
JP4366412B2 (ja) ステージ装置および露光装置
JP3963426B2 (ja) ステージ装置および露光装置
JP4040660B2 (ja) 走査露光装置
JP2002367893A (ja) 露光装置
JP2001313247A (ja) ステージ装置及びこれを用いた露光装置並びにデバイス製造方法
JP4065505B2 (ja) 移動体制御装置、移動体制御方法、露光装置並びに露光方法
JP2002025881A (ja) 移動荷重補償装置及び露光装置
JP2001297965A (ja) ステージ装置及びこれを用いた露光装置並びにデバイス製造方法
JP2002014187A (ja) 送り装置
JP2001297968A (ja) ステージ装置およびこれを用いた露光装置ならびにデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees