JP4292844B2 - カテーテルおよびその製造方法 - Google Patents
カテーテルおよびその製造方法 Download PDFInfo
- Publication number
- JP4292844B2 JP4292844B2 JP2003092482A JP2003092482A JP4292844B2 JP 4292844 B2 JP4292844 B2 JP 4292844B2 JP 2003092482 A JP2003092482 A JP 2003092482A JP 2003092482 A JP2003092482 A JP 2003092482A JP 4292844 B2 JP4292844 B2 JP 4292844B2
- Authority
- JP
- Japan
- Prior art keywords
- catheter
- tubular shaft
- balloon
- solid lubricant
- lubricant layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Media Introduction/Drainage Providing Device (AREA)
- Materials For Medical Uses (AREA)
Description
【発明の属する技術分野】
本発明は、カテーテルおよびその製造方法に関する。
【0002】
【従来の技術】
近年の医療は、患者の身体への負担をできるだけ軽くするために、低侵襲治療に向かう傾向がある。例えば虚血性心疾患は、以前の冠状動脈バイパス手術に代わって、血管拡張用バルーンカテーテルを用いて処置されることが多くなってきている。
【0003】
カテーテルは、薬液の注入や体液の排出等のために体内に挿入される細径の管であり、バルーンカテーテルでは、血管の狭窄部を拡張して血流を回復させるために、あるいはカテーテルの先端部を体内に安定に留置させるため等に、膨張および収縮の制御が可能なバルーンが先端部に取り付けられている。
【0004】
カテーテルによる治療または検査は、開腹手術に比べて低侵襲であることから、その適用範囲がますます拡大している。今日では、血管拡張用バルーンカテーテル以外にもIABP(大動脈内バルーンポンピング)用バルーンカテーテル、熱希釈法用バルーンカテーテル、一時ペーシング用カテーテル等、用途に応じて種々の形態のカテーテルが開発されている。
【0005】
これらのカテーテルは、いずれも、管状シャフトを有している。患者の体腔内あるいは血管内へのカテーテルの挿入性を高めるための一法として、管状シャフトを金属で作製することにより当該管状シャフトに或る程度の可撓性と或る程度の剛性とを付与することが知られている。
【0006】
金属製の管状シャフトには、径が細いことに加えて継ぎ目がないことが求められるので、当該管状シャフトは、多くの場合、冷間引抜き加工によって作製されている。このため、その材料としては、冷間引抜き加工性に優れたオーステナイト系ステンレス鋼(例えばSUS304)が多用されている。
【0007】
また、管状シャフトを金属で作製した場合においては、例えば特許文献1の第6頁左上欄に記載されているように、当該管状シャフトの外周面をポリテトラフルオロエチレン(以下、「PTFE」と略記することがある。)等の潤滑剤で被覆して、カテーテルを挿入する際に患者の組織と管状シャフトとの間に生じる摩擦の低減が図られている。
【0008】
【特許文献1】
特開平2−277465号公報
【0009】
【発明が解決しようとする課題】
外周面に上述のようにしてPTFE層が形成されたステンレス鋼製の管状シャフトは、患者の組織との間に生じる摩擦が小さいという点で好適なものではあるが、その一方で、PTFE層を形成していないステンレス鋼製の管状シャフトに比べて、内部に錆が生じ易いという傾向がある。
【0010】
例えば、薬液の注入や体液の排出のために体内に挿入されるカテーテルにおいて管状シャフト内に錆があると、当該錆が患者の体内に侵入して重大な悪影響を与える危険性がある。また、例えば血管拡張用バルーンカテーテルでは、血管の狭窄部を拡張するためにバルーン内部に高圧がかけられることから、場合によってはバルーンが破裂することがあり、管状シャフト内に錆が生じた状態でバルーンが破裂すると、錆が血管内に流れ込んで血栓が惹起される等、患者に対して重大な悪影響を与える危険性がある。
【0011】
そこで、本発明は、外周面に固体潤滑剤層が形成されたステンレス鋼製の管状シャフトを有し、当該管状シャフトに錆が生じにくいカテーテルを提供することを課題とする。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を達成するために、ステンレス鋼製の管状シャフトの外周面にフッ素樹脂系の固体潤滑剤層を形成する際の処理条件と前記管状シャフトに生じる錆との関係について鋭意検討を重ねた結果、固体潤滑剤層を形成する際の熱処理温度を所定の温度以下にすることによって錆の発生を防止できることを見出し、この知見より本発明を完成するに至った。
【0013】
かくして、本発明の第1の観点によれば、ステンレス鋼製の管状シャフトと、該管状シャフトの外周面に形成されたフッ素樹脂系の固体潤滑剤層とを有し、前記固体潤滑剤層が、該固体潤滑剤層の材料を前記外周面上にコーティングした後に前記材料を340℃以下で熱処理することによって形成されたものであるカテーテルが提供される。
【0014】
前記管状シャフトは、オーステナイト系のステンレス鋼製であることが好ましい。
【0015】
前記材料は、相対的に低融点のバインダー樹脂と、相対的に高融点のフッ素系樹脂とを含むものであることが好ましい。
【0016】
本発明のカテーテルにおいては、前記材料が200〜340℃で熱処理されていることが好ましい。
【0017】
本発明のカテーテルは、前記管状シャフトの一端に可撓性を有するディスタールシャフトの一端が接続され、該ディスタールシャフトの他端にバルーンが接続されているバルーンカテーテルとすることができる。
【0018】
本発明の第2の観点によれば、ステンレス鋼製の管状シャフトを用意する第1工程と、前記管状シャフトの外周面に、フッ素樹脂系の固体潤滑剤層を形成することができる材料をコーティングする第2工程と、前記材料を340℃以下で熱処理して、前記管状シャフトの外周面に前記フッ素樹脂系の固体潤滑剤層を形成する第3工程と、を含むカテーテルの製造方法が提供される。
【0019】
前記第1工程で用意する管状シャフトは、オーステナイト系のステンレス鋼製であることが好ましい。
【0020】
前記第2工程で用いる前記材料は、相対的に低融点のバインダー樹脂と、相対的に高融点のフッ素系樹脂とを含んでいることが好ましい。
【0021】
前記第3工程では、前記材料を200〜340℃で熱処理することが好ましい。
【0022】
そして、本発明のカテーテルの製造方法は、前記第3工程を経た管状シャフトの一端に可撓性を有するディスタールシャフトの一端を接続する第4工程と、前記ディスタールシャフトの他端にバルーンを接続する第5工程と、を更に含むことができる。
【0023】
【作用】
ステンレス鋼製の管状シャフトの外周面に固体潤滑剤層を形成する際の熱処理温度を340℃以下にすることによって、当該管状シャフトに錆が生じるのを抑制することができる。その理由は定かではないが、固体潤滑剤層を形成する際の熱処理に起因する管状シャフトの耐食性の低下が抑制される結果として、錆の発生が防止されるものと考えられる。
【0024】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しつつ詳述する。
【0025】
<本発明のカテーテルに係る第1実施形態>
図1(A)、図1(B)、および図1(C)は、本発明のカテーテルに係る第1実施形態を概略的に示す。図1(A)は、本実施形態のカテーテル10を真っ直ぐにしたときの状態を概略的に示し、図1(B)は、図1(A)に示したカテーテル10をその長手軸(カテーテルを真っ直ぐにした状態での長手軸を意味する。以下同様。)を含む面で切ったときの断面を概略的に示し、図1(C)は、図1(A)に示したカテーテル10をその長手軸を法線とする面で切ったときの断面を概略的に示す。
【0026】
これらの図に示すように、第1実施形態のカテーテル10は、ステンレス鋼製の管状シャフト1と、当該管状シャフト1の外周面全体に形成されたフッ素樹脂系の固体潤滑剤層5とを有している。
【0027】
管状シャフト1は、長手方向の両端が当該管状シャフト1の長手軸(管状シャフトを真っ直ぐにした状態での長手軸を意味する。以下同様。)を法線とする面に沿って切断された形状を呈する管状物である。この管状シャフトの材料としては、冷間引抜き加工性に優れ、かつ、耐食性に優れているという点から、ステンレス鋼の中でもオーステナイト系のステンレス鋼が好ましく、特にSUS304が好ましい。
【0028】
この管状シャフト1は、患者の体腔内や血管内等に挿入されるものであるので、挿入時に操作者の押し込み力が先端部にまで伝達されるように或る程度の剛性を有している一方で、挿入時に患者の組織や血管を傷つけないように或る程度の可撓性を有していることが必要である。したがって、当該管状シャフト1の形状および大きさは、その材質やカテーテル10の用途等に応じて適宜選定される。
【0029】
例えば、管状シャフト1の材料としてSUS304等のオーステナイト系のステンレス鋼を用い、かつ、カテーテル10を血管拡張用バルーンカテーテルの一構成部材(ハイポチューブ)として利用する場合には、管状シャフト1の外径を概ね0.5〜3.0mmの範囲内、好ましくは、概ね0.5〜1.0mmの範囲内とすることができ、その内径を概ね0.3〜2.8mmの範囲内、好ましくは、概ね0.3〜0.8mmの範囲内とすることができる。このときの管状シャフト1の長さは、前記血管拡張用バルーンカテーテルの用途に応じて適宜選定される。
【0030】
なお、血管拡張用バルーンカテーテルは、経皮的冠動脈形成術(PTCA)や四肢等の血管の拡張術、あるいは腎血管拡張術等に用いられる。血管拡張用以外のバルーンカテーテルとしては、例えば上部尿管の拡張術等に用いられるものがある。
【0031】
管状シャフト1の外周面に形成されているフッ素樹脂系の固体潤滑剤層5は、カテーテル10または当該カテーテル10をハイポチューブとして用いた長尺のカテーテルを患者の体腔内や血管内等に挿入する際に、患者の組織との間に生じる摩擦や、ガイドカテーテルを用いる場合には当該ガイドカテーテルの内周面との摩擦を低減させるためのものであり、340℃以下の熱処理によって管状シャフト1の外周面に固着されている。
【0032】
この固体潤滑剤層5の厚さは、カテーテル10の種類(用途)および太さ、ならびにカテーテル10に要求される摩擦特性等により異なるが、一般には、概ね5〜20μmの範囲内で適宜選定され、概ね5〜15μmの範囲内で適宜選定することがより好ましい。また、本実施形態では、管状シャフト1の外周面全体に固体潤滑剤層5が形成されているが、固体潤滑剤層5は必ずしも外周面全体に形成する必要はなく、例えば体内に挿入される部分のみに固体潤滑剤層5を形成してもよい。
【0033】
当該固体潤滑剤層5の材料としては、得られる固体潤滑剤層の摩擦係数が小さいという観点から、また、340℃以下の熱処理によって管状シャフト1の外周面に固着させるという観点から、(1)ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂、(2)テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フルオロエチレン−アルキルビニルエーテル共重合体(FEVE)等のフッ素樹脂系共重合体、または、(3)上記のフッ素樹脂またはフッ素樹脂系共重合体に、当該フッ素樹脂またはフッ素樹脂系共重合体よりも低融点で、かつ溶媒に可溶のバインダー樹脂(例えばエポキシ樹脂、ポリアミドイミド樹脂等)を添加することによって溶剤に可溶化された変性フッ素樹脂(変性フッ素樹脂を含有した塗料を含む。)、等を用いることが好ましい。
【0034】
これら固体潤滑剤層5の材料の中でも、より低い摩擦係数を有するPTFE、PFA、FEP等を用いることが更に好ましく、比較的低温での熱処理によっても均一で潤滑性に優れた固体潤滑剤層を形成し易いFEPまたは当該FEPを含有するものを用いることが特に好ましい。
【0035】
上記材料の形態は、無溶剤粉体、水系分散液、有機溶剤系分散液、水系変性フッ素塗料、有機溶剤系変性フッ素塗料、オルガノゾル塗料等、種々の形態とすることができる。比較的低温での熱処理によって目的とする固体潤滑剤層5を形成し易いという観点からは、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン等を有機溶剤として用い、バインダー樹脂としてエポキシ樹脂を10〜40重量%含有した有機溶剤系変性フッ素塗料を用いることが好ましい。
【0036】
上記の材料には、必要に応じて、硬化剤、顔料、流動調整剤、酸化防止剤、熱劣化防止剤、紫外線吸収剤、発泡抑制剤、ツヤ調整剤、消泡剤、帯電防止剤等の各種添加剤を配合することができる。
【0037】
なお、固体潤滑剤層5の形成方法については、本発明のカテーテルの製造方法に係る後述の実施形態の中で詳述する。
【0038】
上述した管状シャフト1および固体潤滑剤層5を有するカテーテル10では、固体潤滑剤層5を形成する際の熱処理温度を340℃よりも高温にした場合に比べて、管状シャフト1の内周面における錆の発生が抑制される。これは、上記の熱処理温度を340℃以下にすることによって、当該熱処理に起因する管状シャフト1の耐食性の低下が抑制されるためと考えられる。
【0039】
<本発明のカテーテルに係る変形例1〜6>
図2(A)〜図2(C)および図3(A)〜図3(C)は、それぞれ別個に、本発明のカテーテルに係る変形例、特に、長尺のカテーテルの一構成部材(ハイポチューブ)として好適なカテーテルを部分的に切欠いて示す概略図である。
【0040】
これらの図に示す変形例1〜6のカテーテル15A〜15Fは、長手方向の一端に相対的に曲げ剛性の低い低剛性領域2A〜2Fが形成されているという点で第1実施形態のカテーテル10と異なる。しかしながら、ステンレス鋼製の管状シャフトの外周面にフッ素樹脂系の固体潤滑剤層が所定の熱処理条件の下に形成されているという点では、これらのカテーテル15A〜15Fは第1実施形態のカテーテル10と同じである。図2(A)〜図2(C)および図3(A)〜図3(C)においては、各カテーテル15A〜15Fでの管状シャフトを参照符号1A〜1Fで示し、固体潤滑剤層については図1と同様に参照符号5を付してある。
【0041】
図2(A)に示す変形例1のカテーテル15Aでは、管状シャフト1Aの長手方向の一端を、当該一端での端面が管状シャフト1Aの長手軸方向から傾いた面となるように成形することにより、低剛性領域2Aが形成されている。
【0042】
図2(B)に示す変形例2のカテーテル15Bでは、管状シャフト1Bの形状は第1実施形態のカテーテル10における管状シャフト1の形状と同一であるが、当該管状シャフト1Bの長手方向の一端にコイルスプリング12を溶接、ハンダ付け、ロウ付け等によって接合することにより、低剛性領域2Bが形成されている。
【0043】
上記のコイルスプリング12は、管状シャフト1Bの材料と同一または異なる金属で構成される。当該コイルスプリング12の外径は固体潤滑剤層5の外径と実質的に同一であることが好ましく、その内径は管状シャフト1Bの内径と実質的に同一であることが好ましい。また、コイルスプリング12の素線は、断面形状が例えば円形または方形ものが好ましく、曲げ剛性を制御し易いという観点からは、断面形状を円形よりも方形にすることが望ましい。コイルスプリング12における巻回のピッチは、等間隔であってもよいし、遠位端方向に漸増または漸減するものであってもよい。
【0044】
図2(C)に示す変形例3のカテーテル15Cでは、管状シャフト1Cの長手方向の一端部に、当該管状シャフト1Cの長手軸方向に沿って延在する複数のスリット13(図示の例では4つ。ただし、図2(C)においては、2つのスリット13が重なった状態で現れている。)を形成することにより、低剛性領域2Cが形成されている。各スリット13は、管状シャフト1Cの円周方向に略等間隔に形成することが好ましい。
【0045】
図3(A)に示す変形例4のカテーテル15Dでは、管状シャフト1Dにおける長手方向の一端部側の肉厚を前記一端に向かうに従って漸次減少させることにより、低剛性領域2Dが形成されている。
【0046】
図3(B)に示す変形例5カテーテル15Eでは、管状シャフト1Eにおける長手方向の一端部側の肉厚を前記一端に向かうに従って段階的に減少させることにより、低剛性領域2Eが形成されている。図示の例では、管状シャフト1Eの肉厚が低剛性領域2Eにおいて3段に分かれて段階的に減少しており、各段は円筒状を呈する。
【0047】
図3(C)に示す変形例6のカテーテル15Fでは、管状シャフト1Fにおける長手方向の一端部側の肉厚を前記一端に向かうに従って螺旋状かつ段階的に減少させることにより、低剛性領域2Fが形成されている。図示の例では、管状シャフト1Fの肉厚が低剛性領域2Fにおいて2〜3段に分かれて段階的に減少している。
【0048】
以上説明した変形例1〜6の各カテーテル15A〜15Fは、第1実施形態のカテーテル10と同様に管状シャフト1A〜1Fの外周面にフッ素樹脂系の固体潤滑剤層5を有しているので、第1実施形態のカテーテル10と同様の技術的効果を奏する。さらに、これらのカテーテル15A〜15Fは上述した低剛性領域2A〜2Fのいずれかを有しているので、当該カテーテル15A〜15Fをハイポチューブとして用いて、例えば血管拡張用バルーンカテーテルのように遠位端側の可撓性が相対的に高く(剛性が低く)近位端側の可撓性が相対的に低い(剛性が高い)ことが望まれる長尺のカテーテルを得た場合には、次の技術的効果が得られる。
【0049】
すなわち、上記長尺のカテーテルを得るにあたって、例えば合成樹脂製のディスタールシャフトのようにカテーテル15A〜15Fよりも相対的に剛性の低いシャフトをカテーテル15A〜15Fの一端に接合する場合でも、ディスタールシャフト内に低剛性領域2A〜2Fが含まれるようにしてこれらを接合することにより、ハイポチューブとディスタールシャフトとの境界部での曲げ剛性の急激な変化を抑えることが容易になる。その結果として、上記長尺のカテーテルを患者の体内に挿入する際にディスタールシャフトに潰れやキンクが生じるのを抑制することが容易になる、という技術的効果が得られる。
【0050】
低剛性領域2A〜2Fの曲げ剛性は、カテーテル15A〜15Fの用途に応じて適宜選定可能であり、個々の低剛性領域2A〜2Fの長さ(管状シャフト1A〜1Fの長手軸に沿った長さ)や肉厚(図2(B)に示した低剛性領域2Bではコイルスプリング12Aの素線の太さ)等は、当該低剛性領域2A〜2Fに求められる曲げ剛性や、ディスタールシャフトを接続する際の接合部の長さ(管状シャフト1A〜1Fの長手軸に沿った長さ)等に応じて適宜選定可能である。
【0051】
例えば、図2(A)に示した低剛性領域2Aでは、管状シャフト1Aにおける低剛性領域2A側の端面を含む平面と管状シャフト1Aの長手軸とがなす角(内角)の大きさαを、その正接tanαが概ね0.003〜0.015の範囲内となるように選定することが好ましく、概ね0.005〜0.01の範囲内となるように選定することがより好ましい。低剛性領域2Aの長さは、管状シャフト1Aの外径と上記正接tanαとに応じて自ずと決定される。
【0052】
なお、低剛性領域2A〜2Fの外側端部(管状シャフト1A〜1Fにおける長手方向の一端部となっている端部)には、必要に応じて、僅かに丸みをつけることができる。この丸みをつけることにより、当該外側端部に例えばディスタールシャフトを接続したときでも、ディスタールシャフトの内面が低剛性領域2A〜2Fの外側端によって傷つけられるのを防止することが容易になる。
【0053】
<本発明のカテーテルに係る第2実施形態>
図4(A)および図4(B)は、本発明のカテーテルに係る第2実施形態を概略的に示す。図4(A)は、本実施形態のカテーテルを真っ直ぐにしたときの状態を概略的に示し、図4(B)は、図4(A)に示したカテーテルの部分断面を概略的に示す。これらの図に示したカテーテル70は、図2(A)に示したカテーテル15Aをハイポチューブ(以下、「ハイポチューブ15A」という。)として用いた血管拡張用バルーンカテーテル(以下、「血管拡張用バルーンカテーテル70」という。)である。なお、図4(B)においては、便宜上、ハイポチューブ15Aにおける管状シャフトとフッ素樹脂系の固体潤滑剤層とを区別することなく、これらを1部材として描いてある。
【0054】
図示の血管拡張用バルーンカテーテル70では、ハイポチューブ15Aの一端(低曲げ剛性領域2Aが形成されていない側の端)にコネクタ20が、他端(低曲げ剛性領域2Aが形成されている側の端)に合成樹脂製のディスタールシャフト30がそれぞれ接続され、ディスタールシャフト30を構成している外チューブ32の遠位端にバルーン40が接続されている。
【0055】
ハイポチューブ15Aの長さは、血管拡張用バルーンカテーテル70の用途に応じて適宜選定可能であり、例えば概ね500〜2000mmの範囲内、より好ましくは概ね700〜1500mmの範囲内で選定される。
【0056】
ディスタールシャフト30は、上記の外チューブ32内に内チューブ35が配置された2重構造(いわゆる同軸カテーテルチューブ構造)の管状物である。当該ディスタールシャフト30を構成している外チューブ32の近位端は、接着等の方法によってハイポチューブ15Aの遠位端に気密に接合され、当該外チューブ32の遠位端にバルーン40の近位端が熱融着、接着等の方法によって気密に接合されている。
【0057】
この外チューブ32の長さは、血管拡張用バルーンカテーテル70の用途に応じて適宜選定可能であり、概ね100〜400mmの範囲内、好ましくは概ね200〜300mmの範囲内で選定される。また、外チューブ32の外径は、概ね0.5〜5.0mmの範囲内で選定することが好ましく、0.5〜1.0mmの範囲内で選定することが更に好ましい。外チューブ32の肉厚も適宜選定可能であるが、概ね0.05〜0.5mmの範囲内で選定することが好ましく、概ね0.1〜0.2mmの範囲内で選定することが更に好ましい。
【0058】
このような外チューブ32は、可撓性を有する合成樹脂で形成されていることが好ましく、その具体例としては、例えばポリエチレン、ポリエチレンテレフタレート、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、架橋型エチレン−酢酸ビニル共重合体、ポリウレタン、ポリアミド、ポリアミドエラストマー、ポリイミド、ポリイミドエラストマー等が挙げられる。これらの中でも、ポリウレタン、ポリエチレン、ポリアミド、ポリイミド等、ショアA硬度が50〜90程度のものを用いることが特に好ましい。なお、ここでいう「ショアA硬度」とは、JIS K−7215での規定に基づいて計測される物性値を意味する。
【0059】
一方、ディスタールシャフト30を構成している内チューブ35は、外チューブ32における近位端側の外周面から当該外チューブ32内およびバルーン40内を経て、バルーン40の外部にまで達しており、その近位端は熱融着、接着等の方法によって外チューブ32に気密に接合されて、外チューブ32の外周面に開口している。また、内チューブ35の遠位端近傍には、バルーン40の遠位端が熱融着、接着等の方法によって気密に接合されており、当該内チューブ35の遠位端が血管拡張用バルーンカテーテル70の遠位端となっている。内チューブ35には、血管拡張用バルーンカテーテル70を血管内に挿入する際に利用されるガイドワイヤ50が通される。
【0060】
上記の内チューブ35は、外チューブ32と同様の材料によって形成することができるが、外チューブ32よりも硬質の合成樹脂によって形成することもできる。当該内チューブ35の外径は、外チューブ32の内周面との間に隙間が形成されるように、例えば概ね0.3〜3.0mmの範囲内で選定することが好ましく、概ね0.3〜0.8mmの範囲内で選定することが更に好ましい。また、内チューブ35の内径は、ガイドワイヤ50を挿入することができる大きさであればよく、例えば概ね0.1〜1.0mmの範囲内で、好ましくは概ね0.25〜0.6mmの範囲内で選定可能である。この内チューブ35の近位端と外チューブ32の遠位端との距離(ディスタールシャフト30の長手軸に沿った距離を意味する。)は、外チューブ32の長さに応じて、概ね50〜380mmの範囲内とすることが好ましく、概ね150〜280mmの範囲内とすることが更に好ましい。
【0061】
バルーン40は、内部に流体(気体または液体)を導入することによって膨らませることができ、かつ、導入した流体を排出することによって萎ませることができるように、外チューブ32および内チューブ35よりも柔軟性に富んでいる。膨らませる前のバルーン40は、内チューブ35の周囲に折り畳まれて巻き付けられており、この状態でのバルーン40の外径は、概ね0.5〜3.5mmとすることが好ましい。一方、膨らませたときのバルーン40では、中央部での横断面の輪郭(長手軸方向と直交する方向の断面の輪郭)が円形または多角形となる。この状態でのバルーン40の外径は、血管拡張用バルーンカテーテル70の用途に応じて、概ね1.0〜10.0mmの範囲内で選定することが好ましく、概ね1.5〜5.0mmの範囲内で選定することが更に好ましい。図4(A)および図4(B)は、バルーン40が膨らんでいる状態を示している(ただし、流体の図示は省略している。)。また、バルーン40の長手軸方向の長さは、血管内狭窄部の大きさ等の因子によって決定されるものであるが、概ね5〜50mmの範囲内、好ましくは概ね8〜30mmの範囲内で適宜選定可能である。
【0062】
このようなバルーン40は、例えばポリエチレン、ポリエチレンテレフタレート、ポリプロピレン、エチレン−プロピレン共重合体等のエチレンと他のα−オレフィンとの共重合体、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、架橋型エチレン−酢酸ビニル共重合体、ポリウレタン、ポリアミド、ポリアミドエラストマー、ポリイミド、ポリイミドエラストマー、シリコーンゴム、天然ゴム等によって形成することができ、その膜厚は、所望の柔軟性および強度が得られるように、概ね2〜300μmの範囲内、好ましくは、概ね2〜50μmの範囲内で適宜選定される。バルーン40の材料としては、ポリエチレン、ポリエチレンテレフタレート、ポリアミド、またはポリアミドエラストマーが好ましい。
【0063】
ハイポチューブ15Aの内部空間、外チューブ32の内部空間(内チューブ35を除く。)、および、バルーン40の内部空間が互いに連なって1つの空間を形成しているので、この空間を利用して、バルーン40への流体の供給、およびバルーン40からの流体の排出を行うことができる。
【0064】
必要に応じて、バルーン40内における内チューブ35の外周面に、例えば金、白金、タングステン等の金属材料によって形成された造影リング60を装着することができる。この造影リング60を装着することによって、血管拡張用バルーンカテーテル70を患者の体内に挿入する際に、患者の体内でのバルーン40の位置をX線撮影等により正確に把握することが可能になる。
【0065】
上述した構成を有する血管拡張用バルーンカテーテル70の使用にあたっては、まずガイドワイヤ50が患者の血管内に挿入され、その後、このガイドワイヤ50の一端側が内チューブ35の遠位端から当該内チューブ35内に通される。血管内への血管拡張用バルーンカテーテル70の挿入は、バルーン40が血管の狭窄部に達するまで、ガイドワイヤ50に沿ってバルーン40側から当該血管拡張用バルーンカテーテル70を血管内に押し込むことによって行われる。
【0066】
血管拡張用バルーンカテーテル70ではハイポチューブとして前述した変形例1のカテーテル15Aが使用されているので、操作者の押し込み力がハイポチューブ15Aの先端部にまで十分に伝達され、かつ、ディスタールシャフト30に潰れやキンクが生じることが抑制される。したがって、バルーン40を狭窄部にまで挿入することが容易である。また、フッ素樹脂系の固体潤滑剤層5によってハイポチューブ15Aの外周面が形成されているので、バルーン40を血管の狭窄部まで挿入することが容易であり、ハイポチューブ15Aの外周面との摩擦によって血管壁が傷つけられることも抑制される。
【0067】
バルーン40が血管の狭窄部にまで達した後、バルーン40内にハイポチューブ15Aの近位端側から気体または液体を注入してバルーン40を膨らませ、これによって狭窄部を拡張させる。
【0068】
このとき、ハイポチューブ15Aは前述のように管状シャフト1A内に錆が生じにくいものであるので、仮にバルーン40が破裂しても、管状シャフト1A内の錆が血管内に流れ込んでしまうということが起こりにくい。したがって、ハイポチューブ15Aを使用した血管拡張用バルーンカテーテル70の安全性を長期に亘って維持し易い。
【0069】
血管拡張用バルーンカテーテル70およびガイドワイヤ50は、バルーン40によって狭窄部を拡張し終えた後に、血管から順次抜去される。バルーン40によって狭窄部が拡張された後の血管では、血流が回復する。
【0070】
なお、ディスタールシャフト30の外周は、血管拡張用バルーンカテーテル70を血管内に挿入する際の摩擦を低減させるという観点から、潤滑性を有する親水性高分子物質で被覆することが好ましい。バルーン40の外周を前記親水性高分子物質で被覆することも可能であるが、血管の狭窄部を拡張する際に当該狭窄部に対してバルーン40が滑ることは必ずしも好ましくはない。
【0071】
上記の親水性高分子物質としては、天然高分子系のものと、合成高分子系のものとがある。天然高分子系のものとしては、デンプン系、セルロース系、タンニン・リグニン系、多糖類系、タンパク質系等が例示される。合成高分子系のものとしては、PVA系、ポリエチレンオキサイド系、アクリル酸系、無水マレイン酸系、フタル酸系、水溶性ポリエステル、ケトンアルデヒド樹脂、(メタ)アクリルアミド系、ポリアミン系、水溶性ナイロン系等が例示される。
【0072】
これらの中でも、セルロース系高分子物質(例えばヒドロキシプロピルセルロース)、ポリエチレンオキサイド系高分子物質(例えばポリエチレングリコール)、無水マレイン酸系高分子物質(例えばメチルビニルエーテル無水マレイン酸共重合体のような無水マレイン酸共重合体)、アクリルアミド系高分子物質(例えばポリジメチルアクリルアミド)は、低摩擦係数の被膜が安定して得られるので、上記の親水性高分子物質として特に好ましい。
【0073】
上述した本実施形態は血管拡張用バルーンカテーテルに関するものであるが、前述した第1実施形態のカテーテル10や変形例1〜6のカテーテル15A〜15F、および後述する変形例7〜12のカテーテル18A〜18Fは、遠位端側の可撓性が相対的に高く、近位端側の可撓性が相対的に低いことが求められる長尺のカテーテルでのハイポチューブとして広く用いることができる。
【0074】
<本発明のカテーテルに係る変形例7〜12>
図5(A)〜図5(C)および図6(A)〜図6(C)は、それぞれ別個に、本発明のカテーテルに係る他の変形例、特に、長尺のカテーテルの一構成部材(ハイポチューブ)として好適なカテーテルを概略的に示す。
【0075】
これらの図に示す変形例7〜12のカテーテル18A〜18Fは、(1)フッ素樹脂系の固体潤滑剤層が管状シャフト1A〜1Fの一端から他端に達する前に終端して、低剛性領域2A〜2Fがフッ素樹脂系の固体潤滑剤層によって覆われていない点、および、(2)低剛性領域2A〜2Fの周囲が、管状シャフト1A〜1Fにおける低剛性領域2A〜2F側の開口を閉塞しないようにして、補強チューブ17A〜17Fで被覆されている点で、変形例1〜6のカテーテル15A〜15Fと相違する。しかしながら、カテーテル18A〜18Fの他の構成は、変形例1〜6のカテーテル15A〜15Fのいずれかと同様である。
【0076】
このため、図5(A)〜図5(C)および図6(A)〜図6(C)では、変形例7〜12のカテーテル18A〜18Fにおける管状シャフトおよび低剛性領域については、それぞれ、対応する変形例1〜6で用いた参照符号と同じ参照符号を付してある。また、フッ素樹脂系の固体潤滑剤層については、順次、参照符号5A〜5Fを付してあり、補強チューブには、順次、参照符号17A〜17Fを付してある。
【0077】
これらの図に示した補強チューブ17A〜17Fは、低剛性領域2A〜2Fを機械的に保護してその破損を防ぐと共に、カテーテル18A〜18Fをハイポチューブとして用いて長尺のカテーテルを構成する際に、ディスタールシャフトの内面が低剛性領域2A〜2Fの遠位端によって傷つけられるのを防止するためのものである。このため、その引張り強度は27MPa以上であることが好ましく、90MPa以上であることが更に好ましい。また、その曲げ強度は34MPa以上であることが好ましく、130MPa以上であることが更に好ましい。
【0078】
このような補強チューブ17A〜17Fは、例えばポリエーテルエーテルケトン樹脂によって形成され、管状シャフト1A〜1Fの外周面の所定領域上を被覆する。補強チューブ17A〜17Fの内径は、管状シャフト1A〜1Fの外周面の所定領域上を被覆することができるように、管状シャフト1A〜1F(低剛性領域2A〜2F)の外径に応じて適宜選定される。また、補強チューブ17A〜17Fの肉厚は、概ね10〜200μmの範囲内で選定することが好ましく、概ね30〜100μmの範囲内で選定すること更に好ましい。
【0079】
補強チューブ17A〜17Fによる低剛性領域2A〜2Fの被覆率は、管状シャフト1A〜1Fにおける低剛性領域2A〜2F側の開口を閉塞しない範囲内で、できるだけ高くすることが好ましい。
【0080】
上記の補強チューブ17A〜17Fを有する変形例7〜12のカテーテル18A〜18Fは、前述した変形例1〜6のカテーテル15A〜15Fと同様の技術的効果を奏する。さらに、これらのカテーテル18A〜18Fをハイポチューブとして用いて低剛性領域2A〜2F側にディスタールシャフトが接続された長尺のカテーテルを構成した場合には、当該長尺のカテーテルを患者の体腔内や血管内に挿入する際に低剛性領域2A〜2Fが破損してしまうことが抑制される。その結果として、上記長尺のカテーテルの信頼性を高めることができる。
【0081】
なお、上述の補強チューブ17A〜17Fは、加熱により収縮する熱収縮チューブであってもよい。補強チューブ17A〜17Fとして熱収縮チューブを用いた場合には、低曲剛性領域2A〜2Fへの補強チューブ17A〜17Fの被覆が容易となる。
【0082】
また、変形例7〜12のカテーテル18A〜18Fでは、補強チューブ17A〜17Fの近位端とフッ素樹脂系の固体潤滑剤層5A〜5Fの遠位端との間において管状シャフト1A〜1Fが局所的に露出しているが、当該管状シャフト1A〜1Fの露出は必須ではない。補強チューブ17A〜17Fの近位端と固体潤滑剤層5A〜5Fの遠位端とは、互いに接していてもよい。さらには、前述した変形例1〜6のカテーテル15A〜15Fと同様に、管状シャフト1A〜1Fの外周面全体にフッ素樹脂系の固体潤滑剤層を形成し、当該固体潤滑剤層の外周面の所定領域上を補強チューブ17A〜17Fで被覆することもできる。
【0083】
<本発明のカテーテルの製造方法に係る実施形態>
以下、前述した第1実施形態のカテーテル10を例にとり、本発明のカテーテルの製造方法に係る実施形態を説明する。以下の説明は、図1で用いた参照符号を適宜引用しつつ、行う。
【0084】
本発明のカテーテルの製造方法では、まず、ステンレス鋼製の管状シャフト1を用意する第1工程を行う。管状シャフト1は、カテーテル10の製造設備内で作製することもできるし、カテーテル10の製造設備とは異なる設備内で作製することもできるし、市販品を購入することもできる。管状シャフト1の材料および製造方法についてはカテーテルに係る第1実施形態についての説明の中で既に述べたので、ここでは省略する。
【0085】
次いで、上記の管状シャフト1の外周面に、フッ素樹脂系の固体潤滑剤層5を形成することができる材料をコーティングする第2工程を行う。この材料についても、本発明のカテーテルに係る第1実施形態についての説明の中で既に述べたので、ここでは省略する。
【0086】
上記材料のコーティングは、材料の種類に応じて、吹き付け塗装、静電塗装、流動浸漬塗装等の手法により行うことができる。なかでも、静電塗装によって行うことが特に好ましい。なお、管状シャフト1と固体潤滑剤層5との接合強度を高めるうえからは、第2工程に先だって、管状シャフト1に脱脂、サンドブラスト、エッチング、プライマー塗布等の前処理を施しておくことが好ましい。
【0087】
次に、第2工程でコーティングした材料を340℃以下で熱処理して、管状シャフト1の外周面に固体潤滑剤層5を形成する第3工程を行う。熱処理温度は340℃以下であればよいが、概ね300℃以下とすることが好ましい。また、当該熱処理温度があまりに低いと、所望の摩擦特性を有する固体潤滑剤層5を形成することができなかったり、固体潤滑剤層5と管状シャフト1との接合強度が低くなり過ぎたりする。熱処理温度の下限値は、第2工程で使用した材料の種類に応じて、概ね200℃とすることが好ましく、概ね260℃とすることが更に好ましい。また、熱処理時間は、第2工程で使用したコーティング材料の種類および第3工程での熱処理温度に応じて適宜選定される。
【0088】
なお、膜厚(肉厚)が均一な固体潤滑剤層5を得るうえからは、必要に応じて、第2工程と第3工程とを1セットとして、当該セットを2回以上繰り返すことも好ましい。前記セットを2回以上繰り返す場合には、最終セット以外の第3工程での熱処理温度を、最終セットでの熱処理温度よりも低く設定することが可能である。
【0089】
上述した第1工程から第3工程までを順次を行うことにより、前述した第1実施形態のカテーテル10を得ることができる。
このカテーテル10をハイポチューブとして用いて長尺のカテーテルを得る場合には、上記の第3工程に引き続き、ハイポチューブの一端にディスタールシャフトを接続する第4工程を行い、その後、バルーンカテーテルを得ようとする場合には、ディスタールシャフトの遠位端にバルーンを接続する第5工程を行う。ディスタールシャフトとハイポチューブの接合方法、および、ディスタールシャフトとバルーンとの接合方法については、本発明のカテーテルに係る第2実施形態についての説明の中で既に述べたので、ここでは省略する。
【0090】
【実施例】
<実施例1>
ステンレス鋼製の管状シャフトとして、内径0.45mm、外径0.65mm、長さ1200mmのSUS304製チューブを用意した(第1工程)。また、フッ素樹脂系の固体潤滑剤層の材料として、メチルイソブチルケトン中にFEPが15重量%、PTFEが15重量%、および、バインダー樹脂としてのエポキシ樹脂が20重量%溶解している有機溶剤系変性フッ素塗料を用意した。
【0091】
まず、上記の管状シャフトをイソプロピルアルコール(IPA)で脱脂し、脱脂に使用したIPAをウエスで拭き取った後に、管状シャフトを立てた状態で当該管状シャフトを水洗した。
【0092】
次に、管状シャフトを立てた状態で、静電塗装ガンを用いた静電塗装により上記材料のコーティングを行った(第2工程)。
次いで、上記のコーティングを施した管状シャフトを熱風循環式電気炉によって180℃、10分の条件の下に仮乾燥した(第3工程)。
【0093】
この後、水洗、上記第2工程、および上記仮乾燥(第3工程)をこの順番で順次繰り返し、その後に、熱風循環式電気炉によって210℃、40分の条件の下に熱処理(最終の第3工程)を行って、図1に示したカテーテル10と同様の形状を有するカテーテルを得た。
【0094】
<実施例2>
220℃、40分の条件の下に熱処理(最終の第3工程)を行った以外は実施例1と同様にして、カテーテルを得た。
【0095】
<実施例3>
260℃、40分の条件の下に熱処理(最終の第3工程)を行った以外は実施例1と同様にして、カテーテルを得た。
【0096】
<実施例4>
300℃、40分の条件の下に熱処理(最終の第3工程)を行った以外は実施例1と同様にして、カテーテルを得た。
【0097】
<比較例>
フッ素樹脂系の固体潤滑剤層の材料として、水中にPTFEを50重量%分散させた水系分散塗料を用い、かつ、温度を本発明の限定範囲外の380℃として熱処理(最終の第3工程)を行った以外は実施例1と同様にして、カテーテルを得た。
【0098】
<参考例1〜4>
実施例1で用いた管状シャフトと同じ形状、大きさおよび材質の管状シャフトを4本用意し、(1)管状シャフトに固体潤滑剤層の材料を塗布しなかった点、および、(2)最終の第3工程での熱処理温度を参考例1では250℃、参考例2では300℃、参考例3では345℃、参考例4では380℃とした点、をそれぞれ除いて、各管状シャフトに実施例1での処理と同じ処理を施した。
【0099】
<耐食性試験>
実施例1〜4および比較例で得られた各カテーテルならびに参考例1〜4の各管状シャフトを長手軸方向に切断して半割状のサンプルをそれぞれ得、これらのサンプルを85℃の生理食塩水に72時間浸漬した。その後、各サンプルの内周面における変色の有無および錆の有無を目視により確認して、その耐食性を評価した。
【0100】
この評価結果を、最終の第3工程での熱処理条件と共に表1に示す。また、実施例1〜4の各カテーテルから得たサンプルの耐食試験前後の状態を図7〜10にこの順番で示し、比較例のカテーテルから得たサンプルの耐食試験前後の状態を図11に示す。
【0101】
【表1】
【0102】
表1から明らかなように、また、図7〜図10と図11との対比から明らかなように、フッ素樹脂系の固体潤滑剤層を形成する際の熱処理温度を340℃以下にすることにより、ステンレス鋼製の管状シャフトの耐食性の低下を抑制することができ、その結果として、カテーテル(管状シャフト)の内周面での錆の発生を抑制することができる。
【0103】
【発明の効果】
以上説明したように、本発明によれば、ステンレス鋼製の管状シャフトの外周面にフッ素樹脂系の固体潤滑剤層を形成しても管状シャフトでの錆の発生が抑制されるので、体腔内や血管内への挿入が容易で、しかも、長期亘って安全性を高く維持することが容易なカテーテルを提供することが可能になる。
【図面の簡単な説明】
【図1】図1(A)は、第1実施形態のカテーテルを真っ直ぐにしたときの状態を示す概略図であり、図1(B)は、図1(A)に示したカテーテルをその長手軸を含む面で切ったときの断面の概略図であり、図1(C)は、図1(A)に示したカテーテルをその長手軸を法線とする面で切ったときの断面の概略図である。
【図2】図2(A)〜図2(C)は、それぞれ別個に、本発明のカテーテルに係る変形例を部分的に切欠いて示す概略図である。
【図3】図3(A)〜図3(C)は、それぞれ別個に、本発明のカテーテルに係る他の変形例を部分的に切欠いて示す概略図である。
【図4】図4(A)は、第2実施形態のカテーテルを真っ直ぐにしたときの状態を示す概略図であり、図4(B)は、図4(A)に示したカテーテルの断面を部分的に示す概略図である。
【図5】図5(A)〜図5(C)は、それぞれ別個に、本発明のカテーテルに係る他の変形例を示す概略図である。
【図6】図6(A)〜図6(C)は、それぞれ別個に、本発明のカテーテルに係る他の変形例を示す概略図である。
【図7】実施例1のカテーテルから得たサンプルの耐食試験前後の状態を示す図面代用写真である。
【図8】実施例2のカテーテルから得たサンプルの耐食試験前後の状態を示す図面代用写真である。
【図9】実施例3のカテーテルから得たサンプルの耐食試験前後の状態を示す図面代用写真である。
【図10】実施例4のカテーテルから得たサンプルの耐食試験前後の状態を示す図面代用写真である。
【図11】比較例のカテーテルから得たサンプルの耐食試験前後の状態を示す図面代用写真である。
【符号の説明】
1、1A〜1F ステンレス鋼製の管状シャフト
5、5A〜5F フッ素樹脂系の固体潤滑剤層
10、15A〜15F、18A〜18F カテーテル(ハイポチューブ)
30 ディスタールシャフト
40 バルーン
70 血管拡張用バルーンカテーテル
Claims (4)
- オーステナイト系のステンレス鋼製の管状シャフトと、
フッ素系樹脂と有機溶剤とエポキシ樹脂とを含有する有機溶剤系変性フッ素樹脂塗料であって、前記エポキシ樹脂が、前記有機溶剤系変性フッ素樹脂塗料全体を基準として、10質量%以上40質量%以下含有された有機溶剤系変性フッ素樹脂塗料によって前記管状シャフトの外周面に形成された固体潤滑剤層と、を有し、
前記固体潤滑剤層が、該固体潤滑剤層の材料を前記外周面上にコーティングした後に前記材料を200〜340℃で熱処理することによって形成されたものであるカテーテル。 - 前記管状シャフトの一端に可撓性を有するディスタールシャフトの一端が接続され、該ディスタールシャフトの他端にバルーンが接続されているバルーンカテーテルである請求項1に記載のカテーテル。
- オーステナイト系のステンレス鋼製の管状シャフトを用意する第1工程と、
前記管状シャフトの外周面に、フッ素系樹脂と有機溶剤とエポキシ樹脂とを含有する有機溶剤系変性フッ素樹脂塗料であって、前記エポキシ樹脂が、前記有機溶剤系変性フッ素樹脂塗料全体を基準として、10質量%以上40質量%以下含有された有機溶剤系変性フッ素樹脂塗料の固体潤滑剤層を形成することができる材料をコーティングする第2工程と、
前記材料を200〜340℃で熱処理して、前記管状シャフトの外周面に前記フッ素樹脂系の固体潤滑剤層を形成する第3工程と、
を含むカテーテルの製造方法。 - 更に、前記第3工程を経た管状シャフトの一端に可撓性を有するディスタールシャフトの一端を接続する第4工程と、
前記ディスタールシャフトの他端にバルーンを接続する第5工程と、
を含む請求項3に記載のカテーテルの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003092482A JP4292844B2 (ja) | 2003-03-28 | 2003-03-28 | カテーテルおよびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003092482A JP4292844B2 (ja) | 2003-03-28 | 2003-03-28 | カテーテルおよびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004298269A JP2004298269A (ja) | 2004-10-28 |
JP4292844B2 true JP4292844B2 (ja) | 2009-07-08 |
Family
ID=33405559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003092482A Expired - Fee Related JP4292844B2 (ja) | 2003-03-28 | 2003-03-28 | カテーテルおよびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4292844B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5082058B2 (ja) * | 2005-04-05 | 2012-11-28 | テルモ株式会社 | 医療用器具 |
US7914809B2 (en) * | 2005-08-26 | 2011-03-29 | Boston Scientific Scimed, Inc. | Lubricious composites for medical devices |
WO2007034639A1 (ja) * | 2005-09-26 | 2007-03-29 | Terumo Kabushiki Kaisha | ステントデリバリーカテーテル |
JP5596120B2 (ja) * | 2010-03-05 | 2014-09-24 | テルモ株式会社 | カテーテル |
CN104524645A (zh) * | 2014-12-19 | 2015-04-22 | 常熟市雷号医疗器械有限公司 | 颈动脉内膜剥脱术吸引头 |
CN110478601B (zh) | 2019-08-28 | 2022-06-07 | 赛诺神畅医疗科技有限公司 | 球囊导管 |
-
2003
- 2003-03-28 JP JP2003092482A patent/JP4292844B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004298269A (ja) | 2004-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5569200A (en) | Vascular catheter | |
US6702802B1 (en) | Catheters with improved transition | |
US20050216047A1 (en) | Catheter with expandable body and method of dilating a blood vessel with such catheter | |
EP0838230A2 (en) | Guide wire | |
US20080269641A1 (en) | Method of using a guidewire with stiffened distal section | |
JP2015524737A (ja) | ガイドエクステンションカテーテル | |
WO2021049282A1 (ja) | バルーンカテーテルの製造方法 | |
JP6031087B2 (ja) | バルーンカテーテル | |
JP4292844B2 (ja) | カテーテルおよびその製造方法 | |
JP4785567B2 (ja) | カテーテル | |
KR20210034044A (ko) | 팽창 가능한 시스를 제조하는 방법 | |
JP4656494B2 (ja) | ガイディングカテーテル | |
JP2002355313A (ja) | カテーテルチューブおよびバルーンカテーテル | |
JP4254200B2 (ja) | バルーンカテーテル及びその製造方法 | |
US20160000593A1 (en) | Delivery system for a living body indwelling member | |
JP4373456B2 (ja) | 生体内留置用ステントおよび生体器官拡張器具 | |
CN114681761A (zh) | 体腔介入导向导管及其制备方法和支架输送装置 | |
JP6955189B2 (ja) | ステントデリバリカテーテルおよびステントデリバリカテーテルの製造方法 | |
JP7461606B2 (ja) | 食道用送液カテーテル及び食道用送液カテーテル製造用中間部品 | |
JPH11244385A (ja) | 医療用バルーンカテーテルシャフト及びその製造方法 | |
WO2023157534A1 (ja) | バルーンカテーテル | |
US20240261539A1 (en) | Hypotube with progressive bending stiffness and improved tensile strength | |
JP4297916B2 (ja) | ガイドワイヤ | |
JP6864984B2 (ja) | バルーンおよびバルーンカテーテル | |
WO2023157533A1 (ja) | バルーンカテーテル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081001 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090330 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20101101 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20110301 |
|
LAPS | Cancellation because of no payment of annual fees |