JP4303573B2 - 容器の製造方法及び容器の配管交換方法 - Google Patents

容器の製造方法及び容器の配管交換方法 Download PDF

Info

Publication number
JP4303573B2
JP4303573B2 JP2003409696A JP2003409696A JP4303573B2 JP 4303573 B2 JP4303573 B2 JP 4303573B2 JP 2003409696 A JP2003409696 A JP 2003409696A JP 2003409696 A JP2003409696 A JP 2003409696A JP 4303573 B2 JP4303573 B2 JP 4303573B2
Authority
JP
Japan
Prior art keywords
pipe
container
lining
flow path
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003409696A
Other languages
English (en)
Other versions
JP2004195550A5 (ja
JP2004195550A (ja
Inventor
毅 安部
等 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoei Shokai Co Ltd
Original Assignee
Hoei Shokai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoei Shokai Co Ltd filed Critical Hoei Shokai Co Ltd
Priority to JP2003409696A priority Critical patent/JP4303573B2/ja
Publication of JP2004195550A publication Critical patent/JP2004195550A/ja
Publication of JP2004195550A5 publication Critical patent/JP2004195550A5/ja
Application granted granted Critical
Publication of JP4303573B2 publication Critical patent/JP4303573B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

本発明は、容器の製造方法及び容器の配管交換方法に関する。
多数のダイキャストマシーンを使ってアルミニウムの成型が行われる工場では、工場内ばかりでなく、工場外からアルミニウム材料の供給を受けることが多い。この場合、溶融した状態のアルミニウムを収容した容器を材料供給側の工場から成型側の工場へと搬送し、溶融した状態のままの材料を各ダイキャストマシーンへ供給することが行われている(例えば、特許文献1参照)。
実開平3−31063号公報(第1図)
本発明者等は、こうした容器からダイキャストマシーン側への材料供給を、圧力差を利用して行う技術を提唱している。すなわち、この技術は、容器内を加圧して容器内の溶融金属材料を流路を介して外部に導出するものである。
しかし、このような容器では、溶融金属が流路内で固化し、流路が詰まる、という課題がある。
本発明の目的は、流路が詰まってもそのメンテナンスが容易な容器の製造方法及び容器の配管交換方法を提供することにある。
かかる課題を解決するため、本発明の主たる観点に係る容器の製造方法は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、内外で溶融金属を流通させるための流路を内在したライニングと、少なくとも前記流路の一部を囲うように設けられた配管とを具備する容器を製造する方法において、前記流路を構成するための前記ライニングの孔内に前記配管を配置し、前記配置された配管の外壁と前記孔の内壁との間の隙間に、流動性を有し、硬化後の強度が前記ライニングより小さい配管保持部材を注入し、前記配管保持部材を硬化させることを特徴とする。また、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、内外で溶融金属を流通させるための流路を内在したライニングと、少なくとも前記流路の一部を囲うように設けられた配管とを具備する容器を製造する方法において、前記流路を構成するための孔内に前記配管を配置し、前記配置された配管と前記孔との間の隙間に、流動性を有する配管保持部材を注入し、前記配管保持部材を硬化させることを特徴とする。このとき配管がライニングと接触しないように保持して配管保持部材を注入することが好ましい形態である。
本発明では、前記流動性を有する配管保持部材が硬化後に前記ライニングよりも強度が低くなるものであることが好ましい。例えば、配管保持部材として、例えばセラミックファイバー等をあげることができる。硬化は容器を加熱するなどして行うようにしてもよい。またライニングよりも密度が小さい材料を用いるようにしてもよい。このような部材として例えばセラミクスファイバーをバインダーに分散させた材料を挙げることができるが、他の材料でもよい。
本発明の別の観点に係る容器の配管交換方法は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、内外で溶融金属を流通させるための流路を内在したライニングと、少なくとも前記流路の一部を囲うように設けられた配管とを具備する容器の配管交換方法において、前記流路を構成するための前記ライニング内の孔内に前記配管を配置し、前記配置された配管の外壁と前記孔の内壁との間の隙間に、流動性を有し、硬化後の強度が前記ライニングより小さい配管保持部材を注入し、前記配管保持部材を硬化させた当該配管保持部材を破壊しつつ、前記配管を前記ライニングに形成された孔から抜き出し、前記配管を抜き出した孔内に他の配管を配置し、前記配置された他の配管の外壁と前記孔の内壁との間の隙間に、流動性を有し、硬化後の強度が前記ライニングより小さい配管保持部材を注入し、前記配管保持部材を硬化させることを特徴とする。また、前記他の配管を配置する前に、前記配管を抜き出した孔内に残った前記配管保持部材を除去することを特徴とする。さらに、本発明の別の観点に係る容器は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、内外で溶融金属を流通させるための流路を内在したライニングと、少なくとも前記流路の一部を囲うように設けられた配管とを具備することを特徴とする。

本発明の別の観点に係る容器は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、気体の流通を規制する部材により囲まれた溶融金属の流路を内在したライニングとを具備することを特徴とする。このような規制部材としては金属(合金を含む)や、セラミクス等の材料を挙げることができる。また、規制部材は、マクロスコピックにみて熱力学的に均一な層から構成されることが好ましい。これは複数の物性の異なる素材の混合物(例えばキャスター)の場合、すなわちマクロスコピックに見て熱力学的不均一層からなる場合、周期的に印可される熱的負荷に起因して線膨張率の差異などによってどうしても割れ、ひび等が生じやすいために気体の侵入を許してしまうからである。配管の構成材料は金属合金や、市販のセラミクス焼成品程度の均一性を有していればよい。
本発明では、前記配管が金属製である場合には前記配管の内壁には耐火性からなるライニング層が形成されていることが好ましい。このようなライニング層を設けることで、金属製の部分の熱による劣化を防止することができる。また、配管を金属製とすることで、特に配管の急峻な劣化を防止することができる。逆にいうと、配管を金属製とすることで、熱や衝撃などにより配管が劣化することがあってもそのことが不具合に至るまでには長い時間を要することになり、例えば配管の管理を十分にしておけばある程度予測できる範囲で不具合が発生する前に配管の交換等を行うことができる。
このように耐火材からなるライニング層を形成する場合には、前記配管の内面に、耐火材を保持するための保持部材を突出して設けることが好ましい形態である。これにより耐火材が配管から脱落することを防止することができる。
また、このような保持部材は、配管の下方側に設けた方がより好ましい形態である。例えばライニング層の中間部に割れが入ったような場合でも配管の下方側でライニング層を保持しているので、ライニング層が脱落するようなことはない。
さら、このような場合には、配管の内側の上方側は、保持部材を設けることが禁止された禁止領域を設けること、すなわちこの領域には保持部材を設けないことが好ましい形態である。配管の熱膨張率とライニング層の熱膨張率とが異なることから、配管に熱が加わった場合に両者の伸びが異なることになる。従って、ライニングの上下両側を保持部材により保持することとすると、両者に応力が生じて割れや変形の原因となる。よって、本発明の如く禁止領域を設けることで、伸びを吸収し、応力の発生を抑えることができる。
本発明では、前記配管がセラミクス製または金属配管の内側に耐火材をライニングした配管を用いることが好ましい。金属としては例えばSGP、STPT(高温配管用炭素鋼鋼管)またはSTPG(圧力配管用炭素鋼鋼管)等を用いることができる。
耐火材は、例えば溶融アルミニウム、溶融マグネシウム用の耐火材(耐火キャスター、断熱材、断熱キャスター等を含む)を用いることができる。これら耐火材にセラミクス、カーボン、グラファイトを混合するようにしてもよい。これにより配管に対する溶融金属の非濡れ性が向上し、また強度も向上することができる。更にメンテナンスも容易になる。より具体的には、耐火材として、日本特殊炉材株式会社製のTMU?85AEFN(Al:82% SiO:13%)や同社製のSC?SAE85(Al:8% SiC:83% SiO:7%)を挙げることができる。しかしながら、本発明はこのような材料に限定されない。
本発明では、流路がライニングに内在しているので、該流路に対する溶融金属貯留部からの熱伝導が高い。このため流路を流通する溶融金属の保温性を高め、流動性を保つことができ、流路の詰まりがなくなる。加えて、流路が気体の流通を規制する部材、例えば金属製の配管やセラミクス製の配管により囲まれているので、加圧用の気体が流路に漏れることはない。したがって安定した溶融金属の供給を行うことができる。さらにセラミクス層は熱伝導率が高いので流路の保温には有用である。セラミクスとしては例えばSi、SiN、SiC、TiO、TiN、カーボン等をあげることができる。より具体的には、セラミクス製配管としては、TYK社製のSCN(SiC:74.8% Si:23.54%)、株式会社クボタ社製のKN?101(主にSiからなる)、京セラ株式会社製のSN?220(主にSiからなる)、日立金属株式会社製のサイアロンHCN?10(主にSiからなる)等を挙げることができる。これらは例えばCIP法(冷間等方圧加圧法)によって成形される。その場合の圧力は10000kgf/cm以上であることが好ましい。一般にセラミクス配管は強度は大きいが、熱負荷に対して割れなどを生じることが多い。しかし、本発明ではセラミクス配管がライニング層中に埋め込まれているため、容器の予熱加熱中など配管の外側が直接高温に曝されることがなく寿命が非常に長くなっている。また配管が割れたりひびが入った場合でも流路が保持されていれば溶融金属の供給を続けることができる。このため供給先で溶融金属の突然供給ができなくなって容器を持ち帰るなどという事態を回避することができる。
ここで、流路の保温性の観点から、流路は容器内底部に近い位置から容器上面側までライニングに内在していることが好ましい。流路の配置の一例として、上下方向に延在し容器の内側に凸となる隆起部を有するようにフレーム内面にライニングを形成し、流路をこの隆起部内に、隆起部の延在方向に沿って設けたものを挙げることができる。
また、流路がライニングに埋め込まれた配管により取り囲まれている構造を採用し、この配管をカートリッジ化することで、流路が詰まった場合に流路の交換が可能となる。配管は流路の全部でなく、流路の一部を取り囲むように設けても構わない。配管が流路の下部の一部に設けられた場合には配管の交換が難しい場合もある。
配管の内面が耐火性を有する部材で覆われている構造を採用することで、配管の耐久性を高めることができ、長期にわたり加圧用の気体の流路への漏れを防止することができる。また前記配管の下側開口面近傍の前記隆起部は、前記容器の内側が広くなるようにテーパー形状を有することが好ましい。これにより容器のメンテナンス時に配管下部への容器内側からのアクセスの容易さを向上する。この構成は大蓋の脱着構造と相俟って容器のメンテナンス性、容器の信頼性を向上させるものである。
本発明の別の観点に係る容器は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、内外で溶融金属を流通させるための流路を内在したライニングと、少なくとも前記流路の一部を囲うように設けられた配管と、前記流路を構成するための孔と配管との間に介在され、前記ライニングよりも強度又は密度が低い配管保持層とを具備することを特徴とする。この配管保持層は配管の熱変形等に起因する応力の緩和層としても機能する。
本発明では、配管がライニングよりも強度の低い(または密度が小さい)部材を介してライニングに埋め込まれている構造を採用することで、配管の交換を容易に行うことが可能となり、配管のカートリッジ化が可能になる。配管の交換時には、ライニングよりも強度又は密度の低い部材、若しくは脆性の大きい部材を破壊して配管をライニングから取り出し、孔の内側の配管保持部材を除去する。その後配管をライニング内に配置し、隙間にライニングよりも硬化後の強度又は密度の低い部材、若しくは脆性の大きい配管保持部材を流し込んで配管をライニング内に固定することで、配管の交換が行えるようになるからである。ライニングとは独立に、配管の交換が可能としたことで、容器の維持に要するコストが大幅に低減した。
本発明の別の観点に係る容器は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、容器内下部開口と容器上面部との間を貫通する孔を有するライニングと、前記上面部側に第1のフランジを有し、前記孔に挿入され、内外で溶融金属を流通させるための流路を構成するための第1の配管と、前記孔の内壁から突出し、前記第1の配管を保持するための保持爪と、前記孔と前記第1の配管との間に介在された配管保持層とを具備することを特徴とする。保持爪は丸棒等の各種鋼材により形成してもよい。保持爪と第1の配管との間にはセラミクスシート等の断熱性を有する部材を配し、断熱性を高めるのが好ましい。
本発明の別の観点に係る容器は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、容器内下部開口と容器上面部との間を貫通する孔を有するライニングと、前記孔に挿入され、内外で溶融金属を流通させるための流路を構成するための第1の配管と、前記第1の配管が前記フレームと接触しないように、前記孔と前記第1の配管との間に介在された配管保持層とを具備することを特徴とする。
本発明では、溶融金属の流路となる第1の配管をフレームから熱的に分離した状態となっているので、第1の配管から熱が拡散しない。従って、第1の配管の詰まりは生じ難くなる。特に第1の配管の上部であって、フレームの外側に近い部分は放熱の影響を受けやすく、温度低下を来しやすい。このため溶融金属の流動性が悪くなったり、詰まり易くなる。本発明では第1の配管をフランジ受部や第2のフランジ、フレームと熱的にできる限り分離した構造を採用することにより、放熱の影響を最小限度に抑制することができる。したがって溶融金属の流動性を保ち、配管の詰まり等を防止することができる。第1の配管の上部はできる限り鉛直方向に配置することが好ましい。容器の上部には溶融金属収容時の液面がくるのが通常であるが、容器の搬送中の揺れなどにより第1の配管内の溶融金属も揺れることになる。これは、このとき配管が斜めに配置されていると、溶融金属が揺れたときにより広い領域に到達しやすいので溶融金属が冷えやすいからである。したがって本発明のように第1の配管の溶融金属の液面近傍より上側の部分を鉛直に立てておけば、このような冷却を最小限度に抑制することができ、配管の詰まりを防止することができる。
本発明では、当該容器の上面部には、前記第1のフランジを取り囲み、かつ、前記第1のフランジの表面の高さよりも高い位置にフランジ受表面を有するように設けられたフランジ受部と、前記フランジ受部に固定された第2のフランジを有し、前記流路と連通される第2の配管と、前記第1のフランジ表面と第2のフランジ表面との間に介挿された第1の厚さを有する第1のパッキンと、前記フランジ受表面と前記第2のフランジ表面との間に介挿された第1の厚さよりも薄い第2の厚さを有する第2のパッキンとを具備することがより好ましい。フランジ受部はどのような形状であっても第2のフランジを固定できるものであればよい。例えば、フレーム上に第2のフランジと同様のフランジを固定するようにしてもよい。ここで第1のフランジの表面の高さよりも高い位置とは、フランジ受面と、第1のフランジのフランジ面と所定間隔を挟んで離間していることをいう。そして第1の配管の第1のフランジと第2のフランジとの間には第1のパッキンが挟持され、第1のフランジと第2のフランジとの間には第2のパッキンとが挟持される。したがって前述のように内周側の第1のパッキンのほうが外周側の第2のパッキンより厚くなる。
本発明の別の観点に係る容器は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、容器内下部開口と容器上面部との間を貫通する孔を有するライニングと、前記上面部側に第1のフランジを有し、前記孔に挿入され、内外で溶融金属を流通させるための流路を構成するための第1の配管と、当該容器の上面部に設けられ、前記第1のフランジを取り囲み、かつ、前記第1のフランジの表面の高さよりも高い位置にフランジ受表面を有するフランジ受部と、前記フランジ受部に固定された第2のフランジを有し、前記流路と連通される第2の配管と、前記第1のフランジ表面と第2のフランジ表面との間に介挿された第1の厚さを有する第1のパッキンと、前記フランジ受表面と前記第2のフランジ表面との間に介挿された第1の厚さよりも薄い第2の厚さを有する第2のパッキンとを具備することを特徴とする。
本発明では、第1のパッキンは第2のパッキンに比べて厚いので、これを介して保持される第1の配管はある程度機械的な遊びを持つことになる。従って、ゆれ等により第1の配管の、特に第1のフランジに変形を生じ難くなり、これらの割れ等を防止することができる。同時に、周期的に印加される熱に起因する応力もこの遊びにより緩和され、割れ、ひび等を防止することができる。また、第1の配管における第1のフランジもフレームから熱的に分離した状態となっているので、第1の配管から熱が拡散しない。従って、第1の配管の詰まりは生じ難くなる。
本発明では、前記第1のフランジ裏面と前記保持爪との間に介挿された断熱部材を更に具備することがより好ましい。これにより、第1の配管における第1のフランジが更にフレームから熱的に分離した状態となっているので、第1の配管の詰まりは生じ難くなる。
本発明の別の観点に係る容器は、溶融金属を収容可能で、圧力差を利用して外部との間で溶融金属を流通することが可能な容器であって、開口部に第1のフランジを有し、前記開口部の中央付近に開口する前記溶融金属の流路を内在したライニングを有するフレームと、前記開口部で前記流路とつながるように前記第1のフランジと接続される第2のフランジを有する第2の配管と、前記フレーム内で前記流路の少なくとも一部を囲繞し、端面が前記フレームの開口部の開口面よりも下方になるように埋め込まれた第1の配管とを具備したことを特徴とする。
第1のフランジの内径は前記第1の配管の外径よりも大きくすれば、溶融金属の流路と第1の配管との間に断熱層を充填する空間を保持することができる。また、前記第1の配管は、前記第1のフランジ及び前記第2のフランジと直接接しないように配置されているのがよい。第1の配管が第1のフランジまたは第2のフランジと直接接していると、放冷によって第1の配管の温度が下がりやすいからである。
なお、配管保持層となる部材の充填は、前記フレームの前記第1のフランジの下側近傍にポートを設け、このポートから充填するなどすればよい。ポートは少なくとも2個備えるのがよく、これにより一方のポートから配管保持部材を充填し、他方のポートからエア抜きを行うことができ、充填性が向上する。また充填の完了を知ることもできる。
本発明の別の観点に係る容器は、圧力差により内部へ溶融金属を吸引し又は外部へ前記溶融金属を供給することが可能な容器であって、フレームと、前記フレームの内側に設けられ、下方から上方へ向かう流路を内在したライニング層と、前記ライニング層の前記流路に交換可能に挿入された配管と、を備したことを特徴とする。配管の交換可能性は、前記流路に挿入された配管と前記ライニング層との間に、前記配管よりも強度又は密度の小さな(又は脆性の大きな)配管保持層をさらに具備することにより達成される。この配管保持層は配管の熱変形等に起因する応力の緩和層としても機能する。
すなわち本発明はフレーム内での溶融金属(例えば溶融アルミニウム合金、溶融マグネシウム合金等)の流路への、ライニングのひび割れ等に起因する気体の侵入を防止するために(加圧気体は侵入しやすい)、剛体配管を採用するとともに、この配管の固定方法を交換可能なカートリッジ構造にしたものである。そもそも差圧により溶融金属を流通しようとする場合、配管が詰まりやすいという問題がある。本発明では容器内の溶融金属貯留部から流路側へ積極的に熱量を供給するためにライニング内側に前述の隆起部を設けこの隆起部内にトンネルのように流路となる孔を設けている場合がある。しかしながら、このような構造の場合にはキャスターのひび等により流路に気体の侵入を来しやすい。そこで本発明ではフレーム内での溶融金属の流路への気体の侵入を防止するために剛体配管を採用し、さらにこの配管の固定方法を交換可能なカートリッジ構造にしたものである。
配管をカートリッジ構造にしないと、配管を交換するたびに容器のライニングほぼ全体を施工し直す必要が生じ、非常にコストが高くなってしまうが、本発明のように配管をカートリッジ構造にすることで、配管だけを簡単かつ安価に交換することができるようになる。
また、配管保持層はフレームのライニングのキャスターや、配管よりも剛性や強度が小さいので、この配管保持層が配管の熱変形等に起因する応力の緩和層としても機能することになる。この機能を高めるため、配管保持層の少なくとも一部にアルミニウムまたはアルミニウムと酸化アルミニウムの混合物を含浸させるようにしてもよい。アルミニウムと酸化アルミニウムの混合物は剛性は必ずしも大きくないがねばり強く非常に強度が大きい。また変形に対する追従性を有している。したがって配管保持層に含浸させれば応力緩和能を向上することができる。
本発明の別の観点に係る容器は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、当該容器の内面側に凸となる隆起部を上下方向に延在するように有し、当該隆起部内に内外で溶融金属を流通させるための流路を内在し、当該容器の底面付近に前記流路に通じる当該容器の内面側への開口部を有するライニングと、前記流路に挿入された配管と、当該容器の底面と前記配管の下端面との間の間隙を維持するため、前記配管の下端面を保持する保持部材とを具備することを特徴とするものである。
本発明では、配管を保持する保持部材を設けたことで、配管及び配管の内部に形成されることがあるライニング層の脱落を防止できる。また、当該容器の製造工程において、配管を流路に挿入して固定する際に位置固定用の治具が不要になるという効果もある。
ここで、保持部材は、ライニングと一体的に設けられていることが好ましい形態であり、例えば保持部材を流路の下部に設けられたライニングから流路に突き出た段付き部により構成することで、一体化を簡単な構成で実現することができる。
本発明のまた別の観点に係る容器は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられたライニングと、内外で溶融金属を流通させるためのものであって、前記ライニングに対して溶融金属の流通方向に沿って接するように配置された配管とを具備することを特徴とする。
配管は、上述した金属製の配管であってもよく、セラミクス製の配管であってもよい。
容器内の予熱は、容器の上面のほぼ中央に設けられたハッチを空けて、そこからガスバーナーを容器内に挿入して行うのが一般的である。本発明では、配管がライニングに接し、容器の中央から最も離れた位置にあるので、当該配管は容器内でガスバーナーから最も離れたところに位置する。従って、本発明の係る配管はガスバーナーから熱的な影響を受けにくい。また、ガスバーナーから配管に放射された熱は配管に接するライニング側に伝導し、配管が局所的に過熱することを避けることができる。よって、本発明では、予熱による配管の劣化を極力抑えることができる。
本発明の係る容器は、例えばトラックに搭載されて公道上を搬送される。従って、当該容器はかなりの振動を受けることになる。本発明では、配管がライニングに接しているので、このような振動によって配管が振れて機械的な破壊に至ることを防止できる。
更に、本発明に係る容器は、容器から溶融金属を導出した後に容器内部に溶融金属がある程度残る(残り湯)。このような残り湯は容器を傾けて配管から外部に排出する。本発明では、配管がライニングに接し、容器内の最も外側に位置しているので、傾けたときに残り湯の湯面の変位が最も大きい。従って、最小の傾きで残り湯を外部に効率よく排出することができる。
前記ライニングには、前記配管における溶融金属の流通方向に沿った窪みが設けられ、前記配管の一部は前記窪みに埋め込まれていることが本発明における好ましい形態である。これにより、配管を強固に把持することができる。また、配管とランニングとが接する面積を大きくすることができ、配管からライニングへの熱伝導性をより高めることができる。
また、前記ライニングの内周は円筒形状とされ、前記窪みの周囲は平面形状とされていることが本発明における好ましい形態である。
本発明の別の観点に係る容器は、溶融金属を貯留可能な容器であって、上部に第1の開口部を有する容器本体と、前記容器本体内から前記第1の開口部を介して外部に導出され、内外で溶融金属を流通させるための配管と、前記配管が貫通する貫通孔を有し、前記第1の開口部を覆い、かつ、前記配管が前記容器本体内に配置された状態で前記容器本体から取り外すことができるように前記容器本体に対して着脱可能に設けられた蓋とを具備することを特徴とする。
溶融金属、例えば溶融アルミニウムを貯留する容器では、特に容器内の角部付近にノロ(アルミニウムの酸化物)が付着するため、このようなノロをとるためのメンテナンスを行う必要がある。この場合、例えば容器本体の上部開口部に取り付けられた蓋を外す必要がある。本発明に係る容器では、配管が蓋の貫通孔を介して当該容器の内外を貫通しているが、当該配管が容器本体内に配置された状態で蓋を容器本体から取り外すことができるようになっているので、配管を容器本体側に残したまま蓋を外すことができ、メンテナンスを簡単に行うことができる。
前記容器本体は、フレームと、前記フレームの内側に設けられたライニングとを有し、前記配管は、前記フレームに接するように設けられていることが本発明における好ましい形態である。
また、前記容器本体は、フレームと、前記フレームの内側に設けられ、当該容器の内面側に凸となる隆起部を上下方向に延在するように有し、当該隆起部内に内外で溶融金属を流通させるための流路を内在し、当該容器の底面付近に前記流路に通じる当該容器の内面側への第2の開口部を有するライニングとを有し、前記配管は、前記流路に挿入されていることも本発明における好ましい形態である。
この場合に、前記配管は、前記第2の開口部において当該容器の内面側に露出していることがより好ましい形態である。溶融金属の熱が配管露出部から配管全体に伝導して配管を流通する溶融金属の詰まりを防止することができる。
よって、本発明に係る容器は、溶融金属を貯留可能で、圧力差を利用して外部との間で溶融金属を流通することが可能な容器であって、フレームと、前記フレームの内側に設けられ、少なくとも一部が気体の流通を規制する部材により囲まれた溶融金属の流路を内在したライニングとを具備することを特徴とする。
本発明に係る容器は、溶融金属を貯留可能で、圧力差を利用して外部との間で溶融金属を流通することが可能な容器であって、フレームと、前記フレームの内側に設けられ、内外で溶融金属を流通させるための流路を内在したライニングと、少なくとも前記流路の一部を囲うように設けられた配管とを具備することを特徴とする。
本発明に係る容器は、前記配管は金属製であり、前記配管の内側には、耐火材からなるライニング層が形成されていることを特徴とする。
本発明に係る容器は、前記配管はセラミクス製であることを特徴とする。
本発明に係る容器は、前記ライニングは、上下方向に延在し前記容器の内面側に凸となる隆起部を有するように形成され、前記流路はこの隆起部内に設けられたことを特徴とする。
本発明に係る容器は、前記隆起部は前記配管の下側開口面よりも上側に設けられていて下側にはないことを特徴とする。
本発明に係る容器は、前記隆起部の前記配管下側開口部近傍は、前記容器の内側に向けて広くなるようなテーパー形状を有していることを特徴とする。
本発明に係る容器は、前記配管は、前記容器の上面部側に第1のフランジを有し、前記孔に挿入されて前記流路を構成する第1の配管であり、前記フレームの内壁から突出し、前記第1のフランジの裏面を保持するための保持爪をさらに具備したことを特徴とする。
本発明に係る容器は、前記フレームは、前記溶融金属の流路の上側開口がその中央付近にあるようなフランジ受け部と、前記開口部で前記流路とつながるように前記フランジ受け部と接続される第2のフランジを有する第2の配管と、をさらに具備し、前記配管は、端面が前記フレームの開口部の開口面よりも下方になるように埋め込まれたことを特徴とする。
本発明に係る容器は、第2のフランジを有し、前記流路と連通される第2の配管と、前記容器の上面部に、前記第1のフランジを取り囲み、かつ、前記第2のフランジのフランジ面が前記第1のフランジのフランジ面と所定間隔を挟んで離間するように設けられたフランジ受部と、前記第1のフランジ表面と第2のフランジ表面との間に介挿された第1の厚さを有する第1のパッキンと、前記フランジ受部表面と前記第2のフランジ表面との間に介挿された第1の厚さよりも薄い第2の厚さを有する第2のパッキンとをさらに具備することを特徴とする。
本発明に係る容器は、前記第1の配管は、前記フランジ受け部及び前記第2のフランジと直接接しないように配置されていることを特徴とする。
本発明に係る容器は、前記フランジ受け部の内径は前記第1の配管の外径よりも大きいことを特徴とする。
本発明に係る容器は、前記第1のフランジの外周と前記フレームとの間に設けられた断熱部材をさらに具備したことを特徴とする。
本発明に係る容器は、前記フレームの前記フランジ受け部下側近傍に設けられた少なくとも2個のポートをさらに具備したことを特徴とする。
本発明に係る容器は、溶融金属を貯留可能で、圧力差を利用して外部との間で溶融金属を流通することが可能な容器であって、フレームと、前記フレームの内側に設けられ、内外で前記溶融金属を流通させるための流路を内在したライニングと、前記ライニングの前記流路に交換可能に挿入された配管とを具備したことを特徴とする。
本発明に係る容器は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、内外で溶融金属を流通させるための流路を内在したライニングと、少なくとも前記流路の一部を囲うように設けられた配管と、前記流路を構成するための孔と配管との間に介在され、前記ライニング及び前記配管よりも強度が低い配管保持層とを具備することを特徴とする。
本発明に係る容器は、溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられたライニングと、内外で溶融金属を流通させるためのものであって、気体の流通を規制する材料からなり、前記ライニングに対して溶融金属の流通方向に沿って接するように配置された配管とを具備することを特徴とする。
本発明に係る容器は、前記ライニングには、前記配管における溶融金属の流通方向に沿った窪みが設けられ、前記配管の一部は前記窪みに埋め込まれていることを特徴とする。
本発明に係る容器は、溶融金属を貯留可能な容器であって、上部に第1の開口部を有する容器本体と、前記容器本体内から前記第1の開口部を介して外部に導出され、内外で溶融金属を流通させるための配管と、前記配管が挿通する貫通孔を有し、前記第1の開口部を覆い、かつ、前記配管が前記容器本体側に保持された状態で前記容器本体から取り外すことができるように前記容器本体に対して着脱可能に設けられた蓋とを具備することを特徴とする。
本発明をより詳細に説明するために、以下に、本発明の実施の形態の例を図面に基づき説明する。
図1は本発明の実施形態に係る容器の断面図、図2はその平面図である。
容器1は、フレーム1aの内側にライニング1bを形成した構造で、ライニング1bには容器1内と外部との間で溶融金属を流通させるための流路9が内在している。このライニングは複数の層からなり最内層は耐火キャスターから構成されており、その外層側は断熱キャスター乃至は断熱ボードや断熱シートから構成されている。また、容器1は、有底で筒状の本体2の上部開口部3に大蓋4が配置されている。本体2及び大蓋3の外周にはそれぞれフランジ5、6が設けられており、これらフランジ間をボルト7で締めることで本体2と大蓋3が固定されている。
上記の大蓋4のほぼ中央には開口部12が設けられ、開口部12には取っ手13が取り付けられたハッチ(子蓋)14が配置されている。ハッチ14は大蓋4上面よりも少し高い位置に設けられている。ハッチ14の外周の1ヶ所にはヒンジ15を介して大蓋4に取り付けられている。これにより、ハッチ14は大蓋4の開口部12に対して開閉可能とされている。また、このヒンジ15が取り付けられた位置と対向するように、ハッチ14の外周の2ヶ所には、ハッチ14を大蓋4に固定するためのハンドル付のボルト16が取り付けられている。大蓋4の開口部12をハッチ14で閉めてハンドル付のボルト16を回動することでハッチ14が大蓋4に固定されることになる。また、ハンドル付のボルト16を逆回転させて締結を開放してハッチ14を大蓋4の開口部12から開くことができる。そして、ハッチ14を開いた状態で開口部12を介して容器1内部のメンテナンスや予熱時のガスバーナの挿入が行われるようになっている。
また、ハッチ14の中央、或いは中央から少しずれた位置には、容器1内の減圧及び加圧を行うための内圧調整用の貫通孔18が設けられている。この貫通孔18には加減圧用の配管19が接続されている。この配管19は、貫通孔18から上方に伸びて所定の高さで曲がりそこから水平方向に延在している。この配管19の貫通孔18への挿入部分の表面には螺子山がきられており、一方貫通孔18にも螺子山がきられており、これにより配管19が貫通孔18に対して螺子止めにより固定されるようになっている。また貫通孔18にプラグを埋め込み、配管19の一端にこのプラグに対してソケットとなるようなクイックカプラー構造で固定するようにしてもよい。
この配管19の一方には、加圧用又は減圧用の配管20が接続可能になっており、加圧用の配管には加圧気体に蓄積されたタンクや加圧用のポンプが接続されており、減圧用の配管には減圧用のポンプが接続されている。そして、減圧により圧力差を利用して配管8及び流路9を介して容器1内に約650℃〜約730℃程度の溶融アルミニウムを導入することが可能であり、加圧により圧力差を利用して流路9及び配管8を介して容器1外への溶融アルミニウムの導出が可能である。なお、加圧気体として不活性気体、例えば窒素ガスを用いることで加圧時の溶融アルミニウムの酸化をより効果的に防止することができる。
ハッチ14の中央から少しずれた位置で前記の加減圧用の貫通孔18とは対向する位置には、圧力開放用の貫通孔21が設けられ、圧力開放用の貫通孔21には、リリーフバルブ(図示を省略)が取り付けられるようになっている。これにより、例えば容器1内が所定の圧力以上となったときには安全性の観点から容器1内が大気圧に開放されるようになっている。このリリーフバルブは、ホース20の反対側にある加圧・減圧制御系側に設けるようにしてもよい。これにより容器ごとに個別にリリーフバルブを設けることは不要となる。
大蓋4には、液面センサとしての2本の電極22がそれぞれ挿入される液面センサ用の2つの貫通孔23が所定の間隔をもって配置されている。これらの貫通孔23には、それぞれ電極22が挿入されている。これら電極22は容器1内で対向するように配置されており、それぞれの先端は例えば容器1内の溶融金属の最大液面とほぼ同じ位置まで延びている。そして、電極22間の導通状態をモニタすることで容器1内の溶融金属の最大液面を検出することが可能であり、これにより容器1への溶融金属の過剰供給をより確実に防止できるようになっている。
本体2の底部裏面には、例えばフォークリフトのフォーク(図示を省略)が挿入される断面口形状で所定の長さの脚部25が例えば平行するように2本配置されている。また、本体2内側の底部は、流路側が低くなるように全体が傾斜している。これにより、加圧により流路9及び配管8を介して外部に溶融アルミニウムを導出する際に、いわゆる湯の残りが少なくなる。また、例えばメンテナンス時に容器1を傾けて流路9及び配管8を介して外部に溶融アルミニウムを導出する際に、容器1を傾ける角度をより小さくでき、安全性や作業性が優れたものとなる。
ここで、流路9は例えば鉄等の金属製の配管34に取り囲まれている。配管34の内壁は耐火材34bにより覆われている。これにより、配管34の耐熱性が高められている。また配管34は充填材10を介してライニング1bに埋め込まれている。充填材10はライニング1bよりも強度が小さい。ここで強度とは主に外部からの機械的な応力に対する曲げ強さのことをいい、密度がよりライニングより小さい材料を挙げることができる。ライニング1bとしては例えば緻密質の耐火系セラミクス材料を挙げることができ、これより強度の低い充填材10とは例えばセラミクスファイバーとバインダ(例えばアルミナ:シリカ=2:8)からなるものであり、この場合、かさ比重は約1.2であり、より具体的にはジョイントシーラー13(東芝モノフラックス製)やファイバーエクセル(登録商標)等を挙げることができる。
このように配管34により取り囲まれた流路9は、本体2の内周の該容器本体底部2aに近い位置に設けられた開口9aを介し、該本体2外周の上部9bに向けて延在している。
流路9の上部9bには、例えば配管8が例えばボルトを使った固定により着脱可能に接続されている。配管8は例えば鉄製であり、形状としてはR形状でもよい。溶融金属がよりスムーズに流通するからである。流路9及びこれに続く配管8の内径はほぼ等しく、65mm〜85mm程度が好ましい。従来からこの種の配管の内径は50mm程度であった。これはそれ以上であると容器内を加圧して配管から溶融金属を導出する際に大きな圧力が必要であると考えられていたからである。これに対して本発明者等は、流路9及びこれに続く配管8の内径としてはこの50mmを大きく超える65mm〜85mm程度が好ましく、より好ましくは70mm〜80mm程度、更には好ましくは70mmであることを見出した。すなわち、溶融金属が流路や配管を上方に向けて流れる際に、配管に存在する溶融金属自体の重量及び配管の内壁の粘性抵抗の2つパラメータが溶融金属の流れを阻害する抵抗に大きな影響を及ぼしているものと考えられる。配管内径は規格と関係なく指定することもできるが、通常流通しているJIS規格の配管では80A、100A、125Aとなる。JIS規格の配管のほうが価格的にも納期的にも入手が容易である。重量の関係から125Aの配管は重く不適である。また100Aの配管の場合には内径で70mmから80mm程度が限界(製作上の限界及び最小限必要なライニングの厚さの限界)である。このようなことから発明者らは、物理的な作用効果と、市場における入手容易性、競争力を考慮して内径約70mmから約80mmと設定することにした。ここで、内径が65mmより小さいときには配管を流れる溶融金属はどの位置においても溶融金属自体の重量と内壁の粘性抵抗の両方の影響を受けているが、内径が65mm以上となると流れのほぼ中心付近から内壁の粘性抵抗の影響を殆ど受けない領域が生じ始め、その領域が次第に大きくなる。この領域の影響は非常に大きく、溶融金属の流れを阻害する抵抗が下がり始める。溶融金属を容器内から導出する際に容器内を非常に小さな圧力で加圧すればよくなる。つまり、従来はこのような領域の影響は全く考慮に入れず、溶融金属自体の重量だけが溶融金属の流れを阻害する抵抗の変動要因として考えられており、作業性や保守性等の理由から内径を50mm程度としていた。一方、内径が85mmを超えると、溶融金属自体の重量が溶融金属の流れを阻害する抵抗として非常に支配的となり、溶融金属の流れを阻害する抵抗が大きくなってしまう。本発明者等の試作による結果によれば、70mm〜80mm程度の内径が容器内の圧力を非常に小さな圧力で加圧すればよく、特に70mmが標準化及び作業性の観点から最も好ましい。すなわち、配管径は50mm、60mm、70mm、と10mm単位で標準化されており、配管径がより小さい方が取り扱いが容易で作業性が良好だからである。
配管34の上端部に第1のフランジ34aが設けら、フレーム1aには第1のフランジ34aの下面に接触する第2のフランジ5aが配管34の周囲を囲むように設けられている。ここで、第1のフランジ34aの外径は第2のフランジ5aの外径よりも小さくされている。これにより、配管34から放射する熱をより小さくし、流路9の保温効果を高めることができる。配管8のフランジ8aは図示を省略したボルトを介して容器1側に固定されている。なお、各フランジ間には断熱用のパッキンが介挿されている。
図3は図1におけるA−A断面図である。
図3に示すように、ライニング1bは、耐火層1cと断熱層1dとの2層構造になっている。流路9は耐火層1c内に設けられている。このような構成を採用することにより、容器内からの熱が流路9に伝わりやすくなる。その一方、流路9は断熱層1dによりそのほぼ半分が覆われるような構造となり、保温効果が高められている。耐火層1cとしては例えば緻密質の耐火系セラミクス材料を挙げることができる。また断熱層1dとしてはそれよりも緻密性の低いセラミクス材料を用いることができる。
本実施形態では、流路9が配管34に取り囲まれているので、ライニング1bにひび割れを生じても、容器1内から流路9へ気体が達することがなく、配管8から外部に導出される溶融アルミニウムに気体が混在するようなことはなくなる。また、流路9に詰まりが生じても配管34を取り替えるだけで、詰まりを解消することが可能となる。さらに配管が痛んだ場合でも交換が容易である。
以下、その配管34の交換方法を図4〜図6に基づき説明する。
まず、図4に示すように、ライニング1bと配管34との間に介挿されている充填材10を破壊しつつ、配管34を機械的な力で抜き出す。充填材10は、ライニング1bよりも強度が弱く脆性が大きいので、ライニング1bに悪影響を与えることもなく、充填材10を容易に破壊することが可能である。図5は配管34を抜き出した状態を示している。配管34を抜いた後、配管保護層である充填材層10を取り除くことが好ましい。
次に、図6に示すように、容器1内に新たな配管34を所定の位置に保持するとともに充填材の流失を防ぐ治具36を配置すると共に、配管34を流路9内に挿入し、その隙間に流動性を有する状態の充填材10を注入する。そして、乾燥焼成して充填材10を固化する。その後、治具36を取り外す。充填材10の硬化後には、かさ比重が約1.2から約0.6になり、バインダがなくなったポーラス状となる。よって、気孔率(ポロシティー)の高い状態であるため充填材の強度が一層弱くなる。
次に、本発明の他の実施形態を図7〜図9に基づき説明する。
この実施形態に係る容器101は、流路の構造が上記の実施形態とは異なる。すなわち、フレーム101aの内側には、垂直方向に沿って内側への隆起部である凸部101cを有するライニング101bが設けられている。ライニング101bは上記の実施形態と同様に耐火層と断熱層の積層構造が好ましい。これらの材質も上記実施形態と同様であればよい。
凸部101c内には、容器101内底部に近い位置から容器101上面側まで貫通する流路109が設けられている。
流路109は例えば鉄等の金属製またはセラミクス製の配管134に取り囲まれている。配管134の内壁は耐火材134bにより覆われている。これにより、配管134の耐熱性が高められている。また配管134は充填材110を介してライニング101bに埋め込まれている。充填材110はライニング101bよりも強度が低い。これらの材質も上記実施形態と同様であればよい。配管134を用いない場合には、加圧気体等がライニング層101cのひび等を通じて流路に侵入する不具合を生じやすいが、本発明によればこのような気体の侵入は阻止することができる。したがって安定した溶融金属の供給を行うことができる。
流路109の上部には、例えば配管108が着脱可能に接続されている。配管108は例えば鉄製(内壁は耐火材により覆われている。)であり、形状としてはR形状でもΤ形状でもよい。溶融金属がよりスムーズに流通するからである。流路109及びこれに続く配管108の内径はほぼ等しく、65mm〜85mm程度が好ましい。
配管134の上端部に第1のフランジ134aが設けられ、フレーム101aには第1のフランジ134aの下面に接触する第2のフランジ105aが配管134の周囲を囲むように設けられている。ここで、第1のフランジ134aの外径は第2のフランジ105aの外径よりも小さくされている。これにより、配管134から放射する熱をより小さくし、流路109の保温効果を高めることができる。図21に示すような構造を採用してももちろんよい。配管108のフランジ108aは図示を省略したボルトを介して容器101側に固定されている。なお、各フランジ間にはパッキンが介挿されている。
本実施形態では、特に流路109がライニングの隆起部である凸部101c内を容器101内底部に近い位置から容器101上面側までトンネルのように貫通しているので、この流路109を囲う容器101内壁の面積が実質的に大きくなり、容器101内壁に接触する溶融アルミニウムから流路109に伝達する熱量が大きくなる。従って、流路109の保温性を高め、溶融金属の流動性を保つことができる。
なお、図10及び図11に示すように、流路109を配管で取り囲まない構成にしても、流路109の保温性を高めることができる、という点で同様の効果を得ることができる。
図12は本発明の一実施形態に係る金属供給システムの全体構成を示す図である。
同図に示すように、第1の工場51と第2の工場60とは例えば公道63を介して離れた所に設けられている。
第1の工場51には、ユースポイントとしてのダイキャストマシーン52が複数配置されている。各ダイキャストマシーン52は、溶融したアルミニウムを原材料として用い、射出成型により所望の形状の製品を成型するものである。その製品としては例えば自動車のエンジンに関連する部品等を挙げることができる。また、溶融した金属としてはアルミニウム合金ばかりでなくマグネシウム、チタン等の他の金属を主体とした合金であっても勿論構わない。各ダイキャストマシーン52の近くには、ショット前の溶融したアルミニウムを一旦貯留する保持炉(手元保持炉)53が配置されている。この保持炉53には、複数ショット分の溶融アルミニウムが貯留されるようになっており、ワンショット毎にラドル54或いは配管を介して保持炉53からダイキャストマシーン52に溶融アルミニウムが注入されるようになっている。また、各保持炉53には、容器内に貯留された溶融アルミニウムの液面を検出する液面検出センサ(図示せず)や溶融アルミニウムの温度を検出するための温度センサ(図示せず)が配置されている。これらのセンサによる検出結果は各ダイキャストマシーン52の制御盤もしくは第1の工場51の中央制御部56に伝達されるようになっている。
第1の工場51の受け入れ部には、後述する容器1を受け入れるための受け入れ台57が配置されている。受け入れ部の受け入れ台57で受け入れられた容器1は、配送車58により所定のダイキャストマシーン52まで配送され、容器1から保持炉53に溶融アルミニウムが供給されるようになっている。供給の終了した容器1は配送車58により再び受け入れ部の受け入れ台57に戻されるようになっている。
第1の工場51には、アルミニウムを溶融して容器1に供給するための第1の炉59が設けられており、この第1の炉59により溶融アルミニウムが供給された容器1も配送車58により所定のダイキャストマシーン52まで配送されるようになっている。
第1の工場51には、各ダイキャストマシーン52において溶融アルミニウムの追加が必要になった場合にそれを表示する表示部55が配置されている。より具体的には、例えばダイキャストマシーン52毎に固有の番号が振られ、表示部55にはその番号が表示されており、溶融アルミニウムの追加が必要になったダイキャストマシーン52の番号に対応する表示部55における番号が点灯するようになっている。作業者はこの表示部55の表示に基づき配送車58を使って容器1をその番号に対応するダイキャストマシーン52まで運び溶融アルミニウムを供給する。表示部55における表示は、液面検出センサによる検出結果に基づき、中央制御部56が制御することによって行われる。
第2の工場60には、アルミニウムを溶融して容器1に供給するための第2の炉61が設けられている。容器1は例えば容量、配管長、高さ、幅等の異なる複数種が用意されている。例えば第1の工場51内のダイキャストマシーン52における保持炉53の容量等に応じて、容量の異なる複数種がある。しかしながら、容器1を1種類に統一して規格化しても勿論構わない。
この第2の炉61により溶融アルミニウムが供給された容器1は、フォークリフト(図示せず)により搬送用のトラック64に載せられる。トラック64は公道63を通り第1の工場51における受け入れ部の受け入れ台57の近くまで容器1を運び、これらの容器1はフォークリフト(図示せず)により受け入れ台57に受け入れられるようになっている。また、受け入れ部にある空の容器1はトラック64により第2の工場60へ返送されるようになっている。
第2の工場60には、第1の工場51における各ダイキャストマシーン52において溶融アルミニウムの追加が必要になった場合にそれを表示する表示部62が配置されている。表示部62の構成は第1の工場51内に配置された表示部55とほぼ同様である。表示部62における表示は、例えば通信回線65を介して第1の工場51における中央制御部56が制御することによって行われる。なお、第2の工場60における表示部62においては、溶融アルミニウムの供給を必要とするダイキャストマシーン52のうち第1の工場51における第1の炉59から溶融アルミニウムが供給されると決定されたダイキャストマシーン52はそれ以外のダイキャストマシーン52とは区別して表示されるようになっている。例えば、そのように決定されたダイキャストマシーン52に対応する番号は点滅するようになっている。これにより、第1の炉59から溶融アルミニウムが供給されると決定されたダイキャストマシーン52に対して第2の工場60側から誤って溶融アルミニウムを供給するようなことをなくすことができる。また、この表示部62には、上記の他に中央制御部56から送信されたデータも表示されるようになっている。
次に、このように構成された金属供給システムの動作を説明する。
中央制御部56では、各保持炉53に設けられた液面検出センサを介して各保持炉53における溶融アルミニウムの量を監視している。ここで、ある保持炉53で溶融アルミニウムの供給の必要性が生じた場合に、中央制御部56は、その保持炉53の「固有の番号」、その保持炉53に設けられた温度センサにより検出された保持炉53の「温度データ」、その保持炉53の形態(後述する。)に関する「形態データ」、その保持炉53から溶融アルミニウムがなくなる最終的な「時刻データ」、公道63の「トラフィックデータ」、その保持炉53で要求される溶融アルミニウムの「量データ」及び「気温データ」等を、通信回線65を介して第2の工場60側に送信する。第2の工場60では、これらのデータを表示部62に表示する。これらの表示されたデータに基づき作業者が経験的に上記保持炉53から溶融アルミニウムがなくなる直前に保持炉53に容器1が届き、且つその時の溶融アルミニウムが所望の温度となるように該第2の工場60からの容器1の発送時刻及び溶融アルミニウムの発送時の温度を決定する。或いはこれらのデータを例えばパソコン(図示を省略)に取り込んで所定のソフトウェアを用いて上記保持炉53から溶融アルミニウムがなくなる直前に保持炉53に容器1が届き、且つその時の溶融アルミニウムが所望の温度となるように該第2の工場60からの容器1の発送時刻及び溶融アルミニウムの発送時の温度を推定してその時刻及び温度を表示するようにしてもよい。或いは推定された温度により第2の炉61を自動的に温度制御しても良い。容器1に収容すべき溶融アルミニウムの量についても上記「量データ」に基づき決定してもよい。
発送時刻に容器1を載せたトラック64が出発し、公道63を通り第1の工場51に到着すると、容器1がトラック64から受け入れ部の受け入れ台57に受け入れられる。
その後、受け入れられた容器1は、受け入れ台57と共に配送車58により所定のダイキャストマシーン52まで配送され、容器1から保持炉53に溶融アルミニウムが供給される。
次に、第2の工場60における第2の炉61から容器1への供給システムを図13に基づき説明する。
図13に示すように、第2の炉61内には溶融アルミニウムが貯留されている。この第2の炉61には供給部61aが設けられ、この供給部61aには吸引管43が挿入されている。この吸引管43は、供給部61aの溶融されたアルミニウムの液面から一端口(吸引管43の他方の先端部43b)が出没するように配置されている。すなわち、吸引管43の一方の先端部43aは第2の炉61の底部付近まで延在し、吸引管43の他方の先端部43bは供給部61aから外側に導出されている。その傾斜角は例えば垂線に対して10°程度傾いており、上記容器1における配管8の先端部の傾斜と合致するようになっている。この吸引管43の先端部43bは容器1における配管8の先端部に接続されるものであり、このように傾斜を合致されることによって吸引管43の先端部43bと容器1における配管8の先端部との接続が容易となる。さらに溶湯に溶存した水素等の脱ガスの効果もあり、湯質を向上することができる。
そして、配管19に減圧用のポンプ44に接続された配管20を接続する。次に、ポンプ44を作動させて容器1内を減圧する。これにより、第2の炉61内に貯留されている溶融アルミニウムが吸引管43及び配管8を介して容器1内に導入される。
本実施形態では、特に、このように第2の炉61内に貯留されている溶融アルミニウムを吸引管43及び配管8を介して容器1内に導入するようにしているので、溶融アルミニウムが外部の空気と接触することはない。従って、酸化物が生じることがなく、本システムを用いて供給される溶融アルミニウムは非常に品質が良いものとなる。また、容器1内から酸化物を除去するための作業は不要となり、作業性も向上する。
本実施形態では、特に、容器1に対する溶融アルミニウムの導入と容器1からの溶融アルミニウムの導出を実質的に2本の配管を使って行うことができるので、システム構成を非常にシンプルなものとすることができる。また、溶融アルミニウムが外気に接触する機会が激減するので、酸化物の生成をほぼなくすことができる。
図14に示すように、この例では、レシーバタンク39から高圧空気を密閉された容器1内に送出することで容器1内に収容された溶融アルミニウムが配管8から吐出されて保持炉53内に供給されるようになっている。なお、図2において、40は加圧バルブ、41はリークバルブである。
ここで、保持炉53の高さは各種のものがあり、配送車58に設けられた昇降機構により配管8の先端が保持炉53上の最適位置となるように調節可能になっている。しかし、保持炉53の高さによっては昇降機構だけでは対応できない場合がある。そこで、本システムにおいては、保持炉53の形態に関する「形態データ」として、保持炉53の高さや保持炉53までの距離に関するデータ等を予め第2の工場60側に送り、第2の工場60側ではこのデータに基づき最適な形態、例えば最適な高さの容器1を選択して配送している。なお、供給すべき量に応じて最適な大きさの容器1を選択して配送してもよい。
図15は以上のシステムを自動車工場に適用した場合の製造フローを示したものである。
まず、図13に示したように、第2の炉61内に貯留されている溶融アルミニウムを吸引管43及び配管8を介して容器1内に導入(受湯)する(ステップ151)。
次に、図12に示したように、容器1が公道63を介してトラック64により第2の工場60から第1の工場51に搬送する(ステップ152)。
次に、第1の工場(ユースポイント)10では、容器1が配送車58により自動車エンジン製造用のダイキャストマシーン52まで配送され、容器1から保持炉53に溶融アルミニウムが供給される(ステップ153)。
次に、このダイキャストマシーン52において、保持炉53に貯留された溶融アルミニウムを用いた自動車エンジンの成型が行われる(ステップ154)。
そして、このように成型された自動車エンジン及び他の部品を使って自動車の組み立てが行われ、自動車が完成する(ステップ155)。
本実施形態では、上述したように自動車のエンジンが酸化物を殆ど含まないアルミニウム製であるので、性能及び耐久性のよいエンジンを有する自動車を製造することが可能である。
図16は本発明の他の実施形態に係る容器の断面図である。
容器201は、フレーム71の内側にライニングとして断熱材72、耐火材73を積層した構造を有する。所定位置における断熱材72と耐火材73との間にはボード材74が介挿されている。耐火材73には、容器内と外部との間で溶融金属を流通させるための流路75が内在している。また、容器201は、有底で筒状の本体76の上部開口部77に大蓋78が配置され、これらのフランジ間をボルトで締めることで本体76と大蓋78が固定されている。
また、ハンドル付のボルトを逆回転させて締結を開放してハッチ80を大蓋78の開口部79から開くことができる。そして、ハッチ80を開いた状態で開口部79を介して容器201内部のメンテナンスや予熱時のガスバーナの挿入が行われるようになっている。
上記の大蓋78のほぼ中央には開口部79が設けられ、開口部79には開閉自在のハッチ80が配置されている。ハッチ80の中央、或いは中央から少しずれた位置には、容器201内の減圧及び加圧を行うための内圧調整用の貫通孔81が設けられている。この貫通孔81には加減圧用の配管(図示を省略)が接続されるようになっている。該配管の先には、加圧用の配管には加圧気体に蓄積されたタンクや加圧用のポンプが接続されており、減圧用の配管には減圧用のポンプが接続されている。そして、減圧により圧力差を利用して該配管を介して容器201内に溶融アルミニウムを導入することが可能であり、加圧により圧力差を利用して該配管を介して容器201外への溶融アルミニウムの導出が可能である。
ハッチ80の中央から少しずれた位置で前記の加減圧用の貫通孔81とは対向する位置には、液面検出量の電極棒(図示を省略)挿入用の貫通孔82が設けられている。
本体76の底部裏面には、例えばフォークリフトのフォーク(図示を省略)が挿入される断面口形状で所定の長さの脚部(図示を省略)が例えば平行するように2本配置されている。また、本体76内側の底部は、流路側が低くなるように全体が傾斜している。これにより、加圧により外部に溶融アルミニウムを導出する際に、いわゆる湯の残りが少なくなる。また、例えばメンテナンス時に容器201を傾けて流路75及び配管83を介して外部に溶融アルミニウムを導出する際に、容器201を傾ける角度をより小さくでき、安全性や作業性が優れたものとなる。
ここで、流路75は窒化珪素等のセラミクス製の配管83に取り囲まれている。配管83は充填材84を介して耐火材73に埋め込まれている。充填材84は耐火材73よりも強度が低い。セラミクス製の配管83は耐火性が良好であり、内壁に耐火材を設ける必要がなくなる。これにより、配管83の耐熱性が高められている。ここで強度とは主に外部からの機械的な応力に対する曲げ強さのことをいい、かさ比重が大きいと強度は相対的に低くなる。ライニング72としては例えば緻密質の耐火系セラミクス材料を挙げることができ、これより強度の低い充填材84とは例えばセラミクスファイバーとバインダからなるものである。
このように配管83により取り囲まれた流路75は、本体76の内周の該容器本体底部に近い位置に設けられた開口85を介し、該本体76外周の上部に向けて延在している。
流路75の上部には、例えば鉄製(内壁は耐火材で覆われている。)でR状の配管(図示せず)がボルトにより着脱可能に接続されている。
配管83の上端部に第1のフランジ86が設けられ、フレーム71には第1のフランジ86の下面に対向する第2のフランジ87が配管83の周囲を囲むように設けられている。第1のフランジ86と第2のフランジ87との間にはセラミクス製の配管83を受けて固定するためのフランジ部材88が介挿されている。符号89は、充填剤84を注入するための孔である。この孔89はメンテナンス時以外の通常時はキャップによって気密に塞がれている。
図17は容器の別の実施形態を示す断面図である。
本実施形態では、流路302を構成する配管303(ストーク)が容器内において垂直に配置されている。よって、容器301内に溶融金属がある場合には、配管302は直接に該溶融金属と接することになる。配管302は窒化珪素等のセラミクス製である。これにより、耐火性を高め、且つ配管の詰まりを防止している。流路302の上部には、例えば鉄製でR形状の配管(図示を省略)が接続される。本実施形態では、この省略された配管の回転が可能とされている。これにより、狭い領域での取り回しが容易となる。符合304は、配管303を回転可能に保持する部材を示している。
容器301は、フレーム171の内側にライニングとして断熱材172、耐火材173を積層した構造を有する。所定位置における断熱材172と耐火材173との間にはボード材174が介挿されている。また、容器301は、有底で筒状の本体305の上部開口部177に大蓋178が配置され、これらのフランジ間をボルトで締めることで本体305と大蓋178が固定されている。
上記の大蓋178のほぼ中央には開口部179が設けられ、開口部179には開閉自在のハッチ180が配置されている。ハッチ180の中央、或いは中央から少しずれた位置には、容器301内の減圧及び加圧を行うための内圧調整用の貫通孔181が設けられている。この貫通孔181には加減圧用の配管(図示を省略)が接続されるようになっている。該配管の先には、加圧用の配管には加圧気体に蓄積されたタンクや加圧用のポンプが接続可能とされており、減圧用の配管には減圧用のポンプが接続可能とされている。そして、減圧により圧力差を利用して容器301内に溶融アルミニウムを導入することが可能であり、加圧により圧力差を利用して容器301外への溶融アルミニウムの導出が可能である。
ハッチ180の中央から少しずれた位置で前記の加減圧用の貫通孔181とは対向する位置には、液面検出用の電極棒(図示せず)が挿入される一対の貫通孔182が設けられている。
本体301の底部裏面には、例えばフォークリフトのフォーク(図示を省略)が挿入される断面口形状で所定の長さの脚部(図示を省略)が例えば平行するように2本配置されている。
ここで、流路302は窒化珪素等のセラミクス製の配管303に取り囲まれている。セラミクス製の配管303は耐火性が良好であり、内壁に耐火材を設ける必要がなくなる。これにより、配管303の耐熱性が高められている。
このように配管303により取り囲まれた流路302は、本体305の内周の該容器本体底部に近い位置に設けられた開口185を介し、該本体305外周の上部に向けて延在している。
配管303の上端部に第1のフランジ186が設けら、フレーム171には第1のフランジ186の下面に対向する第2のフランジ187が配管303の周囲を囲むように設けられている。第1のフランジ186と第2のフランジ187との間にはセラミクス製の配管303を固定するためのフランジ部材188が介挿されている。
図18は容器の更に別の実施形態を示す断面図である。
本実施形態では、ライニングとして耐火材402が容器内側に向けて下から上に凸部406を有し(例えば図9参照)、凸部406に流路403が内在し、流路403は窒化珪素等のセラミクス製の配管404により覆われている。配管404は、充填材405を介して耐火材402に埋め込まれている。充填材405は耐火材402よりも強度が低い。例えばアルミナ、シリカ系のセラミクスファイバーにバインダー材を混合したものを用いることができる。セラミクス製の配管404は耐火性が良好であり、内壁に耐火材を設ける必要がなくなる。本実施形態においても流路403の上部には、例えば鉄製でR形状の配管が接続される。なお符号405bは配管404のフランジ部を保温する断熱材であり、例えばセラミクスファイバー等が充填されている。
容器401は、フレーム271の内側にライニングとして断熱材272、耐火材273を積層した構造を有する。所定位置における断熱材272と耐火材273との間にはボード材274が介挿されている。また、容器401は、有底で筒状の本体407の上部開口部277に大蓋278が配置され、これらのフランジ間をボルトで締めることで本体407と大蓋278が固定されている。
上記の大蓋278のほぼ中央には開口部279が設けられ、開口部279には開閉自在のハッチ280が配置されている。ハッチ280の中央、或いは中央から少しずれた位置には、容器401内の減圧及び加圧を行うための内圧調整用の貫通孔281が設けられている。この貫通孔281には加減圧用の配管(図示を省略)が接続されるようになっている。
ハッチ280の中央から少しずれた位置で前記の加減圧用の貫通孔281とは対向する位置には、液面検出用の電極棒(図示せず)が挿入される一対の貫通孔282が設けられている。
本体401の底部裏面には、例えばフォークリフトのフォーク(図示を省略)が挿入される断面口形状で所定の長さの脚部(図示を省略)が例えば平行するように2本配置されている。
ここで、流路403は窒化珪素等のセラミクス製の配管404に取り囲まれている。配管404は充填材405を介して耐火材402に埋め込まれている。充填材405は耐火材402よりも強度が低い。セラミクス製の配管404は耐火性が良好であり、内壁に耐火材を設ける必要がなくなる。これにより、配管404の耐熱性が高められている。ここで強度とは主に外部からの機械的な応力に対する曲げ強さのことをいい、かさ比重が大きいと強度は相対的に低くなる。ライニング272としては例えば緻密質の耐火系セラミクス材料を挙げることができ、これより強度の低い充填材405とは例えばセラミクスファイバーとバインダからなるものである。
このように配管404により取り囲まれた流路403は、本体401の内周の該容器本体底部に近い位置に設けられた開口285を介し、該本体401外周の上部に向けて延在している。
本発明では容器内の溶融金属の貯留部から流路である配管286側へ積極的に熱量を供給するために、ライニング273の内側に前述の隆起部402を設けこの隆起部内にトンネルのように流路となる孔を設けている。さらに本発明ではフレーム内での溶融金属(例えば溶融アルミニウム合金、溶融マグネシウム合金等)の流路への、ライニングのヒビ等に起因する気体の侵入を防止するために(加圧気体は侵入しやすい)、セラミクス配管286等の剛体配管を採用して気体の侵入を阻止するとともに、この配管286の固定方法を交換可能なカートリッジ構造にしている。配管をカートリッジ構造にすることで、配管286を交換するたびに容器のライニングほぼ全体を施工しなお必要が生じ、非常にコストが高くなってしまうが、本発明のように配管をカートリッジ構造にすることで、配管だけを簡単かつ安価に交換することができるようになる。また配管保持層405はフレームのライニングのキャスターや、配管よりも剛性や強度が小さいので、この配管保持層は配管の熱変形等に起因する応力の緩和層としても機能する。
図21は配管404における上端部の構造を示す断面図であり、図22は図21の配管404における上端部の構造を上面から見た概略平面図である。
配管404は上述したように配管保持層である充填材405を介して耐火材402からなる層を含むライニング層に埋め込まれており、別言すると配管404は耐火材402に設けられた孔411に挿入され、この孔411と配管404との間には、配管保持層として充填材405が介在している。
配管404は、容器401の上面部側にフランジ412を有する。フレーム271の内壁からフランジ412の裏面413を保持するための例えば3本の保持爪414が突出している。この爪は鉄合金の丸棒等の部材により構成してもよい。
当該容器401の上面部には、第1のフランジであるフランジ412を取り囲み、かつ、フランジ412の表面の高さよりも高い位置にフランジ受表面を有するようにフランジ415が設けられている。そして、流路403に連通する配管416のフランジ417がこのフランジ415に例えばボルトやクランプなどで固定されている。配管416では、鉄皮416aの内壁に耐火材416bが形成されている。すなわち配管416のフランジ417(第2のフランジ)のフランジ面(下側の面)と、第1のフランジのフランジ面(上側の面)とは間隔t1を介して離間している。t1は1mm〜5mmに設定すれば十分な応力緩和能と断熱能を発揮する。またこの配管保持層405はフレームのライニングのキャスターや、配管よりも剛性や強度が小さいので、この配管保持層が配管の熱変形等に起因する応力の緩和層としても機能することになる。
フランジ412の表面とフランジ417の表面との間には、第1の厚さt1を有するパッキン418が介挿され、フランジ415の表面とフランジ417の表面との間には第1の厚さt1よりも薄い第2の厚さt2を有するパッキン419が介挿されている。これらのパッキンは耐熱性を有するものを選択すればよい。また、フランジ412の裏面と保持爪414との間には、例えばシート状の断熱部材420(例えばセラミクスペーパー)が介挿されている。これにより爪部414と第1の配管との間の断熱性を向上させている。
本実施形態では、特に上記の構造を有することで配管404は熱伝導性が高いフレーム271と接触していない。特にフランジ412を保持爪414で保持するようにしている。従って、配管404が保有する熱が拡散し難いので、配管404の温度低下を抑えることができる。よって、配管404の詰まりを防止することができる。また、本実施形態では、特にフランジ412の表面とフランジ417の表面との間のパッキン418の方が、フランジ415の表面とフランジ417の表面との間のパッキン419よりも厚いので、揺れや振動に対してフランジ412の自由度が高い。よって、配管414の特にフランジ412の付近の割れを極力抑えることできる。これにより、容器内からの気体の漏れを防止することができる。
ここで、符号430は充填剤405を注入するための孔であり、431はその孔430から充填剤405を注入する際に気体を逃がすための孔である。各孔430、431はキャップ432、433によって塞がれている。このように孔を少なくとも2個設けることが好ましい。1個の孔で充填材を注入するときに、他方の孔で気体を逃がすとともに、充填の完了を知ることができるからである。
図23は本発明の容器の別の例を示す図である。この図23も図21と同様に容器の流路とこれに接続される配管とを拡大した縦断面図である。
この例の容器でも第1の配管としてSiNまたはSiC等のセラミクスからなる剛体配管を採用するとともに、配管保持層である充填材405を備えている。そして充填材405の下部には充填材に酸化アルミニウムとアルミニウムの混合物を含浸させた含浸層405bを備えている。アルミニウムと酸化アルミニウムの混合物は剛性は必ずしも大きくないがねばり強く非常に強度が大きい。また変形に対する追従性を有している。したがって配管保持層としてこのような含浸層405bを設ければ応力緩和能をさらに向上することができる。
またこの例では配管404の外径はストレート(フランジ部以外は均一)であるが、内径は上部が狭く、下部で広いテーパー構造を採用している。これにより配管404の強度を向上している。このような場合でも内径は前述の如く、60mm〜85mm程度が好ましい。この例ではw1を60mmにw2を80mmに設定している。下部の径を太くすることで供給を終えたとき、容器の下部に温度が下がって粘性の大きな溶融金属が残っても、詰まり等が生じるのを防止することができる。
図19は容器のまた更に別の実施形態を示す断面図である。
本実施形態では、本体502の外周に如露口(円筒側面の下部から上部に向けて外周側に徐々に突き出る突き出し部)の如く突出する突出部503を有する。突出部503には、流路504が内在し、流路504は窒化珪素等のセラミクス製の配管505により覆われている。配管505は、充填材506を介して耐火材373に埋め込まれている。充填材506は耐火材373よりも強度が低い。セラミクス製の配管505は耐火性が良好であり、内壁に別の耐火材を設ける必要がなくなる。本実施形態においても流路504の上部には、例えば鉄製でR形状の配管が接続される。
また、容器501は、有底で筒状の本体502の上部開口部377に大蓋378が配置され、これらのフランジ間をボルトで締めることで本体502と大蓋378が固定されている。
また、ハンドル付のボルトを逆回転させて締結を開放してハッチ380を大蓋378の開口部379から開くことができる。そして、ハッチ380を開いた状態で開口部379を介して容器501内部のメンテナンスや予熱時のガスバーナの挿入が行われるようになっている。
上記の大蓋378のほぼ中央には開口部379が設けられ、開口部379には開閉自在のハッチ380が配置されている。ハッチ380の中央、或いは中央から少しずれた位置には、容器501内の減圧及び加圧を行うための内圧調整用の貫通孔381が設けられている。この貫通孔381には加減圧用の配管(図示を省略)が接続されるようになっている。該配管の先には、加圧用の配管には加圧気体に蓄積されたタンクや加圧用のポンプが接続されており、減圧用の配管には減圧用のポンプが接続されている。
大蓋378上のハッチ380に隣接する部分には、圧力開放用の貫通孔382が設けられている。圧力開放用の貫通孔382には、リリーフバルブ(図示を省略)が取り付けられるようになっている。これにより、例えば容器501内が所定の圧力以上となったときには安全性の観点から容器501内が大気圧に開放されるようになっている。
また、大蓋378には、液面センサとしての電極が挿入される液面センサ用の貫通孔(図示を省略)が配置されてもよい。そして、電極間の導通状態をモニタすることで容器501内の溶融金属の最大液面を検出することが可能であり、これにより容器501への溶融金属の過剰供給をより確実に防止できるようになっている。
本体502の底部裏面には、例えばフォークリフトのフォーク(図示を省略)が挿入される断面口形状で所定の長さの脚部(図示を省略)が例えば平行するように2本配置されている。
このように配管505により取り囲まれた流路504は、本体502の内周の該容器本体底部に近い位置に設けられた開口385を介し、該本体502外周の上部に向けて延在している。
配管505の上端部に第1のフランジ386が設けら、フレーム371には第1のフランジ386の下面に対向する第2のフランジ387が配管505の周囲を囲むように設けられている。第1のフランジ386と第2のフランジ387との間にはセラミクス製の配管505を固定するためのフランジ部材388が介挿されている。符号389は、充填剤506を注入するための孔である。
なお、図19においては、配管505の下部先端部も容器内壁に接触していたが、これらが離間するように構成しても構わない。
図20は容器の別の実施形態を示す断面図である。
本実施形態では、本体601の外周に如露口(円筒側面の下部開口607から上部に向けて外周側に徐々に突き出る突き出し部)のように突出する突出部602を有する。突出部602には、流路603が内在している。該流路603の一部には(ここでは下部に)配管604が埋め込まれ固定されている。配管が埋め込まれている流路603の部分は、耐火材402またはライニング403においてひび割れを起こす可能性のある箇所(例えば符号605の部分)であり、該配管の存在によりひび割れ部分から圧送気体が流れ込むことを防ぐことができる。配管604は容器601の成型時に、耐火材402またはライニング403に埋め込んでおくことが好ましい。本実施形態においても流路603の上部には、例えば図示を省略した鉄製のΤ形状やR形状の配管、レジューサを有する配管が接続される。この接続においても、パッキンを介したフランジ間のボルト締めによって接続されてもよい。なお、この配管は回転可能としてよい。回転可能とする機構としては、例えばこの配管の容器との接続部におけるフランジの一点を容器側のフランジと回転可能に接続すると共に、この配管のフランジと容器側のフランジとをクランプ機構により固定してもよい。これにより回転半径が小さく、取り回しの良い容器を構成することができる。また、このように配管を回転可能とすることで、容器側の流路のメンテナンスを簡単に行うことができる。容器側には、回転して折り曲げされたこの配管を保持する保持部材を設けても構わない。その際に、保持部材には、配管を固定するための手段を設けても良い。
また、容器601は、有底で筒状の本体606の上部開口部407に大蓋408が配置され、これらのフランジ間をボルトで締めることで本体606と大蓋408が固定されている。
また、ハンドル付のボルトを逆回転させて締結を開放してハッチ410を大蓋408の開口部409から開くことができる。そして、ハッチ410を開いた状態で開口部409を介して容器601内部のメンテナンスや予熱時のガスバーナの挿入が行われるようになっている。
上記の大蓋408のほぼ中央には開口部409が設けられ、該開口部409には開閉自在のハッチ410が配置されている。ハッチ410の中央、或いは中央から少しずれた位置には、容器501内の減圧及び加圧を行うための内圧調整用の貫通孔404が設けられている。この貫通孔404には加減圧用の配管(図示を省略)が接続されるようになっている。
大蓋408上のハッチ410に隣接する部分には、圧力開放用の貫通孔412が設けられている。圧力開放用の貫通孔412には、リリーフバルブ(図示を省略)が取り付けられるようになっている。これにより、例えば容器601内が所定の圧力以上となったときには安全性の観点から容器601内が大気圧に開放されるようになっている。
また、大蓋408には、液面センサとしての電極が挿入される液面センサ用の貫通孔が配置されてもよい(いずれも図示を省略)。そして、電極間の導通状態をモニタすることで容器601内の溶融金属の最大液面を検出することが可能であり、これにより容器601への溶融金属の過剰供給をより確実に防止できるようになっている。
本体602の底部裏面には、例えばフォークリフトのフォーク(図示を省略)が挿入される断面口形状で所定の長さの脚部(図示を省略)が例えば平行するように2本配置されている。
次に、本発明の更に別の実施形態について説明する。
図24及び図25はこの実施形態に係る流路に挿入される配管の構成を示す図であり、図24は正面から見た断面図、図25は平面から見た断面図である。この実施形態に係る配管は図7から図9に示された容器101の配管134として用いられるものを想定しているが、勿論別のタイプの容器に用いることができる。
この配管134は例えば鉄製であり、その内側には耐火材からなるライニング層701が形成されている。このライニング層701の内側に溶融金属例えば溶融アルミニウムの流路702が形成されている。この流路702の径は例えば65mm〜80mm程度が好ましい値である。また配管134及びライニング層702の材質については例えば既に開示した通りである。この実施形態に係る配管134では、配管134の内側に、ライニング層702である耐火材を保持するための保持部材703が突出して設けられている。この保持部材703は、例えば鉄の棒をV字状となるように配管134の内壁に溶接により接続して構成される。例えばV字状の鉄の棒は90°間隔で4箇所に設けられている。また、この保持部材703は、配管134の下方側、より好ましくは配管134のほぼ下端に近い位置に設けられ、それ以外の位置、例えば配管の内側の上方側は、保持部材703を設けることが禁止された禁止領域704とされている。
本実施形態では、ライニング層702である耐火材が配管134から脱落することを防止することができる。また、このような保持部材703を配管134の下方側、例えば配管134のほぼ下端に近い位置に設けたことにより、それより上のライニング層702に割れが入ったような場合でもライニング層702が脱落するようなことはない。保持部材703を配管134のほぼ下端に近い位置に設けることで、脱落防止領域を広げられる他、保持部材703の溶接作業が容易となる。更に、保持部材703が設けられた配管134の内側の上方側は、保持部材を設けることが禁止された禁止領域704を設けることで、配管134とライニング層702とで熱膨張率の違いに起因するこれらの部材の割れや変形を防止することが可能となる。
次に、本発明のまた別の実施形態について説明する。
図26及び図27はこの実施形態に係る容器の構成を示す図である。図26は正面から見た断面図、図27は平面から見た部分断面図である。この容器800は、図7〜図9に示した容器と同一の要素には同一の符号を付してある。
すなわち、この容器800は、フレーム101aの内側には、垂直方向に沿って内側への隆起部である凸部101cを有するライニング101bが設けられている。ライニング101bは耐火層と断熱層の積層構造が好ましい。これらの材質も上記実施形態と同様であればよい。
凸部101c内には、容器800内底部に近い位置から容器101上面側まで貫通する流路109が設けられている。流路109は例えば図24及び図25に示した配管134に取り囲まれている。流路109の上部には、例えば配管108が着脱可能に例えばボルト締により接続されている。配管108は例えば鉄製であり、形状としては例えばΤ形状である。
ここで、流路109は、特に図27に示すように、隆起部である凸部101cを越えてライニング101bまで及んでおり、しかし流路109と接続された容器内部側に開口する開口部801(容器底部付近に設けられている。)の部分にはこのようにライニング101bまで及ぶ部分はなくなって、結果的にはこの部分はライニング101bから突出する段付き部802が設けられていることとなっている。この段付き部802は、つまり当該容器の底面と配管134の下端面との間の間隙(例えば開口部801の高さに相当する。)を維持するため、配管134の下端面を保持する保持部材(ライニングと一体的に設けられている。)を構成している。
本実施形態では、配管134を保持する保持部材としての段付き部802を設けたことで、配管134及び配管の内部に形成されることがあるライニング層の脱落を防止できる。また、当該容器の製造工程において、配管134を流路109に挿入して固定する際に位置固定用の治具が不要になるという効果もある。
なお、この実施形態では、段付き部802を特にライニング101bの形状を変えることで実現していた。しかし、ライニングとは別に特別に保持部材を設けても勿論構わない。
次に、本発明のまた別の実施形態を説明する。
図28はこの実施形態に係る容器の構成を示す正面からみた断面図であり、図29はその容器の蓋を外した状態の平面図である。
この実施形態に係る容器1001は、基本的には図17に示した容器301と同様の構成であるが、配管1002がライニングとしての耐火材173に接している点が異なる。この配管1002はライニングとしての耐火材173に対して配管1002内における溶融金属の流通方向に沿って接するように配置されている。配管1002は、例えば金属製或いはセラミクス製である。
このように本実施形態に係る容器1001では、配管1002をライニングとしての耐火材173に接するように構成したことで、配管1002は予熱時にハッチ180を開けて挿入されるガスバーナーから最も離れたところに位置することとなり、ガスバーナーからの熱的な影響を受けにくくなる。また、配管1002がライニングとしての耐火材173に接しているので、例えば運搬の際の振動によって配管が振れて機械的な破壊に至ることを防止できる。更に、最小の傾きで容器1001内の残り湯を外部に効率よく排出することができる。
次に、本発明のまた別の実施形態を説明する。
図30はこの実施形態に係る容器の構成を示す正面からみた断面図であり、図31はその容器の蓋を外した状態の平面図である。
この実施形態に係る容器2001は、基本的には図28乃至図29に示した容器1001と同様の構成であるが、以下の点が異なっている。
容器2001における大蓋178は、内外で溶融アルミニウムを流通させるための配管2003が容器本体2004内に配置された状態で容器本体2004から取り外すことができるように容器本体2004に対して着脱可能に設けられている。
具体的には、配管2003は、容器本体2004における上部開口部平面と同じ高さの位置に、当該配管2003を容器本体2004における上部開口部平面により保持させるためのフランジ部2002を有する。また、大蓋178には、この配管2003が貫通する貫通孔2005を有する。配管2003はこの貫通孔2005を介して図示を省略された例えばR形状の配管(例えば図1の符号8参照、Τ形状であっても勿論構わない。)に接続されている。大蓋178は、大蓋178の外周のフランジと容器本体2004の外周のフランジとがボルトにより固定されることで容器本体2004に対して着脱可能に設けられている。
即ち、図28乃至図29に示した容器1001では、大蓋178を容器本体305から取り外そうとしたときに、図32に示すように、大蓋178に配管1002が一体化された状態で取り付けられており、従って大蓋178の取り外しは大変な作業となる。これに対して、この実施形態に係る容器2001では、図33に示すように、容器本体2004側に配管2003を残した状態で大蓋178を取り外すことができる。従って、大蓋178の取り外しが容易であり、メンテナンスを容易に行うことができる。このメンテナンスは、例えば容器2001から大蓋178を取り外し、容器本体2004内に付着したノロ(アルミニウムの酸化物)を取り除く作業等である。
また、この実施形態に係る容器2001では、特に図31に示したように、ライニング2006の内周は円筒形状とされているが、配管2003が接する位置は平面形状とされた平面部2007が設けられている。この平面部2007には、窪み部2008が設けられている。この窪み部2008は、配管2003のほぼ半径分の大きさを有しており、配管2003のほぼ半分はライニング2006側にはめ込まれている。これにより、配管2003はより強固にライニング2006に取り付けられることになり、また配管2003とライニング2006との接触面積もより大きくなる。
なお、配管2003は、金属製又はセラミクス製が好ましい。
次に、本発明のまた更に別の実施形態を説明する。
図34はこの実施形態に係る容器の構成を示す正面からみた断面図であり、図35はその容器の蓋を外した状態の平面図である。
この実施形態に係る容器3001は、基本的には図30乃至図31に示した容器2001と同様の構成であるが、以下の点が異なる。
フレーム171の内側にはライニングとしての耐火材3002が設けられている。この耐火材3002の内面側には、凸となる隆起部3003が上下方向に延在しており、当該隆起部3003内は内外で溶融金属を流通させるための流路3004を内在している。この容器3001の底面付近には、流路3004に通じる当該容器3001の内面側への開口部3005が設けられている。そして、流路3004には、配管3006が挿入されている。配管3006は、開口部3005において容器3001の内面側に露出している。そして前記配管の下側開口面近傍の前記隆起部は、前記容器の内側が広くなるようにテーパー形状を有している。これにより容器のメンテナンス時に配管下部への容器内側からのアクセスの容易さを向上する。これにより、容器3001内の溶融アルミニウムの熱が配管露出部から配管3006全体に伝導して配管3006を流通する溶融アルミニウムの詰まりを防止することができる。
本実施形態に係る容器3001においても、図36に示すように、容器本体3007側に配管3006を残した状態で大蓋178を取り外すことができる。従って、大蓋178の取り外しが容易であり、メンテナンスを容易に行うことができる。
なお、配管3006は、金属製又はセラミクス製が好ましい。
本発明の一実施形態に係る容器の断面図である。 図1の平面図である。 図1における一部断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る金属供給システムの構成を示す概略図である。 本発明の容器と溶解炉の例を概略的に示す図。 本発明の供給装置、容器を用いた金属の配送モデルの例を説明するための図。 本発明のシステムを使った自動車の製造方法を示すフロー図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 本発明の一実施形態に係る容器の断面図である。 図18に示した容器の一部拡大断面図である。 図21の配管における上端部の構造を上面から見た概略平面図である。 本発明の一実施形態に係る容器の一部拡大断面図である。 本発明の他の実施形態に係る配管を正面から見た断面図である。 図24に示した配管を平面から見た断面図である。 本発明のまた別の実施形態に係る容器を正面から見た断面図である。 図26に示した容器を平面から見た部分断面図である。 本発明の別の実施形態に係る容器を正面から見た断面図である。 図28に示した容器から蓋を外した状態の平面図である。 本発明のまた別の実施形態に係る容器を正面から見た断面図である。 図30に示した容器から蓋を外した状態の平面図である。 図28における容器において容器本体と蓋とを分離した状態を示した図である。 図30における容器において容器本体と蓋とを分離した状態を示した図である。 本発明の更にまた別の実施形態に係る容器を正面から見た断面図である。 図34に示した容器から蓋を外した状態の平面図である。 図34における容器において容器本体と蓋とを分離した状態を示した図である。
符号の説明
1、201、301、401、501、601 容器
1a、71、101a、171、271、371、401 フレーム
2、72、101b、172、272、372、403 ライニング
5a、87、105a、187、287、387、417 第2のフランジ
9、75、109、302、403、504、603 流路
10、84、110、405、506 充填材
18、81、181、281、381、404 貫通孔
34、83、134、303、404、505、604 配管
34a、86、134b、186、286、386、418 第1のフランジ
34b、134b、373、402 耐火材
101c、406 容器内凸部

Claims (4)

  1. 溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、内外で溶融金属を流通させるための流路を内在したライニングと、少なくとも前記流路の一部を囲うように設けられた配管とを具備する容器を製造する方法において、
    前記流路を構成するための前記ライニングの孔内に前記配管を配置し、
    前記配置された配管の外壁と前記孔の内壁との間の隙間に、流動性を有し、硬化後の強度が前記ライニングより小さい配管保持部材を注入し、
    前記配管保持部材を硬化させる
    ことを特徴とする容器の製造方法。
  2. 請求項1に記載の容器の製造方法であって、
    前記配管は、セラミックス又は金属からなることを特徴とする容器の製造方法。
  3. 溶融金属を貯留可能な容器であって、フレームと、前記フレームの内側に設けられ、内外で溶融金属を流通させるための流路を内在したライニングと、少なくとも前記流路の一部を囲うように設けられた配管とを具備する容器の配管交換方法において、
    前記流路を構成するための前記ライニング内の孔内に前記配管を配置し、前記配置された配管の外壁と前記孔の内壁との間の隙間に、流動性を有し、硬化後の強度が前記ライニングより小さい配管保持部材を注入し、前記配管保持部材を硬化させた当該配管保持部材を破壊しつつ、前記配管を前記ライニングに形成された孔から抜き出し、
    前記配管を抜き出した孔内に他の配管を配置し、
    前記配置された他の配管の外壁と前記孔の内壁との間の隙間に、流動性を有し、硬化後の強度が前記ライニングより小さい配管保持部材を注入し、
    前記配管保持部材を硬化させる
    ことを特徴とする容器の配管交換方法。
  4. 請求項3に記載の容器の配管交換方法であって、
    前記他の配管を配置する前に、前記配管を抜き出した孔内に残った前記配管保持部材を除去することを特徴とする容器の配管交換方法。
JP2003409696A 2002-05-31 2003-12-08 容器の製造方法及び容器の配管交換方法 Expired - Fee Related JP4303573B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409696A JP4303573B2 (ja) 2002-05-31 2003-12-08 容器の製造方法及び容器の配管交換方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002160635 2002-05-31
JP2002350568 2002-12-02
JP2003409696A JP4303573B2 (ja) 2002-05-31 2003-12-08 容器の製造方法及び容器の配管交換方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003157215A Division JP3540312B1 (ja) 2002-05-31 2003-06-02 容器及び容器の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006142389A Division JP3830506B2 (ja) 2002-05-31 2006-05-23 容器

Publications (3)

Publication Number Publication Date
JP2004195550A JP2004195550A (ja) 2004-07-15
JP2004195550A5 JP2004195550A5 (ja) 2006-07-06
JP4303573B2 true JP4303573B2 (ja) 2009-07-29

Family

ID=32776736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409696A Expired - Fee Related JP4303573B2 (ja) 2002-05-31 2003-12-08 容器の製造方法及び容器の配管交換方法

Country Status (1)

Country Link
JP (1) JP4303573B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2525234A1 (en) * 2004-02-20 2005-09-01 Hoei Shokai Co., Ltd. Container, storage bath and a method of producing the container
JP2010240701A (ja) * 2009-04-07 2010-10-28 Zeon North Kk 溶湯金属の自動吸引供給装置および溶湯金属用取鍋

Also Published As

Publication number Publication date
JP2004195550A (ja) 2004-07-15

Similar Documents

Publication Publication Date Title
US7204954B2 (en) Container
WO2001098004A1 (fr) Procede et systeme d'alimentation de metal en fusion, procede de production d'aluminium en fusion, procede de production de piece d'aluminium moulee sous pression, procede de fabrication de voiture, vehicule de transport, cuve et dispositif d'alimentation de metal en fusion
EP1552894B1 (en) Container capable of transporting molten metal received therein to separate factory and method of producing the container
JP3871700B2 (ja) 容器及び貯留槽
JP4303573B2 (ja) 容器の製造方法及び容器の配管交換方法
JP3489678B2 (ja) 容 器
JP3540312B1 (ja) 容器及び容器の製造方法
JP3830506B2 (ja) 容器
JP3323489B1 (ja) 溶融金属供給用容器
JP3744865B2 (ja) 容器
JP3495038B2 (ja) 容 器
JP3492675B1 (ja) 運搬車輌、差圧制御ユニット及び溶融金属供給システム
JP3621405B2 (ja) 容器
JP3506137B2 (ja) 容器、溶融金属供給方法及び溶融金属供給システム
JP3492678B1 (ja) 容器、溶融金属供給システム及び溶融金属供給方法
JP3621387B2 (ja) 溶融金属供給用容器
ZA200410388B (en) Container capable of transporting molten metal received therein to seperate factory and method of producing the container.
JP3727278B2 (ja) 容器
JP3491757B1 (ja) 運搬車輌、溶融金属の供給方法及び溶融金属供給システム
JP3610342B2 (ja) 溶融金属供給用容器
JP2004098173A (ja) 容器及び溶融金属の供給方法
JP4659552B2 (ja) 溶融金属取鍋
JP2004276118A (ja) 容器
JP2005046914A (ja) 溶融金属供給用容器
JP2003080363A (ja) 容器、溶融金属供給方法及び溶融金属供給システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees