JP4296469B2 - Cleaning method for membrane separator for ultrapure water production - Google Patents

Cleaning method for membrane separator for ultrapure water production Download PDF

Info

Publication number
JP4296469B2
JP4296469B2 JP2002224749A JP2002224749A JP4296469B2 JP 4296469 B2 JP4296469 B2 JP 4296469B2 JP 2002224749 A JP2002224749 A JP 2002224749A JP 2002224749 A JP2002224749 A JP 2002224749A JP 4296469 B2 JP4296469 B2 JP 4296469B2
Authority
JP
Japan
Prior art keywords
water
membrane separation
cleaning
membrane
ultrapure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002224749A
Other languages
Japanese (ja)
Other versions
JP2004066015A (en
Inventor
征弘 古川
恒雄 河上
勝信 北見
正剛 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002224749A priority Critical patent/JP4296469B2/en
Publication of JP2004066015A publication Critical patent/JP2004066015A/en
Application granted granted Critical
Publication of JP4296469B2 publication Critical patent/JP4296469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超純水製造用膜分離装置の洗浄方法及び洗浄装置に関する。さらに詳しくは、本発明は、シリコンウェーハ、システムLSIなどの製造工場などで使用される超純水中へのアミンの溶出を効果的に防止し、純度の極めて高い超純水を安定して供給することができる超純水製造用膜分離装置の洗浄方法及び洗浄装置に関する。
【0002】
【従来の技術】
半導体、液晶などの電子部品の製造においては、多量の純水や超純水が用いられている。超純水は、25℃において18.24MΩ・cmという理論純水の比抵抗に極めて近い比抵抗値を有する。図1は、超純水供給装置の一例の系統図である。超純水供給装置では、市水、工業用水、井水などを原水とし、前処理装置、一次純水装置及び二次純水装置で処理されて、超純水が製造される。前処理装置では、ろ過、凝集沈殿、精密ろ過膜などによる前処理が施される。一次純水装置では、イオン交換、膜分離、ガス放散、紫外線照射などが行われ、原水の水質と、要求される処理水の水質に合わせて、各装置が適宜組み合わされる。二次純水装置は、純水タンク、ポンプ、熱交換器、紫外線酸化装置、イオン交換ポリッシャ、限外ろ過膜装置などからなり、一次純水中に残存する極微量のイオン、シリカ、有機物、微粒子などが除去されて超純水が得られる。イオン交換ポリッシャとして、多孔質イオン交換膜装置を用いる場合があり、限外ろ過膜の代わりに、精密ろ過膜や逆浸透膜を用いる場合があり、さらに、限外ろ過膜の前段に膜脱気装置を組み込む場合がある。製造された超純水は、電子部品の洗浄工程などのユースポイントに送られて使用される。ユースポイントでは、濃厚排水、希薄排水、使用されなかった純水が発生する。濃厚排水は、排水処理されたのち、放流又は排水処理系で回収再利用される。希薄排水は排水回収装置で処理され、純水は純水回収装置で処理されて、それぞれ一次純水装置に供給され、再利用される。
このような超純水供給装置を用いて、有機体炭素、無機塩類、菌、溶存ガスが極力除去され、理論的な水質面では、超純水はほぼ満足する水準に達している。しかし、システムLSI製造工場では、二次純水装置の限外ろ過膜を交換したのち、酸化膜の耐圧不良やシリコン表面のアレが生じ、製品が不良となる状態が1週間ないし1か月継続するという問題が生じていた。酸化膜の厚さも、厚くなっていた。限外ろ過膜は、メーカーで製造したのち、製品検査をかねて超純水で洗浄し、透過水の水質がTOC溶出量20μg/L以下、抵抗率17.5MΩ・cmであることを確認して出荷され、電子産業の工場へ納入されている。したがって、超純水の保証水質は満足しているが、製品に対する要求品質が上がったことによるトラブルであり、何らかのトラブルを発生させる物質が限外ろ過膜から溶出していることが原因であると推定された。
この原因について本発明者らが鋭意検討したところ、超純水中のアミンが、製品不良の原因物質であるという結論にいたった。また、その発生源を特定したところ一次純水装置や二次純水装置に使用される精密ろ過膜、限外ろ過膜、逆浸透膜、多孔質イオン交換膜、脱気膜などのポッティング材料や、接着剤からアミンが溶出することをつきとめた。このために、超純水中の不純物としてこれまで注目されていた無機イオンとは別に、アミンの溶出を低減することが緊急の課題となった。
【0003】
【発明が解決しようとする課題】
本発明は、シリコンウェーハ、システムLSIなどの製造工場などで使用される超純水中へのアミンの溶出を効果的に防止し、純度の極めて高い超純水を安定して供給することができる超純水製造用膜分離装置の洗浄方法及び洗浄装置を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、超純水製造用膜分離装置を二次純水装置に装着する前に、極めて純度の高い超純水を用いて、該膜分離装置に対して通水工程、浸漬工程、排出工程からなる洗浄サイクルを繰り返すことにより、超純水製造装置の新設、膜分離装置の交換などを行っても、膜分離装置からのアミンの溶出がなく、不良品の発生を防止し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)粒径0.05μm以上の微粒子数が1個/mL以下、TOC濃度が2μgC/L以下、抵抗率が18.2MΩ・cm以上の超純水を洗浄水とし、該洗浄水を超純水製造用膜分離装置に通水する通水工程と、該膜分離装置に洗浄水を保持したまま通水を停止する浸漬工程と、該膜分離装置の濃縮水側に気体を送入して、該膜分離装置から洗浄水を排出して10〜30分放置したのち通水工程に移行する排出工程とを有する洗浄サイクルを繰り返すことを特徴とする超純水製造用膜分離装置の洗浄方法、
(2)通水工程における通水量が、膜分離装置の設計最大流量である第1項記載の超純水製造用膜分離装置の洗浄方法、
(3)通水工程における通水時間が、1〜10分間である第1項記載の超純水製造用膜分離装置の洗浄方法、
(4)浸漬工程における浸漬時間が、0.5〜6時間である第1項記載の超純水製造用膜分離装置の洗浄方法、
(5)洗浄サイクルを、10〜60日間繰り返す第1項記載の超純水製造用膜分離装置の洗浄方法、
(6)超純水のアミン濃度が50ng/L以下である第1項記載の超純水製造用膜分離装置の洗浄方法、
(7)通水工程において、透過水の抵抗率が18.0MΩ・cm以上になるまで通水する第1項記載の超純水製造用膜分離装置の洗浄方法、及び、
(8)洗浄水の温度が、23〜50℃である第1項記載の超純水製造用膜分離装置の洗浄方法、
を提供するものである。
さらに、本発明の好ましい態様として、
(9)気体が、純度99.999容量%以上の窒素又はHEPA(高効率微粒子)フィルター以上のフィルターでろ過した空気である第1項記載の超純水製造用膜分離装置の洗浄方法、及び、
(10)気体の圧力が、5〜20kPaである第1項記載の超純水製造用膜分離装置の洗浄方法、
を挙げることができる。
【0005】
【発明の実施の形態】
本発明の超純水製造用膜分離装置の洗浄方法においては、粒径0.05μm以上の微粒子数が1個/mL以下、TOC(有機体炭素)濃度が2μgC/L以下、抵抗率が18.2MΩ・cm以上の超純水を洗浄水とし、該洗浄水を超純水製造用膜分離装置に通水する通水工程と、該膜分離装置に洗浄水を保持したまま通水を停止する浸漬工程と、該膜分離装置から洗浄水を排出する排出工程とを有する洗浄サイクルを繰り返す。
電子産業、特にシリコンウェーハや、フラッシュメモリーのような高集積度製品などのシステムLSIなどの高精度の電子材料の製造工場で使用される超純水には、粒径0.05μm以上の微粒子数が1個/mL以下、TOC濃度が2μgC/L以下、抵抗率が18.2MΩ・cm以上という高純度が要求される。使用される超純水と同じ水質の洗浄水で超純水製造用膜分離装置を洗浄し、膜分離装置の透過水の水質が洗浄水の水質と同じになったとき、膜分離装置の洗浄が完了したと判定し、膜分離装置を超純水製造装置の二次純水装置に設置して、製造される超純水が要求される水質基準を満たすことを保証することができる。
【0006】
本発明方法において、洗浄水のアミン濃度は、50ng/L以下であることが好ましく、20ng/L以下であることがより好ましい。高精度の電子材料の製造工場で使用される超純水には、アミン濃度20ng/L以下のアミン濃度が要求される。超純水中に含まれるアミンは、主として、ポッティング材料であるエポキシ樹脂の硬化剤として用いられる炭素数10〜30の長鎖アミンや、親水性の複素環型ジアミンなどである。膜分離装置を洗浄水と接触させることにより、膜分離装置からアミンを溶出させるが、アミンの溶出は洗浄水中のアミン濃度に左右されることはほとんどなく、洗浄水と膜分離装置との接触時間に応じて、膜分離装置から水にアミンが移行する。水に移行したアミンが、ふたたび膜分離装置へ移行することはない。したがって、アミン濃度が50ng/Lの超純水を洗浄水として用いても、膜分離装置から水へのアミンの溶出は進行する。そして、洗浄終了後、膜分離装置にアミンを含む洗浄水が若干残留しても、この洗浄済み膜分離装置を二次純水装置に設置して超純水を製造すると、残留する洗浄水は短時間で排除され、以後はアミン濃度が所定値以下となった超純水が製造される。
洗浄水中のアミン濃度は、極めて低濃度であることが好ましく、本発明の洗浄方法によって洗浄された超純水製造用膜分離装置を設置した超純水製造装置によって得られた超純水を使用することがより好ましい。すなわち、シリコンウェーハなどの製品の製造に悪影響を及ぼさない程度の高純度の超純水を使用して洗浄することが好ましく、製品に対して要求される品質に応じて超純水の水質が変わるが、アミン濃度が20ng/L以下であることがより好ましい。
【0007】
本発明方法においては、通水工程における通水量が、膜分離装置の設計最大流量であることが好ましい。図2は、膜分離装置の一例の説明図である。本図の膜分離装置は、中空糸モジュールであり、限外ろ過膜からなる中空糸1が束ねられて、圧力容器2に収められ、中空糸の両端がエポキシ樹脂により接着部3において固定されている。洗浄水は、モジュール下部から供給され、中空糸の外側を流れる。膜透過して中空糸の内側に入った透過水は、中空糸の中を通って取り出される。膜透過しなかった水は、濃縮水として濃縮水出口4から排出される。
このような膜分離装置では、透過水側は水が流れやすいが、供給水側は水が流れにくく、偏流を起こしやすい。通水量を膜分離装置の設計最大流量とすることにより、偏流の発生を防ぎ、膜分離装置内に均一に通水することができる。また、膜分離装置の接着部の近傍には、中空糸が密集して水が流れにくく、溜まりを生じやすい。膜分離装置への通水と浸漬と排出を繰り返すことにより、接着部の近傍における水の溜まりを防ぐことができる。中空糸モジュールに限らず、平面膜モジュール、管型モジュール、スパイラルモジュール、モノリス型モジュールなどにおいても、偏流と溜まりの問題は発生するが、通水量を膜分離装置の設計最大流量とすることにより、解決することができる。
【0008】
本発明方法においては、通水工程における通水時間が、1〜10分間であることが好ましく、2〜5分間であることがより好ましい。通水時間とは、膜分離装置の内部が完全に水で満たされたときから、通水を停止するまでの時間である。通水工程においては、透過水の抵抗率が18.0MΩ・cm以上になるまで通水することが好ましい。6インチの中空糸モジュールでは、通常は2〜5分で透過水の抵抗率が18.0MΩ・cmに達する。
本発明方法においては、洗浄水の温度が23〜50℃であることが好ましく、25〜40℃であることがより好ましい。洗浄水の温度が23℃未満であると、アミンの溶出速度が遅く、洗浄に長時間を要するおそれがある。洗浄水の温度が50℃を超えると、分離膜が劣化するおそれがある。
本発明方法においては、通水工程を終了したのち、膜分離装置に洗浄水を保持したまま通水を停止する浸漬工程に移行する。浸漬工程において、膜分離装置からアミンなどの水溶性成分が洗浄水中に溶出する。浸漬工程における浸漬時間は、0.5〜6時間であることが好ましく、2〜4時間であることがより好ましい。浸漬時間が0.5時間未満であると、水溶性成分が十分に溶出する以前に保持された洗浄水を排出し、洗浄水を無駄に費消するおそれがある。浸漬時間が6時間を超えると、膜分離装置の水溶性成分と溶出した水溶性成分が平衡に近づき、水溶性成分の溶出速度が遅くなるおそれがある。
【0009】
本発明方法においては、所定の浸漬工程が終了したとき、膜分離装置から洗浄水を排出する排出工程に移行する。排出工程において、膜分離装置の濃縮水側の水をすべて排出することにより、例えば、中空糸モジュールの接着部のように水の溜まりが生じやすい部分の洗浄水もすべて排出し、次の通水工程において、あらたに洗浄水を満たすことができるので、連続的に洗浄水を通水して洗浄する場合に比べて、より少量の洗浄水を用い、より短時間で、効果的に洗浄することができる。排出工程においては、膜分離装置の濃縮水側に気体を送入して保持している洗浄水を排出することが好ましい。
送入する気体は、純度99.999容量%以上の窒素又はHEPA(高効率微粒子、High Efficiency Particulate Air)フィルター以上のフィルターでろ過した空気であることが好ましい。純度99.999容量%以上の窒素又はHEPAフィルター以上のフィルターでろ過した空気を送入することにより、膜分離装置の汚染や微粒子の混入を防ぐことができる。HEPAフィルターは、定格風量において、圧力損失が25mmH2O以下で0.3μm粒子を99.97%以上で捕集するフィルターである。HEPAフィルターを超えるフィルターとしては、例えば、定格風量において、圧力損失が25mmH2O以下で0.1μm粒子を99.9995%以上で捕集するULPA(Ultra Low Penetration Air)フィルターなどを挙げることができる。
送入する気体の圧力は、5〜20kPaであることが好ましく、8〜15kPaであることがより好ましい。送入する気体の圧力が5kPa未満であると、洗浄水の排出に長時間を要するおそれがある。送入する気体の圧力が20kPaを超えると、分離膜が損傷を受けるおそれがある。本発明方法においては、膜分離装置の濃縮水側に気体を送入して10〜30分放置したのち、通水工程に移行することが好ましい。気体を送入して10〜30分放置することにより、膜分離装置の内部の洗浄水を完全に排出して、洗浄効率を高めることができる。
【0010】
本発明方法においては、洗浄サイクルを10〜60日間繰り返すことが好ましい。洗浄サイクルを10〜60日間繰り返すことにより、通常は膜分離装置の洗浄を終了することができる。洗浄水として用いた超純水の水質と、膜分離装置の透過水の水質が同じになったとき、洗浄が終了したと判定することができ、あるいは、膜分離装置で得られた超純水を用いてシリコンウェーハを洗浄し、シリコンウェーハ表面にアレなどがなければ、洗浄が終了したと判定することができる。この場合、ウェーハのSEM観察、エリプソメータ等を利用して確認する。さらに、特定の装置を用いて洗浄を繰り返し、経験的に洗浄終了までの洗浄時間が把握できれば、所定の時間洗浄して洗浄を終了することができる。
本発明方法において、膜分離装置を洗浄して発生する洗浄排水、すなわち、膜分離装置の膜を透過した透過水、膜を透過せず濃縮側から生ずる濃縮水、排出工程において発生するブロー水は、ほとんど超純水に近い水質を有するので、回収して超純水製造装置の一次純水装置に返送し、超純水製造の原水とすることができ、あるいは、工場の純度が要求されない任意の用途に使用することもできる。
【0011】
本発明の超純水製造用膜分離装置の洗浄装置は、膜分離装置の給水入口と脱着可能な連結部を有する洗浄水供給配管、膜分離装置の透過水出口と脱着可能な連結部を有する透過水排出配管、膜分離装置の濃縮水出口と脱着可能な連結部を有する濃縮水排出配管とを有し、洗浄水供給配管に弁と流量調整手段が、透過水排出配管に弁が、濃縮水排出配管に弁がそれぞれ設けられるとともに、洗浄水供給配管に分岐して弁を有するブロー水配管が接続してなる装置である。本発明装置は、濃縮水排出配管に、弁を有する気体供給配管が接続してなる装置であることが好ましい。本発明装置は、複数本の超純水製造用膜分離装置が並列して取り付けられる装置であることが好ましい。
図3は、本発明装置の一態様の工程系統図である。本図に示す装置は、1系列に超純水製造用膜分離装置5本を取り付けることができ、3系列を備えているので、全部で15本の膜分離装置を取り付け、同時に洗浄することができる。本図においては、簡略化のために1系列5本の膜分離装置のみを図示し、他の2系列は一点鎖線の長方形で示す。図3に示す態様の装置は、膜分離装置Mの給水入口と脱着可能な連結部Cを有する洗浄水供給配管T、膜分離装置の透過水出口と脱着可能な連結部Dを有する透過水排出配管Q、膜分離装置の濃縮水出口と脱着可能な連結部Eを有する濃縮水排出配管Rを有する。洗浄水供給配管Tには、流量計Fと、弁A1と、流量調整手段としての弁A2を備えたサブ配管Sが設けられている。また、透過水排出配管Qには弁A5が、濃縮水排出配管Rには弁A4が設けられている。洗浄水供給配管Tに分岐して、弁A6と弁A7を有するブロー水配管Bが接続している。濃縮水排出配管Rに、弁A3を有する気体供給配管Gが接続している。さらに、膜分離装置Mの給水入口と脱着可能な連結部Cの前段に弁Umn1、膜分離装置の透過水出口と脱着可能な連結部Dの後段に弁Umn2、膜分離装置の濃縮水出口と脱着可能な連結部Eの後段に弁Umn3が設けられている。ただし、mは系列番号を、nは膜分離装置番号である。各弁は、自動弁であり、自動的に開閉が可能である。流量調整は、必要に応じて別途手動弁にて行うことができる。
【0012】
本発明装置において、系列数は1系列とすることができ、あるいは、複数系列とすることもできる。また、1系列に取り付ける膜分離装置の本数も任意であり、1本とすることも、複数本とすることもできる。洗浄する膜分離装置の本数は、超純水製造装置の規模に応じて適宜選択することができる。例えば、二次純水装置に設置する膜分離装置1本の処理水量が10t/hであり、超純水の生産量が150t/hの規模である場合、膜分離装置は少なくとも15本必要となる。このような規模の場合は、洗浄装置にも15本の膜分離装置が取り付けられることが好ましい。また、超純水の生産量が極めて少ない場合は、1本の膜分離装置が取り付けられればよいが、通常は、複数本の膜分離装置を必要とするので、洗浄装置においても複数本の膜分離装置を取り付けられることが好ましい。
洗浄に際して、各連結部を用いて、膜分離装置の給水入口、透過水出口及び濃縮水出口を、それぞれ洗浄水供給配管、透過水排出配管及び濃縮水排出配管と連結し、膜分離装置を洗浄装置に取り付ける。複数本の膜分離装置を洗浄する場合には、複数本の膜分離装置を取り付ける。例えば、図3において、15本の膜分離装置を洗浄するときは、3系列すべてに膜分離装置を取り付け、5本の膜分離装置を洗浄するときは、1系列のみに膜分離装置を取り付け、3本の膜分離装置を洗浄するときは、1系列に3本の膜分離装置を取り付け、膜分離装置が取り付けられていない系の弁はすべて閉として、弁の自動制御の対象から外しておくことができる。
【0013】
通水工程の開始にあたっては、弁A3、A6及びA7を閉とし、他の弁はすべて開にする。弁A1を通って洗浄水が供給され、取り付けられ膜分離装置の内部と各配管は満水状態になる。満水状態にするための所要時間は、供給水量に支配されるが、1分程度であることが好ましい。
通水工程においては、最初に弁U111、U112、U113、A1、A5、A4を開とし、他の弁はすべて閉として、膜分離装置M1のみに通水する。このとき、膜分離装置内での偏流を防止するために、サブ配管Sの弁A2も開として供給水量を増大し、通水量を膜分離装置の設計最大流量とすることが好ましい。通水により膜分離装置内の水は置換され、膜分離装置から溶出した水溶性成分は洗い出される。通水量は、膜分離装置内の水量の10〜30倍程度でよく、通水時間は1〜10分であることが好ましく、2〜5分であることがより好ましい。
膜分離装置M1への通水を所定時間行ったのち、弁U111、U112、U113を閉として、膜分離装置M1への通水を停止し、膜分離装置内が洗浄水で満水となり、膜分離装置の内部が洗浄水により浸漬された状態とする。浸漬状態は、0.5〜6時間保持することが好ましい。この間に、弁U121、U122、U123を開として、2番目の膜分離装置M2を通水工程に移行する。膜分離装置M2の通水工程が終了したとき、浸潰工程に移行する。このようにして、順次各膜分離装置が通水工程を経て浸漬工程に移行していく。浸漬工程において、各膜分離装置内で、洗浄水と膜や、膜の接続部が長時間接触し、接続部から水溶性成分の洗浄水への溶出が徐々に進む。
【0014】
排出工程においては、弁A3、Umn3、Umn1、A6、A7を開とし、弁A1、A2、U112、A4を閉とすることにより、膜分離装置M1内の洗浄水は流下し、排出される。このとき、弁A3を介して、清浄な気体を濃縮水出口から膜分離装置内へ送入し、膜分離装置内の洗浄水を押し出すことにより、膜分離装置内の洗浄水を完全に排出する。気体の供給圧力は、5〜20kPaであることが好ましい。排出工程において、洗浄水の排出に要する時間は、通常は2〜4分であるが、10〜30分放置して内部の水を確実に排出することが好ましい。
本発明装置においては、膜分離装置1本ずつに順次通水して通水工程を行うことができ、取り付けた膜分離装置すべてに同時に通水することもでき、あるいは、全部でないまでも複数本の膜分離装置に同時に通水することもできる。しかし、通水工程において膜分離装置1本ずつに通水すると、必要な洗浄水の供給能力は膜分離装置1本でよいので、洗浄水の供給設備は小型の装置ですむ。もし、5本の膜分離装置に同時に通水すると、5倍の洗浄水供給能力が必要になる。
図3に示す態様においては、洗浄装置は膜分離装置5本を1系列とする3系列から構成されているが、1系列に取り付ける膜分離装置の本数と洗浄装置の系列数は必要に応じて増減することができる。洗浄装置の自動弁は、シーケンス制御され、通水工程、浸漬工程、排出工程を順次自動的に移行することが好ましい。
【0015】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。なお、実施例において、アミンの分析は、クロマトグラフカラム濃縮−TD−GCMSにより行った。
実施例1
限外ろ過膜装置[栗田工業(株)、KU−1510HS]の洗浄を行った。この限外ろ過膜装置は、直径176mm、長さ1,284mmの中空糸モジュールであり、膜材質はポリサルホンであり、透過流量は15t/hである。
洗浄水として、粒径0.05μm以上の微粒子数0.3個/mL、TOC濃度1μgC/L、抵抗率18.24MΩ・cm、ヘキサデシルアミン20ng/L、水温30℃の超純水を用いた。洗浄水の排出には、HEPAフィルターでろ過した圧力10kPaの空気を用いた。
通水時間4分、浸漬時間3.5時間、排出時間3分、排出後の放置時間23分、洗浄サイクル4時間として、洗浄を行った。洗浄開始直後の透過水のヘキサデシルアミン濃度は、47μg/Lであった。洗浄サイクルを繰り返すにつれて、透過水のヘキサデシルアミン濃度は徐々に低下し、30日後、180サイクルを終わったとき、洗浄水と同じ20ng/Lとなり、洗浄の終了が確認された。
図4に、経過日数と透過水のヘキサデシルアミン濃度の関係を示す。
【0016】
【発明の効果】
本発明の超純水製造用膜分離装置の洗浄方法及び洗浄装置によれば、超純水製造装置の二次純水装置に設置する膜分離装置からのアミンの溶出を防ぎ、新しい膜分離装置の設置直後から良好な水質の超純水を製造し、電子材料工場における不良品の発生を防止することができる。
【図面の簡単な説明】
【図1】図1は、超純水供給装置の一例の系統図である。
【図2】図2は、膜分離装置の一例の説明図である。
【図3】図3は、本発明装置の一態様の工程系統図である。
【図4】図4は、経過日数と透過水のヘキサデシルアミン濃度の関係を示すグラフである。
【符号の説明】
1 中空糸
2 圧力容器
3 接着部
4 濃縮水出口
A 弁
B ブロー水配管
C 連結部
D 連結部
E 連結部
F 流量計
G 気体供給配管
M 膜分離装置
Q 透過水排出配管
R 濃縮水排出配管
S サブ配管
T 洗浄水供給配管
U 弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cleaning method and a cleaning apparatus for a membrane separation apparatus for producing ultrapure water. More specifically, the present invention effectively prevents amine elution from ultrapure water used in manufacturing plants such as silicon wafers and system LSIs, and stably supplies ultrapure water with extremely high purity. The present invention relates to a cleaning method and a cleaning apparatus for a membrane separation apparatus for producing ultrapure water.
[0002]
[Prior art]
In the manufacture of electronic parts such as semiconductors and liquid crystals, a large amount of pure water or ultrapure water is used. Ultrapure water has a specific resistance value very close to the specific resistance of theoretical pure water of 18.24 MΩ · cm at 25 ° C. FIG. 1 is a system diagram of an example of an ultrapure water supply apparatus. In the ultrapure water supply apparatus, city water, industrial water, well water, and the like are used as raw water and processed by a pretreatment apparatus, a primary pure water apparatus, and a secondary pure water apparatus to produce ultrapure water. In the pretreatment device, pretreatment by filtration, coagulation sedimentation, microfiltration membrane or the like is performed. In the primary pure water device, ion exchange, membrane separation, gas diffusion, ultraviolet irradiation, and the like are performed, and each device is appropriately combined according to the quality of raw water and the required quality of treated water. Secondary pure water equipment consists of pure water tanks, pumps, heat exchangers, UV oxidation equipment, ion exchange polishers, ultrafiltration membrane equipment, etc., and trace amounts of ions, silica, organic matter remaining in primary pure water, Fine particles are removed to obtain ultrapure water. A porous ion exchange membrane device may be used as the ion exchange polisher, and a microfiltration membrane or a reverse osmosis membrane may be used instead of the ultrafiltration membrane. Further, membrane deaeration is performed before the ultrafiltration membrane. May include device. The manufactured ultrapure water is sent to a use point such as a cleaning process for electronic parts and used. At the point of use, concentrated drainage, diluted drainage, and pure water that has not been used are generated. Concentrated wastewater is drained and then discharged or recovered and reused in a wastewater treatment system. The diluted waste water is processed by the waste water recovery device, and the pure water is processed by the pure water recovery device, and each is supplied to the primary pure water device and reused.
Using such an ultrapure water supply device, organic carbon, inorganic salts, bacteria, and dissolved gas are removed as much as possible, and in terms of theoretical water quality, ultrapure water has almost reached a satisfactory level. However, at the system LSI manufacturing factory, after replacing the ultrafiltration membrane of the secondary pure water device, the oxide film has poor pressure resistance and the silicon surface is damaged, and the product is in a defective state for one week to one month. There was a problem of doing. The oxide film was also thick. After the ultrafiltration membrane is manufactured by the manufacturer, it is washed with ultrapure water for product inspection, and it is confirmed that the water quality of the permeated water is 20 μg / L or less in TOC and the resistivity is 17.5 MΩ · cm. Shipped and delivered to electronics industry factories. Therefore, the guaranteed water quality of ultrapure water is satisfactory, but the problem is that the required quality of the product has increased, and that the substance that causes some trouble is eluted from the ultrafiltration membrane. Estimated.
When the present inventors diligently examined the cause, it was concluded that the amine in the ultrapure water was a causative substance of the product defect. In addition, when the source was identified, potting materials such as microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, porous ion exchange membranes, deaeration membranes used in primary and secondary pure water devices, It was found that the amine was eluted from the adhesive. For this reason, it has become an urgent issue to reduce elution of amines separately from inorganic ions that have been attracting attention as impurities in ultrapure water.
[0003]
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention can effectively prevent amine elution into ultrapure water used in manufacturing plants such as silicon wafers and system LSIs, and can stably supply ultrapure water with extremely high purity. The object of the present invention is to provide a cleaning method and a cleaning apparatus for a membrane separation apparatus for producing ultrapure water.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have used ultrapure water with extremely high purity before attaching the membrane separation apparatus for producing ultrapure water to the secondary pure water apparatus. Even if a new ultrapure water production device is installed or a membrane separation device is replaced by repeating a washing cycle comprising a water flow step, a dipping step, and a discharge step for the membrane separation device, It has been found that there is no elution of amine and the occurrence of defective products can be prevented, and the present invention has been completed based on this finding.
That is, the present invention
(1) The number of fine particles having a particle diameter of 0.05 μm or more is 1 / mL or less, the TOC concentration is 2 μg C / L or less, and the ultrapure water having a resistivity of 18.2 MΩ · cm or more is used as cleaning water. A water flow step for passing water through a membrane separator for pure water production, a dipping step for stopping water flow while holding washing water in the membrane separator, and a gas is fed into the concentrated water side of the membrane separator. And cleaning the membrane separation apparatus for producing ultrapure water, characterized by repeating the cleaning cycle including discharging the cleaning water from the membrane separation apparatus and leaving it for 10 to 30 minutes, and then transferring to a water flow process. Method,
(2) The method for cleaning a membrane separation device for ultrapure water production according to item 1, wherein the amount of water flow in the water flow step is the design maximum flow rate of the membrane separation device,
(3) The method for cleaning a membrane separator for ultrapure water production according to item 1, wherein the water flow time in the water flow step is 1 to 10 minutes,
(4) The method for cleaning a membrane separator for ultrapure water production according to item 1, wherein the immersion time in the immersion step is 0.5 to 6 hours,
(5) The method for cleaning a membrane separator for ultrapure water production according to item 1, wherein the cleaning cycle is repeated for 10 to 60 days,
(6) The method for cleaning a membrane separator for ultrapure water production according to item 1, wherein the amine concentration of ultrapure water is 50 ng / L or less,
(7) In the water flow step, the method for cleaning the membrane separation apparatus for producing ultrapure water according to item 1, wherein water is passed until the permeated water resistivity is 18.0 MΩ · cm or more, and
(8) The method of cleaning a membrane separation apparatus for producing ultrapure water according to item 1, wherein the temperature of the cleaning water is 23 to 50 ° C.
Is to provide.
Furthermore, as a preferred embodiment of the present invention,
(9) A cleaning method for a membrane separation apparatus for producing ultrapure water according to item 1, wherein the gas is nitrogen having a purity of 99.999% by volume or more, or air filtered with a filter of HEPA (high efficiency fine particle) filter or more, and ,
(10) The method for cleaning a membrane separation apparatus for producing ultrapure water according to item 1, wherein the gas pressure is 5 to 20 kPa,
Can be mentioned.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the cleaning method of the membrane separation apparatus for producing ultrapure water according to the present invention, the number of fine particles having a particle size of 0.05 μm or more is 1 / mL or less, the TOC (organic carbon) concentration is 2 μgC / L or less, and the resistivity is 18 .2 MΩ · cm or more of ultrapure water is used as washing water, and the washing water is passed through the membrane separation device for producing ultrapure water, and the water flow is stopped while holding the washing water in the membrane separation device. The cleaning cycle including the immersion step and the discharge step of discharging the cleaning water from the membrane separation apparatus is repeated.
The number of fine particles with a particle size of 0.05 μm or more is used in the ultra-pure water used in the electronics industry, especially in the production of high-precision electronic materials such as silicon wafers and system LSIs such as highly integrated products such as flash memory. Is 1 piece / mL or less, a TOC concentration of 2 μgC / L or less, and a resistivity of 18.2 MΩ · cm or more are required. Wash the membrane separator for ultrapure water production with the same quality cleaning water as the ultrapure water used, and when the permeated water quality of the membrane separator is the same as the quality of the washing water, wash the membrane separator. Therefore, it is possible to guarantee that the ultrapure water produced satisfies the required water quality standard by installing the membrane separation device in the secondary pure water device of the ultrapure water production device.
[0006]
In the method of the present invention, the amine concentration of the washing water is preferably 50 ng / L or less, and more preferably 20 ng / L or less. The ultrapure water used in a high-precision electronic material manufacturing factory is required to have an amine concentration of 20 ng / L or less. The amine contained in the ultrapure water is mainly a long-chain amine having 10 to 30 carbon atoms used as a curing agent for an epoxy resin that is a potting material, a hydrophilic heterocyclic diamine, or the like. The amine is eluted from the membrane separator by bringing the membrane separator into contact with the washing water, but the elution of the amine is almost independent of the amine concentration in the washing water, and the contact time between the washing water and the membrane separator. In response, the amine migrates from the membrane separator to water. The amine that has migrated to water will not migrate again to the membrane separator. Therefore, even if ultrapure water having an amine concentration of 50 ng / L is used as the washing water, the elution of amine from the membrane separation device into water proceeds. And even if some washing water containing amine remains in the membrane separation device after the washing is finished, if this washed membrane separation device is installed in the secondary pure water device to produce ultrapure water, the remaining washing water is Ultra-pure water having an amine concentration below a predetermined value is produced after being eliminated in a short time.
The amine concentration in the washing water is preferably very low, and ultrapure water obtained by an ultrapure water production apparatus equipped with a membrane separation apparatus for producing ultrapure water washed by the washing method of the present invention is used. More preferably. That is, it is preferable to clean using ultrapure water having a high purity that does not adversely affect the production of products such as silicon wafers, and the quality of the ultrapure water varies depending on the quality required for the product. However, the amine concentration is more preferably 20 ng / L or less.
[0007]
In the method of the present invention, the amount of water flow in the water flow step is preferably the design maximum flow rate of the membrane separation device. FIG. 2 is an explanatory diagram of an example of a membrane separation apparatus. The membrane separation device in this figure is a hollow fiber module, in which hollow fibers 1 made of ultrafiltration membranes are bundled and stored in a pressure vessel 2, and both ends of the hollow fibers are fixed at an adhesive portion 3 by an epoxy resin. Yes. Washing water is supplied from the lower part of the module and flows outside the hollow fiber. The permeated water that has permeated the membrane and entered the inside of the hollow fiber is taken out through the hollow fiber. The water that has not permeated the membrane is discharged from the concentrated water outlet 4 as concentrated water.
In such a membrane separation device, water easily flows on the permeate side, but water hardly flows on the supply water side, and drift tends to occur. By making the amount of water flow the design maximum flow rate of the membrane separation device, it is possible to prevent the occurrence of uneven flow and allow water to flow uniformly into the membrane separation device. Further, in the vicinity of the adhesion portion of the membrane separation apparatus, the hollow fibers are densely gathered and water does not flow easily, so that a pool is easily generated. By repeating the water flow, immersion and discharge to the membrane separation device, it is possible to prevent water from being accumulated in the vicinity of the bonding portion. Not only in hollow fiber modules, but also in flat membrane modules, tube modules, spiral modules, monolith modules, etc., problems of drift and accumulation occur, but by making the amount of water flow the design maximum flow rate of the membrane separator, Can be solved.
[0008]
In the method of the present invention, the water passing time in the water passing step is preferably 1 to 10 minutes, and more preferably 2 to 5 minutes. The water flow time is the time from when the inside of the membrane separation device is completely filled with water until the water flow is stopped. In the water flow step, it is preferable to pass water until the permeated water resistivity is 18.0 MΩ · cm or more. In a 6-inch hollow fiber module, the permeate resistivity typically reaches 18.0 MΩ · cm in 2 to 5 minutes.
In the method of the present invention, the temperature of the washing water is preferably 23 to 50 ° C, and more preferably 25 to 40 ° C. When the temperature of the washing water is less than 23 ° C., the elution rate of the amine is slow and there is a possibility that a long time is required for washing. When the temperature of the washing water exceeds 50 ° C., the separation membrane may be deteriorated.
In the method of the present invention, after the water flow process is completed, the process proceeds to an immersion process in which the water flow is stopped while the cleaning water is retained in the membrane separation device. In the dipping process, water-soluble components such as amines are eluted from the membrane separator into the washing water. The immersion time in the immersion process is preferably 0.5 to 6 hours, and more preferably 2 to 4 hours. If the immersion time is less than 0.5 hour, the washing water retained before the water-soluble components are sufficiently eluted may be discharged, and the washing water may be consumed wastefully. When the immersion time exceeds 6 hours, the water-soluble component of the membrane separation device and the eluted water-soluble component approach the equilibrium, and the elution rate of the water-soluble component may be reduced.
[0009]
In the method of the present invention, when the predetermined immersion process is completed, the process proceeds to a discharge process for discharging the washing water from the membrane separation device. In the discharge process, all the water on the concentrated water side of the membrane separation device is discharged, so that, for example, all washing water in the portion where water is likely to accumulate, such as the bonded portion of the hollow fiber module, is also discharged. Since the cleaning water can be refilled in the process, the cleaning water can be effectively washed in a shorter time by using a smaller amount of the washing water than when the washing water is continuously passed and washed. Can do. In the discharging step, it is preferable to discharge the washing water held by sending gas into the concentrated water side of the membrane separation apparatus.
The gas to be fed is preferably nitrogen having a purity of 99.999% by volume or more, or air filtered with a filter of HEPA (High Efficiency Particulate Air) or more. Contamination of the membrane separator and mixing of fine particles can be prevented by sending air filtered through a filter having a purity of 99.999% or more by nitrogen or a HEPA filter or more. The HEPA filter is a filter that collects 0.3 μm particles at 99.97% or more at a rated air volume with a pressure loss of 25 mmH 2 O or less. Examples of the filter that exceeds the HEPA filter include an ULPA (Ultra Low Penetration Air) filter that collects 0.1 μm particles at a rate of 25 mmH 2 O or less and 99.9995% or more at a rated air flow. .
The pressure of the gas to be fed is preferably 5 to 20 kPa, and more preferably 8 to 15 kPa. If the pressure of the gas to be fed is less than 5 kPa, it may take a long time to discharge the cleaning water. If the pressure of the gas to be fed exceeds 20 kPa, the separation membrane may be damaged. In the method of the present invention, it is preferable to transfer the gas to the concentrated water side of the membrane separator and leave it for 10 to 30 minutes, and then shift to the water flow step. By feeding the gas and leaving it for 10 to 30 minutes, the washing water inside the membrane separation apparatus can be completely discharged, and the washing efficiency can be improved.
[0010]
In the method of the present invention, the washing cycle is preferably repeated for 10 to 60 days. By repeating the washing cycle for 10 to 60 days, the washing of the membrane separator can usually be completed. When the quality of the ultrapure water used as the washing water and the quality of the permeated water of the membrane separation device are the same, it can be determined that the washing has been completed, or the ultrapure water obtained by the membrane separation device If the silicon wafer is cleaned using, and the surface of the silicon wafer is not damaged, it can be determined that the cleaning is completed. In this case, confirmation is performed using SEM observation of the wafer, an ellipsometer, or the like. Furthermore, if the cleaning is repeated using a specific apparatus and the cleaning time until the end of the cleaning can be grasped empirically, the cleaning can be completed after a predetermined time of cleaning.
In the method of the present invention, washing wastewater generated by washing the membrane separator, that is, permeated water that has permeated through the membrane of the membrane separator, concentrated water that does not permeate the membrane and is generated from the concentration side, Since it has almost the same quality as ultrapure water, it can be recovered and returned to the primary deionizer of the ultrapure water production system to make it the raw water for ultrapure water production, or any factory that does not require factory purity It can also be used for other applications.
[0011]
The cleaning apparatus for a membrane separation apparatus for producing ultrapure water according to the present invention has a cleaning water supply pipe having a connection part that can be detached from a water supply inlet of the membrane separation apparatus, and a connection part that can be detached from a permeate outlet of the membrane separation apparatus. It has a permeate discharge pipe, a concentrate outlet of the membrane separator and a concentrate discharge pipe having a detachable connection part, a valve and flow rate adjusting means in the washing water supply pipe, and a valve in the permeate discharge pipe. Each of the water discharge pipes is provided with a valve, and a blow water pipe having a valve branched to the cleaning water supply pipe is connected thereto. The apparatus of the present invention is preferably an apparatus in which a gas supply pipe having a valve is connected to a concentrated water discharge pipe. The apparatus of the present invention is preferably an apparatus to which a plurality of membrane separation apparatuses for producing ultrapure water are attached in parallel.
FIG. 3 is a process flow diagram of one aspect of the apparatus of the present invention. The apparatus shown in this figure can be equipped with 5 membrane separators for production of ultrapure water in one line and is equipped with 3 lines, so that a total of 15 membrane separators can be attached and cleaned simultaneously. it can. In the figure, for the sake of simplification, only one series of five membrane separators is shown, and the other two series are indicated by a dashed-dotted rectangle. The apparatus of the embodiment shown in FIG. 3 has a wash water supply pipe T having a connection part C that can be attached and detached with a feed water inlet of the membrane separation apparatus M, and a permeate discharge having a connection part D that can be attached and detached with a permeate outlet of the membrane separation apparatus. Concentrated water discharge pipe R having a pipe Q, a concentrated water outlet of the membrane separator and a detachable connecting portion E is provided. The washing water supply pipe T is provided with a sub pipe S provided with a flow meter F, a valve A1, and a valve A2 as a flow rate adjusting means. The permeated water discharge pipe Q is provided with a valve A5, and the concentrated water discharge pipe R is provided with a valve A4. Branching to the cleaning water supply pipe T, a blow water pipe B having a valve A6 and a valve A7 is connected. A gas supply pipe G having a valve A3 is connected to the concentrated water discharge pipe R. Furthermore, a valve Umn1 is provided upstream of the feed inlet of the membrane separator M and the detachable connecting portion C, a valve Umn2 is provided downstream of the permeate outlet of the membrane separator and the detachable connecting portion D, and a concentrated water outlet of the membrane separator. A valve Umn3 is provided after the detachable connecting portion E. However, m is a series number and n is a membrane separator number. Each valve is an automatic valve and can be opened and closed automatically. The flow rate can be adjusted with a separate manual valve as necessary.
[0012]
In the apparatus of the present invention, the number of series can be one series or a plurality of series. Also, the number of membrane separation devices attached in one line is arbitrary, and can be one or plural. The number of membrane separation apparatuses to be washed can be appropriately selected according to the scale of the ultrapure water production apparatus. For example, when the amount of treated water of one membrane separation device installed in the secondary pure water device is 10 t / h and the production amount of ultrapure water is 150 t / h, at least 15 membrane separation devices are required. Become. In the case of such a scale, it is preferable that 15 membrane separation devices are also attached to the cleaning device. In addition, when the production amount of ultrapure water is extremely small, it is sufficient that a single membrane separation device is attached. Usually, however, a plurality of membrane separation devices are required. Preferably a separation device can be attached.
When washing, connect the water inlet, permeate outlet, and concentrated water outlet of the membrane separator to the washing water supply pipe, permeate drain pipe, and concentrated water outlet pipe, respectively, to wash the membrane separator. Attach to the device. When cleaning a plurality of membrane separation devices, a plurality of membrane separation devices are attached. For example, in FIG. 3, when cleaning 15 membrane separators, the membrane separators are attached to all three systems, and when cleaning 5 membrane separators, the membrane separators are attached to only one system, When washing three membrane separation devices, three membrane separation devices are attached in one line, and all valves of the system not attached with the membrane separation device are closed and removed from the target of automatic valve control. be able to.
[0013]
At the start of the water flow process, the valves A3, A6 and A7 are closed and all other valves are opened. Wash water is supplied through the valve A1, is attached, and the inside of the membrane separator and each pipe are filled with water. The time required to make the water full is governed by the amount of supplied water, but is preferably about 1 minute.
In the water flow process, first, the valves U111, U112, U113, A1, A5, and A4 are opened, all other valves are closed, and only the membrane separation device M1 is passed. At this time, in order to prevent uneven flow in the membrane separation apparatus, it is preferable that the valve A2 of the sub-pipe S is also opened to increase the amount of supplied water and set the water flow rate to the design maximum flow rate of the membrane separation apparatus. By passing water, the water in the membrane separator is replaced, and the water-soluble components eluted from the membrane separator are washed out. The amount of water flow may be about 10 to 30 times the amount of water in the membrane separator, and the water flow time is preferably 1 to 10 minutes, more preferably 2 to 5 minutes.
After passing water through the membrane separator M1 for a predetermined time, the valves U111, U112, and U113 are closed to stop water passing through the membrane separator M1, and the inside of the membrane separator is filled with washing water. The inside of the apparatus is immersed in cleaning water. The immersion state is preferably maintained for 0.5 to 6 hours. During this time, the valves U121, U122 and U123 are opened, and the second membrane separation device M2 is transferred to the water passing step. When the water flow process of the membrane separation device M2 is completed, the process proceeds to the crushing process. In this way, each membrane separator sequentially moves to the immersion process through the water flow process. In the dipping process, the cleaning water and the membrane and the connecting portion of the membrane are in contact with each other for a long time in each membrane separation device, and the elution of the water-soluble component from the connecting portion into the cleaning water gradually proceeds.
[0014]
In the discharge step, the valves A3, Umn3, Umn1, A6, and A7 are opened and the valves A1, A2, U112, and A4 are closed, whereby the washing water in the membrane separation device M1 flows down and is discharged. At this time, clean gas is fed into the membrane separation device from the concentrated water outlet through the valve A3, and the washing water in the membrane separation device is completely discharged by pushing out the washing water in the membrane separation device. . The gas supply pressure is preferably 5 to 20 kPa. In the discharging step, the time required for discharging the washing water is usually 2 to 4 minutes, but it is preferable to leave the water for 10 to 30 minutes to discharge the water reliably.
In the apparatus of the present invention, the water separation process can be carried out by sequentially passing water through each membrane separation device, and water can be passed through all of the attached membrane separation devices at the same time, or a plurality of, if not all, can be passed. It is also possible to simultaneously pass water through the membrane separation apparatus. However, if water is passed through each membrane separation device in the water flow process, the required washing water supply capacity is only one membrane separation device, so that the washing water supply facility can be a small device. If water is passed through five membrane separators at the same time, the washing water supply capacity is required five times.
In the embodiment shown in FIG. 3, the cleaning apparatus is composed of three systems with five membrane separators as one system, but the number of membrane separators attached to one system and the number of systems of cleaning systems are as required. It can be increased or decreased. It is preferable that the automatic valve of the cleaning apparatus is sequence-controlled and automatically shifts the water flow process, the immersion process, and the discharge process sequentially.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples, amine analysis was performed by chromatographic column concentration-TD-GCMS.
Example 1
The ultrafiltration membrane device [Kurita Industry Co., Ltd., KU-1510HS] was washed. This ultrafiltration membrane device is a hollow fiber module having a diameter of 176 mm and a length of 1,284 mm, the membrane material is polysulfone, and the permeation flow rate is 15 t / h.
As washing water, ultrapure water having a particle size of 0.3 μm or more with a particle size of 0.05 μm, TOC concentration of 1 μg C / L, resistivity of 18.24 MΩ · cm, hexadecylamine 20 ng / L, and water temperature of 30 ° C. is used. It was. For discharging the washing water, air having a pressure of 10 kPa filtered through a HEPA filter was used.
Washing was performed with a water passage time of 4 minutes, an immersion time of 3.5 hours, a discharge time of 3 minutes, a standing time after discharge of 23 minutes, and a cleaning cycle of 4 hours. The concentration of hexadecylamine in the permeated water immediately after the start of washing was 47 μg / L. As the washing cycle was repeated, the hexadecylamine concentration of the permeated water gradually decreased, and after 30 days, when 180 cycles were completed, the concentration was 20 ng / L, which was the same as that of the washing water, and the completion of washing was confirmed.
FIG. 4 shows the relationship between the elapsed days and the hexadecylamine concentration of the permeated water.
[0016]
【The invention's effect】
INDUSTRIAL APPLICABILITY According to the method and apparatus for cleaning a membrane separator for producing ultrapure water according to the present invention, elution of amine from the membrane separator installed in the secondary pure water device of the ultrapure water producing apparatus is prevented, and a new membrane separator is provided. It is possible to produce ultrapure water with good water quality immediately after the installation of, and to prevent generation of defective products in the electronic material factory.
[Brief description of the drawings]
FIG. 1 is a system diagram of an example of an ultrapure water supply apparatus.
FIG. 2 is an explanatory diagram of an example of a membrane separation apparatus.
FIG. 3 is a process flow diagram of one embodiment of the apparatus of the present invention.
FIG. 4 is a graph showing the relationship between the number of days elapsed and the hexadecylamine concentration of permeated water.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hollow fiber 2 Pressure vessel 3 Bonding part 4 Concentrated water outlet A Valve B Blow water piping C Connection part D Connection part E Connection part F Flowmeter G Gas supply pipe M Membrane separation device Q Permeate discharge pipe R Concentrated water discharge pipe S Sub piping T Washing water supply piping U valve

Claims (8)

粒径0.05μm以上の微粒子数が1個/mL以下、TOC濃度が2μgC/L以下、抵抗率が18.2MΩ・cm以上の超純水を洗浄水とし、該洗浄水を超純水製造用膜分離装置に通水する通水工程と、該膜分離装置に洗浄水を保持したまま通水を停止する浸漬工程と、該膜分離装置の濃縮水側に気体を送入して、該膜分離装置から洗浄水を排出して10〜30分放置したのち通水工程に移行する排出工程とを有する洗浄サイクルを繰り返すことを特徴とする超純水製造用膜分離装置の洗浄方法。Ultrapure water having a particle size of 0.05 μm or more with 1 particle / mL or less, a TOC concentration of 2 μgC / L or less, and a resistivity of 18.2 MΩ · cm or more is used as washing water, and the washing water is produced with ultrapure water. a water passing step of Rohm use membrane separation apparatus, and fed with immersion step, the gas concentration water side of the membrane separation device to stop while passing water holding the washing water to the membrane separation device, the A cleaning method for a membrane separation apparatus for producing ultrapure water, characterized by repeating a cleaning cycle having a discharge step of discharging the cleaning water from the membrane separation device and leaving it to stand for 10 to 30 minutes and then shifting to a water flow step. 通水工程における通水量が、膜分離装置の設計最大流量である請求項1記載の超純水製造用膜分離装置の洗浄方法。  The method for cleaning a membrane separation device for producing ultrapure water according to claim 1, wherein the amount of water flow in the water flow step is a design maximum flow rate of the membrane separation device. 通水工程における通水時間が、1〜10分間である請求項1記載の超純水製造用膜分離装置の洗浄方法。  The method for cleaning a membrane separation apparatus for producing ultrapure water according to claim 1, wherein the water flow time in the water flow step is 1 to 10 minutes. 浸漬工程における浸漬時間が、0.5〜6時間である請求項1記載の超純水製造用膜分離装置の洗浄方法。  The method for cleaning a membrane separation apparatus for producing ultrapure water according to claim 1, wherein the immersion time in the immersion step is 0.5 to 6 hours. 洗浄サイクルを、10〜60日間繰り返す請求項1記載の超純水製造用膜分離装置の洗浄方法。  The cleaning method for a membrane separator for ultrapure water production according to claim 1, wherein the cleaning cycle is repeated for 10 to 60 days. 超純水のアミン濃度が50ng/L以下である請求項1記載の超純水製造用膜分離装置の洗浄方法。  The method for cleaning a membrane separation apparatus for producing ultrapure water according to claim 1, wherein the amine concentration of the ultrapure water is 50 ng / L or less. 通水工程において、透過水の抵抗率が18.0MΩ・cm以上になるまで通水する請求項1記載の超純水製造用膜分離装置の洗浄方法。  The cleaning method for a membrane separation apparatus for producing ultrapure water according to claim 1, wherein in the water flow step, water is passed until the permeate has a resistivity of 18.0 MΩ · cm or more. 洗浄水の温度が、23〜50℃である請求項1記載の超純水製造用膜分離装置の洗浄方法。  The method for cleaning a membrane separation apparatus for producing ultrapure water according to claim 1, wherein the temperature of the cleaning water is 23 to 50 ° C.
JP2002224749A 2002-08-01 2002-08-01 Cleaning method for membrane separator for ultrapure water production Expired - Fee Related JP4296469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224749A JP4296469B2 (en) 2002-08-01 2002-08-01 Cleaning method for membrane separator for ultrapure water production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224749A JP4296469B2 (en) 2002-08-01 2002-08-01 Cleaning method for membrane separator for ultrapure water production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007161033A Division JP4196222B2 (en) 2007-06-19 2007-06-19 Cleaning device for membrane separator for ultrapure water production

Publications (2)

Publication Number Publication Date
JP2004066015A JP2004066015A (en) 2004-03-04
JP4296469B2 true JP4296469B2 (en) 2009-07-15

Family

ID=32012626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224749A Expired - Fee Related JP4296469B2 (en) 2002-08-01 2002-08-01 Cleaning method for membrane separator for ultrapure water production

Country Status (1)

Country Link
JP (1) JP4296469B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559621B1 (en) * 2004-12-06 2015-10-13 가부시키가이샤 니콘 Maintenance method, maintenance apparatus, exposure apparatus and device manufacturing method
JP5245605B2 (en) * 2008-07-18 2013-07-24 栗田工業株式会社 Filtration membrane cleaning method and ultrapure water production filtration membrane
JP6699302B2 (en) * 2015-12-18 2020-05-27 三菱ケミカル株式会社 Membrane module cleaning method
JP6871763B2 (en) * 2017-03-09 2021-05-12 オルガノ株式会社 Evaluation method of cleanliness of hollow fiber membrane device, cleaning method and cleaning device of hollow fiber membrane device
JP6940962B2 (en) * 2017-03-09 2021-09-29 オルガノ株式会社 Cleaning method of hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production device and cleaning device of hollow fiber membrane device

Also Published As

Publication number Publication date
JP2004066015A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
CN110382091B (en) Method for washing hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production system, and washing device
JP7267258B2 (en) Ultrapure water production system and method of operating ultrapure water production system
CN103492054A (en) Method for cleaning membrane module
CN104787846A (en) Water treatment system
WO2013094528A1 (en) Liquid management system and recovery and recycling device for cleaning liquid
JP4196222B2 (en) Cleaning device for membrane separator for ultrapure water production
JP4665054B1 (en) Silicon recovery system and silicon recovery method
JP2017209654A (en) Reverse osmosis membrane device and operation method of reverse osmosis membrane device
JP4296469B2 (en) Cleaning method for membrane separator for ultrapure water production
KR20190005843A (en) Starting method of ultrapure water producing device
US6776172B2 (en) Method of cleaning ultrapure water supply system
JP4034668B2 (en) Ultrapure water production system and operation method thereof
JP4840285B2 (en) Cleaning method for submerged membrane module
CN106007040A (en) Heavy metal wastewater treatment system and method
CN101549913B (en) Process and system for recovering reduction scribing waste water
JP2007289899A (en) Membrane washing method for membrane separation means, and water treatment apparatus
CN108128848A (en) A kind of novel water purification processing method
JP7171386B2 (en) Method for starting up ultrapure water production device and ultrapure water production device
JP2004050056A (en) Ion exchanger and ultrapure water manufacturing apparatus
JP3963319B2 (en) Ultrapure water production equipment
JP2009274021A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device
JP2006130496A (en) Water treatment device and its operating method
JP2006043655A (en) Water treating apparatus and operation method therefor
CN213375993U (en) Silicon chip processing trade sewage regeneration retrieval and utilization processing system
JP7163991B1 (en) Water quality measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090319

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees