JP2009274021A - Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device - Google Patents

Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device Download PDF

Info

Publication number
JP2009274021A
JP2009274021A JP2008128326A JP2008128326A JP2009274021A JP 2009274021 A JP2009274021 A JP 2009274021A JP 2008128326 A JP2008128326 A JP 2008128326A JP 2008128326 A JP2008128326 A JP 2008128326A JP 2009274021 A JP2009274021 A JP 2009274021A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
raw water
filtration
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008128326A
Other languages
Japanese (ja)
Inventor
Isao Sone
勲 曽根
Dai Ogita
大 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2008128326A priority Critical patent/JP2009274021A/en
Publication of JP2009274021A publication Critical patent/JP2009274021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method of a membrane module allowing stable continuous filtration operation for a long time. <P>SOLUTION: In the outer pressure type hollow fiber membrane module supplying raw water from the outside of the hollow fiber membrane and taking out filtrate from the inside, the cleaning method of the hollow fiber membrane module is used wherein a reducing acidic liquid is supplied to the raw water side to perform bubbling cleaning, the concentration of the reducing acidic liquid being 70-12,000 mg/L. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

中空糸膜モジュールの洗浄方法および中空糸膜ろ過装置に関する。   The present invention relates to a method for cleaning a hollow fiber membrane module and a hollow fiber membrane filtration device.

近年、分離膜に関する技術開発が進み、水のろ過をはじめ様々な用途に広く用いられている。分離膜の素材としては有機高分子、セラミック、燒結金属などが提案され、分離膜の形状としては中空糸膜、管状膜、平膜、モノリスなどが提案され、また分離膜の孔径としてはイオン類を分離できる逆浸透膜(RO)、タンパク質、ウイルスなどの高分子成分を分離できる限外ろ過膜(UF)、細菌類などの微粒子を分離できる精密ろ過膜(MF)などが提案され、これらを組み合わせて多種多様の分離膜が提案され、実用化されているものも多い。特に中空糸膜は、単位容積あたりの膜面積を大きく確保でき、さらに種々の素材、孔径およびモジュール形状のものから選択できることから適用範囲が広く、広範な用途で使用されている。   In recent years, technological development related to separation membranes has progressed, and it has been widely used for various applications including water filtration. Organic polymers, ceramics, sintered metals, etc. have been proposed as materials for separation membranes, and hollow fiber membranes, tubular membranes, flat membranes, monoliths, etc. have been proposed as the shape of separation membranes. Proposals include reverse osmosis membranes (RO) that can separate proteins, ultrafiltration membranes (UF) that can separate high molecular components such as proteins and viruses, and microfiltration membranes (MF) that can separate microparticles such as bacteria. Many different separation membranes have been proposed and put into practical use. In particular, the hollow fiber membrane can secure a large membrane area per unit volume, and can be selected from various materials, pore diameters and module shapes, so that it has a wide range of applications and is used in a wide range of applications.

しかし、分離膜によるろ過の過程では、目詰まりとよばれる膜表面の汚染や微細孔の詰まりが生じ、経時的に透過流束の低下が生じる。例えば主に微粒子成分の除去を目的とする限外ろ過膜(UF)や精密ろ過膜(MF)では、SSと呼ばれる原液中の懸濁物質等が膜表面に付着し、または微多孔に侵入し、経時的に透過流束の低下が生じる。そこで、安定して長期的にろ過運転を継続するためには、ろ過条件の設定と同時に有効な分離膜の洗浄方法の開発が不可欠とされている。   However, in the process of filtration using a separation membrane, the membrane surface contamination called clogging and clogging of micropores occur, and the permeation flux decreases with time. For example, in ultrafiltration membranes (UF) and microfiltration membranes (MF) mainly for the purpose of removing particulate components, suspended substances in the stock solution called SS adhere to the membrane surface or penetrate into the micropores. The permeation flux decreases with time. Therefore, in order to continue the filtration operation stably over a long period of time, it is indispensable to develop an effective separation membrane cleaning method simultaneously with setting the filtration conditions.

河川水、湖沼水、井戸水などからなる工業用水を浄化し、プロセス用水とするには、砂ろ過や膜ろ過により夾雑物を除去した後、必要により活性炭処理、逆浸透(RO)膜ろ過、イオン交換などで必要な水質まで精製する。一般的に、工業用水には多量の微生物が含まれるため、夾雑物除去手法として精密ろ過(MF)膜や限外ろ過(UF)膜などの膜ろ過手法を併用することが多いが、膜の目詰まりが生じ易いため、特に効果的な物理洗浄手法の開発が求められている。ROを長期間に亘って安定な状態で運転維持するために、原水中の濁質を浄化する装置としては、凝集処理と沈殿、浮上、砂ろ過などの設備を組み合わせる方式が広く用いられているが、これらの方式では硫酸アルミニウム、ポリ塩化アルミニウム系凝集剤や、塩化第二鉄、ポリ硫酸鉄などの鉄系凝集剤を用いた凝集操作が必要であり、原水の水質変動に対応した凝集剤の添加量の調整やpH条件の調整など煩雑な操作が必要であった。更に、原水中の有機物濃度が高まると、凝集剤を多量に添加する必要があるが、過剰に添加されると凝集しきれない微量の溶解状態の凝集剤が処理水中に残存し、この凝集剤がROで濃縮される過程で再凝集し、ROの膜表面に固着して薬品洗浄期間を短縮化するという問題もあった。   To purify industrial water consisting of river water, lake water, well water, etc. and use it as process water, after removing impurities by sand filtration or membrane filtration, if necessary, activated carbon treatment, reverse osmosis (RO) membrane filtration, ions Purify to the required water quality by exchange. Generally, because industrial water contains a large amount of microorganisms, membrane filtration methods such as microfiltration (MF) membranes and ultrafiltration (UF) membranes are often used as contaminant removal methods. Since clogging is likely to occur, development of a particularly effective physical cleaning technique is demanded. In order to maintain the RO in a stable state over a long period of time, as a device for purifying turbidity in the raw water, a system that combines agglomeration, precipitation, flotation, sand filtration, and other facilities is widely used. However, these systems require a coagulation operation using an iron sulfate coagulant such as aluminum sulfate, polyaluminum chloride, and ferric chloride, poly iron sulfate, and the like. A complicated operation such as adjustment of the amount of addition and adjustment of pH conditions was necessary. Furthermore, when the concentration of organic substances in the raw water increases, it is necessary to add a large amount of flocculant, but if added excessively, a small amount of the flocculant in a dissolved state that cannot be aggregated remains in the treated water. In the process of being concentrated with RO, it re-aggregates and adheres to the RO membrane surface to shorten the chemical cleaning period.

従来、分離膜の洗浄方法として、種々の方法が検討されてきたが、これらは物理的洗浄と、化学的洗浄(薬品洗浄ともいう)とに大別できる。物理的洗浄としては、原水側に気泡を噴出させるバブリング法、超音波法、電気泳動法(例えば、非特許文献1参照)、スポンジボール、高圧水流などにより強制的に付着物質をかき取る方法、水、膜ろ過水などの液体をろ過水側から原水側へ通過させる液体逆洗法(例えば、特許文献1参照)、加圧気体をろ過水側から原水側へ通過させる気体逆洗法(例えば、特許文献2、3参照)、酸化剤を添加した原水側に間欠的に重亜硫酸ナトリウムを添加してろ過する液体逆洗法(例えば、特許文献4、5参照)や、中空糸膜の原水側に液体を満たした状態で、中空糸膜の原水側から気体が放出される圧力よりも小さい圧力の気体を中空糸膜の膜ろ過水側から導入し、20秒以内で中空糸膜モジュールの膜ろ過水側の液体を完全に排出する加圧工程を行い、当該加圧工程中または加圧工程後に、中空糸膜の原水側をバブリング洗浄する液体逆洗法(例えば、特許文献6参照)も提案されている。また、化学的洗浄としては、酸、アルカリ水溶液、洗浄剤などの薬液により、付着物を溶解除去する方法が知られている。これらは分離膜の素材、形状、孔径などの特性や目詰まり物質の特性に応じ、適宜選択して単独または組み合わせて実施される(例えば、非特許文献2参照)。   Conventionally, various methods have been studied as separation membrane cleaning methods. These methods can be broadly classified into physical cleaning and chemical cleaning (also referred to as chemical cleaning). As physical cleaning, a bubbling method in which bubbles are ejected to the raw water side, an ultrasonic method, an electrophoresis method (for example, refer to Non-Patent Document 1), a sponge ball, a method of forcibly scraping off adhered substances by high-pressure water flow, Liquid backwashing method (for example, refer to Patent Document 1) for passing a liquid such as water or membrane filtrate from the filtered water side to the raw water side, and a gas backwashing method for passing pressurized gas from the filtered water side to the raw water side (for example, , Patent Documents 2 and 3), a liquid backwashing method (for example, see Patent Documents 4 and 5) in which sodium bisulfite is intermittently added to the raw water side to which an oxidizing agent has been added, and filtration, or raw water for hollow fiber membrane In a state filled with liquid on the side, a gas having a pressure smaller than the pressure at which the gas is released from the raw water side of the hollow fiber membrane is introduced from the membrane filtered water side of the hollow fiber membrane, and within 20 seconds the hollow fiber membrane module Pressurization to completely discharge the liquid on the membrane filtration water side Was carried out, after the pressing step or during the pressure process, the liquid backwash method bubbling cleaning the raw water side of the hollow fiber membranes (e.g., see Patent Document 6) it has also been proposed. As chemical cleaning, a method of dissolving and removing deposits with a chemical solution such as an acid, an aqueous alkaline solution, or a cleaning agent is known. These are carried out by appropriately selecting them according to the characteristics of the separation membrane, such as the material, shape, pore diameter, etc. and the characteristics of the clogging substance (for example, see Non-Patent Document 2).

特開昭51−110482号公報JP-A-51-110482 特開昭53−108882号公報JP-A-53-108882 特開平1−500732号公報Japanese Unexamined Patent Publication No. 1-500732 特開2008−29906号公報JP 2008-29906 A 特開2005−74386号公報JP 2005-74386 A 特開平10−286441号公報Japanese Patent Laid-Open No. 10-286441 化学工学会・膜分離技術ワーキンググループ編、「ユーザーのための実用膜分離技術」、日刊工業新聞社発行、1996年4月30日、P.243〜248Chemical Engineering Society / Membrane Separation Technology Working Group, “Practical membrane separation technology for users”, published by Nikkan Kogyo Shimbun, April 30, 1996, p. 243-248 化学工学会・膜分離技術ワーキンググループ編、「ユーザーのための実用膜分離技術」、日刊工業新聞社発行、1996年4月30日、P.251〜261Chemical Engineering Society / Membrane Separation Technology Working Group, “Practical membrane separation technology for users”, published by Nikkan Kogyo Shimbun, April 30, 1996, p. 251 to 261

従来、中空糸膜で生物処理水のろ過を行う場合、目詰まりを回避するために生物処理水にオゾンを溶解させてからろ過する方法や、次亜塩素酸ナトリウムなどの酸化剤を含む液体による液体逆洗を行うことが提案されてきた。ただし生物処理水にオゾンを溶解させてから膜ろ過する方法では、オゾン発生装置が非常に高価かつ大電力を必要とする上、現在実用化されているほとんどの膜モジュールがオゾンにより分解作用を受けて劣化するため、あらかじめ活性炭などによりオゾンを除去してからろ過する必要がある。一方、フッ素系高分子からなる膜のようにオゾンに対して耐性を有する膜モジュールも提案されているが、非常に高価であったり、孔径やモジュールの形状および大きさが限られていたりするため、一般的とはいえない。また次亜塩素酸ナトリウムなどの酸化剤を含む液体による液体逆洗では、必ずしも満足できる洗浄効果が得られない上に、膜ろ過水側配管や膜モジュールの膜ろ過水側が酸化剤を含む液体により汚染されるため、膜ろ過水を再利用する場合に酸化剤の除去や還元処理が必要となる場合もあり、好ましくない。特許文献4および特許文献5に記載された技術は上記した課題を解決するために、いずれもろ過工程中に原水に酸化剤を添加し、膜の洗浄工程において還元剤を含む液体で薬液洗浄することによりろ過工程で添加した酸化剤を無害化又は除去するという操作を行っている。なお、特許文献5は、文言上、還元剤含有液による薬液洗浄後にろ過工程を行うことになってはいるものの、ろ過工程の前に洗浄工程を設けることは一般常識に反し、該文献の実施例でも裏付けられている通り、原水に酸化剤を添加してろ過工程を行い、洗浄工程において主に還元剤を該酸化剤の無害化のために使用することを旨とする発明であると思われる。特に、鉄イオンやマンガンイオンなどが含まれる原水では、次亜塩素酸ナトリウムのような酸化剤を過剰に添加した場合、酸化作用で金属イオンが金属酸化物として析出していまい、膜表面に固着して膜の目詰まりを促進させてしまう。従って、特許文献4および特許文献5に記載のように、膜の洗浄に還元剤を用いても、ろ過する原水中の酸化剤の無害化に使用されてしまい、金属酸化物の析出を完全に抑えることはできなかったため、より効果的な洗浄方法が求められていた。   Conventionally, when filtering biologically treated water with a hollow fiber membrane, it is possible to dissolve ozone in the biologically treated water in order to avoid clogging, or a liquid containing an oxidizing agent such as sodium hypochlorite. It has been proposed to perform liquid backwashing. However, in the method of membrane filtration after dissolving ozone in biologically treated water, the ozone generator is very expensive and requires high power, and most membrane modules currently in practical use are decomposed by ozone. Therefore, it is necessary to filter after removing ozone with activated carbon in advance. On the other hand, membrane modules that are resistant to ozone, such as membranes made of fluoropolymers, have also been proposed, but they are very expensive and have limited pore sizes and module shapes and sizes. It's not common. In addition, liquid backwashing with a liquid containing an oxidant such as sodium hypochlorite does not always provide a satisfactory cleaning effect, and the membrane filtration water side piping or the membrane filtration water side of the membrane module may be affected by the liquid containing the oxidant. Since it is contaminated, removal of the oxidizing agent or reduction treatment may be necessary when the membrane filtered water is reused, which is not preferable. In order to solve the above-described problems, the techniques described in Patent Document 4 and Patent Document 5 both add an oxidizing agent to raw water during the filtration step, and perform chemical cleaning with a liquid containing a reducing agent in the membrane cleaning step. Thus, an operation of detoxifying or removing the oxidant added in the filtration step is performed. In addition, although patent document 5 is supposed to perform a filtration process after the chemical | medical solution washing | cleaning by a reducing agent containing liquid on the wording, it is contrary to common sense to provide a washing process before a filtration process, implementation of this literature As evidenced in the examples, it seems that the invention is intended to add an oxidizing agent to the raw water to perform the filtration step, and to use the reducing agent mainly for detoxification of the oxidizing agent in the washing step. It is. In particular, in raw water containing iron ions, manganese ions, etc., when an oxidizing agent such as sodium hypochlorite is added in excess, metal ions will not precipitate as metal oxides due to oxidation, and will adhere to the membrane surface. As a result, clogging of the film is promoted. Therefore, as described in Patent Document 4 and Patent Document 5, even if a reducing agent is used for cleaning the membrane, it is used to detoxify the oxidizing agent in the raw water to be filtered, and the metal oxide is completely deposited. Since it could not be suppressed, a more effective cleaning method has been demanded.

本発明の目的は、新規な外圧型中空糸膜モジュールの物理洗浄方法およびそのために用いることのできる中空糸膜ろ過装置を提供することにある。   An object of the present invention is to provide a novel physical cleaning method for an external pressure type hollow fiber membrane module and a hollow fiber membrane filtration device that can be used therefor.

上記の課題を解決する本発明の中空糸膜モジュールの洗浄方法は、中空糸膜の外側から原水を供給し内側からろ過水を取り出す外圧型中空糸膜モジュールにおいて、原水側に還元性酸性液を供給してバブリング洗浄を実施し、その際還元性酸性液の濃度が70〜12000mg/Lであることを特徴とする。   The method for cleaning a hollow fiber membrane module of the present invention that solves the above-mentioned problem is the following. In the external pressure hollow fiber membrane module that supplies raw water from the outside of the hollow fiber membrane and takes out filtrated water from the inside, a reducing acidic liquid is added to the raw water side. Supplying and carrying out bubbling washing, wherein the concentration of the reducing acidic solution is 70 to 12000 mg / L.

また、本発明は、中空糸膜の外側から原水を供給し内側からろ過水を取り出す外圧型中空糸膜モジュールにおいて、原水に酸化剤を1mg/L未満添加して中空糸膜でろ過を行うろ過工程と、原水側に還元性酸性液を供給してバブリング洗浄を実施し、その際還元性酸性液の濃度が70〜12000mg/Lである洗浄工程を有することを特徴とする中空糸膜モジュールの運転方法に関する。   Further, the present invention provides an external pressure type hollow fiber membrane module in which raw water is supplied from the outside of the hollow fiber membrane and filtered water is taken out from the inside, and filtration is performed through the hollow fiber membrane by adding less than 1 mg / L of oxidizing agent to the raw water. A hollow fiber membrane module comprising: a step of carrying out bubbling washing by supplying a reducing acidic solution to the raw water side, wherein the concentration of the reducing acidic solution is 70 to 12000 mg / L It relates to the driving method.

また、本発明は、中空糸膜の外側から原水を供給し内側からろ過水を取り出す外圧型中空糸膜モジュールと、原水側に還元性酸性液を供給する手段と、原水側に気体を噴出させる手段とを備え、原水側に還元性酸性液を供給してバブリング洗浄を行うよう制御する手段を備えた膜ろ過装置に関する。   The present invention also provides an external pressure type hollow fiber membrane module that supplies raw water from the outside of the hollow fiber membrane and takes out filtered water from the inside, means for supplying a reducing acidic solution to the raw water side, and jets gas to the raw water side. And a membrane filtration device having means for controlling to supply bubbling cleaning by supplying a reducing acidic solution to the raw water side.

本発明の中空糸膜モジュールの洗浄方法および運転方法によって、長期間安定的に連続したろ過運転が可能となる。本発明の中空糸膜ろ過装置は、上記本発明の中空糸膜モジュールの洗浄方法に用いることが有効である。   The method for cleaning and operating the hollow fiber membrane module of the present invention enables a continuous filtration operation stably for a long period of time. The hollow fiber membrane filtration device of the present invention is effective for use in the method for cleaning the hollow fiber membrane module of the present invention.

本発明で使用される中空糸膜の素材としては特に限定されず、形状、孔径などの要求特性に応じて適宜選択することができる。例えば有機高分子系素材としては、ポリオレフィン系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、エチレンービニルアルコール共重合体系樹脂、ポリアクリロニトリル系樹脂、酢酸セルロース系樹脂、ポリフッ化ビニリデン系樹脂、ポリパーフルオロエチレン系樹脂、ポリメタクリル酸エステル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂などが挙げられ、他成分を共重合したもの、他の素材をブレンドしたもの、親水化処理などの処理を施したものでもよい。   The material of the hollow fiber membrane used in the present invention is not particularly limited, and can be appropriately selected according to required characteristics such as shape and pore diameter. For example, organic polymer materials include polyolefin resins, polysulfone resins, polyethersulfone resins, ethylene-vinyl alcohol copolymer resins, polyacrylonitrile resins, cellulose acetate resins, polyvinylidene fluoride resins, polypars. Fluoroethylene resin, polymethacrylic acid ester resin, polyester resin, polyamide resin, etc. are listed, those obtained by copolymerizing other components, those blended with other materials, and those subjected to treatment such as hydrophilization But you can.

また、中空糸膜の製造方法は特に限定されることはなく、素材の特性および所望する分離膜の形状や性能に応じて、公知の方法から適宜選択した方法を採用することができる。   Moreover, the manufacturing method of a hollow fiber membrane is not specifically limited, According to the characteristic of a raw material and the shape and performance of a desired separation membrane, the method suitably selected from the well-known methods is employable.

本発明で使用される中空糸膜の孔径は特に限定されないが、0.001〜5μmの範囲内であることが、高い透水性を有し、ろ過効率が低下するおそれが小さいことから好ましい。なお、ここでいう孔径とは、コロイダルシリカ、エマルジョン、ラテックスなどの粒子径が既知の各種基準物質を中空糸膜でろ過した際に、その90%が排除される基準物質の粒子径を言う。孔径は均一であることが好ましい。限外ろ過膜であれば、上記のような基準物質の粒子径に基づいて、孔径を求めることは不可能であるが、分子量が既知の蛋白質を用いて同様の測定を行ったときに、分画分子量が3000以上であるものが好ましい。   The pore diameter of the hollow fiber membrane used in the present invention is not particularly limited, but it is preferably in the range of 0.001 to 5 μm because it has high water permeability and is less likely to reduce the filtration efficiency. Here, the pore diameter refers to the particle diameter of a reference material from which 90% is excluded when various reference materials with known particle diameters such as colloidal silica, emulsion, and latex are filtered through a hollow fiber membrane. The pore diameter is preferably uniform. In the case of an ultrafiltration membrane, it is impossible to determine the pore size based on the particle size of the reference material as described above, but when a similar measurement is performed using a protein with a known molecular weight, Those having a molecular weight of 3000 or more are preferred.

本発明において、該中空糸膜はモジュール化されてろ過に使用される。モジュールの形態は、ろ過方法、ろ過条件、洗浄方法などに応じて適宜選択することができ、1本または複数本の膜エレメントを装着して中空糸膜モジュールを構成しても良い。例えば、数十本から数十万本の中空糸膜を束ねてモジュール内でU字型にしたもの、中空糸繊維束の一端を適当なシール材により一括封止したもの、中空糸繊維束の一端を適当なシール材により1本ずつ固定されていない状態(フリー状態)で封止したもの、中空糸繊維束の両端を開口したものなどが挙げられる。また、形状も特に限定されることはなく、例えば円筒状であってもスクリーン状であってもよい。特に中空糸繊維束の一端を適当なシール材により1本ずつ固定されていない状態(フリー状態)で封止したもの(片端フリー構造)の中空糸膜モジュールは、バブリング洗浄による膜付着物質の剥離および排出を効果的に行うことができるため好ましい。   In the present invention, the hollow fiber membrane is modularized and used for filtration. The form of the module can be appropriately selected according to the filtration method, filtration conditions, washing method, and the like, and a hollow fiber membrane module may be configured by mounting one or a plurality of membrane elements. For example, a bundle of dozens to hundreds of thousands of hollow fiber membranes that are U-shaped in a module, one end of a hollow fiber bundle bundled together with an appropriate sealing material, and a hollow fiber bundle bundle Examples thereof include one in which one end is sealed in a state where the ends are not fixed one by one with a suitable sealing material (free state), and both ends of the hollow fiber bundle are opened. Further, the shape is not particularly limited, and may be, for example, a cylindrical shape or a screen shape. In particular, hollow fiber membrane modules in which one end of a hollow fiber bundle is sealed in a state where it is not fixed one by one with a suitable sealing material (free state) (one-end free structure) are used for peeling membrane adhering substances by bubbling cleaning In addition, it is preferable because it can be effectively discharged.

本発明の中空糸膜モジュールの運転方法は、中空糸膜の外側から原水を供給し内側からろ過水を取り出す外圧型中空糸膜モジュールにおいて、原水に酸化剤を1mg/L未満添加して中空糸膜でろ過を行うろ過工程と、原水側に還元性酸性液を供給してバブリング洗浄を実施し、その際還元性酸性液の濃度が70〜12000mg/Lである洗浄工程を有することを特徴とする。   The operation method of the hollow fiber membrane module of the present invention is a hollow fiber membrane module in which less than 1 mg / L of oxidant is added to raw water in an external pressure type hollow fiber membrane module in which raw water is supplied from the outside of the hollow fiber membrane and filtered water is taken out from the inside. A filtration step of performing filtration with a membrane and a bubbling washing by supplying a reducing acidic liquid to the raw water side, wherein the concentration of the reducing acidic liquid is 70 to 12000 mg / L. To do.

本発明で使用される中空糸膜モジュールよるろ過の方式としては、外圧全ろ過、外圧循環ろ過の中から所望の処理条件、処理性能に応じて適宜選択することができる。膜寿命の点ではろ過膜表面の洗浄を同時に行うことのできる循環方式が好ましく、設備の単純さ、設置コスト、運転コストの点では全ろ過方式が好ましい。また膜モジュールを原水槽などの槽に浸漬し、吸引または水頭差によりろ過を行うことも可能である。本発明で使用される中空糸膜モジュールによるろ過工程においては、原水に酸化剤を1mg/L未満添加することが好ましい。酸化剤の量は1mg/L未満であればよく、酸化剤を全く添加しないことが好適である。このようなろ過工程を有することにより、酸化剤による金属イオン成分の析出が抑えられ、本発明の効果である長期間安定的に連続したろ過運転が好適に行われる。   The filtration method using the hollow fiber membrane module used in the present invention can be appropriately selected from external pressure total filtration and external pressure circulation filtration according to desired treatment conditions and treatment performance. In terms of membrane life, a circulation method capable of simultaneously cleaning the surface of the filtration membrane is preferable, and in terms of simplicity of equipment, installation cost, and operation cost, a total filtration method is preferable. It is also possible to immerse the membrane module in a tank such as a raw water tank and perform filtration by suction or water head difference. In the filtration step using the hollow fiber membrane module used in the present invention, it is preferable to add less than 1 mg / L of oxidizing agent to raw water. The amount of the oxidizing agent may be less than 1 mg / L, and it is preferable that no oxidizing agent is added. By having such a filtration process, precipitation of the metal ion component by an oxidizing agent is suppressed, and the continuous and stable filtration operation which is the effect of this invention is performed suitably.

本発明の中空糸膜モジュールの洗浄方法においては、原水側に還元性酸性液を供給してバブリング洗浄を実施し、その際原水側に供給する還元性酸性液濃度を、70〜12000mg/Lとすることが特徴である。   In the method for cleaning a hollow fiber membrane module of the present invention, a reducing acidic solution is supplied to the raw water side to perform bubbling cleaning, and the reducing acidic solution concentration supplied to the raw water side at that time is 70 to 12000 mg / L. It is a feature.

本発明においては、中空糸膜の原水側に液体を満たした状態で、中空糸膜の膜ろ過水側から中空糸膜のバブルポイント未満の圧力で気体を導入し、20秒以内で中空糸膜モジュールの膜ろ過水側の液体を完全に排出する加圧工程を行い、当該加圧工程中または加圧工程後に中空糸膜の原水側を気泡で洗浄する洗浄方法を用いることにより本発明の効果がより顕著となる。加圧工程に用いる気体としては空気、窒素などが挙げられる。該加圧工程時および後述する気泡による膜表面洗浄時には、中空糸膜の原水側が液体で満たされていることが必要である。加圧工程に使用する気体の圧力は、中空糸膜のバブルポイント、中空糸膜の破裂圧力および中空糸膜モジュールの耐久圧力の内、最も低い値を超えない範囲内で選択されるが、中空糸膜のバブルポイントおよび破裂圧力が何れも0.5MPaよりも大きい場合は、加圧気体の圧力が0.1〜0.5MPaの範囲内にあることが好ましく、0.15〜0.3MPaの範囲内にあることがより好ましい。加圧気体の圧力が0.1MPa未満の場合は、本発明の効果が充分に発現しない恐れがある。中空糸膜のバブルポイント、中空糸膜の破裂圧力および中空糸膜モジュールの耐久圧力の内、少なくとも1つが0.5MPaよりも小さい場合には、加圧気体の圧力の上限はそれに対応して小さくなる。   In the present invention, in the state where the raw water side of the hollow fiber membrane is filled with liquid, gas is introduced from the membrane filtrate side of the hollow fiber membrane at a pressure less than the bubble point of the hollow fiber membrane, and the hollow fiber membrane is within 20 seconds. The effect of the present invention is achieved by performing a pressurizing step for completely discharging the liquid on the membrane filtrate water side of the module, and washing the raw water side of the hollow fiber membrane with bubbles during or after the pressurizing step. Becomes more prominent. Air, nitrogen, etc. are mentioned as gas used for a pressurization process. At the time of the pressurizing step and at the time of cleaning the membrane surface with bubbles to be described later, it is necessary that the raw water side of the hollow fiber membrane is filled with a liquid. The pressure of the gas used in the pressurizing step is selected within a range not exceeding the lowest value among the bubble point of the hollow fiber membrane, the bursting pressure of the hollow fiber membrane, and the durable pressure of the hollow fiber membrane module. When the bubble point and burst pressure of the yarn membrane are both greater than 0.5 MPa, the pressure of the pressurized gas is preferably in the range of 0.1 to 0.5 MPa, More preferably, it is within the range. When the pressure of the pressurized gas is less than 0.1 MPa, the effects of the present invention may not be sufficiently exhibited. When at least one of the bubble point of the hollow fiber membrane, the bursting pressure of the hollow fiber membrane and the durable pressure of the hollow fiber membrane module is less than 0.5 MPa, the upper limit of the pressure of the pressurized gas is correspondingly small. Become.

気体による加圧工程を実施する時間は、中空糸膜モジュールの膜ろ過水側の液体を完全に排出することが可能な時間以上であることが必要であるが、加圧気体の単位時間あたりの導入量と中空糸膜モジュールの膜ろ過水側の体積とにより加圧工程に要する時間が異なる。外圧ろ過方式の場合には、中空糸膜の内部体積も考慮して加圧時間を設定する必要があるが、20秒以内に実施することが好適である。   The time for carrying out the pressurizing step with gas needs to be more than the time at which the liquid on the membrane filtration water side of the hollow fiber membrane module can be completely discharged. The time required for the pressurizing step varies depending on the amount introduced and the volume of the hollow fiber membrane module on the membrane filtration water side. In the case of the external pressure filtration method, it is necessary to set the pressurization time in consideration of the internal volume of the hollow fiber membrane, but it is preferable to carry out within 20 seconds.

気体による加圧工程の際には、加圧気体の注入部と中空糸膜モジュールとを接続する配管の中および中空糸膜モジュールの中に満たされた膜ろ過水により、逆洗浄が行われる。例えば、該配管中の中間部に透過液タンクなどの滞留部を設けることにより、逆洗浄時の液量を増やすこともできる。   In the pressurizing step with gas, backwashing is performed with the membrane filtrate water filled in the pipe connecting the pressurized gas injection part and the hollow fiber membrane module and in the hollow fiber membrane module. For example, the amount of liquid at the time of backwashing can be increased by providing a retention part such as a permeate tank in the middle part of the pipe.

本発明においては、上記した気体による加圧工程中または加圧工程後に、中空糸膜の原水側を気泡で洗浄するが、この気泡洗浄に用いる気体として、空気、窒素などが挙げられる。気泡の供給量は特に限定されないが、膜洗浄効果が高く、膜破損の恐れが小さいことから、気泡の供給量が中空糸膜の面積1mあたり5〜500NL/hrの範囲内にあることが好ましく、10〜300NL/hrの範囲内にあることがより好ましい。上述した「片端フリー」タイプのモジュールを使用した場合、気泡による膜表面洗浄効果が極めて高くなる。 In the present invention, the raw water side of the hollow fiber membrane is washed with bubbles during or after the above-described gas pressurization step. Examples of the gas used for the bubble cleaning include air and nitrogen. The supply amount of bubbles is not particularly limited, but since the membrane cleaning effect is high and the risk of membrane breakage is small, the supply amount of bubbles may be in the range of 5 to 500 NL / hr per 1 m 2 of the area of the hollow fiber membrane. Preferably, it is in the range of 10 to 300 NL / hr. When the above-mentioned “one end free” type module is used, the effect of cleaning the membrane surface by bubbles becomes extremely high.

本発明においては、原水側に還元性酸性液を供給してバブリング洗浄を実施し、その際原水側に供給する還元性酸性液濃度を、70〜12000mg/Lとする。以下本発明の実施の態様について、図面を用いて詳しく説明する。   In the present invention, bubbling washing is performed by supplying a reducing acidic solution to the raw water side, and the concentration of the reducing acidic solution supplied to the raw water side is 70 to 12000 mg / L. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は上記の洗浄方法を行うために使用することができる外圧型中空糸膜モジュールの一例の概略構成図である。該中空糸膜モジュールは中空糸膜1、ケーシング2および接着樹脂3からなり、ケーシング2の内部は接着樹脂3により原水側0と膜ろ過水側10に仕切られている。原水側0には原水入口4、原水溢出口5、濃縮液排出口6、バブリング用気体注入口7および還元性酸性液注入口8を備えており、膜ろ過水側10には膜ろ過水出口9を備えている。原水入口4から原水側0に供給された原水は、中空糸膜1の外表面でろ過されて膜ろ過水側10である中空糸膜内部に移動し、膜ろ過水出口9を通じて系外へ排出される。   FIG. 1 is a schematic configuration diagram of an example of an external pressure type hollow fiber membrane module that can be used to perform the above-described cleaning method. The hollow fiber membrane module includes a hollow fiber membrane 1, a casing 2, and an adhesive resin 3, and the inside of the casing 2 is partitioned by the adhesive resin 3 into a raw water side 0 and a membrane filtrate side 10. The raw water side 0 has a raw water inlet 4, a raw water overflow outlet 5, a concentrate outlet 6, a bubbling gas inlet 7 and a reducing acidic liquid inlet 8, and a membrane filtrate outlet 10 on the membrane filtrate side 10. 9 is provided. The raw water supplied from the raw water inlet 4 to the raw water side 0 is filtered on the outer surface of the hollow fiber membrane 1, moves to the inside of the hollow fiber membrane which is the membrane filtered water side 10, and is discharged out of the system through the membrane filtered water outlet 9. Is done.

本発明の洗浄方法の一例を、図2に従って説明する。図2は上記の洗浄方法を行うために使用することができる膜ろ過装置の一例の概略構成図である。原水は必要に応じて前処理装置11で前処理が行われた後、原水槽12に供給される。ここで前処理とは、ストレーナーなどによる夾雑物除去、硫酸ばん土およびポリ塩化アルミニウムなどの凝集剤による凝集処理、活性炭などによる吸着などが挙げられ、適宜単独または組み合わせて実施することが出来る。次に、ろ過工程について説明する。すなわち全てのバルブを閉じた状態から、原水入口バルブ15、原水溢出口バルブ18および膜ろ過水出口バルブ16を開き、原水ポンプ13を作動させて中空糸膜モジュール14に原水を導入し、原水溢出口バルブ18より原水が溢出した後原水溢出口バルブ18を閉じてろ過を開始する。膜ろ過水は膜ろ過水出口バルブ16を通じて系外へ排出される。ただし、ろ過時間の経過に伴い目詰まりが進行してろ過能力が低下するため、続いて本発明の洗浄方法により中空糸膜を洗浄する。すなわち、原水ポンプ13を停止した後、ろ過工程で開いている原水入口バルブ15および膜ろ過水出口バルブ16を閉じてろ過を停止し、次いで原水溢出口バルブ18を開いた後、逆洗エアー入口バルブ19を開いて中空糸膜モジュール14の膜ろ過水側に加圧空気を注入して逆洗操作を行う。所定時間経過後逆洗エアー入口バルブ19を閉じ、次いで還元性酸性液入口バルブ21を開き、還元性酸性液注入ポンプ22を作動させて還元性酸性液タンク23に貯留した還元性酸性液を中空糸膜モジュールの原水側に注入し、その後バブリングエアー入口バルブ20を開いて中空膜モジュールの原水側に空気を吹き込み、バブリング洗浄を行う。所定時間バブリング洗浄を行った後、バブリングエアー入口バルブ20を閉じてバブリング洗浄を停止し、濃縮液排出口バルブ17を開いて中空糸膜モジュールの原水側の濃縮液を系外へ排出する。上述した洗浄工程終了後、濃縮液排出口バルブ17を閉じ、ろ過工程へ戻る。   An example of the cleaning method of the present invention will be described with reference to FIG. FIG. 2 is a schematic configuration diagram of an example of a membrane filtration device that can be used to perform the above-described cleaning method. The raw water is supplied to the raw water tank 12 after being pretreated by the pretreatment device 11 as necessary. Here, the pretreatment includes removal of impurities using a strainer and the like, agglomeration treatment with a coagulant such as sulfated clay and polyaluminum chloride, adsorption with activated carbon and the like, and can be carried out alone or in combination as appropriate. Next, the filtration process will be described. That is, after all the valves are closed, the raw water inlet valve 15, the raw water overflow outlet valve 18 and the membrane filtrate outlet valve 16 are opened, and the raw water pump 13 is operated to introduce the raw water into the hollow fiber membrane module 14, and the raw water overflow After the raw water overflows from the outlet valve 18, the raw water overflow outlet valve 18 is closed to start filtration. The membrane filtrate is discharged out of the system through the membrane filtrate outlet valve 16. However, since the clogging progresses as the filtration time elapses and the filtration capacity decreases, the hollow fiber membrane is subsequently washed by the washing method of the present invention. That is, after the raw water pump 13 is stopped, the raw water inlet valve 15 and the membrane filtrate outlet valve 16 opened in the filtration process are closed to stop the filtration, and then the raw water overflow outlet valve 18 is opened, and then the backwash air inlet The valve 19 is opened and pressurized air is injected into the membrane filtrate side of the hollow fiber membrane module 14 to perform a backwash operation. After a predetermined time has elapsed, the backwash air inlet valve 19 is closed, then the reducing acidic liquid inlet valve 21 is opened, and the reducing acidic liquid injection pump 22 is operated to hollow out the reducing acidic liquid stored in the reducing acidic liquid tank 23. Injecting into the raw water side of the yarn membrane module, then opening the bubbling air inlet valve 20 and blowing air into the raw water side of the hollow membrane module to perform bubbling washing. After performing the bubbling cleaning for a predetermined time, the bubbling air inlet valve 20 is closed to stop the bubbling cleaning, and the concentrated solution outlet valve 17 is opened to discharge the concentrated solution on the raw water side of the hollow fiber membrane module out of the system. After completion of the above-described washing process, the concentrate outlet valve 17 is closed and the process returns to the filtration process.

還元性酸性液としては、重亜硫酸ナトリウム水溶液、チオ硫酸ナトリウム水溶液、亜硫酸ナトリウム水溶液からなる群より選ばれる少なくとも一種が挙げられる。その中でも浄水用途で最も汎用的に用いられる重亜硫酸ナトリウムが好ましい。還元性酸性液のpHは、pHが2〜6の範囲である。   Examples of the reducing acidic liquid include at least one selected from the group consisting of a sodium bisulfite aqueous solution, a sodium thiosulfate aqueous solution, and a sodium sulfite aqueous solution. Of these, sodium bisulfite, which is most widely used for water purification, is preferred. The pH of the reducing acidic solution is in the range of 2-6.

本発明において、還元性酸性液の注入量は、バブリング洗浄時の還元性酸性液濃度が70〜12000mg/Lとなるように制御する。例えば、鉄イオンやマンガンイオンなどを多く含有する液体をろ過した中空糸膜モジュールを本発明の洗浄方法により洗浄する場合、注入した還元性酸性液が金属を還元して無機物に溶解する反応として消費される。制御の方法としては、例えば定期的にバブリング洗浄後の原水側液体中の鉄イオン、マンガンイオンの濃度を測定して注入量を設定することができるが、化学量論的に計算される濃度に調製しておいても良い。なお、バブリング洗浄後の原水側液体中の還元性酸性液濃度が70mg/L未満の場合、洗浄効果が不十分となる恐れがある。一方、バブリング洗浄後の原水側液体中の還元性酸性液濃度が高過ぎる場合は、配管などの金属製品の腐食、更にはろ過運転時にろ過水への高濃度還元性酸性液の混入や、バブリング洗浄後濃縮排水のpH異常など悪影響が懸念されることから、12000mg/L以下とすることが好ましく、3000mg/L以下とすることが更に好ましい。   In the present invention, the injection amount of the reducing acidic solution is controlled so that the concentration of the reducing acidic solution during bubbling washing is 70 to 12000 mg / L. For example, when a hollow fiber membrane module in which a liquid containing a large amount of iron ions or manganese ions is filtered is washed by the washing method of the present invention, the injected reductive acidic liquid is consumed as a reaction to reduce the metal and dissolve it in the inorganic substance. Is done. As a control method, for example, the injection amount can be set by periodically measuring the concentration of iron ions and manganese ions in the raw water-side liquid after bubbling washing, but the concentration is calculated stoichiometrically. It may be prepared. In addition, when the reducing acidic liquid concentration in the raw water-side liquid after the bubbling cleaning is less than 70 mg / L, the cleaning effect may be insufficient. On the other hand, if the concentration of reducing acidic liquid in the raw water-side liquid after bubbling washing is too high, corrosion of metal products such as piping, mixing of high concentration reducing acidic liquid into filtered water during bubbling operation, and bubbling In view of adverse effects such as abnormal pH of the concentrated drainage after washing, it is preferably 12000 mg / L or less, more preferably 3000 mg / L or less.

これまでに述べてきた本発明の洗浄方法は、一般に数分から数時間ごとに行われる物理洗浄操作ごとに実施することができるが、数回もしくは数十回の物理洗浄毎に1回、すなわち間欠的に実施することも可能である。   The cleaning method of the present invention described so far can be performed for each physical cleaning operation generally performed every several minutes to several hours, but once every several or several tens of physical cleanings, that is, intermittently. It is also possible to implement it.

以下、実施例により本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

河川水、湖沼水、井戸水からなる工業用水を原水とし、原水には酸化剤を添加することはなく、ポリスルホン系樹脂からなり、孔径0.1μmである中空糸膜よりなる片端フリー構造で膜面積7m の中空糸膜モジュールを使用して、外圧全ろ過方式、ろ過速度2.9m/hrの条件で定流量ろ過を行った。中空糸膜の物理洗浄は、シーケンスコントロールにより30分に1回、中空糸膜モジュールの膜ろ過水側に圧力0.2MPaの空気を導入することにより10秒間加圧操作し、次いで中空膜モジュールの原水側に、濃縮液中の還元性酸性液濃度が1000mg/Lとなるよう制御した重亜硫酸ナトリウム水溶液を注入し、その後中空糸膜モジュールの原水側の下部より圧力0.1MPaの空気を1.7Nm/hrの流量で1分間噴出させて行い、下部濃縮液排出バルブを開いて濃縮液を排出した。この一連の物理洗浄をオンラインで実施した。ろ過運転期間中、膜間差圧を定期的に測定し、膜間差圧が0.1MPaに達するまでのろ過時間を中空糸膜モジュールのろ過寿命とした。本実施例の場合、ろ過運転開始後100日経過しても安定に運転することができ、膜間差圧が0.1MPaに達することはなかった。従ってこのような場合、ろ過寿命は100日間以上とした。表1に結果を示すが、表1において、ろ過寿命は≧100(日)と記した。 Industrial water consisting of river water, lake water, and well water is used as raw water, and no oxidant is added to the raw water. It is made of polysulfone resin and has a one-end free structure made of a hollow fiber membrane with a pore diameter of 0.1 μm. Using a 7 m 2 hollow fiber membrane module, constant flow rate filtration was performed under the conditions of an external pressure total filtration method and a filtration rate of 2.9 m 3 / hr. The physical cleaning of the hollow fiber membrane is performed once every 30 minutes by sequence control, and is pressurized for 10 seconds by introducing air at a pressure of 0.2 MPa to the membrane filtration water side of the hollow fiber membrane module. A sodium bisulfite aqueous solution controlled so that the concentration of the reducing acidic solution in the concentrated solution is 1000 mg / L is injected into the raw water side, and then air at a pressure of 0.1 MPa is added from the lower part of the raw water side of the hollow fiber membrane module to 1. This was carried out by ejecting at a flow rate of 7 Nm 3 / hr for 1 minute, and the concentrate was discharged by opening the lower concentrate discharge valve. This series of physical washes was performed online. During the filtration operation, the transmembrane pressure difference was measured periodically, and the filtration time until the transmembrane pressure difference reached 0.1 MPa was defined as the filtration life of the hollow fiber membrane module. In the case of this example, even after 100 days from the start of the filtration operation, stable operation was possible, and the transmembrane pressure difference did not reach 0.1 MPa. Therefore, in such a case, the filtration life was 100 days or longer. The results are shown in Table 1. In Table 1, the filtration life is indicated as ≧ 100 (days).

実施例1において、重亜硫酸ナトリウム水溶液の濃度を100mg/Lで行う以外は同条件で、工業用水のろ過を行った。膜間差圧で評価したろ過寿命は100日間以上であった。   In Example 1, industrial water was filtered under the same conditions except that the concentration of the sodium bisulfite aqueous solution was 100 mg / L. The filtration life evaluated by the transmembrane pressure difference was 100 days or more.

比較例1
実施例1において、重亜硫酸ナトリウム水溶液の濃度を50mg/Lで行う以外は同条件で、工業用水のろ過を行った。膜間差圧で評価したろ過寿命は10日間であった。
Comparative Example 1
In Example 1, the industrial water was filtered under the same conditions except that the concentration of the sodium bisulfite aqueous solution was 50 mg / L. The filtration life evaluated by the transmembrane pressure difference was 10 days.

比較例2
実施例1において、重亜硫酸ナトリウム水溶液の代わりに、濃縮液中の有効塩素濃度が1000mg/Lとなるよう制御した次亜塩素酸ナトリウム水溶液を注入してオンライン物理洗浄を行う以外は同条件で、工業用水のろ過を行った。膜間差圧で評価したろ過寿命は8日間であった。また、膜表面には金属酸化物が析出して固着していた。
Comparative Example 2
In Example 1, in place of the sodium bisulfite aqueous solution, the same conditions except that the sodium hypochlorite aqueous solution controlled so that the effective chlorine concentration in the concentrate is 1000 mg / L is injected to perform online physical cleaning, Industrial water was filtered. The filtration life evaluated by the transmembrane pressure difference was 8 days. Further, metal oxide was deposited and fixed on the film surface.

比較例3
実施例1において、オンライン物理洗浄未実施以外は同条件で、工業用水のろ過を行った。膜間差圧で評価したろ過寿命は6日間であった。
Comparative Example 3
In Example 1, industrial water was filtered under the same conditions except that online physical cleaning was not performed. The filtration life evaluated by the transmembrane pressure difference was 6 days.

参考例1
実施例1において、ろ過工程中は酸化剤として次亜塩素酸ナトリウムを2mg/L常時原水に添加したこと以外は同条件で、工業用水のろ過を行った。膜間差圧で評価したろ過寿命は21日間であった。また、膜表面には金属酸化物が析出して固着していた。
Reference example 1
In Example 1, filtration of industrial water was performed under the same conditions except that sodium hypochlorite was added to the raw water at 2 mg / L as the oxidant during the filtration process. The filtration life evaluated by the transmembrane pressure difference was 21 days. Further, metal oxide was deposited and fixed on the film surface.

本発明で用いられる外圧型中空糸膜モジュールの一例を示す図である。It is a figure which shows an example of the external pressure type | mold hollow fiber membrane module used by this invention. 本発明の中空糸膜ろ過装置の一例を示す図である。It is a figure which shows an example of the hollow fiber membrane filtration apparatus of this invention.

符号の説明Explanation of symbols

0:原水側
1:中空糸膜
2:ケーシング
3:接着樹脂
4:原水入口
5:原水溢出口
6:濃縮液排出口
7:バブリング用気体注入口
8:還元性酸性液注入口
9:膜ろ過水出口
10:膜ろ過水側
11:前処理装置
12:原水槽
13:原水ポンプ
14:中空糸膜モジュール
15:原水入口バルブ
16:膜ろ過水出口バルブ
17:濃縮液排出口バルブ
18:原水溢出口バルブ
19:逆洗エアー入口バルブ
20:バブリングエアー入口バルブ
21:還元性酸性液入口バルブ
22:還元性酸性液注入ポンプ
23:還元性酸性液タンク
24:エアーコンプレッサー
0: Raw water side 1: Hollow fiber membrane 2: Casing 3: Adhesive resin 4: Raw water inlet 5: Raw water overflow outlet 6: Concentrated liquid outlet 7: Gas inlet for bubbling 8: Reducing acidic liquid inlet 9: Membrane filtration Water outlet 10: Membrane filtrate side 11: Pretreatment device 12: Raw water tank 13: Raw water pump 14: Hollow fiber membrane module 15: Raw water inlet valve 16: Membrane filtered water outlet valve 17: Condensate outlet valve 18: Raw water overflow Outlet valve 19: Backwash air inlet valve 20: Bubbling air inlet valve 21: Reducing acidic liquid inlet valve 22: Reducing acidic liquid injection pump 23: Reducing acidic liquid tank 24: Air compressor

Claims (3)

中空糸膜の外側から原水を供給し内側からろ過水を取り出す外圧型中空糸膜モジュールにおいて、原水側に還元性酸性液を供給してバブリング洗浄を実施し、その際還元性酸性液の濃度が70〜12000mg/Lであることを特徴とする中空糸膜モジュールの洗浄方法。 In an external pressure type hollow fiber membrane module that supplies raw water from the outside of the hollow fiber membrane and takes out filtered water from the inside, the reductive acidic solution is supplied to the raw water side and subjected to bubbling washing. At this time, the concentration of the reductive acidic solution is A method for cleaning a hollow fiber membrane module, characterized by being 70 to 12000 mg / L. 中空糸膜の外側から原水を供給し内側からろ過水を取り出す外圧型中空糸膜モジュールにおいて、原水に酸化剤を1mg/L未満添加して中空糸膜でろ過を行うろ過工程と、原水側に還元性酸性液を供給してバブリング洗浄を実施し、その際還元性酸性液の濃度が70〜12000mg/Lである洗浄工程を有することを特徴とする中空糸膜モジュールの運転方法。 In an external pressure type hollow fiber membrane module in which raw water is supplied from the outside of the hollow fiber membrane and filtered water is taken out from the inside, a filtration step of adding less than 1 mg / L of oxidant to the raw water and filtering with the hollow fiber membrane; A method for operating a hollow fiber membrane module, comprising a cleaning step in which a reducing acidic solution is supplied to perform bubbling cleaning, and the concentration of the reducing acidic solution is 70 to 12000 mg / L. 中空糸膜の外側から原水を供給し内側からろ過水を取り出す外圧型中空糸膜モジュールと、原水側に還元性酸性液を供給する手段と、原水側に気体を噴出させる手段とを備え、原水側に還元性酸性液を供給してバブリング洗浄を行うよう制御する手段を備えた膜ろ過装置。 An external pressure type hollow fiber membrane module for supplying raw water from the outside of the hollow fiber membrane and taking out filtrated water from the inside, means for supplying a reducing acidic solution to the raw water side, and means for jetting gas to the raw water side, A membrane filtration apparatus comprising means for controlling the supply of a reducing acidic liquid to the side to perform bubbling cleaning.
JP2008128326A 2008-05-15 2008-05-15 Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device Pending JP2009274021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008128326A JP2009274021A (en) 2008-05-15 2008-05-15 Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008128326A JP2009274021A (en) 2008-05-15 2008-05-15 Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device

Publications (1)

Publication Number Publication Date
JP2009274021A true JP2009274021A (en) 2009-11-26

Family

ID=41439936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008128326A Pending JP2009274021A (en) 2008-05-15 2008-05-15 Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device

Country Status (1)

Country Link
JP (1) JP2009274021A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122289A1 (en) * 2010-03-30 2011-10-06 東レ株式会社 Method for cleaning separation membrane module, and method for fresh water generation
WO2013001914A1 (en) * 2011-06-29 2013-01-03 東レ株式会社 Washing method for separation membrane module
JP2020131143A (en) * 2019-02-21 2020-08-31 オルガノ株式会社 Immersion membrane filtration apparatus and method for operating the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122289A1 (en) * 2010-03-30 2011-10-06 東レ株式会社 Method for cleaning separation membrane module, and method for fresh water generation
JP4968413B2 (en) * 2010-03-30 2012-07-04 東レ株式会社 Separation membrane module cleaning method and fresh water generation method
AU2011233096B2 (en) * 2010-03-30 2014-01-16 Toray Industries, Inc. Method for cleaning separation membrane module, and method for fresh water generation
WO2013001914A1 (en) * 2011-06-29 2013-01-03 東レ株式会社 Washing method for separation membrane module
CN103619451A (en) * 2011-06-29 2014-03-05 东丽株式会社 Washing method for separation membrane module
JP2020131143A (en) * 2019-02-21 2020-08-31 オルガノ株式会社 Immersion membrane filtration apparatus and method for operating the same
JP7199247B2 (en) 2019-02-21 2023-01-05 オルガノ株式会社 IMMERSION MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION OF IMMERSION MEMBRANE FILTRATION DEVICE

Similar Documents

Publication Publication Date Title
JP6003646B2 (en) Membrane module cleaning method
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module
JP6432914B2 (en) Water treatment method and water treatment apparatus
JPH10286441A (en) Cleaning method of hollow yarn membrane module and filtration device used for the method
WO2006080482A1 (en) Method for manufacturing module having selectively permeable membrane and module having selectively permeable membrane
JP2011125822A (en) Method for washing membrane module and fresh water generator
CN115121124A (en) Method and apparatus for cleaning filtration membrane, and water treatment system
JP2007130523A (en) Membrane washing method for water treatment system
WO2013111826A1 (en) Desalination method and desalination device
WO2012077506A1 (en) Chemical cleaning method for immersed membrane element
JP2016198742A (en) Liquid treatment system, solution processing device and solution treatment method
WO2012098969A1 (en) Method for cleaning membrane module, method of fresh water generation, and fresh water generator
JP4867180B2 (en) Immersion membrane separator and chemical cleaning method therefor
JP2006272135A (en) Membrane separation method and membrane separation device
JP2009006209A (en) Cleaning method of hollow fiber membrane module
JP2008246424A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filtering apparatus
JP2009274021A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device
KR20120122927A (en) System and Method for Filtering
JP2012086182A (en) Water treatment method and water treatment device
JP2011041907A (en) Water treatment system
JP2016215089A (en) Operation method of hollow fiber membrane module and filtration apparatus
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP2008302333A (en) Method and apparatus for production of fresh water
JP2013034938A (en) Method for washing membrane module
JP2004130211A (en) Filtration unit, filter, and method for controlling the filter