JP4040660B2 - 走査露光装置 - Google Patents

走査露光装置 Download PDF

Info

Publication number
JP4040660B2
JP4040660B2 JP2006118974A JP2006118974A JP4040660B2 JP 4040660 B2 JP4040660 B2 JP 4040660B2 JP 2006118974 A JP2006118974 A JP 2006118974A JP 2006118974 A JP2006118974 A JP 2006118974A JP 4040660 B2 JP4040660 B2 JP 4040660B2
Authority
JP
Japan
Prior art keywords
stage
magnet
scanning
exposure apparatus
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006118974A
Other languages
English (en)
Other versions
JP2006253707A (ja
Inventor
伸茂 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006118974A priority Critical patent/JP4040660B2/ja
Publication of JP2006253707A publication Critical patent/JP2006253707A/ja
Application granted granted Critical
Publication of JP4040660B2 publication Critical patent/JP4040660B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、走査露光装置に関し、特に原版を搭載して走査方向に移動するステージが高精度に制御される走査露光装置に関する。
図10は従来の移動ステージ装置の全体斜視図、図11はその制御系のブロック図、図12はリニアモータの周辺の3面図を含む図である。
図10において、不図示のベースにベースガイド1が固定され、ベースガイド1に対して1軸方向に滑動自在に工作物2を載置するステージ3が支持されている。ステージ3のZチルトの動きはベースガイド1の上面とステージ3の下面との間に形成されるエアスライドで規制される。ステージ3のZ軸周りの回転はヨーガイド4の側面とベースガイド1の側面との間に形成されるエアスライドで規制される。ステージ3の両サイドにはリニアモータ可動子5が固着され、各リニアモータ可動子5にはリニアモータ固定子6が非接触で対面し、各リニアモータ固定子6は不図示のベースに両端の脚7を介して固定されている。
図12は各リニアモータLMの詳細を示す図であり、(a)が平面図、(b)が正面図、(c)が側面図、(d)が下可動磁石8と下ヨーク9の平面図である。リニアモータ可動子5は、4極の上下可動磁石8と、可動磁石8の磁束を循環させるための対応する上下ヨーク9とをそれぞれ一体にしたものを、両側板10を介して上下に配置して構成される。可動磁石8はZ方向に着磁される。図では着磁方向が矢印で示されている。
リニアモータ固定子6は、複数(この場合6個)の扁平コイル13を1列に並べたものをコイルホルダ(固定子枠)14で固定したもので構成される。
リニアモータLMは、一般的なブラシレスDCモータの展開タイプであって、この場合、2相4極の構成である。そしてリニアモータLMは、磁石8とコイル13の相対位置関係に応じて駆動コイルおよびその電流の方向を切り替えて、所望の方向に所望の力を発生するものである。
上記構成における制御系のブロック図を図11に示す。この制御系は、位置プロファイル発生部16と位置制御部17からなる。位置プロファイル発生部16により、位置プロファイルは同じ行程を繰り返し往復するように加速、等速、減速を繰り返すように与える。
位置制御部17は、ステージ3の位置を計測する干渉計18と、この干渉計18の位置と位置プロファイルとの差から制御指令を計算する制御演算部19と、該制御指令に比例した電流をリニアモータLMのコイル13に流す電流アンプ20とを備えて構成される。
上記制御系により、この移動ステージ装置は、位置プロファイルと実際の位置との差をゼロにするようにリニアモータLMのコイル13に電流が流されるようにしており、加減速中・一定速度期間中とにかかわらず、常に高精度な位置制御を行うようになっている。
一方、行程の両端にコイルばね等の弾性体を配置し、加速減速だけをコイルばね等の弾性体で行うようにしたものも考案されている。このコイルばねによるシステムでも、制御系は図11に示すもので行われる。この場合、加速減速力がコイルばね等の弾性体によって正常に作用するなら、加速減速に伴う発熱はほぼゼロに出来る。
特開2001−110699号公報
リニアモータで駆動する場合、常時高精度な位置制御がかかるという点ではよいのだが、加減速時の発熱が大きく、発熱源が工作物の近くにある。また、リニアモータ固定子全体を冷却するのは困難である。よって、工作物周辺の部材が熱膨張で変形したり、計測基準が熱膨張で変形したり、また、レーザ干渉計の光路の空気密度の擾乱となったりして、工作物の位置精度を低下させるという問題がある。
一方、行程の両端にコイルばね等の弾性体を配置し、加速減速だけをコイルばね等の弾性体で行うシステムでは、加速減速力が正常に作用すれば発熱をほぼゼロにできるが、二つの問題がある。
問題の一つは往復の周期が非常に長い場合しか、発熱が低減されないことである。ばね等の弾性体の質量を無視できれば、ばねによる加速が終了し、ばねとステージが切り離された後は、ばねは変形のない状態を保つ。ステージは等速度運動して反対側のばねと出会い、運動エネルギを全てばねの弾性エネルギに変換するようばねをたわませ、今度はこのエネルギで反対側に加速されて、また先ほどと同じ速度となり、ばねはステージが最大速度に達した瞬間の変位つまり変形のない状態を保つ。再びステージは最大速度を維持したまま最初の側のばねと出会い、運動エネルギをばねの弾性エネルギに変換する。これを繰り返してばねによる加速減速ができるが、実際はばねの質量は無視できないので、加速が終了してばねとステージが切り離された後、ばねは単振動する。よって、再びステージとばねが出会うときのばねの変位は不正確となり、ばねがステージに与える力が大きく変動する。この変動分はリニアモータが担当しなければならず、結果的に発熱を小さくすることができない。
往復の周期が非常に長い場合に限り、ステージとばねが切り離されてから再び出会うまでの間に、ばねの単振動は整定し、繰り返し往復運動をしたときの発熱が低減する。
もう一つの問題は、弾性体とステージとが接触するとき、ばね自体の単振動が励起されることである。仮にステージとばねが出会う直前に、ばねが変位のない状態にあったとしても、両者が接触するとき、ばねのばね定数とばね自身の質量で決まるばね単体の単振動が励起される。ばね単体の単振動はばねとステージの質量による単振動より十分に周波数が高いので、ばねとステージはずっと接触することができず、付いたり離れたりを繰り返す。露光装置の加速減速時間は短いので、この状態はばねとステージが出会ってから再び切り離されるまで続く。つまりばねがステージに与える力の中にばね自体の単振動の周波数の外乱が入る。加速終了時点で外乱をサーボ系で抑圧しきれない分の位置偏差が残り、露光開始できるまでの制定時間が増加し生産性が低下する。
本発明の課題は、高精度と高速を両立させること、換言すると大推力と発熱ゼロを両立させる加速手段を提供することにあり、さらに単振動のない反発加速手段を提供することである。
上記の課題を解決するために、本発明に係る第1の走査露光装置は、原版のパターンを基板に走査しながら露光する走査露光装置であって、前記原版を搭載して走査方向に移動するステージと、当該ステージを走査方向に加減速するための反発磁石ユニットと、当該ステージの走査方向における位置を制御するための駆動手段とを有し、前記反発磁石ユニットは、前記走査方向と直交する方向にN極とS極が間隔を介して対面するように配置された組磁石と、前記組磁石の間隔に挿脱自在であって、前記組磁石の各磁極と同極が対面するように配置される挿入磁石とを備え、前記組磁石及び前記挿入磁石のいずれか一方が前記ステージに設けられ、前記ステージの走査ストローク両端のそれぞれにおいて前記組磁石の間に前記挿入磁石を挿入したときに発生する磁気反発力によって、前記ステージを加減速することを特徴とする
本発明に係る第2の走査露光装置は、原版のパターンを基板に走査しながら露光する走査露光装置であって、原版を搭載して走査方向に移動するステージと、前記ステージに設けられ、走査方向と垂直な方向に着磁された第1永久磁石と、前記第1永久磁石の各磁極と同極が対向するように着磁された一対の第2永久磁石とを有し、前記第2永久磁石間に前記第1永久磁石を挿入することによって前記ステージに前記走査方向の力を発生させる磁石ユニットとを備えることを特徴とする
本発明によれば、高精度と高速、換言すると低発熱と高速が両立し、単振動の影響をなくすことができ、また、ステージを移動させる駆動系が単相リニアモータであることにより、ステージ全体が軽くなり、位置制御精度が向上する。
(第一の実施形態)
図1は本発明の第一の実施形態に係る移動ステージ装置を示す斜視図である。この移動ステージ装置は、不図示のベースにベースガイド1が固定され、ベースガイド1に対して1軸方向に滑動自在に工作物2を載置するステージ3が支持されている。ステージ3のZチルトの動きは、ベースガイド1の上面とステージ3の下面との間に形成されるエアスライドで規制される。ステージ3のZ軸周りの回転とX方向の位置は、ヨーガイド4の側面とベースガイド1の側面の間に形成されるエアスライドで規制される。ステージ3の両サイドにはリニアモータ可動子5が固定され、リニアモータ可動子5にはリニアモータ固定子6が非接触で対面し、リニアモータ固定子6は不図示のベースに両端の脚7を介して固定されている。
リニアモータの方式は図9に示したものと同様である。ステージ3の位置はレーザ干渉計をYミラー11Yに照射して計測される。
この移動ステージ装置は、図1(b)に示す反発磁石ユニットRMUを備えており、ステージ3の前後には可動磁石ホルダ31と可動磁石32から成る反発可動子33が固定される。可動磁石32は鉛直方向に着磁された板状の単極永久磁石である。この実施形態では、上がN極に着磁されている。挿入磁石としてのこの反発可動子33は、ベースガイド1に固定された反発固定子35と相互に作用してステージ3に反発力を与え、ステージ3を加速減速するように作用する。
反発磁石ユニットRMUの上記の構成で特徴的なのは、反発力を発生する方向と永久磁石の着磁方向とが直交している点である。例えば、Y方向に着磁された磁石の同じ極同士を対面させてもY方向の反発力を得ることは出来るが、これでは、反発力を発生できる距離が非常に短く、十分な速度に到達することが出来ない。
図1に示すように、同極磁石を対面させて、対面方向と直角方向に発生する力を利用することで、対面させる同極磁石の寸法に応じた力発生ストロークを得ることが出来る。
また、この反発磁石ユニットRMUは、可動磁石32の各々の磁極面に対して両側から上下磁石37の同極で挟み込む構造にすることで、対面方向の反発力を相殺することが出来る。
上記反発可動子33に対応して、ステージ3に加速減速力を与える反発固定子35がベースガイド1上に固定されている。反発固定子35はステージ3のストロークの両端に1ユニットずつ設けられる。
反発固定子35は、組磁石として、上ヨーク36、上磁石37、両側の横ヨーク38、下磁石37、及び下ヨーク36から構成される。上下磁石37は反発可動子33と同様に鉛直方向に着磁された板状単極永久磁石である。ただし極は可動子33の磁石と同じ極が対面するように配置される。つまり、上磁石37の下面はN極、下磁石37の上面はS極になるように配置される。上ヨーク36、横ヨーク38、及び下ヨーク36は、上下磁石37の磁束を側方経由で循環させるために設けられている。また、上下磁石37の間隔は可動磁石32の厚さより少し大きい間隙を空け、両横ヨーク38の内面間隔は可動磁石32の幅より広く取ってあり、可動磁石32が上下一対の磁石37の間及び両横ヨーク38の間に形成される穴に非接触で挿入できるようになっている。
図1(b)は反発系である反発磁石ユニットのみを抜き出して示している斜視図である。反発可動子33が点線の位置にいるとき、矢印Aの方向の反発力を受けるようになっている。点線の位置から可動子33が矢印Aの方向に反発力を受けて矢印Aの方向に押し出されるに従い反発力は減少し、反発可動子33が反発固定子35からある程度離れると反発力はゼロになる。そのときステージ3は、最大速度まで加速されており、エアスライドによってガイドされているので、そのままの速度で等速度運動し、ステージ3の反対側に設けられた反発可動子33がもう一端の反発固定子35と相互作用するまでその速度を維持する。
空気抵抗や配管抵抗による減速作用には、リニアモータが力を発生して、その力により減速しないように対抗する。このようにステージ3の反対側に設けられた反発可動子33ともう一端の反発固定子35が相互作用するまで運動エネルギが保存されるので、ステージ3の反対側に設けられた反発可動子33は、図1(b)の前記点線で示した位置における挿入量と同じ量だけもう一端の反発固定子35に挿入された状態で速度がゼロになる。
図3に第一の実施形態の駆動手順を示す。
電源ON時に、a)の状態にあったとする。この状態でリニアモータLMに電流を流してステージ3を左方向に移動させる。b)は左側の反発可動子33と左側の反発固定子35が相互作用を開始する位置、換言するとこの位置までは反発固定子35と反発可動子33の間に反発力は作用しない。リニアモータに流す電流もごく微小でよい。さらに左にステージ3を移動させて左側の反発可動子33を左側の反発固定子35の上下磁石37,37の間に挿入する。この状態がc)で、リニアモータには反発力に対抗する電流が流れている。この状態でリニアモータ電流をゼロにするとステージ3は反発力を受けて右方向に加速される。後述するがリニアモータLMの電流は、実際にはゼロではなく、位置を高精度に制御するための微小な電流が流れる。加速が終了して最大速度に達した状態を示すのがd)である。これは、反発可動子33が反発固定子35に対し先ほどのb)と同じ位置である。この位置より右側において、ステージ3が左側の固定子35から受ける反発力はゼロである。ステージ3は、これ以後、等速度で右に移動してe)の状態を経て、f)の状態に至る。f)の状態は右側の反発可動子33が右側の反発固定子35から左側に反発力を受け始める位置である。反発可動子33と反発固定子35の相対距離は上記b)、d)と同じである。ここからステージ3は左側方向に力を受けつつ減速し、g)の状態に至る。このときステージ3の速度はゼロである。このときの右側の反発可動子33と右側の反発固定子35の相対関係つまり右側の反発固定子35に対する右側の反発可動子33の挿入量はc)と同じである。この状態では速度はゼロだがステージ3に作用する左方向の反発力は最大である。ここからまたステージ3は左方向に加速され始めh)の状態に至って速度は最大になる。h)における反発固定子35に対する反発可動子33は、f)と同じ位置であって、ステージ3の位置がこれより左側では右側反発固定子35から受ける反発力はゼロである。以下同様にして、往復運動が繰り返される。
図2に第一の実施形態に係る制御系のブロック図を示す。この制御系は、時間とその時間にいるべき位置の関係を生成する位置プロファイル生成手段16と、時々刻々において前記いるべき位置と干渉計で計測された実際の位置との偏差を演算する差分器21と、差分器21が出力する偏差にPID等に代表される制御演算を施し、その結果をアナログ電圧で出力する演算部19と、該アナログ出力電圧に比例する電流をリニアモータLMに供給する電流アンプ20とを備えて構成される。これによりステージ3の位置は位置プロファイルに従うように制御される。これは一般的な位置サーボ系である。
位置プロファイルは図3で説明したような往復運動を繰り返すように与える。図では2周期分だけ示してあるが、実際にはこれが繰り返される。制御系のブロック図としては従来例のものと全く同じである。しかし、従来例においては、加速減速時にリニアモータLMに大きな電流が流れるのに対して、第一の実施形態では加速減速に必要な力は反発固定子35と、反発可動子33により発生するので、結果的に制御される位置が同じでもリニアモータLMにはほとんど電流が流れない。リニアモータLMは最初に反発可動子33を反発固定子35に挿入するための推力を発生した後は、目標位置とのわずかな位置偏差をとるための小さい推力を発生するだけであり、発熱はほぼゼロである。
あと往復運動をやめるときは随時リニアモータLMに電流を流してステージ3を停止させればよい。
(第二の実施形態)
図4は本発明の第二の実施形態に係る移動ステージ装置を示す斜視図である。この移動ステージ装置は、不図示のベースにベースガイド1が固定され、ベースガイド1に対して概ね1軸方向に滑動自在に工作物2を載置するステージ3が支持されている。ステージ3のZチルトの動きは、ベースガイド1の上面とステージ3の下面との間に形成されるエアスライドで規制される。ステージ3のZ軸周りの回転とX方向の位置は、規制されず自在である。しかし、動けるストロークはほとんどない。ステージ3の両サイドにはリニアモータ可動子5が固着され、リニアモータ可動子5にはリニアモータ固定子6が非接触で対面し、リニアモータ固定子6は不図示のベースに固定されている。
図面の手前側のリニアモータは図1のものと同様である。図面の奧側のリニアモータは図1のものにさらにX方向の推力を発生できるようにしたものである。詳細を図5に示す。固定子6はコイルホルダ14、6個のY用扁平コイル13Y、1個のX用扁平コイル13Xから構成される。可動子5は4極のY駆動用磁石8Y、2極のX駆動用磁石8X、上下ヨーク9、両側板10から構成される。Y駆動に用いられる部分は図9のものと同様であるので説明を省略する。2極のX駆動用磁石8Xは、鉛直方向に着磁された板状磁石であり、図5に示すような極の向きにX方向に並んでおり、各磁石の中心位置は概ねX用扁平コイル13Xの二つの直線部の中心位置とほぼ一致するようになっている。X用扁平コイル13Xに電流を流すと、可動子5はX方向に力を受ける。
ステージ3にはY方向の位置を検出するためのYミラー11Y1と、Yミラー11Y2が設けられ、奥側の可動子5の端にはXミラー11Xが設けられる。ステージ3の位置はYミラー11Y1と、Yミラー11Y2、及びXミラー11Xに照射されるレーザを含む干渉計で計測される。Yミラー11Y1、11Y2に関わる干渉計でY方向位置とZ軸周りの回転が、Xミラー11Xに関わる干渉計でX方向の位置が計測される。
ステージ3のY方向とθの位置制御は2本の各々6個のY用扁平コイル13Yに電流を流すことで、ステージ3のX方向の制御はX用扁平コイル13Xに電流を流すことで行われる。
ステージ3の前後には可動磁石ホルダ31と可動磁石32から成る反発可動子33が固定される。可動磁石32は鉛直方向に即ち板厚方向に着磁された板状の単極永久磁石である。この実施形態では上がN極に下がS極に着磁されている。この反発可動子33はベースガイド1に固定された反発固定子35と相互に作用して、ステージ3に反発力を与え、ステージ3を加速減速するように作用する。この辺の構成は第一の実施形態と全く同じである。
往復運動に関する駆動方法は第一の実施形態と同じであって、図3に示すとおりである。
図6に本実施形態の制御系のブロック図を示す。
この制御系には、時間とその時間にいるべきY位置の関係を生成するY位置プロファイル生成手段16Yと、時間とその時間にいるべきX位置の関係を生成するX位置プロファイル生成手段16Xと、時間とその時間にあるべき角度の関係を生成する角度プロファイル生成手段16Aとがあり、各々Y位置サーボ系の指令、X位置サーボ系の指令、θ位置サーボ系の指令として働く。
Y位置サーボ系は時々刻々におけるYプロファイルと実際のY位置との偏差を差分器21bで計算し、この偏差にPIDに代表される制御演算を制御演算部19bで施して、アナログ電圧として出力し、これを両側のY用扁平コイル13Yに電流を供給する電流アンプ20a、20bに印加することで、ステージ3のY位置をYプロファイルに従うように制御する。実際のY位置は干渉計11Y1の計測値と干渉計11Y2の計測値との平均値を計算して求められる。
X位置サーボ系は時々刻々におけるXプロファイルと実際のX位置との偏差を差分器21dで計算し、この偏差にPIDに代表される制御演算を制御演算部19cで施して、アナログ電圧として出力し、これをX用扁平コイル13Xに電流を供給する電流アンプ20cに印加することで、ステージ3のX位置をXプロファイルに従うように制御する。実際のX位置は干渉計11Xの計測値から求められる。
θ位置サーボ系は時々刻々におけるθプロファイルと実際のθ位置との偏差を差分器21aで計算し、この偏差にPIDに代表される制御演算を制御演算部19aで施して、アナログ電圧として出力し、これを加算器23a、23b経由にて両側のY用扁平コイル13Yに電流を供給するそれぞれの電流アンプ20a、20bに印加することで、ステージ3のθ位置をθプロファイルに従うように制御する。アナログ電圧は左右の電流アンプに対して逆符号になるように印加される。実際のθ位置は干渉計11Y1の計測値と干渉計11Y2の計測値との差を差分器21cで計算して求められる。
これらは一般的なXYθ位置サーボ系である。Y位置プロファイルは図3で説明したような往復運動を繰り返すように与える。図では2周期分だけ示してあるが、実際にはこれが繰り返される。
この実施形態では、X位置プロファイルは時間に対して一定なプロファイルで与えられている。この実施形態では、θ位置プロファイルは時間に対して一定なプロファイルで与えられている。
従来例においては、Y方向加速減速時にリニアモータLMに大きな電流が流れるのに対して、本実施形態ではY方向加速減速に必要な力は反発固定子35と、反発可動子33により発生するので、リニアモータLMにはほとんど電流が流れない。リニアモータLMは最初に反発可動子33を反発固定子35に挿入するための推力を発生した後は、目標位置とのわずかな位置偏差をとるための小さい推力を発生するだけであり発熱はほぼゼロである。このあたりは第一の実施形態と同様である。X方向、及びθ方向に関しては大きな加速度が発生しない。ごく一般的なサーボ系である。反発可動子33が反発固定子35に挿入されるときにもXθの位置が一定になるように制御する。このときの制御誤差がゼロなら、反発可動子33のXθ方向の力は発生しないが、実際にはわずかな誤差があり、この誤差に応じて反発固定子35と反発可動子33のX方向と、θ方向の力が発生する。それにはX用扁平コイル13Xに流す電流とY用扁平コイル13Y1,13Y2にY方向に互いに逆の力を発生するように流す電流とで対抗する。この量は非常に小さく、これによる発熱もほぼゼロである。
なお、往復運動をやめるときは、随時リニアモータLMに電流を流してステージ3を停止させればよい。
(第三の実施形態)
図7、図8及び図9は第三の実施形態に係る装置を示す図である。
不図示のベースにベースガイド1が固定され、ベースガイド1に対して概ね1軸方向に滑動自在に工作物2を載置するステージ3が支持されている。ステージ3のZチルトの動きはベースガイド1の上面とステージ3の下面との間に形成されるエアスライドで規制される。ステージ3のZ軸周りの回転とX方向の位置は規制されず自在である。しかし動けるストロークはほとんどない。ステージ3の両サイドには2軸単相リニアモータ可動子45が固定され、各2軸単相リニアモータ可動子45には後述の一対のリニアモータ固定子46が上下からリニアモータ可動子45を挟む形で非接触で対面する。リニアモータ固定子46は脚47により不図示のベースに固定されている。
ステージ3にはYミラー11Y1と、Yミラー11Y2が設けられ、奥側のリニアモータ可動子45の端にはXミラー11Xが設けられる。ステージ3の位置はYミラー11Y1と、Yミラー11Y2、及びXミラー11Xに照射されるレーザを含む干渉計で計測される。Yミラー11Y1及びYミラー11Y2に関わる干渉計でY方向位置とZ軸周りの回転が、Xミラー11Xに関わる干渉計でX方向の位置が計測される。
従来例、第一の実施形態、及び第2の実施形態では、Y方向駆動用リニアモータは複数の扁平コイルを選択的に駆動していたが、本実施形態ではY駆動コイルは個数が4個あって、いつも同時に使用される、つまり切り替えが発生しないという特徴がある。
リニアモータ可動子45は、図8に示すように、鉛直方向即ち板厚方向に着磁された板状の単極の可動磁石48を可動磁石ホルダ49に装着したものである。これは鉛直方向に磁束密度を生成する。リニアモータ固定子46は、図7に示すように、上下左右で都合4ユニットある。それらの各ユニットは、図8及び図9に示すように、ヨーク54、Y単相コイル53Y、及びX単相コイル53Xからなる。Y単相コイル53Yはヨーク54に対してY軸周りに巻き線を巻き回したものであり、X単相コイル53Xは、ヨーク54の両端にある縦溝55に通し、該ヨーク54に対してX軸周りに巻き線を巻き回したものである。
可動子45と固定子46が対面した状態で、Y単相コイル53Yに電流を流すと、可動子45にはY方向の力が発生し、X単相コイル53Xに電流を流すと、可動子45にはX方向の力が発生する。
4つのX単相コイル53Xは全て直列または並列に接続して電気的に単相になっている。
4つのY単相コイル53Yは、左右各々において上下のY単相コイルが直列または並列に接続されているが、左右は独立に電流を流すようになっている。このため、Y方向は右と左とで独立に力が発生できるようになっている。
ステージ3のYとθの位置制御は左右のY単相コイル53Yに電流を流すことで行われ、ステージ3のXの制御はX単相コイル53Xに電流を流すことで行われる。
ステージ3の前後には可動磁石ホルダ31と可動磁石32から成る反発可動子33が固定される。可動磁石32は鉛直方向即ち板厚方向に着磁された板状の単極永久磁石である。この実施形態では上がN極に下がS極に着磁されている。この反発可動子33は、ベースガイド1に固定された反発固定子35と相互に作用して、ステージ3に反発力を与え、ステージ3を加速減速するように作用する。この辺の構成は第一の実施形態と全く同じである。
本実施形態の往復運動に関する駆動方法は、第一の実施形態と同じであり、図3に示すとおりである。
本実施形態の制御系のブロック図は、省略するが、図6のものに準ずる。X位置サーボ系の電流アンプがX用扁平コイル13Xの代わりにX単相コイル53Xに接続され、Yθ位置サーボ系の二つの電流アンプが左右の6個の扁平コイル系に接続される代わりに左右のY単相コイル53Yに接続されているところが違うだけであり、他の構成及び動作は同じである。
この実施形態特有の効果として、可動子45が軽く、ステージ3全体が軽いこと、Y方向制御中にコイルの切り替えが発生しないので、位置制御精度が向上すること、が挙げられる。
(第四の実施形態)
半導体露光装置のレチクルステージに適用した場合、第一から第三までの全ての実施形態において、図3c)における挿入量を変えることで、ステージ3は最大速度を変えることができる。つまり露光中のドーズ量を変えたい場合には、図3c)における反発可動子33を反発固定子35内に挿入する挿入量を変えればよい。
また、必ずしも工作物であるレチクル全体のパターンを露光しない場合、つまり半分とか一部だけ露光すればよい場合もある。第一から第三までの実施形態では、反発固定子35はすべて位置が固定として説明したが、一般に知られるねじ送り機構などを用いて反発固定子の位置を可変にするようにしておけば、ステージ3の運動するストロークを任意に設定することができ、レチクルの一部だけを露光したい場合に対応できる。
(第五の実施形態)
次に前述した実施形態の移動ステージ装置をレチクルステージとして搭載した走査型露光装置の実施形態を、図13を用いて説明する。
鏡筒定盤96は、床または基盤91からダンパ98を介して支持されている。また、鏡筒定盤96は、レチクルステージ定盤94を支持すると共に、レチクルステージ95とウエハステージ93の間に位置する投影光学系97を支持している。
ウエハステージ93は、床または基盤91から支持されたステージ定盤92上に支持され、ウエハを載置して位置決めを行う。また、レチクルステージ95は、鏡筒定盤96に支持されたレチクルステージ定盤94上に支持され、回路パターンが形成されたレチクルを搭載して移動可能である。レチクルステージ95上に搭載されたレチクルをウエハステージ93上のウエハに露光する露光光は、照明光学系99から発生される。
なお、ウエハステージ93は、レチクルステージ95と同期して走査される。レチクルステージ95とウエハステージ93の走査中、両者の位置はそれぞれ干渉計によって継続的に検出され、レチクルステージ95とウエハステージ93の駆動部にそれぞれフィードバックされる。これによって、両者の走査開始位置を正確に同期させるとともに、定速走査領域の走査速度を高精度で制御することができる。投影光学系97に対して両者が走査している間に、ウエハ上にはレチクルパターンが露光され、回路パターンが転写される。
本実施形態では、前述の実施形態の移動ステージ装置をレチクルステージとして用いているため、単振動の影響を受けないで、高速・高精度な露光が可能となる。
(半導体生産システムの実施形態)
次に、本発明に係る装置を用いた半導体デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の生産システムの例を説明する。これは半導体製造工場に設置された製造装置のトラブル対応や定期メンテナンス、あるいはソフトウェア提供などの保守サービスを、製造工場外のコンピュータネットワークを利用して行うものである。
図14は全体システムをある角度から切り出して表現したものである。図中、101は半導体デバイスの製造装置を提供するベンダ(装置供給メーカ)の事業所である。製造装置の実例としては、半導体製造工場で使用する各種プロセス用の半導体製造装置、例えば、前工程用機器(露光装置、レジスト処理装置、エッチング装置等のリソグラフィ装置、熱処理装置、成膜装置、平坦化装置等)や後工程用機器(組立て装置、検査装置等)を想定している。事業所101内には、製造装置の保守データベースを提供するホスト管理システム108、複数の操作端末コンピュータ110、これらを結んでイントラネット等を構築するローカルエリアネットワーク(LAN)109を備える。ホスト管理システム108は、LAN109を事業所の外部ネットワークであるインターネット105に接続するためのゲートウェイと、外部からのアクセスを制限するセキュリティ機能を備える。
一方、102〜104は、製造装置のユーザとしての半導体製造メーカの製造工場である。製造工場102〜104は、互いに異なるメーカに属する工場であっても良いし、同一のメーカに属する工場(例えば、前工程用の工場、後工程用の工場等)であっても良い。各工場102〜104内には、夫々、複数の製造装置106と、それらを結んでイントラネット等を構築するローカルエリアネットワーク(LAN)111と、各製造装置106の稼動状況を監視する監視装置としてホスト管理システム107とが設けられている。各工場102〜104に設けられたホスト管理システム107は、各工場内のLAN111を工場の外部ネットワークであるインターネット105に接続するためのゲートウェイを備える。これにより各工場のLAN111からインターネット105を介してベンダの事業所101側のホスト管理システム108にアクセスが可能となり、ホスト管理システム108のセキュリティ機能によって限られたユーザだけにアクセスが許可となっている。具体的には、インターネット105を介して、各製造装置106の稼動状況を示すステータス情報(例えば、トラブルが発生した製造装置の症状)を工場側からベンダ側に通知する他、その通知に対応する応答情報(例えば、トラブルに対する対処方法を指示する情報、対処用のソフトウェアやデータ)や、最新のソフトウェア、ヘルプ情報などの保守情報をベンダ側から受け取ることができる。各工場102〜104とベンダの事業所101との間のデータ通信および各工場内のLAN111でのデータ通信には、インターネットで一般的に使用されている通信プロトコル(TCP/IP)が使用される。なお、工場外の外部ネットワークとしてインターネットを利用する代わりに、第三者からのアクセスができずにセキュリティの高い専用線ネットワーク(ISDNなど)を利用することもできる。また、ホスト管理システムはベンダが提供するものに限らずユーザがデータベースを構築して外部ネットワーク上に置き、ユーザの複数の工場から該データベースへのアクセスを許可するようにしてもよい。
さて、図15は本実施形態の全体システムを図14とは別の角度から切り出して表現した概念図である。先の例ではそれぞれが製造装置を備えた複数のユーザ工場と、該製造装置のベンダの管理システムとを外部ネットワークで接続して、該外部ネットワークを介して各工場の生産管理や少なくとも1台の製造装置の情報をデータ通信するものであった。これに対し本例は、複数のベンダの製造装置を備えた工場と、該複数の製造装置のそれぞれのベンダの管理システムとを工場外の外部ネットワークで接続して、各製造装置の保守情報をデータ通信するものである。図中、201は製造装置ユーザ(半導体デバイス製造メーカ)の製造工場であり、工場の製造ラインには各種プロセスを行う製造装置、ここでは例として露光装置202、レジスト処理装置203、成膜処理装置204が導入されている。なお図15では製造工場201は1つだけ描いているが、実際は複数の工場が同様にネットワーク化されている。工場内の各装置はLAN206で接続されてイントラネットを構成し、ホスト管理システム205で製造ラインの稼動管理がされている。
一方、露光装置メーカ210、レジスト処理装置メーカ220、成膜装置メーカ230などベンダ(装置供給メーカ)の各事業所には、それぞれ供給した機器の遠隔保守を行うためのホスト管理システム211,221,231を備え、これらは上述したように保守データベースと外部ネットワークのゲートウェイを備える。ユーザの製造工場内の各装置を管理するホスト管理システム205と、各装置のベンダの管理システム211,221,231とは、外部ネットワーク200であるインターネットもしくは専用線ネットワークによって接続されている。このシステムにおいて、製造ラインの一連の製造機器の中のどれかにトラブルが起きると、製造ラインの稼動が休止してしまうが、トラブルが起きた機器のベンダからインターネット200を介した遠隔保守を受けることで迅速な対応が可能であり、製造ラインの休止を最小限に抑えることができる。
半導体製造工場に設置された各製造装置はそれぞれ、ディスプレイと、ネットワークインタフェースと、記憶装置にストアされたネットワークアクセス用ソフトウェアならびに装置動作用のソフトウェアを実行するコンピュータを備える。記憶装置としては内蔵メモリやハードディスク、あるいはネットワークファイルサーバーなどである。上記ネットワークアクセス用ソフトウェアは、専用又は汎用のウェブブラウザを含み、例えば図16に一例を示す様な画面のユーザインタフェースをディスプレイ上に提供する。各工場で製造装置を管理するオペレータは、画面を参照しながら、製造装置の機種401、シリアルナンバー402、トラブルの件名403、発生日404、緊急度405、症状406、対処法407、経過408等の情報を画面上の入力項目に入力する。入力された情報はインターネットを介して保守データベースに送信され、その結果の適切な保守情報が保守データベースから返信されディスプレイ上に提示される。またウェブブラウザが提供するユーザインタフェースはさらに図示のごとくハイパーリンク機能410〜412を実現し、オペレータは各項目の更に詳細な情報にアクセスしたり、ベンダが提供するソフトウェアライブラリから製造装置に使用する最新バージョンのソフトウェアを引出したり、工場のオペレータの参考に供する操作ガイド(ヘルプ情報)を引出したりすることができる。ここで、保守データベースが提供する保守情報には、上記説明した本発明に関する情報も含まれ、また前記ソフトウェアライブラリは本発明を実現するための最新のソフトウェアも提供する。
次に上記説明した生産システムを利用した半導体デバイスの製造プロセスを説明する。図17は半導体デバイスの全体的な製造プロセスのフローを示す。ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(マスク製作)では設計した回路パターンを形成したマスクを製作する。一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記用意したマスクとウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。次のステップ5(組立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、これを出荷(ステップ7)する。前工程と後工程はそれぞれ専用の別の工場で行い、これらの工場毎に上記説明した遠隔保守システムによって保守がなされる。また前工程工場と後工程工場との間でも、インターネットまたは専用線ネットワークを介して生産管理や装置保守のための情報がデータ通信される。
図18は上記ウエハプロセスの詳細なフローを示す。ステップ11(酸化)ではウエハの表面を酸化させる。ステップ12(CVD)ではウエハ表面に絶縁膜を成膜する。ステップ13(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ14(イオン打込み)ではウエハにイオンを打ち込む。ステップ15(レジスト処理)ではウエハに感光剤を塗布する。ステップ16(露光)では上記説明した露光装置によってマスクの回路パターンをウエハに焼付露光する。ステップ17(現像)では露光したウエハを現像する。ステップ18(エッチング)では現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)ではエッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。各工程で使用する製造機器は上記説明した遠隔保守システムによって保守がなされているので、トラブルを未然に防ぐと共に、もしトラブルが発生しても迅速な復旧が可能であり、従来に比べて半導体デバイスの生産性を向上させることができる。
(a)は本発明の第一の実施形態に係る移動ステージ装置を示す斜視図、(b)はその反発磁石ユニットを示す斜視図である。 本発明の第一の実施形態に係る移動ステージ装置の制御系のブロック図である。 本発明の第一の実施形態に係る移動ステージ装置の駆動手順の説明用図である。 (a)は本発明の第二の実施形態に係る移動ステージ装置を示す斜視図、(b)はそのリニアモータ固定子を示す斜視図である。 本発明のXミラー付き可動子周辺図であって、(a)は平面図、(b)は正面図、(c)は側面図、(d)は下ヨーク及び下磁石のみを示す部分平面図である。 本発明の第二の実施形態に係る移動ステージ装置の制御系のブロック図である。 本発明の第三の実施形態に係る移動ステージ装置を示す斜視図である。 本発明の第三の実施形態に係る装置の要部分解斜視図である。 本発明の第三の実施形態に係る単相リニアモータの固定子の分解斜視図である。 従来例の移動ステージ装置を示す斜視図である。 従来例の制御系のブロック図である。 従来例のリニアモータを示す図であって、(a)は平面図、(b)は正面図、(c)は側面図、(d)は下ヨーク及び下磁石のみを示す部分平面図である。 本発明の実施形態に係る露光装置の立面図である。 本発明に係る装置を用いた半導体デバイスの生産システムをある角度から見た概念図である。 本発明に係る装置を用いた半導体デバイスの生産システムを別の角度から見た概念図である。 ユーザインタフェースの具体例である。 デバイスの製造プロセスのフローを説明する図である。 ウエハプロセスを説明する図である。
符号の説明
1:ベースガイド、2:工作物、3:ステージ、4:ヨーガイド、5:リニアモータ可動子、6:リニアモータ固定子、7:脚、8:可動磁石、8Y:Y駆動用磁石、8X:X駆動用磁石、9:ヨーク、10:側板、11Y:Yミラー、11X:Xミラー、13:扁平コイル、13Y:Y用扁平コイル、13X:X用扁平コイル、14:コイルホルダ、16:位置プロファイル生成手段、16A:角度プロファイル生成手段、16Y:Y位置プロファイル生成手段、16X:X位置プロファイル生成手段、17:位置制御部、18(18X,18Y1,18Y2):干渉計、19(19a〜19c):制御演算部、20(20a〜20c):電流アンプ、21(21a〜21d):差分器、31:可動磁石ホルダ、32:可動磁石、33:反発可動子(挿入磁石)、35:反発固定子(組磁石)、36:上下ヨーク、37:上下磁石、38:横ヨーク、45:リニアモータ可動子、46:リニアモータ固定子、47:脚、48:可動磁石、49:可動磁石ホルダ、53Y:Y単相コイル、53X:X単相コイル、54:ヨーク、LM:リニアモータ、RMU:反発磁石ユニット。

Claims (11)

  1. 原版のパターンを基板に走査しながら露光する走査露光装置であって、
    前記原版を搭載して走査方向に移動するステージと、
    当該ステージを走査方向に加減速するための反発磁石ユニットと、
    当該ステージの走査方向における位置を制御するための駆動手段とを有し、
    前記反発磁石ユニットは、
    前記走査方向と直交する方向にN極とS極が間隔を介して対面するように配置された組磁石と、
    前記組磁石の間隔に挿脱自在であって、前記組磁石の各磁極と同極が対面するように配置される挿入磁石とを備え、
    前記組磁石及び前記挿入磁石のいずれか一方が前記ステージに設けられ、
    前記ステージの走査ストローク両端のそれぞれにおいて前記組磁石の間に前記挿入磁石を挿入したときに発生する磁気反発力によって、前記ステージを加減速することを特徴とする走査露光装置。
  2. 前記走査方向と直交する方向における位置を制御するための第2駆動手段をさらに備えることを特徴とする請求項1に記載の走査露光装置。
  3. 前記駆動手段がリニアモータであることを特徴とする請求項1または2に記載の走査露光装置。
  4. 前記組磁石及び前記挿入磁石は、板状であり、板厚方向に着磁されることを特徴とする請求項1〜3のいずれかに記載の走査露光装置。
  5. 前記挿入磁石は前記ステージの走査方向両側にそれぞれ設けられ、
    前記組磁石は、前記ステージの走査ストローク両端にそれぞれ設けられることを特徴とする請求項1〜4のいずれかに記載の走査露光装置。
  6. 前記組磁石は、前記ステージを案内するベース上に固定されることを特徴とする請求項1〜5のいずれかに記載の走査露光装置。
  7. 前記組磁石前記走査方向における位置を可変とするための駆動機構を備えることを特徴とする請求項1〜5のいずれかに記載の走査露光装置。
  8. 露光領域に応じて、前記組磁石の位置を可変にすることを特徴とする請求項7に記載の走査露光装置。
  9. 原版のパターンを基板に走査しながら露光する走査露光装置であって、
    原版を搭載して走査方向に移動するステージと、
    前記ステージに設けられ、走査方向と垂直な方向に着磁された第1永久磁石と、前記第1永久磁石の各磁極と同極が対向するように着磁された一対の第2永久磁石とを有し、前記第2永久磁石間に前記第1永久磁石を挿入することによって前記ステージに前記走査方向の力を発生させる磁石ユニットと
    を備えることを特徴とする走査露光装置。
  10. 前記ステージを走査方向に移動するリニアモータをさらに有することを特徴とする請求項9に記載の露光装置。
  11. 前記第2永久磁石は、前記ステージの走査ストローク両端に固定されることを特徴とする請求項9または10に記載の走査露光装置。
JP2006118974A 2006-04-24 2006-04-24 走査露光装置 Expired - Fee Related JP4040660B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118974A JP4040660B2 (ja) 2006-04-24 2006-04-24 走査露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006118974A JP4040660B2 (ja) 2006-04-24 2006-04-24 走査露光装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002235144A Division JP3849932B2 (ja) 2002-08-12 2002-08-12 移動ステージ装置

Publications (2)

Publication Number Publication Date
JP2006253707A JP2006253707A (ja) 2006-09-21
JP4040660B2 true JP4040660B2 (ja) 2008-01-30

Family

ID=37093771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118974A Expired - Fee Related JP4040660B2 (ja) 2006-04-24 2006-04-24 走査露光装置

Country Status (1)

Country Link
JP (1) JP4040660B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5058546B2 (ja) * 2006-09-27 2012-10-24 キヤノン株式会社 力発生装置およびこれを用いたステージ装置ならびに露光装置
US7880864B2 (en) 2006-12-27 2011-02-01 Canon Kabusiki Kaisha Stage apparatus, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JP2006253707A (ja) 2006-09-21

Similar Documents

Publication Publication Date Title
JP3849932B2 (ja) 移動ステージ装置
JP3977086B2 (ja) ステージシステム
JP4474020B2 (ja) 移動装置及び露光装置
KR100476022B1 (ko) 리니어펄스모터, 스테이지장치 및 노광장치
JP4323759B2 (ja) 露光装置およびデバイス製造方法
US6917046B2 (en) Positioning apparatus, charged-particle-beam exposure apparatus, and device manufacturing method
JP2004248400A (ja) リニアモータ
JP2008010643A (ja) ステージ装置
JP2003059797A (ja) 移動装置、ステージ装置及び露光装置
JP2007258356A (ja) ステージ装置
JP4040660B2 (ja) 走査露光装置
JP2002075855A (ja) 自重補償装置およびこれを用いたステージ装置並びに露光装置およびそれを用いたデバイス製造方法
JP3963426B2 (ja) ステージ装置および露光装置
JP4366412B2 (ja) ステージ装置および露光装置
JP4323751B2 (ja) 移動位置決め装置及びそれを備える露光装置
JP2004096813A (ja) ムービングコイル型多相リニアモータおよびその駆動方法、多相リニアモータおよびその駆動方法、駆動装置、ならびにこれらを備えた露光装置
JP4065505B2 (ja) 移動体制御装置、移動体制御方法、露光装置並びに露光方法
JP2000029530A (ja) ステージ装置、およびこれを用いた露光装置ならびにデバイス製造方法
EP1418017A2 (en) Positioning apparatus, charged particle beam exposure apparatus, and semiconductor device manufacturing method
JP2002281731A (ja) リニアパルスモータ、ステージ装置及び露光装置
JP2003235291A (ja) ムービングマグネット型多相リニアモータの駆動装置および駆動方法、並びに露光装置
JP2003023764A (ja) リニアパルスモータ、ステージ装置及び露光装置
JP2002014187A (ja) 送り装置
JP2001297965A (ja) ステージ装置及びこれを用いた露光装置並びにデバイス製造方法
JPH1012538A (ja) 走査ステージ装置およびこれを用いた露光装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees