JP4300225B2 - 磁気抵抗効果素子および磁気ヘッドならびにその製造方法 - Google Patents

磁気抵抗効果素子および磁気ヘッドならびにその製造方法 Download PDF

Info

Publication number
JP4300225B2
JP4300225B2 JP2006191304A JP2006191304A JP4300225B2 JP 4300225 B2 JP4300225 B2 JP 4300225B2 JP 2006191304 A JP2006191304 A JP 2006191304A JP 2006191304 A JP2006191304 A JP 2006191304A JP 4300225 B2 JP4300225 B2 JP 4300225B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
layer
gap
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006191304A
Other languages
English (en)
Other versions
JP2008021763A (ja
Inventor
沢 裕 一 大
村 志 保 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006191304A priority Critical patent/JP4300225B2/ja
Publication of JP2008021763A publication Critical patent/JP2008021763A/ja
Application granted granted Critical
Publication of JP4300225B2 publication Critical patent/JP4300225B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁気抵抗効果素子および磁気ヘッドならびにその製造方法に関する。
近年、ハードディスクドライブにおける磁気記録密度は急激に上昇し、それに伴い、再生ヘッドに要求される再生感度・再生分解能も年々上昇している。スピン依存散乱を動作原理に用いたGMRヘッドの出現は飛躍的に出力を上げ高記録密度化に対応した。またさらなる高記録密度化に対応するため多くの構造が提案されている。その目的に対応した形で多層膜積層面に垂直に通電するタイプの再生素子が提案されている。たとえばTMR(Tunneling-junction Magnet-Resistance)ヘッドやCPPGMR(Current Perpendicular to the Plane Giant Magnet-Resistance)ヘッドがそれらの再生素子に相当する。しかし、1平方インチあたり1Tビットを有するような超高記録密度ではそれらの素子でも感度不足もしくは抵抗値が高すぎて採用が困難と予想される。
磁気記録技術の分野においては、記録密度の向上により必然的に記録ビットの縮小化が進められ、その結果として十分な信号強度を得ることが難しくなりつつある。このため、より感度の高い磁気抵抗効果を示す材料が求められており、上述の如く大きな磁気抵抗変化率(以下、MR比ともいう)を示す系の必要性はますます高くなっている。
最近、100%以上の磁気抵抗変化率を示すものとして、2つの針状のニッケル(Ni)を付き合わせた「磁気微小接点」、あるいは2つのマグネタイトを接触させた磁気微小接点が、それぞれ、非特許文献1および非特許文献2に開示されている。これらは、大きな磁気抵抗変化率を示しているものの、その磁気微小接点の作製方法は、いずれも2つの針状あるいは三角形状に加工した強磁性体を角付き合わせるというものである。さらに極最近、2本の細いNiワイヤをT字に配置し、電着法を用いて接触部に微小コラムを成長させた磁気微小接点が開示されている(例えば、非特許文献3参照)。これらも非常に大きな磁気抵抗変化率を示しているが、この磁気微小接点の構造では素子化が不可能である。
一方、アルミナのピンホールにNiクラスターを電着で成長させて作製した磁気微小接点が開示された(例えば、非特許文献4参照)。この構造は磁区の制御と接点構造制御が困難で、このため、この接点の磁気抵抗変化率は14%程度である。
メッキのかわりにスパッタで形成された磁性体を用いれば薄い膜厚の成膜制御性に優れるため、さらに磁区と接点構造制御が行いやすくなり高い磁気抵抗変化率が期待できる。このナノコンタクトの磁気抵抗効果素子は上下電極に挟まれて面内垂直にセンス電流が流される。磁化が固着されたピン層と、磁化が外部磁界で動くフリー層とは絶縁体に設けられた微小磁気接点でのみ接触する。この微小磁気接点において、フリー層とピン層とが反平行の場合高抵抗を示し、平行の場合には低抵抗を示す。すなわち微小磁気接点での上下磁性層の磁化方向の状態が素子の電気抵抗を決定する。大きな磁気抵抗変化率を出現するためのポイントは磁性体接合部分をナノサイズに小さくして、そこに急峻な磁壁を閉じ込める。電子のフェルミ波長程度の磁壁厚さが必要とされている。そのためには10nm以下の直径での接合が必要となる。
このようなナノコンタクトを有する磁気抵抗効果素子(MR素子)を形成するプロセスは特許文献1に開示されている。この特許文献1に開示されているプロセスは、まず第1磁性膜を形成して、その上に絶縁層を形成する。次にリソグラフィー技術等を用いて微小な穴を電子線レジストに形成し、それをマスクに絶縁層に対してエッチングを行い、絶縁層にコンタクトホールを形成した後、レジストを剥離する。次に、磁性膜を成膜する装置内に入れてスパッタクリーニングを行い、第2磁性膜を埋め込み成膜する。このようにして、絶縁層に形成されたコンタクトホールを介してその両側の磁性膜を接続する。
また、接続穴形状に関しては、特許文献2には壷形状をした穴が絶縁膜越しに形成されている。すなわち、絶縁膜の下部にアンダーカットされた形状の穴(壷形穴)とそれに埋め込まれた磁性膜が開示されている。
それらは、絶縁膜に円柱もしくは略円錐形状のコンタクトホールを通じて上下磁性膜が接続されている。コンタクトホールを形成した場合、素子機能に関し2つの問題点が考えられる。1つは、コンタクトホール形状を安定に描画する場合、ライン形状に対して大きな直径の穴しか開けられない。そのため上下磁性膜の接触面積が増加し、磁性膜間に形成される磁壁幅が増加することでMR比が低下してしまう。
もう1点は、コンタクトホールにスパッタで磁性膜を埋め込む場合、ライン形状に比べて陰になる部分が多い、すなわちターゲットに対する立体角が小さいため、膜質の劣化が増加する。そのため、バリスティック伝導が阻害されMR比が低下してしまう。
陰になる部分を小さくするにはアスペクト比(深さ/穴径)を小さくする、例えば絶縁膜の膜厚を小さくする必要がある。絶縁膜の膜厚を小さくするのは、例えばピンホールや欠陥に対する絶縁性確保とのトレードオフの関係になる。絶縁膜を連続成膜しないプロセス(一度、真空チャンバーから出して洗浄処理が入る)プロセスを用いて2層構造とすれば、ゴミなどによるピンホール・欠陥は激減する。
細い描画を行いやすいラインを直交させることで交点に点を描くことができる。
その、直交するラインの交点でコンタクトホールを形成する技術として、例えば、特許文献3の図54に示されるように、絶縁体の半分の厚さをスペース状に加工し、さらにもう半分を直交するスペース状に加工する方法が開示されている。これは、単層膜での加工になり、耐ピンホールなど絶縁性を確保するに十分な膜厚が必要となる。また磁性膜埋め込みは通常のアスペクト比に対して行う必要がある。
さらに、通常のCPPMR素子構造では媒体走行面に現れたピン層に端面の磁化からフリー層に磁束が流入し、フリー層の磁化方向とピン層との直交磁化関係をずらしてしまう。このため、これをキャンセルするためシンセティックピン層などを適用する(ギャップ長を大きくする、線分解能を劣化させる)などの工夫が必要であった。
N. Garcia, M. Munoz, and Y. -W. Zhao, Physical Review Letters, vol.82, p2923 (1999) J. J. Versluijs, M. A. Bari and J. M. D. Coey, Physical Review Letters, vol.87, p26601 -1 (2001) N.Garcia et al.,Appl.Phys.Lett.,vol.80,p1785(2002), H.D.Chopra and S.Z.Hua, Phys.Rev.B,vol.66,p.20403-1(2002) M. Munoz, G. G. Qian, N. Karar, H. Cheng, I. G. Saveliev, N. Garcia, T. P. Moffat, P. J. Chen, L. Gan, and W. F. Egelhoff, Jr., Appl. Phys. Lett., vol.79, p.2946, (2001) 特開2003−204095号公報 米国特許第5936402号明細書 特開2003−204095号明細書
上述したように、絶縁膜にコンタクトホールを形成する場合、微小穴を形成することと良好な埋め込み成膜の両立が不可避である。コンタクトホールをドット状に形成した場合の問題点の1つは、コンタクトホール形状で安定に描画する場合、ライン形状に対して大きな直径の穴しか開けられない。そのため上下磁性膜の接触面積が増加し、磁性膜間に形成される磁壁幅が増加することでMR比が低下してしまう。もう1つの問題点は、コンタクトホールにスパッタで磁性膜を埋め込む場合、ライン形状に比べて陰になる部分が多い(ターゲットに対する立体角が小さい)ため、膜質の劣化が増加する。そのため、バリスティック伝導が阻害されMR比が低下してしまう。そのため、まず、より薄い絶縁膜で絶縁性を確保することが必要である。さらに良好な膜質で埋め込むため絶縁性を確保する膜厚でありながら、アスペクト比を実質的に小さくできる工夫が必要である。
さらに、通常のCPPMR素子構造では媒体走行面に現れたピン層に端面の磁化からフリー層に磁束が流入し、フリー層の磁化方向とピン層との直交磁化関係をずらしてしまう。このため、これをキャンセルするためシンセティックピン層など適用する(ギャップ長を大きくする、線分解能を劣化させる)などの工夫が必要であった。
本発明は上記事情を考慮してなされたものであって、ナノコンタクトをより微少かつ安定性が高く形成することが可能となるとともにより高感度な磁気抵抗効果素子および磁気ヘッドならびにその製造方法を提供することを目的とする。
本発明の第1の態様による磁気抵抗効果素子は、第1の磁性層と、第2の磁性層と、前記第1の磁性層と前記第2の磁性層との間に設けられ、前記第1の磁性層側から前記第2の磁性層側に貫通する直線形状の第1の間隙を有する第1の絶縁層と、前記第1の絶縁層と前記第2の磁性層との間に設けられ、前記第1の絶縁層側から前記第2の磁性層側に貫通し、前記第1の間隙と交差する直線形状の第2の間隙を有する第2の絶縁層と、を備え、前記第1および第2の磁性層は第1の間隙と前記第2の間隙との交差領域で電気的に接触することを特徴とする。
また、本発明の第2の態様による磁気ヘッドは、上記記載の磁気抵抗効果素子を再生素子として備え、媒体対向面に露出する前記第2の磁性層の形状は、前記第1の絶縁層側の幅が前記第1の磁性層の幅の略半分以下であることを特徴とする。
また、本発明の第3の態様による磁気抵抗効果素子の製造方法は、基板上に第1の磁性層を形成するステップと、前記第1の磁性層上に、第1の方向の長さが前記第1の方向に直交する第2の方向の長さが長いマスクを形成するステップと、前記マスクを用いて前記第1の磁性層をエッチングするステップと、エッチングされた前記第1の磁性層の両側に第1の絶縁層を形成するステップと、前記第1のマスクを除去した後、前記第1の絶縁層上に、前記第1の方向の長さが前記第2の方向の長さよりも長い間隙を有する第2の絶縁層を形成するステップと、を備えたことを特徴とする。
本発明によれば、ナノコンタクトをより微少かつ安定性が高く形成することが可能かつより高感度な磁気抵抗効果素子および磁気ヘッドならびにその製造方法を提供することができる。
以下に、本発明の実施形態を説明する。
(第1実施形態)
本発明の第1実施形態による磁気抵抗効果素子を、図1を参照して説明する。図1は、本実施形態の磁気抵抗効果素子を構成する層の分解斜視図である。本実施形態の磁気抵抗効果素子は、図示しないアルチック基板上に図示しないアルミナアンダーコートを設け、このアルミナアンダーコート上に膜厚1.5μmのNiFe合金からなる下部電極を兼用する下部シールド(図示せず)を設け、この下部シールドの表面を鏡面研磨し、この鏡面研磨した下部シールド上に直径がナノメートルサイズのナノコンタクトを有する素子を設けた構成となっている。
このナノコンタクトを有する素子は、上記下部シールド上に、磁化の向きが外部磁界によって変化する磁化自由層(フリー層ともいう)として機能する磁性層2が設けられている。この磁性層2上には、直線形状の間隙5が0.1nm〜5nmの幅で形成されている絶縁層4が設けられている。そして、絶縁層4上には、間隙5と略同幅でかつ直交する直線形状の間隙7を有する絶縁層6が設けられている。この絶縁層6上には、磁化の向きが固着された磁化固着層(以下、ピン層ともいう)として機能する磁性層8が設けられており、この磁性層8上に磁性層8の磁化の向きを固着させる磁性層10が設けられている。磁性層2と磁性層8は直交した間隙5と間隙7の交差領域にて電気的に接触する。この交差領域で接触している部分をポイントコンタクト(以下、PCともいう)と呼ぶ。本実施形態においては、ポイントコンタクトは略矩形状となり、縦横0.1nm〜5nmのサイズを有している。
本実施形態においては、磁性層2と磁性層8との間には、ほとんどの領域で絶縁層4、6が存在する。2重の絶縁層4,6で絶縁することは、もしどちらか一層の絶縁層にピンホールが生じたときにもう一層でカバーできるので信頼性の点で効果がある。これを以下に説明する。
まず、図2に示すように、磁性層2と磁性層8との間に、ナノメートルサイズのコンタクトホール13を有する絶縁層12が設けられた構造を比較例として考える。この比較例において例えば素子形状を一辺30nmの矩形とすると、面積は900nm(=30nm×30nm)となり、少なくともピンホールは900nmに1以下である必要がある。これに対して、本実施形態では大半の領域は絶縁層4、6の2層で被覆されている。1層のみの絶縁層で被覆される領域は、間隙幅を3nmとすると絶縁層一層当たり90nm(=3nm×30nm)、2層ではポイントコンタクト(3nm×3nm)を除いて171nm(=2×90−3×3)となり、1層のみの絶縁層で形成した比較例の場合の約1/5の領域になる。したがって、ピンホールの形成される確率が約1/5になり、信頼性が比較例に比べて向上する。
ポイントコンタクトに埋め込まれる磁性層は絶縁層の厚さが大きくなると、その影の影響が大きくなり膜質が劣化してしまう。図2に示す比較例のように、ナノホール以外は絶縁層の厚さが全て同一の場合、穴径3nm、膜厚6nmとすると、アスペクト比(厚さ/穴径の比)は2となる。一方、本実施形態では、絶縁層をそれぞれ3nm(合計6nm)として矩形穴の1辺を3nmとすると、穴の各辺は3nmの絶縁層(絶縁層4もしくは絶縁層6)に囲われているにすぎない。したがって、アスペクト比は1となるため、影の影響がでにくく良質な膜で埋め込むことができ、MR比を向上させることができる。
製造法的にも図2に示す比較例におけるコンタクトホール形状は、例えば電子線(EB)描画を用いて作成すると、最もレベルが高いプロセスが要求される。これに対して、本実施形態のようにライン形状で描画するとコンタクトホール形状に比べてプロセスレベルを下げることができる。その結果、製造歩留まりを向上させることができる。
次に、本実施形態の磁気抵抗効果素子の製造方法を図3(a)乃至図3(d)を参照して説明する。
まず、図示しないアルチック基板上に図示しないアルミナアンダーコートを形成し、このアルミナアンダーコート上に膜厚1.5μmのNiFe合金からなる下部電極を兼用する下部シールド(図示せず)を形成し、この下部シールドの表面を鏡面研磨し、この鏡面研磨した下部シールド上に膜厚3nmのTaからなる下地膜(図示せず)を形成する。
次に、図3(a)に示すように、上記下地層上に膜厚5nmのNiFeからなる磁性層2を形成する。続いて、磁性層2上にEB用レジストからなるレジストパターン30を形成する。EB用レジストからなるレジストパターン30は直線形状であり磁性層2との接触幅が2.5nmで形成されている。そして、レジストパターン30をマスクとしてスパッタエッチングによって磁性層2の表面のクリーニングを行い、その後、膜厚3nmのアルミナからなる絶縁層4を堆積する(図3(a)参照)。
次に、EB用レジストからなるレジストパターン30をリフトオフすることで幅2.5nm、長さ0.5μmの直線形状の間隙5を有する絶縁層4が磁性層2上に形成される。この間隙5の側面は膜厚方向に対して略45度の傾斜を有している(図3(b)参照)。
次に、絶縁層4上に、間隙5と直交する方向にEB用レジストからなるレジストパターン32を形成する。このレジストパターン32はライン形状であり磁性層2および絶縁層4との接触幅2.5nmで形成されている。続いて、膜厚3nmのアルミナからなる絶縁層6を堆積する(図3(c)参照)。その後、レジストパターン32をリフトオフすると、レジストパターン32が除去された跡には、幅2.5nmの間隙7が形成される。
次に、絶縁層6上に膜厚2nmのNiFeからなる磁性層8を形成する(図3(d)参照)。すると、間隙5と間隙7との交差領域においては、磁性層8が埋め込まれて、磁性層2と磁性層8が電気的に接続する。続いて、磁性層8上に膜厚15nmのPtMnからなる磁性層10を形成する(図3(d)参照)。その後、磁性層10上に膜厚3nmのTaからなるギャップ層(図示せず)を形成する。そして、これらの積層膜を一辺30nm角にパターニングして磁気抵抗効果素子を形成する。
絶縁層4、絶縁層6はリフトオフで形成したが、RIE(Reactive Ion Etching)やCDE(Chemical Dry Etching)を用いたドライエッチングや薬液を用いたケミカルエッチングを用いても良い。EB描画を用いた場合には、EB用レジストを用いて間隙(スペース)を形成する場合のほうが、より細線を形成しやすい。また、リフトオフとエッチングを間隙5、間隙7で使い分けても良い。特に、間隙7を形成する場合は、間隙5の段差を跨ぐため、リフトオフよりもエッチングのほうが形成しやすい。その場合は、間隙7が絶縁層4を横切るため、ドライエッチング耐性の強い材料で絶縁層4を形成することが好ましい。例えば、絶縁層4にアルミナ、絶縁層6にSiOを用い、CHFなどのフレオン系ガスを用いて間隙7を加工するとアルミナ、SiOの選択比は10程とれるので、間隙7を形成した場合のオーバーエッチングを極めて小さく抑えることができる。その結果、絶縁不良による歩留まり低下を防ぐことができる。本実施形態で使用した、絶縁層6:SiO、絶縁層4:アルミナ以外に、絶縁層6:窒化シリコン、絶縁層4:アルミナ、RIEガス:CFの組み合わせ、絶縁層6:窒化シリコン、絶縁層4:SiO、RIEガス:CFの組み合わせでも同様に作成できる。
本実施形態においては、下層の磁性層2としてフリー層、磁性層8としてピン層、磁性層10として反強磁性層を用いたが積層順が逆になっても同様の効果が得られる。この場合、フリー層となる磁性層2が絶縁層4、6の間隙の交差領域に埋め込まれて、下層のピン層となる磁性層8と電気的に接続することになる。
以上説明したように、本実施形態によれば、直交する直線形状の間隙の交差領域にナノコンタクトが形成されるため従来の場合に比べてナノコンタクトをより微少かつ安定性が高く形成することが可能となる。また、欠陥の少ない磁性膜を形成することが可能となり、より高感度な磁気抵抗効果素子を得ることができる。
(第2実施形態)
次に、本発明の第2実施形態による磁気抵抗効果素子を図4に示す。本実施形態の磁気抵抗効果素子は、図1に示す第1実施形態の磁気抵抗効果素子において、絶縁層4に複数(図4では2つ)の間隙5a、5bを設けた構成となっている。このような構成とすることにより、絶縁層6に形成される間隙7と、絶縁層4に形成される間隙5a、5bとの交差領域が複数個形成され、したがって、複数のポイントコンタクトが形成される。これにより、素子抵抗が低下し、その結果、高周波特性を向上させることができる。
図4では、絶縁層4に2つの間隙5a、5bを形成し、絶縁層6に間隙7を一つ形成しているので、合計2つのポイントコンタクトが形成される。例えば、ポイントコンタクトのサイズが2nm×2nmの場合、素子抵抗はポイントコンタクトの個数分だけ抵抗は減少する。低抵抗化することで高周波特性の向上が図られる。
従来のコンタクトホールプロセスを用いて、複数ポイントコンタクトを形成しようとした場合、隣通しのEB描画の干渉でホール径がひろがり、良好なコンタクトが形成しにくい。
これに対して、本実施形態のように、直線形状で形成すると低電子密度で描画できるため、干渉が起こりにくく、安定してポイントコンタクトの形成を行うことができる。
本実施形態も第1実施形態と同様に、従来の場合に比べてナノコンタクトをより微少かつ安定性が高く形成することが可能となるとともに、より高感度な磁気抵抗効果素子を得ることができる。
(第3実施形態)
次に、本発明の第3実施形態による磁気ヘッドを、図5乃至図7を参照して説明する。本実施形態の磁気ヘッドは、図1に示す第1実施形態の磁気抵抗効果素子を構成する各層の積層順序を逆にするとともに図3(a)の工程で説明したエッチングを磁性層2の代わりに下層のピン層となる磁性層8に適用して、間隙7に埋め込まれる以外の磁性層8の膜厚を減少させた構成の磁気抵抗効果素子を再生素子として備えている。このように、ピン層となる磁性層8の膜厚を減少させることにより、後述するように更なる効果が発生する。
図5は、本実施形態の磁気ヘッドを媒体走行面からみた平面図を示す。通常のTMR(Tunneling MR)素子、CPP(Current perpendicular to plane)素子を再生素子として備えている磁気ヘッドの場合、ピン層として機能する磁性層は一般にトラック幅方向全面に露出するが、本実施形態の磁気ヘッドではピン層8本来の厚さで露出するのは略間隙7の幅のみ、さらにはピン層8の露出が略間隙7の幅のみとなる。磁性層8は間隙7の両脇を絶縁層6で制限されることで、媒体走行面への露出面積が減少し、磁性層8の端に発生する磁化より絶縁層4,6を挟んで対峙するフリー層となる磁性層2に流入する磁束は減少する。その結果、フリー層2とピン層8との磁化直交関係が良好に保たれやすくなり対称性の良好な再生波形をうることが出来る。なお、図5はピン層8を略間隙7の幅のみとなるようにスッパタエッチング除去した場合の媒体走行面側から見た平面図である。図6は図5に示すA−A方向から見た断面を図6に示し、図5に示す切断線A−Aで切断したときの断面を図7に示す。図5および図7からわかるように、磁性層2と磁性層8は、ハイト方向の断面(図7参照)に姿を現す間隙5と、媒体走行面に姿を現す間隙7の幅で電気的に接触する。なお、本実施形態においては、媒体走行面に露出する磁性層8の形状は、絶縁層4側の幅a(図5参照)は、磁性層2の幅の略半分以下であるように構成される。
また、媒体対向面に露出する磁性層8は、磁性層2と反対側の面で磁性層10と接触し、磁性層10とともにT型形状を形成する(図5参照)。
次に本実施形態の磁気ヘッドの製造方法を、図8(a)乃至図15を参照して説明する。図8(a)乃至図8(d)はトラック幅方向から見た(媒体走行面に現れる)断面を示している。
まず、図示しないアルチック基板上に図示しないアルミナアンダーコートを形成し、このアルミナアンダーコート上に膜厚1.5μmのNiFe合金からなる下部電極を兼用する下部シールド(図示せず)を形成し、この下部シールドの表面を鏡面研磨し、この鏡面研磨した下部シールド上に膜厚3nmのTaからなる層および膜厚3nmのNiFeからなる層を有する積層構造の下地膜(図示せず)を形成する。
次に、図8(a)に示すように、上記下地層上に膜厚15nmのPtMnからなる磁性層10を形成した後、この磁性層10上に膜厚3nmのNiFeからなる磁性層8を形成する。続いて、磁性層8上にEB用レジストからなるレジストパターン40を形成する。レジストパターン40は直線形状であり磁性層8との接触幅が2.5nm、長さ(紙面に直交する方向の寸法)が0.5μmで形成されている。
次に、図8(b)に示すように、レジストパターン40をマスクとしてイオンミリングを用いて、レジストパターン40によって覆われていない磁性層8の全てと、磁性層10を膜厚方向に2nm分エッチング除去する。すなわち、膜厚方向のエッチング量の合計は磁性層8の膜厚分3nmと磁性層10のエッチング量2nmの和である5nmとなる。これにより、レジストパターン40によって覆われていない磁性層10の領域は膜厚が13nmとなる。
次に、レジストパターン40を残した状態で、スパッタエッチングによって磁性層10および磁性層8の表面のクリーニングを行う。その後、上記エッチング量に見合う膜厚5nmのアルミナからなる絶縁層6を堆積する(図8(c)参照)。レジストパターン40をリフトオフすると、幅2.5nmにパターニングされ、両脇がアルミナからなる絶縁層6で覆われた間隙7に相当する領域が磁性層8の表面に現れる(図8(d)参照)。
なお、アルミナ成膜前のスパッタエッチングにより、図8(b)に示す磁性層のエッチングを兼ねることもできる。スパッタエッチングやイオンミリングを短めに行い(例えば、エッチング深さ1.5nm)、磁性層8を1.5nm残した場合の状態を図9に示す。この場合、アルミナからなる絶縁層6の形成により3.5nm(=アルミナ膜厚5nm−エッチング深さ1.5nm)盛り上がる。
レジストパターン40が除去されたときに、図8(d)に示すA−A断面でハイト方向から観察すると図10(a)となる。以降は、ハイト方向の断面で説明する。
次に、図10(b)に示すように、膜厚3nmのSiOからなる絶縁層4を形成する。続いて、図11(a)に示すように、絶縁層4上に開口45を有するEB用レジストからなるマスク44を形成し、このマスク44を用いてSiOからなる絶縁層4をRIEでエッチングし、絶縁層4に間隙5を形成する(図11(a)参照)。
次に、マスク44を除去した後、膜厚5nmのNiFeからなる磁性層2を、間隙5を埋め込むように形成する(図11(b)参照)。このとき、図11(b)に示す切断線B−Bで切断したときの断面を図12に示す。さらに、Taからなるギャップ層(図示せず)を形成し、30nm角の素子サイズにパターニングを行って再生素子としての磁気抵抗効果素子を完成する。したがって、媒体走行面には磁性層2が略30nm,磁性層8が略2.5nmで、磁性層8は約1/12の露出幅比となっている。面記録密度が数Tbpsiになると、磁性層2の幅は10nm〜20nm程度と予想されるが、それでも露出幅比は約1/4以下となり、1/2よりもさらに小さいため、直交バイアスへの効果を発揮する。
上記製造方法においては、絶縁層4はRIEによるエッチングにて形成したが、第1実施形態の場合と同様にリフトオフで形成しても良い。
本実施形態による磁気ヘッドに係る磁気抵抗効果素子の構造は、第1実施形態の場合と同様にフリー層2とピン層8との磁化直交関係が良好に保たれることで対称性の良好な再生波形を得うる。また、この効果以外に、磁化直交バイアス補正用にピン層8としてさらに非磁性層および磁性層を積層する所謂シンセティックフェリ構造にしなくても良いため、狭ギャップ化(高線分解能化)が可能となる。また、フリー層2をピン層8と直交化させるための所謂縦バイアス磁界を弱くすることができるので、再生感度を上げ大きな出力を得やすくなる。
なお、図9または図13に示すように、ピン層8の除去が全膜厚におよばず一部だけであっても、媒体走行面に現れるピン層の面積の減少、すなわち磁化量の減少によるフリー層2への流入磁束が減少し、このため、フリー層2とピン層8の磁化の直交関係の悪化を防止することができる。
また、間隙5に対するフリー層2の埋め込み深さは、磁性層8、10の除去深さ分減少する。絶縁層6の形成プロセスで磁性層8と絶縁層6の表面が平坦化されていれば(図8(d))、フリー層2の埋め込み深さは絶縁層4の膜厚分の3nmであり、途中で止めた図9の場合でも6.5nm(絶縁層6の盛り上がり3.5nm+絶縁層4の膜厚3nm)となり、絶縁層4+絶縁層6の合計8.5nmよりも減少し、アスペクト比が下がることで、埋め込み性も改善される。
したがって良好な直交バイアスの達成とフリー層膜質向上による出力向上から、再生感度向上と線分解能向上が得られる。
なお、図9における構造でヘッド作成した場合のハイト方向断面構造のA−A断
面、B−B断面をそれぞれ図14、図15に示す。また、媒体走行面から見たトラック幅方向のヘッド構造を図16に示す。
なお、第3実施形態では下部磁性層をピン層としたが、下部磁性層をフリー層とし上部埋め込み磁性層をピン層としても、上記と同様の理由でピン層埋め込み性に関しては改善され、出力増大に寄与する。
本実施形態によれば、ピン層の媒体走行面露出面積を減少させるのに、それを目的とした描画工程が不必要で、1描画工程(間隙7の描画工程)のみで達成できる。ピン層の媒体走行面露出を通常の素子幅よりも減少させる構造を製造する手段としてはコスト的に最も優れる。
本実施形態も第1実施形態と同様に、従来の場合に比べてナノコンタクトをより微少かつ安定性が高く形成することが可能となるとともに、より高感度な磁気抵抗効果素子を備えた磁気ヘッドを得ることができる。
(第4実施形態)
次に、本発明の第4実施形態による磁気抵抗効果素子の製造方法を説明する。
第1乃至第3実施形態においては、EBリソグラフィーによるコンタクト幅形成方法を示した。本実施形態の製造方法は、リソグラフィー限界によらない成膜の膜厚による間隙作成である。
まず、図示しないアルチック基板上に図示しないアルミナアンダーコートを形成し、このアルミナアンダーコート上に膜厚1.5μmのNiFe合金からなる下部電極を兼用する下部シールド(図示せず)を形成し、この下部シールドの表面を鏡面研磨し、この鏡面研磨した下部シールド上に膜厚3nmのTaからなる下地膜(図示せず)を形成する。
次に、図17(a)に示すように、上記下地層上に膜厚5nmのNiFeからなる磁性層2を形成する。続いて、磁性層2上にEB用レジストからなるレジストパターン50を形成する。EB用レジストからなるレジストパターン50は直線形状であり磁性層2との幅が20nm、長さが500nm、厚さが30nmである。
次に、第1ギャップを規定する膜としてSiO膜52を平面部で膜厚7nm形成する(図17(b))。続いて、入射角度が垂直となるイオンミリングを用いて磁性層2の表面が露出するまでSiO膜52をエッチングする。その結果、レジストパターン50の側面には再堆積およびエッチング異方性のため約2.5nmのSiO膜52が残り(図17(c))、他の平面部のSiO膜52はイオンミリングにより除去される。
次に、図18(a)に示すように、酸素アッシングを用いて、レジストパターン50を除去する。こうすることで、第1ギャップを規定する膜52の側面のみが壁状に残存する(図18(a))。
次に、図18(b)に示すように、イオンビームデポジション法を用いて、イオンビームを照射しながらアルミナからなる絶縁層4のイオンビームスパッタを行う。基板照射用イオンビームは入射角を垂直から80度程度に寝かせて照射することで、入射アルミナ粒子の異方性および基板照射イオンビームの異方性から、底面にのみ形成され壁52の側面には形成されない(図18(b))。なお、絶縁層4は平面部で膜厚が約4nmになるように形成する。
次に、残存した第1ギャップを規定する膜52をCHFガスによるRIEにて除去することで、図18(c)に示すように壁が除去され、除去された跡に2本の間隙5が形成される。以下では、図18(c)に矢印で示すハイト方向からみた断面図を参照して説明する。基本的なプロセスは図17(a)乃至図18(c)で説明したプロセスと同じである。
次に、EB用レジストからなるレジストパターン54を幅20nm、長さ500nm、厚さ30nmにて形成する(図19(a))。続いて、第2ギャップを規定する膜としてSiO膜56を平面部で7nm形成する(図19(b))。その後、イオンミリングで第1ギャップを規定する膜56を平面部でなくなるまで入射角度垂直でエッチングする。その結果、レジストパターン54の側面には再堆積およびエッチング異方性のため約2.5nmの膜56が残り、平面部のSiO膜56はイオンミリングにより除去される(図19(c))。
次に、酸素アッシングを用いて、レジストパターン54を除去する。こうすることで、第2ギャップを規定する膜56の側面のみが壁状に残存する(図20(a))。
次に、イオンビームデポジション法を用いて、イオンビームを照射しながらアルミナからなる絶縁層6のイオンビームスパッタを行う。基板照射用イオンビームは入射角を垂直から80度程度に寝かせて照射することで、入射アルミナ粒子の異方性および基板照射イオンビームの異方性から、底面にのみ形成され壁の側面には形成されない(図20(b))。なお、絶縁層の膜厚は平面部で約4nmになるように形成する。
次に、残存した第1ギャップを規定する膜56をCHFガスによるRIEにて除去することで、図20(c)に示すように壁が除去され、除去された跡に2本の間隙7が形成される。
最後に、膜厚3nmのNiFeからなる磁性層8を間隙7に埋め込むように成膜する。その後、磁性膜8上に膜厚15nmのPtMnからなる磁性層10を成膜する(図20(d))。図20(d)に示す切断線D−Dで切断した断面を図21に示す。図21からわかるように、2本の間隙7と2本の間隙5との4つの交点にPC(ポイントコンタクト)が確認できる。
本実施形態の製造方法では、レジストパターンの側面をポイントで利用すればよく、面で利用するわけではない。そのため、レジストパターンの側面にラフネスがあっても線と直交する線の交点はラフネスのある線同士でも点になるため、ラフネスは本質的には問題にならない。側面を利用する場合、このように交点で利用すれば新たなメリットが生まれる。
本実施形態によって製造された磁気抵抗効果素子も第1実施形態と同様に、従来の場合に比べてナノコンタクトをより微少かつ安定性が高く形成することが可能となるとともに、より高感度な磁気抵抗効果素子を得ることができる。
以上説明したように、本発明の一実施形態によれば、直線形状の描画を用いることでコンタクトホール状の描画を行う時に比べ、より微小かつ安定性が高いナノホールを形成することができる。
直線形状の間隙(トレンチ)に磁性層を埋め込むことでより欠陥の少ない磁性層の形成を行うことができる。
また、絶縁層の形成を2回に分けることで、ゴミなどピンホール耐性が向上するため、より薄い絶縁層を使用できることから埋め込みアスペクトの低下に伴う、欠陥の少ない磁性層の形成を行うことができ、出力向上に寄与する。
2層の絶縁層のうちの第1層目は、下層の磁性層をエッチングすることによりライン状の上側に凸な形状を形成した後、その両脇に上記第1層目の絶縁層を成膜形成することで、第2層目の絶縁層に形成された直線形状のトレンチに対する埋め込み深さをエッチング分低下させることができ、欠陥の少ない上層の磁性層の形成を行うことができ、出力向上に寄与する。
媒体走行面にあらわれるピン層の面積が上記エッチングにより減少する、もしくはピン層が必要十分な領域にのみに制限され、ピン層からフリー層へ流入する磁束が減少し、ピン層とフリー層の直交バイアスをシンセティックフェリなど調整層がなくても達成することができ、磁気抵抗効果素子の膜厚を低下させ線分解能を向上させる。また縦バイアス磁界を弱くでき、再生感度を向上することができる。
以上のことから線分解能向上や出力向上、コストダウンを図ることができる。
第1実施形態による磁気抵抗効果素子の構成を示す斜視図。 第1実施形態の比較例による磁気抵抗効果素子の構成を示す斜視図。 第1実施形態による磁気抵抗効果素子の製造工程を示す断面図。 第2実施形態による磁気抵抗効果素子の構成を示す斜視図。 第3実施形態による磁気ヘッドの媒体走行面側からみた平面図。 図5に示す切断線A−Aで切断したハイト方向の断面図。 図5に示す切断線B−Bで切断したハイト方向の断面図。 第3実施形態による磁気ヘッドの製造工程を示す断面図。 第3実施形態による磁気ヘッドの製造工程を示す断面図。 第3実施形態による磁気ヘッドの製造工程を示す断面図。 第3実施形態による磁気ヘッドの製造工程を示す断面図。 第3実施形態による磁気ヘッドの製造工程を示す断面図。 第3実施形態による磁気ヘッドの製造工程を示す断面図。 第3実施形態による磁気ヘッドの製造工程を示す断面図。 第3実施形態による磁気ヘッドの製造工程を示す断面図。 第3実施形態による磁気ヘッドの製造工程を示す断面図。 第4実施形態による磁気抵抗効果素子の製造方法を示す斜視図。 第4実施形態による磁気抵抗効果素子の製造方法を示す斜視図。 第4実施形態による磁気抵抗効果素子の製造工程を示す断面図。 第4実施形態による磁気抵抗効果素子の製造工程を示す断面図。 図20に示す切断線D−Dで切断したときの断面図。
符号の説明
2 磁性層(フリー層)
4 絶縁層
5 間隙
6 絶縁層
7 間隙
8 磁性層(ピン層)
10 磁性層

Claims (5)

  1. 第1の磁性層と、
    第2の磁性層と、
    前記第1の磁性層と前記第2の磁性層との間に設けられ、前記第1の磁性層側から前記第2の磁性層側に貫通する直線形状の第1の間隙を有する第1の絶縁層と、
    前記第1の絶縁層と前記第2の磁性層との間に設けられ、前記第1の絶縁層側から前記第2の磁性層側に貫通し、前記第1の間隙と交差する直線形状の第2の間隙を有する第2の絶縁層と、
    を備え、
    前記第1および第2の磁性層は第1の間隙と前記第2の間隙との交差領域で電気的に接触することを特徴とする磁気抵抗効果素子。
  2. 前記第1の間隙と前記第2間隙との交差領域は複数個存在することを特徴とする請求項1記載の磁気抵抗効果素子。
  3. 前記第1の間隙は、前記第1の磁性層側の幅が前記第2の磁性層側の幅よりも広く、前記第2の間隙は、前記第1の絶縁層側の幅が前記第2の磁性層側の幅よりも狭いことを特徴とする請求項1または2記載の磁気抵抗効果素子。
  4. 前記第1の磁性層は磁化の向きが外部磁界に対して変化し、前記第2の磁性層は磁化の向きが外部磁界に対して実質的に固着されていることを特徴とする請求項1乃至3記載の磁気抵抗効果素子。
  5. 請求項1乃至4のいずれかに記載の磁気抵抗効果素子を再生素子として備え、
    前記媒体走行面に露出する前記第2の磁性層の、前記第1の絶縁層に対向する幅が前記第1の磁性層の、前記第2の磁性層に対向する幅の略半分以下であることを特徴とする磁気ヘッド。
JP2006191304A 2006-07-12 2006-07-12 磁気抵抗効果素子および磁気ヘッドならびにその製造方法 Active JP4300225B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191304A JP4300225B2 (ja) 2006-07-12 2006-07-12 磁気抵抗効果素子および磁気ヘッドならびにその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006191304A JP4300225B2 (ja) 2006-07-12 2006-07-12 磁気抵抗効果素子および磁気ヘッドならびにその製造方法

Publications (2)

Publication Number Publication Date
JP2008021763A JP2008021763A (ja) 2008-01-31
JP4300225B2 true JP4300225B2 (ja) 2009-07-22

Family

ID=39077533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191304A Active JP4300225B2 (ja) 2006-07-12 2006-07-12 磁気抵抗効果素子および磁気ヘッドならびにその製造方法

Country Status (1)

Country Link
JP (1) JP4300225B2 (ja)

Also Published As

Publication number Publication date
JP2008021763A (ja) 2008-01-31

Similar Documents

Publication Publication Date Title
US9761254B2 (en) Side shielded magnetoresistive (MR) read head with perpendicular magnetic free layer
JP3967237B2 (ja) 磁気抵抗効果素子及びその製造方法、磁気再生素子並びに磁気メモリ
JP5809406B2 (ja) 磁気記録ヘッドおよびその製造方法
US10157634B2 (en) Magnetic reader sensor with shield spacing improvement and better pin flip robustness
KR100243822B1 (ko) 자기 저항 변환기 및 그 제조 방법
JP2006019743A (ja) 磁気メモリ構造およびトンネル磁気抵抗効果型再生ヘッドならびにそれらの製造方法
US9336802B2 (en) Zig-zag MIMO head reducing space between three sensors
US6342993B1 (en) Thin film magnetic head and method of manufacturing the same
WO2002043164A1 (fr) Procede de fabrication de dispositif magneto-resistif et de tete magneto-resistive
US6999270B2 (en) Magnetic head and a magnetic disk drive
US20050068687A1 (en) Magnetoresistance effect element, method of manufacturing same and magnetic head utilizing same
JP2009238261A (ja) 再生磁気ヘッド及びその製造方法
JP2006012272A (ja) 磁気ヘッド及びその製造方法
JP3556600B2 (ja) 磁気抵抗効果素子の製造方法
JP4300225B2 (ja) 磁気抵抗効果素子および磁気ヘッドならびにその製造方法
US20040240121A1 (en) Magnetic recording head and method for manufacturing
JP5355859B2 (ja) 磁気抵抗効果型ヘッド
JP2008176857A (ja) 複合型薄膜磁気ヘッド
JP3902183B2 (ja) 磁気ヘッドおよびその製造方法ならびに磁気記録再生装置
JP2009009632A (ja) 磁気ヘッドの製造方法及び磁気ヘッド
JP4398920B2 (ja) 磁気抵抗効果素子およびその製造方法
US6416677B1 (en) Narrow track stitched GMR head
US7249408B2 (en) Method of manufacturing a thin-film magnetic head
JP4146318B2 (ja) 磁気抵抗効果素子
JP2004206822A (ja) 磁気抵抗効果素子を有する薄膜磁気ヘッドの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R151 Written notification of patent or utility model registration

Ref document number: 4300225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5