JP4295103B2 - 化学兵器物質センサー用ラム空気試料捕集装置 - Google Patents

化学兵器物質センサー用ラム空気試料捕集装置 Download PDF

Info

Publication number
JP4295103B2
JP4295103B2 JP2003532969A JP2003532969A JP4295103B2 JP 4295103 B2 JP4295103 B2 JP 4295103B2 JP 2003532969 A JP2003532969 A JP 2003532969A JP 2003532969 A JP2003532969 A JP 2003532969A JP 4295103 B2 JP4295103 B2 JP 4295103B2
Authority
JP
Japan
Prior art keywords
cross
sectional area
air
section
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003532969A
Other languages
English (en)
Other versions
JP2005510693A (ja
Inventor
クリフォード・エイ・メジェーレ
ダグラス・アール・アドキンス
グレゴリー・シー・フリー−メイソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lockheed Martin Corp
Original Assignee
Lockheed Martin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lockheed Martin Corp filed Critical Lockheed Martin Corp
Publication of JP2005510693A publication Critical patent/JP2005510693A/ja
Application granted granted Critical
Publication of JP4295103B2 publication Critical patent/JP4295103B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N2001/022Devices for withdrawing samples sampling for security purposes, e.g. contraband, warfare agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • G01N2001/2279Atmospheric sampling high altitude, e.g. rockets, balloons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N2001/2285Details of probe structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
連邦政府委託研究及び開発に関する明細書。本発明は米国エネルギー省に与えられた契約番号DE- AC04-94AL85000の政府支援により完成された。
【0002】
(技術分野)
本発明は化学兵器物質センサーに関し、さらに詳細には化学兵器物質センサー用ラム空気 (ram-air) 試料捕集装置に関する。
【0003】
(背景技術)
表面弾性波センサーやイオン移動度スペクトロメータなどの化学兵器物質ポイントセンサーは、多くの無人航空機(UAV‘s)での使用には重すぎ、そして大きすぎる。この理由は、これらのセンサーは現在全て、化学物質を含む空気のサンプリング用に、サイクロンまたはロータリーファン/ブロアなどのポンプを必要とするからである。このブロア/ファンがこのセンサー機器の最も重く、そして最も大きい機器となっている。
【0004】
従って現在の化学物質センサーは、能動ポンピングを用いてセンサー素子に気体を強制的に流している。このポンピングはこれら装置において主要なエネルギー消費源である。ラム空気を利用すると、センサー本体に対する空気流れの相対運動によりもたらされる静圧のみを利用して前濃縮器およびセンサー装置に試料空気流を通すことが可能となる。この装置は、低電力消費が求められる小型無人航空機や、空気が装置上ないしダクトを通じて流れるその他の装置に利用することができる。
【0005】
そこで、化学兵器物質センサーに搭載することができ、センサーモジュールの計測のためにサンプリングする空気を送り込むのに、UAVの前進運動量を利用可能なラム空気捕集装置が必要となる。
【0006】
(発明の要約)
本発明は広義には、センサー上に搭載する動作可能に配置されたハウジング、該ハウジングは入口と出口を有する多段チャネル、該多段チャネルは、入口に隣接した第1の高さと幅を有する第1段、微細加工された試料前濃縮器に隣接した第2のより小さな高さと幅を有する第2段、表面弾性波アレー検知器に隣接したさらに小さな第3の高さと幅を有する第3段、および出口に隣接した第4の高さと幅を有する第4段、ここに第4の高さと幅は実質的に、第1の高さと幅に等しい、からなる化学兵器センサー用ラム空気捕集装置からなっている。
【0007】
本発明の広義の目的は、センサー上に空気を強制的に送るためのブロアまたはファンを必要としない化学兵器物質ないし爆発物のセンサー用の、運動している物体ないし機器に搭載される動作可能に配置された、軽量で効率的なラム空気捕集装置の提供にある。
【0008】
本発明のこれらの目的、特徴および利益は、図面およびクレームを参照し、以下の発明の詳細説明を参照することにより当業者には明らかとなるであろう。
【0009】
(好適例の詳細な説明)
以下の好適例の詳細説明、および請求の範囲において、以下の用語は次のように定義する。
UAV:無人航空機。この名称が意味するように、これらは、無人で飛行する乗物である。限定するものではないが、これらの例は、プレデター (Predator) 、ダークスター (DarkStar) 、グローバルホーク (Global Hawk) などが含まれる。それらは通常、諜報、監視および偵察任務の遂行に使用される。しかしUAVは本発明の一つの可能な用途ではあるが、用途はそれだけではなく、本発明は、航空機、ヘリコプター、ミサイル、陸上移動車両、船舶など、広範囲の移動体および実質的にその他の移動する対象に搭載し、有効に使用することができる。
SAW:表面弾性波。音響波(acoustic wave)機器は60年以上の間商業的に使用されている。音響波機器の最大のユーザーは遠距離通信産業であるが、それらはまた化学薬品蒸気の探知にも使用される。それらが感知機構として機械的または音の波を使用するところから表面弾性波センサーと呼ばれる。音響波が物質内またはその表面を進むにつれて、進む経路の特性の変化が波の速度および/または振幅に変化を与える。速度の変化は、センサーの周波数または位相特性を測定することにより監視することができ、測定する物理特性に対応して相関付けることができる。実質的に全ての音響波機器およびセンサーは圧電性結晶を、音響波の生成に使用している。ほとんどのSAW化学センサーは、対象気体を吸収する化学的な選択性あるSAWセンサーのコーティングにより生ずる質量負荷の増加に対するセンサーの質量感度に基づいている。ビル・ドラフト、「音響波技術センサー」マイクロセンサーシステム社、ソーテック社(Bill Drafts, "Acoustic Wave Technology Sensors", Microsensor Systems, Inc., a Sawtek Company)。
【0010】
好適例において、本発明は、多種の化学兵器物質、生物兵器物質および爆発物質のセンサーとしての使用に好適である。しかし好適例において、本発明はイオン移動度および表面弾性波(SAW)センサーに対し、最も有用である。SAWセンサーは、個々のセンサーの化学的選択性の設定に非常に柔軟性があり、それらの応答機構の徹底的理解をある程度の理由として、おそらく最先端の化学兵器物質探知用マイクロセンサー技術である。次いで好適例において本発明は、SAWセンサーとの組合せとして示され、記載されているが、本発明はその他の種類のセンサーとの組合せにおいても有用であり、これらの用途も特許請求の範囲に含まれると理解すべきである。イオン移動度およびSAWセンサーの一般的理論と操作の説明は次の通り:
【0011】
イオン移動度分光分析(IMS)
イオン移動度分光分析(IMS)は、質量分光分析での大気圧下または加圧下におけるイオン−分子化学の研究から、そして航空機気体監視用イオン化検知器から、1965年から1970年の間に誕生した。従来のイオン移動度分光分析は、反応領域とドリフト領域(drift region)の、二つの主たる領域からなっている。反応領域において、(汚染のない乾燥した)大気圧の搬送ガスは、窒素と酸素と、弱いニッケル63源からのベータ粒子との衝突によりイオン化される。これら反応イオンは次に爆発物質/化学兵器物質の分子と、イオン/分子反応する。爆発物質/化学兵器物質分子はまた、アダクト形成および解離反応など、他のイオン生成反応をする。
【0012】
電場の影響下、反応物と生成イオンの混合物は、反応領域とドリフト領域を分けるシャッター・グリッド (shutter grid) に到達する。このシャッター・グリッドは、それらの間にバイアス電位のかかる薄い格子のワイアの組からなっている。適用されるバイアス電位により、イオンはゲート格子に引きつけられ、電荷を失う。次いで、格子バイアス (grid vias) はわずかに弱められ、イオンはセルのドリフト領域に送られる。次いでイオンは電場(典型的には1000から3000ボルト)によりドリフト領域に沿って(典型的には8センチメーター)焦点合わせ、加速され、(典型的には10から20ミリ秒の時間で)コレクター電極に到達する。より小さい、コンパクトなイオンは、重いイオンより大きな移動度を有するので、より短時間のうちに該領域を横切り、コレクタ・プレートに衝突する。次いでコレクター電流は増幅され、その大きさは、時間の関数として、その時に到達するイオンの数に比例する。
【0013】
IMS爆発物質/化学兵器物質探知システムにおいて、特定の爆発物質のイオンがIMS管を通過するのに必要な時間は、正確に知られており、システムのマイクロプロセッサーにプログラムされている。マイクロプロセッサーはプログラムされたドリフト時間でコレクタ電極の信号を監視し、爆発物/化学兵器分子イオンの存在を検知する。典型的な分析周期では、試料導入から警報発令まで5から8秒を要する。
【0014】
いくつかの装置は、選択性を最適化するために、フロントエンド (front-end) ガスクロマトグラフィー(GC)をIMSに結合させている。
【0015】
いくつかの製造者は現在、物質検知をIMS検知器の標準またはオプション機能として提供している。多くの場合、機器は物質と爆発物の間の検知モ−ドを瞬時に切り換えるため、エネルギー消費を下げなければならないことが分かる。IMS技術の流れは、検知機器の小型化を進めることと、非放射性イオン化源の導入にある。
【0016】
ガスクロマトグラフィー/表面弾性波(GC/SAW)
爆発物質/化学兵器物質探知に使用されるその他の技術では、表面弾性波(SAW)検知器に設置された携帯用ガスクロマトグラフ(GC)を使用する。SAWを基礎とするGC装置では、SAW共鳴器結晶は、注意深く位置決めされ温度制御されたノズルにより、GCのキャピラリーカラムの出口ガスに暴露される。GC搬送ガスに混ぜられた可凝縮蒸気が共鳴器電極間の活性領域に衝突するとき、結晶表面に凝縮する物質の質量に比例した周波数シフトが生じる。この周波数シフトは析出した物質の物性(質量および弾性定数)、SAW結晶の温度、および結晶表面の化学的性質に依存する。
【0017】
熱電冷却器がSAW表面を十分低温に維持し、爆発物蒸気の良好な捕集効率を確保する。この冷却器は、活性表面を浄化する(吸収蒸気を蒸散させる)ための結晶の加熱にも逆に使用することができる。SAW結晶の温度は、捕集される化学種の蒸気圧を基礎とするセンサーの特異性 (specificity) を制御する機能を果たす。この特徴は比較的揮発性物質と粘着性の爆発物質の間の識別に有用である。
【0018】
サンプリング操作の間、蒸気試料は、前濃縮器からのGCの入口から吸引され、次いで低温トラップ (cryo-trap) を通じてポンプで送られる。低温トラップは爆発物蒸気を捕集するのに十分低温に保たれた金属キャピラリー管であり、一方より揮発性蒸気は通過させる。第2の低温トラップを通過後、試料はGCカラムに注入され、化学種識別のために通常のカラム操作により時間基準で分離される。構成蒸気がカラムを出ると、それらは集められ、SAW結晶表面上に選択的に捕集され、そこでは周波数シフトが物質濃度と相関している。
【0019】
蒸気の前濃縮を含む全分析時間は、典型的には10から15秒である。市場から購入可能な装置のみの製造者により、爆発物のピコグラム単位の感度が示されている。装置は携帯型で、ほぼ大きなブリーフケースの大きさである。価格はECD装置と同等であり、装置は10分以内の設定時間で可動である。
【0020】
本発明はいかなる特定の表面弾性波センサーにも限定されない。表面弾性波センサーはフロリダ州オーランドのサウテック社により製造されたタイプのもの、サンディア・ナショナル・ラボラトリーズの「ケムラブーオンーアーチップ (chemlab-on-a-chip) 」マイクロセンサー(μChemlab(商標))と同様のタイプの物である。この装置はサンディア主導でパームトップコンピュータの大きさの携帯型「化学実験室」を構成する。音響波センサーは、その実験室では一体型の装置である(そしてパームトップコンピュータより少し小さい)。実際センサーは非常に小さいので、4または5つの小型センサーのアレーで、それぞれが2ミリメーター掛ける0.5ミリメーター掛ける0.5ミリメーターで、異なる化学物質に感応、シャツのボタンの大きさのチップ上に設置することができる。他の可能なセンサーが、米国特許番号5469369(ローズ−パールソン他)に記載されており、本特許に参考に加えられる。最後に該センサーは、「NBC−安全ビルディング用保安システム」という名称の、2001年8月某日出願の米国特許出願一連番号**、***、**に記載されている化学または生物兵器センサーでも良く、本願に参考に加える。
【0021】
表面弾性波センサーの動作理論は上記した通りであり、そして典型的な表面弾性波センサー10の図面が図1と3にある。実際のセンサーは図中13に表示され−モジュール(印刷回路基板)12中のその他の構成物は、関連電子部品である。図2に示すように、センサー13は、回路基板12に設置された本体を有する。ラム空気捕集器11はセンサー13上に設置され、図1および2に示されている。好適例において、該捕集装置本体はセラミック素材でできており、筐体 (housing) 本体もセラミックのときは、ハイブリッド・マイクロ回路包装方法を用いることができる。しかし、当業者には、全てをプラスチック包装中に設置することができることは明白であり、そうすると捕集装置本体は容易にプラスチックで作成することができる。セラミックとプラスチックの2つは捕集装置に最もふさわしい物質であるが、金属も捕集装置と筐体そのものとすることが可能である。また好適例において、捕集装置は、例えば、ネジ止め、(エポキシ)接着剤接着など、全ての好適手段によってセンサーに設置することができる。示された例において、図示されていないガスケットは、ラム空気捕集装置とセンサーの間に置かれ、第1の設置ネジ(図示されていない)は捕集装置(図3に示す)中の開口20を通過し、センサー本体中の孔26を部分通過し、ねじ込まれて固定され、第2の設置ネジ(図示されていない)は捕集装置の開口14を通過し、センサー本体の孔23を部分通過し、ねじ込まれ、固定される。
【0022】
図3はラム空気捕集装置を後ろに反転させ、取り去った後のセンサーの平面図である。この図において、センサー13は、微細加工試料前濃縮器25と表面弾性波アレー検知器24と共に示されている。ラム空気捕集装置11はセンサーから取り去られ、その後ろに反転されている。捕集装置11はチャネルまたは通路17を含んで示され、サンプリングされた空気はそれを通って点線の矢印に示された方向に進む。チャネル17は、第1セクション15,第2セクション16,第3セクション18と第4セクション19からなって示されている。第1セクション15は、入口31に隣接し、第4セクション19は出口30に隣接する。図示したように、第1セクション15は第2セクション16より広い。図4および図6に示すように、第1セクション15はまた第2セクション16よりも高さがある。言い換えれば、第1セクション15の断面積は、第2セクション16の断面積よりも大きい。従って、空気試料はセクション15に対してセクション16の減少された容積の空気空隙の通過を強制される。同様に第2セクション16は、第3セクション18よりも広いので、図4と6に示すように、第2セクション16は第3セクション18よりも大きな高さを持つ。言い換えれば、」第2セクション16は第3セクション18よりも大きな断面積を有する。従って、空気試料はセクション16に対してセクション18の容積の減少した空気空間の通過を強制される。好適例において、第4チャネルセクション19の幅、高さおよび断面積は、第1セクション15と等しいが、セクション19の断面積が第3セクション18のものよりも大きい限り、もし第4チャネルセクション19が第1チャネルセクションのものと同じ寸法でない場合であっても捕集装置は機能する。好適例において、チャネルの第2セクション16は、前濃縮器25と見当があって (in register) おり、第3セクション18はSAW検知器24と見当があっている。「見当を合わせる」とは、チャネルのこれらの特定のセクションが、これら特定の第2および第3チャネルセクション中の空気が、前濃縮器と検知器のそれぞれに直接通じ合うように、前濃縮器と検知器のそれぞれと整列することを意味している。作動中、検知器と捕集装置の組み合わせが、入口31が運動方向に向き、それにより空気がチャネルの入口に押し込まれるように乗物などの運動体に設置される。
【0023】
図5は、どのようにセンサー13が基板に設置されるかを図示する回路基板12の部分図である。この図はセンサー本体中の溝 (rabbet) 29も示し、溝は、捕集装置が所定位置に置かれ、図6(図6はセンサー上所定位置の捕集装置を示す端面図である。)に最も良く示されるように、共に入口31を形成するとき、チャネル17と整列する。
【0024】
(作動理論)
本発明の基本装置11は、種々の図面に図示されている気体捕集装置である。大きな入口の第1セクション15(図の下)は、接近する流れに向かい、装置の排出口である第4セクション19(図の上)はセンサー13の周囲の流れ中の低圧領域につながる。捕集装置の入口と排出(出口)の間の圧力差が前濃縮器と表面弾性波化学センサーに気体を搬送する。
【0025】
入口と出口の間で発生する最大圧力は、1/2ρV2の大きさであり、ここにρは空気密度であり、Vはセンサー筐体と環境空気の間の相対速度である。30ノット(約55km/hr)の速度のとき、この圧力差は約0.02psi(150Pa)である。
【0026】
この低輸送圧力のため、輸送チャネルはできるだけ無負荷にする必要がある。この必要は、前濃縮器とSAWの流れ中の拡散距離の極小化の必要と釣り合わされる。図示されたラム空気流れチャネルにおいて、断面積は、前濃縮器とSAW検知器の間で減少し、次いで出口(第4セクション)でまた拡大する。SAWのチャネルは、好適例において、1.3mm幅×0.1mm高さ×2.3mm長さの寸法で、最も絞られる。センサーの各セクションでの圧力低下は、下式関係により計算することができる。
【数1】
Figure 0004295103
ここにμは空気粘度である。装置内での圧力低下を利用可能な静圧と等しくすることにより、センサー内でのポテンシャル流れ速度から計算することができる。図7は、空気速度の関数としてのセンサー内の容量流れ速度の計算値を示す。図8に示す測定結果は、センサー内の流れ速度が空気流上の化学分析の実施に十分であることを図示している。これらの結果では、空気流中の分析物質は、特定時間、7秒、15秒及び30秒間、前濃縮器上に捕集された。次いで前濃縮器は熱的振動で、分析物質を脱離し、濃縮された分析物質は空気流によりSAW検知器に送られた。15秒捕集時間と20ノットの空気速度において、SAW、前濃縮器、ラム空気ポンピングのこの組合せにより、マスタードガスや神経ガスなどの分析物質の1ppm濃度の検知が可能である。
【0027】
従って、本発明の目的は効率的に達成されるが、本発明への修正、変更は当業者には容易に明らかであり、これらの修正は特許請求の範囲記載の発明の範囲内にあるものである。
【図面の簡単な説明】
【図1】 本発明の装置を搭載する典型的センサーの平面図である。
【図2】 図1の線2−2に沿って得られた、図1に示す装置の側面図である。
【図3】 図1に示されたセンサーの平面図(左図)および、センサーから取り去られ、その上部を反転された、本発明装置の底面図(右図)である。
【図4】 図3の線4−4に沿って得られた本発明装置の端面図である。
【図5】 本発明装置を取り去った、図1に示された典型的センサーの部分端面図である。
【図6】 本発明装置がセンサー上に置かれた、図5と同様の図である。
【図7】 空気流速度の関数として、本発明のラム空気流れダクトを通過する計算された流れを示すグラフである。
【図8】 3つの前濃縮器の捕集時間について測定されたSAW信号を示したグラフである。

Claims (16)

  1. 本体内に設置された表面弾性波センサーを含む空気捕集装置であって、該センサーは表面弾性波アレー検知器と該本体表面上に暴露された微細加工試料前濃縮器を有し、該空気捕集装置は、該本体上に設置する、動作可能に配置された筐体を有し、該筐体は入口と出口を有する通路を有し、該通路は、入口に隣接する第1断面積の第1セクション、該第1セクションに隣接する第2の断面積の第2セクション、該第2セクションに隣接する第3の断面積の第3セクション、該出口に隣接する第4の断面積の第4セクション、からなり、ここに該第3の断面積が該第2の断面積より小さく、該第1と第4の断面積がそれぞれ該第2の断面積より大きく、該通路の該第2セクションが、該微細加工試料前濃縮器にサンプリングした空気を送る、空気捕集装置。
  2. 該通路の該第3セクションが、該表面弾性波アレー検知器にサンプリングした空気を送る請求項1に記載の装置。
  3. 該第1の断面積が実質的に該第4の断面積と等しい請求項1に記載の装置。
  4. 該第1と第4の断面積が等しい請求項1に記載の装置。
  5. 該入口が、サンプリングしようとする接近する空気流に向くように動作可能に配置され、該出口が、該本体周囲の空気流中の低圧領域に試料空気を排出するように動作可能に配置される請求項1に記載の装置。
  6. 該装置が該入口と該出口の間に圧力差を生じさせる請求項1に記載の装置。
  7. 本体内に設置された表面弾性波センサーを含む空気捕集装置であって、該センサーが表面弾性波アレー検知器および該本体表面上に暴露された微細加工試料前濃縮器を有し、該空気捕集装置は、該本体上に設置する、動作可能に配置された筐体を有し、該筐体は入口と出口を有する多段チャネルを有し、該チャネルは、入口に隣接する、第1の高さと幅を有する第1段、該微細加工試料前濃縮器に隣接し、該微細加工試料前濃縮器にサンプリングした空気を送る、より低い第2の高さと幅の第2段、該表面弾性波アレー検知器に隣接する、さらに低い第3の高さと幅を有する第3段、および、該出口に隣接する、第4の高さと幅を有する第4段、からなり、ここに、該第4の高さと幅が実質的に該第1の高さと幅に等しい、空気捕集装置。
  8. 本体内に設置された表面弾性波センサーを含む空気捕集装置であって、該センサーが検知器と該本体表面上に暴露された試料前濃縮器とを有し、該空気捕集装置は、該本体上に設置する動作可能に配置された筐体を有し、該筐体は入口と出口を有する通路を有し、該通路は、入口に隣接する第1断面積の第1セクション、該第1セクションに隣接する第2の断面積の第2セクション、該第2セクションに隣接する第3の断面積の第3セクション、該出口に隣接する第4の断面積の第4セクション、からなり、ここに該第3の断面積が該第2の断面積より小さく、該第1と第4の断面積がそれぞれ該第2の断面積より大きく、該通路の該第2セクションが、該試料前濃縮器にサンプリングした空気を送る、空気捕集装置。
  9. 該通路の第3セクションが該検知器にサンプリング空気を送る請求項に記載の装置。
  10. 該第1の断面積が実質的に該第4の断面積に等しい請求項に記載の装置。
  11. 該第1と第4の断面積が等しい請求項に記載の装置。
  12. 該入口が捕集しようとする空気流に向かって動作可能に配置され、該出口が該本体周囲の空気流れ中の低圧領域に試料空気を排出する動作可能に配置される請求項に記載の装置。
  13. 該装置が該入口と該出口との間に圧力差を生じさせる請求項に記載の装置。
  14. 表面弾性波センサーを含むラム空気捕集装置であって、該センサーが試料前濃縮器を有し、該センサー上に設置する動作可能に配置された筐体を有し、該筐体は入口と出口を有する多段チャネルを有し、該チャネルは該入口に隣接する、第1の高さと幅を有する第1段、第1段に隣接するより低い第2の高さと幅を有する第2段、第2段に隣接するさらに低い第3の高さと幅を有する第3段、および該出口に隣接する第4の高さと幅を有する第4段からなり、ここに該第4の高さと幅は実質的に該第1の高さと幅に等しく、該通路の該第2段が、該試料前濃縮器にサンプリングした空気を送る、ラム空気捕集装置。
  15. 該多段チャネルが該筐体に覆われている請求項14に記載のラム空気捕集装置。
  16. 該多段チャネルが該センサー内の検知器に試料空気を送る動作可能に配置されている請求項14に記載のラム空気捕集装置。
JP2003532969A 2001-10-01 2002-09-04 化学兵器物質センサー用ラム空気試料捕集装置 Expired - Fee Related JP4295103B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/969,196 US6442997B1 (en) 2001-10-01 2001-10-01 Ram-air sample collection device for a chemical warfare agent sensor
PCT/US2002/028012 WO2003029807A2 (en) 2001-10-01 2002-09-04 Ram-air sample collection device for a chemical warfare agent sensor

Publications (2)

Publication Number Publication Date
JP2005510693A JP2005510693A (ja) 2005-04-21
JP4295103B2 true JP4295103B2 (ja) 2009-07-15

Family

ID=25515292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003532969A Expired - Fee Related JP4295103B2 (ja) 2001-10-01 2002-09-04 化学兵器物質センサー用ラム空気試料捕集装置

Country Status (10)

Country Link
US (1) US6442997B1 (ja)
EP (1) EP1440309B1 (ja)
JP (1) JP4295103B2 (ja)
AT (1) ATE316241T1 (ja)
AU (1) AU2002323573A1 (ja)
CA (1) CA2430714C (ja)
DE (1) DE60208800T2 (ja)
DK (1) DK1440309T3 (ja)
ES (1) ES2256517T3 (ja)
WO (1) WO2003029807A2 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1634053A4 (en) * 2003-06-10 2010-02-24 Univ Louisville Res Found COLLECTION DEVICE HAVING DIRECT CIRCULATING SMALL SCALE ABSORBING PLATE
JP2007517228A (ja) * 2003-12-30 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー 表面弾性波センサを介した伝播速度の推定
US6931913B2 (en) * 2004-01-21 2005-08-23 Constellation Technology Corporation Chemical agent detector
WO2005116621A2 (en) * 2004-05-25 2005-12-08 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Naval Research Laboratory Microelectro-mechanical chemical sensor
US20050288616A1 (en) * 2004-06-28 2005-12-29 Smiths Detection, Inc. Sampling swab
CA2594451A1 (en) 2005-01-10 2007-06-14 Smiths Detection Inc. Sampling swab
US8754366B2 (en) * 2005-01-11 2014-06-17 Hamilton Sundstrand Corporation Tandem differential mobility ion mobility spectrometer for chemical vapor detection
US20060179918A1 (en) * 2005-02-15 2006-08-17 Honeywell International Gas chromatograph and quartz crystal microbalance sensor apparatus
WO2007085898A2 (en) * 2005-05-06 2007-08-02 Smiths Detection Inc. Improved chemical identification of peroxide-based explosives
GB0620748D0 (en) 2006-10-19 2006-11-29 Smiths Group Plc Spectrometer apparatus
GB0621990D0 (en) * 2006-11-04 2006-12-13 Smiths Group Plc Detection
GB0625478D0 (en) * 2006-12-20 2007-01-31 Smiths Group Plc Detection apparatus
GB0625480D0 (en) * 2006-12-20 2007-01-31 Smiths Group Plc Detector apparatus, pre-concentrators and methods
GB0625481D0 (en) * 2006-12-20 2007-01-31 Smiths Group Plc Detector apparatus and pre-concentrators
GB0625479D0 (en) 2006-12-20 2007-01-31 Smiths Group Plc Detection apparatus
US8088341B2 (en) * 2007-07-25 2012-01-03 University Of Louisville Research Foundation, Inc. Analyte collection devices and methods
US8178045B2 (en) * 2007-12-17 2012-05-15 University Of Louisville Research Foundation, Inc. Interchangeable preconcentrator connector assembly
GB2461346B (en) * 2008-07-04 2013-02-13 Smiths Group Plc Electrical connectors
WO2010014950A1 (en) * 2008-07-31 2010-02-04 University Of Louisville Rasearch Foundation, Inc. Large volume analyte preconcentrator
US8448532B2 (en) * 2009-03-18 2013-05-28 The United States Of America As Represented By The Secretary Of The Navy Actively cooled vapor preconcentrator
US20110094290A1 (en) * 2009-10-26 2011-04-28 General Electric Company Low power preconcentrator for micro gas analysis
US8569691B2 (en) 2009-11-24 2013-10-29 University Of Louisville Research Foundation Preconcentrator for analysis instruments
US8820672B2 (en) 2012-05-07 2014-09-02 Honeywell International Inc. Environmental sampling with an unmanned aerial vehicle
US9588085B2 (en) * 2013-05-28 2017-03-07 General Electric Company Device and system for ultrasonic inspection
US10775354B2 (en) 2014-10-02 2020-09-15 Brigham Young University Autonomous ambient air sampling system for monitoring semi-volatile/non-volatile organic compounds
US10317369B2 (en) * 2017-01-20 2019-06-11 GTBM, Inc. Acoustic frequency based system with crystalline transducer module and mass comparator for non-invasive detection of explosives and contraband
US10330571B2 (en) * 2017-03-07 2019-06-25 Alexander B. Adams Air sampling system
CN107703206A (zh) * 2017-11-22 2018-02-16 南京华智睿嵌信息科技有限公司 一种低空空间化学成分分析无人机
FR3078165B1 (fr) * 2018-02-19 2020-03-06 Apix Analytics Procede d'analyse d'hydrocarbures
US10942041B2 (en) * 2018-07-27 2021-03-09 Aurora Flight Sciences Corporation Chemosensing autonomy system for a vehicle
CN109433285A (zh) * 2018-12-27 2019-03-08 苏州纳葛诺斯生物科技有限公司 基于声表面波的微纳米粒子微流控芯片

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587323A (en) * 1969-08-18 1971-06-28 Morris A Benjaminson Wind directional air sampling device
US3914053A (en) 1974-12-09 1975-10-21 Us Navy Ice nuclei counter
US4182119A (en) 1977-09-01 1980-01-08 Avco Corporation Air pump for turbofan fuel control system
JP2755766B2 (ja) * 1990-02-27 1998-05-25 三洋電機株式会社 ガスセンサー
JP2775208B2 (ja) * 1992-02-21 1998-07-16 山武ハネウエル株式会社 熱伝導率測定装置
US5469369A (en) 1992-11-02 1995-11-21 The United States Of America As Represented By The Secretary Of The Navy Smart sensor system and method using a surface acoustic wave vapor sensor array and pattern recognition for selective trace organic vapor detection
US5481110A (en) 1993-09-22 1996-01-02 Westinghouse Electric Corp Thin film preconcentrator array
US5517866A (en) 1994-05-23 1996-05-21 Assay Technology, Inc. Enhanced rate monitor for fluid sampling
AU3653797A (en) 1996-07-12 1998-02-09 American Science And Engineering Inc. Side scatter tomography system
JP3628116B2 (ja) * 1996-08-06 2005-03-09 株式会社小野測器 排出ガス希釈装置、抽出器及び排出ガス測定システム
US5717147A (en) * 1996-08-22 1998-02-10 Rupprecht & Patashnick Company, Inc. Air sampler filter cassette carrier
US5826214A (en) 1996-09-26 1998-10-20 The United States Of America As Represented By The Secretary Of The Army Hand-held probe for real-time analysis of trace pollutants in atmosphere and on surfaces
JPH11108818A (ja) * 1997-10-06 1999-04-23 Meidensha Corp センサおよびそのセンサの製造方法並びにそのセンサを用いた計測システム
JPH11118749A (ja) * 1997-10-09 1999-04-30 Yokogawa Electric Corp 熱伝導度検出器
US6101886A (en) 1997-11-26 2000-08-15 Pacific Sierra Research Multi-stage sampler concentrator
JP2003515122A (ja) * 1999-11-17 2003-04-22 フェムトメトリクス,インコーポレイテッド 化学物質を収集および検出するための装置および方法

Also Published As

Publication number Publication date
WO2003029807A3 (en) 2003-07-24
ATE316241T1 (de) 2006-02-15
US6442997B1 (en) 2002-09-03
DE60208800T2 (de) 2006-08-31
CA2430714A1 (en) 2003-04-10
JP2005510693A (ja) 2005-04-21
AU2002323573A1 (en) 2003-04-14
EP1440309A2 (en) 2004-07-28
EP1440309B1 (en) 2006-01-18
DK1440309T3 (da) 2006-05-22
CA2430714C (en) 2007-02-13
WO2003029807A2 (en) 2003-04-10
DE60208800D1 (de) 2006-04-06
ES2256517T3 (es) 2006-07-16

Similar Documents

Publication Publication Date Title
JP4295103B2 (ja) 化学兵器物質センサー用ラム空気試料捕集装置
US6481263B1 (en) Hand-held detection system using GC/IMS
US6806463B2 (en) Micromachined field asymmetric ion mobility filter and detection system
US4777363A (en) Ion mobility spectrometer
US7453060B2 (en) Solid-state flow generator and related systems, applications, and methods
US6815669B1 (en) Longitudinal field driven ion mobility filter and detection system
US7138626B1 (en) Method and device for non-contact sampling and detection
US7075068B2 (en) Method and apparatus for electrospray augmented high field asymmetric ion mobility spectrometry
US8245564B1 (en) Chemical sample collection and detection system
US7498570B2 (en) Ion mobility spectrometer
US8963082B2 (en) Miniaturized ion mobility spectrometer
US9506852B2 (en) Device for determining the mass of a particle in suspension or in solution in a fluid
WO2007120373A2 (en) Differential mobility spectrometer analyzer and pre-filter apparatus, methods and systems
WO2005022112A2 (en) Method and apparatus for the detection of terahertz radiation absorption
US8841609B2 (en) Detection apparatus and methods utilizing ion mobility spectrometry
WO2008054393A1 (en) Method and device for non-contact sampling and detection
Frye-Mason et al. Integrated chemical analysis systems for gas phase CW agent detection
Pevzner et al. Sonic-spray introduction of liquid samples to hand-held Ion mobility spectrometry analyzers
JP2002502970A (ja) パルス注入および温度プログラムされた溶離によるバルブレスガスクロマトグラフシステム
JPH1010101A (ja) 微量気体化学物質検出用プリコンセントレーター・コレクター
Robinson et al. Advanced Technologies for Chemical Weapons Detection and Analysis
Kaye et al. Miniaturized ion mobility spectrometer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081119

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees