JP4281050B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4281050B2
JP4281050B2 JP2003093574A JP2003093574A JP4281050B2 JP 4281050 B2 JP4281050 B2 JP 4281050B2 JP 2003093574 A JP2003093574 A JP 2003093574A JP 2003093574 A JP2003093574 A JP 2003093574A JP 4281050 B2 JP4281050 B2 JP 4281050B2
Authority
JP
Japan
Prior art keywords
solder
semiconductor element
heat
heat radiating
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003093574A
Other languages
Japanese (ja)
Other versions
JP2004303869A (en
Inventor
典久 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003093574A priority Critical patent/JP4281050B2/en
Publication of JP2004303869A publication Critical patent/JP2004303869A/en
Application granted granted Critical
Publication of JP4281050B2 publication Critical patent/JP4281050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子の両面に放熱板を装着した半導体装置に関する。
【0002】
【従来の技術】
近年、高耐圧、大電流に適した半導体チップ(半導体素子)が内蔵されたインバータパワーモジュールが、機器の小型化が図れるため多く使われている。この半導体素子として、例えば、IGBT(絶縁ゲート型バイポーラトランジスタ)等がある。これら半導体素子は、使用時の発熱を効率よく放熱することが要求される。
【0003】
【特許文献1】
特開2002−329828号公報
【0004】
【発明が解決しようとする課題】
従来技術として、特許文献1には、発熱素子の両面に放熱板を設けた提案がされている。この種の両面に放熱機能を持たせるパワーモジュールにおいては、これを冷却する冷却器への取り付けを考慮すると、両方の放熱板の平行度および間隔を一定にする必要がある。しかしながら、従来技術では、発熱素子や発熱素子と放熱板との間に配置される電極ブロックのはんだ付けのときに発生した傾きや材料の厚みのバラツキの影響により、両方の放熱板のうち電極ブロックと接合する放熱板のはんだ付け部において、はんだ量が過多となることがある。はんだ量が過多になると、余分なはんだが垂れて、発熱素子のガードリング部や信号線用のワイヤボンド部で絶縁不良を発生したり、はんだフィレット形状の異常により信頼性が低下したりする問題がある。
【0005】
本発明は、上記した点を背景になされたものであり、はんだの過多さらに垂れを抑制し信頼性の高い半導体装置およびその製造方法を提供することを課題とする。
【0006】
【課題を解決するための手段及び発明の効果】
上記課題を解決するために本発明半導体装置は、半導体素子と、この半導体素子の発熱を放熱するために半導体素子の一側面側に設けられる第1の放熱部と、この第1の放熱部と略平行に前記半導体素子の他側面側に設けられる第2の放熱部とを備えた半導体装置であって、
第1および第2の放熱部はそれぞれ半導体素子に面した側と反対側を放熱面とし、第1および第2の放熱部の少なくとも1つに、その放熱部と半導体素子とを接合するためのはんだ注入孔が放熱部を貫通して形成されており、そのはんだ注入孔は放熱面側が広く放熱面側とは反対側が小径をなして形成され放熱部のはんだ注入孔の放熱面側から供給されるはんだにより放熱面側とは反対側に前記半導体素子との接合のためのはんだ層が形成されることを特徴とする。
【0007】
上記構成により、はんだの供給は、はんだ自身の毛細管現象によりはんだが狭いところに入り込み易い性質を利用し、接合部の狭い間隔の部分にはんだが適量供給され、はんだ過多をなくす(防止ないし抑制する)ことができ、はんだの垂れによる問題を解決できる。
【0008】
また、本発明は、第2の放熱部の半導体素子に面する側に突出して導体部が一体形成され、この導体部は半導体素子の外周囲より小さい形状とし、この導体部と第2の放熱部とを貫通して接合用のはんだ注入孔が形成され、この注入孔の放熱面側から供給されるはんだにより半導体素子と導体部との接合のためのはんだ層が形成されることを特徴とする。
【0009】
上記構成により、第2の放熱部と導体部が一体形成された場合において、注入孔を通って半導体素子と導体部との間の部分に適量のはんだが供給され、はんだ過多をなくすことができ、装置の信頼性を向上できる。
【0010】
さらに、本発明は、半導体素子と、この半導体素子の発熱を放熱するために半導体素子の一側面側に設けられる第1の放熱板と、半導体素子の他側面側に設けられる導体部と、この導体部の前記半導体素子と面した側と反対側に、第1の放熱板と略平行に設けられる第2の放熱板とを備えた半導体装置であって、
第1の放熱板は半導体素子に面した側と反対側を放熱面とし、かつ第2の放熱板は導体部と面した側と反対側を放熱面とし、第1および第2の放熱板の少なくとも1つに、その放熱板と半導体素子および/または放熱板と導体部と半導体素子とを接合するためのはんだ注入孔が放熱板を貫通して形成されており、そのはんだ注入孔は放熱面側が広く放熱面側とは反対側が小径をなして形成され放熱板のはんだ注入孔の放熱面側から供給されるはんだにより放熱面側とは反対側に半導体素子との接合のためのはんだ層および/または導体部との接合のためのはんだ層が形成されることを特徴とする。
【0011】
上記構成により、導体部と第2の放熱板が別体に設けられた場合において、注入孔から供給されたはんだが、その接合部の狭い間隔の部分に適量分だけ供給され、はんだ過多をなくすことができ、はんだの垂れを可及的に防止した接合ができる。
【0012】
また、本発明は、半導体素子と、この半導体素子の発熱を放熱するために半導体素子の一側面側に設けられる第1の放熱板と、半導体素子の他側面側に設けられる導体部と、この導体部の半導体素子と面した側と反対側に、第1の放熱板と略平行に設けられる第2の放熱板とを備えた半導体装置であって、
第2の放熱板の導体部に面した側に、導体部の外周囲に対応してはんだ逃がし溝が形成され、このはんだ逃がし溝には余剰なはんだが収容されることを特徴とする。
【0013】
上記構成により、第2の放熱板と導体部の間に所定の厚さのはんだ箔を供給して、はんだ付けを行う場合に、上記はんだ逃げ用溝が設けられていることにより、はんだ量のバラツキではみ出した分は溝に逃がすことができ、はんだ量のバラツキを吸収して、はんだの垂れを可及的になくすことができる。
【0014】
さらに、具体的には、この導体部の外周囲に対応して形成したはんだ逃がし溝は、導体部の外縁がはんだ逃がし溝の幅の中間に位置するように設けており、また、この導体部四角形状の導体ブロックにて形成されるときにおけるはんだ逃がし溝は、導体ブロックの全ての辺に対応して形成されており、導体部と第2の放熱板との間にはんだが適量供給される効果に加え、はんだ過多が生じてもはんだ逃がし溝に吸収され、はんだの垂れをさらに可及的になくすことができる。
【0019】
【発明の実施の形態】
以下本発明の実施の形態につき図面に示す実施例を参照して説明する。図1は、本発明に係る半導体装置の一例を示す縦断面図である。半導体装置1は、例えば矩形状または方形状(以下矩形状と代表させる)の半導体素子(例えば、IGBT(絶縁ゲートバイポーラ型トランジスタ)素子)2と、この半導体素子2の一側面に、はんだ層3で接合された第1の放熱部としてのC面放熱板電極(IGBTのコレクタ面)4と、半導体素子2の他側面に、半導体素子2より小さい矩形状をなし、はんだ層5で接合された導体部としての導体ブロック6と、導体ブロック6の半導体素子2の接合面の反対面に、はんだ層7で接合された第2の放熱部としてのE面放熱板電極(IGBTのエミッタ面)8とを含み構成される。
【0020】
C面放熱板電極4、E面放熱板電極8および導体ブロック6は、銅、アルミニウム等の熱伝導性のよい材料で形成されている。C面放熱板電極4およびE面放熱板電極8は、矩形板状に形成され(矩形状に限らず、方形、台形その他適宜の形状でもよいが)、それぞれ外部と電気的に接続されるリード4a、8aを有している。
【0021】
半導体素子2の電極(図示せず)は、外部の信号用電極9と、金あるいはアルミニウム等のボンディングワイヤ10で接続されている。導体ブロック6は、半導体素子2とE面放熱板電極8との間の間隔を保持するスペーサの働きをして、ボンディングワイヤ10の部分の形態が保持される。
【0022】
E面放熱板電極8には、はんだ注入用の貫通したはんだ注入孔11が設けられている。はんだ注入孔11は、上部がひろく内部の径が小さい形状としている。このように本実施例では、はんだの供給は、はんだ自身の毛細管現象を利用し行うものである。その毛細管現象の利用のために半導体装置の製造にあたっては、E面放熱板電極8と導体ブロック6との望ましい間隔を設定し、これを治具等で保持する必要がある。それら両者の間隔は、例えば約100μm〜200μmが好ましい。また、はんだ注入孔11の径(小径孔部11b)は、はんだがスムーズに供給されるように考慮して設定する。孔径は、あまり小さいと、はんだの表面張力が大きすぎて注入困難となり、逆にあまり大きいと放熱性が劣化してよくないので、はんだ注入孔11の孔径は1mm以上が好ましい。また、はんだ注入孔11の注入口に相当する大径孔部11aについては、外形は円形状、矩形その他適宜の形状でよく、はんだの注入作業性を考慮して決定すればよい。注入口にあたる大径孔部11aも例えば円形状とすればその孔径は例えば2mm以上、また、大径孔部11aと小径孔部11bとの孔径の比は、1.5:1〜7:1程度とすることが上述の注入口の機能および絞りの機能を生じさせるうえで好適といえる。
【0023】
半導体装置1は、半導体素子2とC面放熱板電極4および導体ブロック6との接合、信号用電極9との結線、E面放熱板電極8との接合がされ、その後、熱硬化性樹脂等のモールド樹脂12、例えばエポキシ樹脂でモールドすることにより封止される。
【0024】
次に、図2に示す半導体装置1の製造方法について説明する。工程S1において、C面放熱板電極4の上にはんだ箔(3)を介して半導体素子2を載せ、また半導体素子2の上にはんだ箔(5)を介して導体ブロック6を載せる。加熱装置によって所定の温度ではんだ箔を溶融させ、その後硬化させ、半導体素子2とC面放熱板電極4および導体ブロック6とのはんだ付けを行う。つまり、はんだ層3で半導体素子2とC面放熱板電極4とが接合され、はんだ層5で半導体素子2と導体ブロック6とが接合される。
【0025】
次に、工程S2において、信号用電極9と半導体素子2の電極とがワイヤボンディングにより結線される。
【0026】
工程S3において、導体ブロック6の上にE面放熱板電極8を治具にて所定間隔を保持して、C面放熱板電極4と平行に配置し、還元雰囲気においてはんだ注入孔11のE面放熱板電極8の放熱面側からはんだが供給される。あわせて加熱装置により加熱される。はんだ付けの温度は、はんだ溶融温度に対して例えば30〜70°C程度高い温度で行う。はんだ付け温度は、使用するはんだの組成・種類により異なり、概略は上記の通りでよいが、特に限定されるものではない。はんだの供給は、はんだ自身の毛細管現象によるため、狭いところに入り込み易く、間隔が広い部分には供給されにくい。したがって、はんだが所望箇所以外にははみ出ないまたははみ出しにくい。還元雰囲気にて酸化還元反応をしながらはんだ付けが行われる。その後、硬化され、導体ブロック6とE面放熱板電極8とがはんだ層7で接合される。このように、はんだがはんだ注入孔11より供給され、はんだ自身の毛細管現象により、E面放熱板電極8と導体ブロック6との狭い間隔の部分に適量供給され、はんだ過多を可及的になくすことができ、はんだの垂れのないまたは少ない接合が可能となって、半導体装置の信頼性が向上する。
【0027】
なお、E面放熱板電極8の上面におけるはんだ注入孔11の部分(大径孔部11a:注入口に相当)において、はんだがはみだした場合は、放熱部の平坦性を確保するために、盛り上ったはんだ部分は平坦に除去することが望ましい。
【0028】
この後、工程S4において、半導体装置1をモールド金型(図示せず)にセットし、熱硬化性樹脂(例えばエポキシ樹脂)を注入し硬化する。半導体装置1は樹脂12で封止され、外部からの機械的および環境ストレスから半導体素子2が保護される。このとき、C面放熱板電極4の下面とE面放熱板電極8の上面は樹脂が回り込まないようにして露出面とする。半導体素子2の使用時の熱を効率よく放熱するためである。
【0029】
次に、図10は本発明の他の実施例を示す。矩形状の導体ブロック6’の下面(半導体素子2に面する側)の角部を環状に連続して面取りして面取部15を形成している。これにより、はんだ付けの工程において、半導体素子2と導体ブロック6’との間のはんだ層5’’のフィレット形状を適切な形状にすることが可能となる。
【0030】
なお、E面放熱板電極8と導体ブロック6とは一体に形成してもよい。図3にその実施例を示している。E面放熱板電極8の下面に導体部13がプレス加工等で一体形成され、E面放熱板電極8と導体部13とを貫通してはんだ注入孔11’が形成されている。このはんだ注入孔11’の上部は、大径孔部11’a(孔開口部の座ぐりとも言え、はんだ注入口に相当する)とされ、それに続いて小径孔部11’bが形成され、その下端が導体部13の下面に開口している。大径孔部11’aおよび小径孔部11’bの機能等については先の実施例と同様である。この注入孔11’の大径孔部11’aからはんだが供給され、そのはんだが小径孔部11’bを通って下方へ導かれることにより、導体部13と半導体素子2とが接合される。前述と同様にはんだの毛細管現象に基づき、適量のはんだが供給され、はんだ過多を可及的になくすことができる。
【0031】
図4は、図3の実施例の半導体装置の製造方法を示す。工程R1において、C面放熱板電極4の上にはんだ箔(3)を介して半導体素子2を載せ、加熱装置によって所定の温度ではんだ箔を溶融させ、その後硬化させて、半導体素子2とC面放熱板電極4のはんだ付けを行う。つまり、はんだ層3で半導体素子2とC面放熱板電極4とが接合される。次の工程R2は、図2に示したものと同様に、ボンディングワイヤ10で信号用電極9と半導体素子2の電極とを接続する。次に工程R3において、半導体素子2の上にE面放熱板電極8と導体部13の一体形成されたものを治具にて所定間隔を保持して、C面放熱板電極4と平行に配置する。そして還元雰囲気においてはんだ注入孔11’のE面放熱板電極8の放熱面側からはんだが供給され、併せて加熱装置により加熱される。その後、硬化され、図2における説明と同様にして、半導体素子2とE面放熱板電極8とがはんだ層5’で接合される。このように、はんだが注入孔11’から供給され、はんだ自身の毛細管現象により、E面放熱板電極8と半導体素子2との狭い間隔の部分に適量供給され、はんだ過多をなくすことができ、はんだの垂れのない接合が可能である。その後、工程R4において、樹脂でモールドされる工程に移行する。この工程は、図2に示したものと同じであり説明は省略する。
【0032】
なお、はんだ注入孔11は、E面放熱板電極8に設けた実施例を説明したが、C面放熱板電極4’に同様なはんだ注入孔11’’を形成し、C面放熱板電極4’と半導体素子2’との接合の際のはんだ供給をこのはんだ注入孔11’’で行ってもよい(図9参照)。E面放熱板電極8側は少なくとも実施し、C面放熱板電極4側は選択的に実施してもよい。前述同様の効果を奏し、はんだの垂れのない両面の放熱板の接合が可能で、半導体装置の信頼性が向上する。
【0033】
次に、図5は、本発明の他の実施例を示す。この例では、E面放熱板電極8にはんだ逃がし溝14が形成されている。導体ブロック6の半導体素子2との接合面と反対側の、導体ブロック6の外周囲に対応して形成され、このはんだ逃がし溝14は、対面する矩形状の導体ブロック6の外縁形状に対応した形状(例えば矩形状)にE面放熱板電極8に形成される。溝の大きさは、半導体装置の全体の厚みのバラツキ、およびはんだ供給量のバラツキを考慮して決定する。E面放熱板電極8と導体ブロック6の間に所定の厚さのはんだ箔(7)を供給して、はんだ付けを行う場合に、過多のはんだは、このはんだ逃がし溝14に吸収され、はんだの垂れを可及的になくすことができる。
【0034】
はんだ逃がし溝14は導体ブロック6の外縁をおおうようにE面放熱板電極8の下面(放熱板とは反対側)に開口し、その導体ブロック6の外縁が溝幅の中間にくるように位置している。また、このはんだ逃がし溝14は、図8の(a)のように導体ブロック6の外縁に沿って環状に連続して形成すること(一部に不連続があってもよい)、(b)に示すように導体ブロック6の各辺部に対応して間欠的に形成すること、(c)に示すように導体ブロック6の外縁の特にコーナー部に対応してスポット的に形成すること等適宜の形態を採用できる。また、はんだが特に垂れやすい場所がわかっていればその部分にのみはんだ逃がし溝14を形成するだけでよい。なお、はんだ逃がし溝は、文字通り溝状に形成されるものであるが、はんだを逃がす目的からすれば、溝形態でなくて凹部でもよい。つまりはんだ逃がし凹部をE面放熱板電極8等の第1の放熱板の導体部側に形成してもよい。はんだ逃がし溝ははんだ逃がし凹部の一形態ということができる。
【0035】
なお、はんだ逃がし溝14を設ける実施例は、前述のはんだ注入孔11を設ける実施例と結合して実施してもよい。図11は結合した例を示す。E面放熱板電極8には、図1で示した形状と同形状の大径孔部および小径孔部を有するはんだ注入孔11が設けられるとともに、下面(導体ブロック6に面した側)に図5で示した形状と同形状の環状のはんだ逃がし溝14が導体ブロック6の外縁に沿って設けられる。これにより、導体ブロック6とE面放熱板電極8とのはんだ付け工程において、毛細管現象によりはんだを適量供給できることに加え、はんだ過多が生じてもはんだ逃がし溝14に吸収され、はんだの垂れをさらに可及的になくすことができる。
【0036】
図6は、図5の実施例における半導体装置の製造方法を示す。工程Q1および工程Q2は、図2のS1、S2と同様であり、半導体素子2を挟んでその両側C面放熱板電極4と導体ブロック6をはんだ接合し、ボンディングワイヤ10の結線を行う。工程Q3において、導体ブロック6の上に所定の厚さのはんだ箔(7)を介してE面放熱板電極8を、導体ブロック6とはんだ逃がし溝14を位置合わせした状態で導体ブロック6に載せて治具で固定する。還元雰囲気において加熱装置によって所定の温度ではんだ箔を溶融させ、その後、硬化させ、はんだ層7によってはんだ付けを行う。この際に、過多となりはみだしたはんだは、はんだ逃がし溝14に吸収される。これにより、はんだ量のバラツキによるはんだ過多の場合のはんだの垂れを可及的になくすことができる。その後、Q4で前述と同様、樹脂でモールドされる。
【0037】
なお、以上の説明で、はんだ注入孔は図7の(a)のように段付孔の形態であったがこれ以外に、同図(b)に示すように上部にテーパ部31a(上方へ開く)が形成され、これの小径側端と連続する小径孔部31bとが結合したはんだ注入孔31、あるいは同図(c)に示すように注入側が大径開口として開口しそこから縮径小径となるように縮径して下端に開口するような全体がテーパ状のはんだ注入孔41とすることもできる。さらに、同図(d)に示すようにはんだ注入口側にテーパ角の大きいテーパ孔部51aを、またそれに続いてそれよりテーパ角の小さいテーパ孔部51bが連なるようにした複数段テーパ孔(この例では2段テーパ孔)のはんだ注入孔51としてもよい。このように要するにはんだ注入孔の注入口を大きく、それとは反対側のはんだ注出側を小さく形成することで、はんだの注入を容易にするとともにはんだの毛細管現象を有効に生じさせることができる。
【図面の簡単な説明】
【図1】本発明の半導体装置の一例を示す縦断面図。
【図2】図1に示す半導体装置の製造方法を示す説明図。
【図3】図1の他の実施例を示す縦断面図。
【図4】図3に示す半導体装置の製造方法を示す説明図。
【図5】本発明の半導体装置の他の実施例示す縦断面図。
【図6】図5に示す半導体装置の製造方法を示す説明図。
【図7】本発明に係るはんだ注入孔の他の実施例を示す断面図。
【図8】本発明に係るはんだ逃がし溝の他の実施例を示す説明図。
【図9】本発明の半導体装置の他の実施例示す説明図。
【図10】本発明の半導体装置の他の実施例示す縦断面図。
【図11】本発明の半導体装置の他の実施例示す縦断面図。
【符号の説明】
1 半導体装置
2,2’ 半導体素子
3,3’ はんだ層
4,4’ C面放熱板電極
5,5’,5’’ はんだ層
6,6’ 導体ブロック
7 はんだ層
8 E面放熱板電極
11,11’,11’’ はんだ注入孔
13 導体部
14 はんだ逃がし溝
15 面取部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor equipment fitted with heat radiating plate on both sides of the semiconductor device.
[0002]
[Prior art]
In recent years, an inverter power module having a built-in semiconductor chip (semiconductor element) suitable for high withstand voltage and large current has been widely used because the size of the device can be reduced. As this semiconductor element, for example, there is an IGBT (insulated gate bipolar transistor) or the like. These semiconductor elements are required to efficiently dissipate heat generated during use.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-329828
[Problems to be solved by the invention]
As a prior art, Patent Document 1 proposes that a heat dissipation plate is provided on both sides of a heating element. In this type of power module that has a heat radiation function on both sides, it is necessary to make the parallelism and the distance between both heat radiation plates constant in consideration of attachment to a cooler that cools the power module. However, in the prior art, due to the influence of the tilt and the thickness variation of the material generated when soldering the heating element and the electrode block disposed between the heating element and the heat sink, the electrode block of both heat sinks The amount of solder may be excessive in the soldering part of the heat sink to be joined to. If the amount of solder is excessive, excess solder will sag, resulting in insulation failure at the guard ring part of the heating element and the wire bond part for signal lines, and reliability may be reduced due to abnormal solder fillet shape. There is.
[0005]
The present invention has been made against the background described above, and it is an object of the present invention to provide a highly reliable semiconductor device and a method for manufacturing the same that can suppress excessive soldering and dripping.
[0006]
[Means for Solving the Problems and Effects of the Invention]
In order to solve the above problems, a semiconductor device of the present invention includes a semiconductor element, a first heat radiating portion provided on one side surface of the semiconductor element to dissipate heat generated by the semiconductor element, and the first heat radiating portion. A semiconductor device comprising a second heat dissipating part provided substantially parallel to the other side of the semiconductor element,
First and second heat radiation member opposite to the side facing the semiconductor element respectively and the heat radiating surface, at least one of the first and second heat radiation member, for joining its radiating portion and the semiconductor element solder injection hole is formed through the heat dissipation unit, that the solder injection hole is radiating side is wide radiating surface side opposite side is formed at an small diameter, from the radiating surface side of the solder injection hole of the heat radiating portion A solder layer for joining to the semiconductor element is formed on the side opposite to the heat dissipation surface side by the supplied solder.
[0007]
With the above configuration, the supply of solder makes use of the property that the solder tends to enter into a narrow space due to the capillary phenomenon of the solder itself, and an appropriate amount of solder is supplied to the narrow gap portion of the joint, thereby eliminating excessive solder (preventing or suppressing) ) And can solve the problem caused by dripping of solder.
[0008]
In the present invention, the conductor part is integrally formed so as to protrude to the side of the second heat radiating part facing the semiconductor element, and the conductor part has a shape smaller than the outer periphery of the semiconductor element. A solder injection hole for joining is formed through the portion, and a solder layer for joining the semiconductor element and the conductor portion is formed by the solder supplied from the heat radiation surface side of the injection hole. To do.
[0009]
With the above configuration, when the second heat radiating portion and the conductor portion are integrally formed, an appropriate amount of solder is supplied to the portion between the semiconductor element and the conductor portion through the injection hole, and excessive solder can be eliminated. The reliability of the apparatus can be improved.
[0010]
Furthermore, the present invention provides a semiconductor element, a first heat radiating plate provided on one side surface of the semiconductor element to dissipate heat generated by the semiconductor element, a conductor portion provided on the other side surface of the semiconductor element, A semiconductor device comprising a second heat radiating plate provided substantially parallel to the first heat radiating plate on a side opposite to the side facing the semiconductor element of the conductor portion,
The first heat sink to the opposite side of the side facing the semiconductor element and the heat radiating surface and the second heat sink to the opposite side of the side facing the conductor portion and the heat radiating surface, the first and second heat radiation At least one of the plates is formed with a solder injection hole penetrating the heat dissipation plate for joining the heat dissipation plate and the semiconductor element and / or the heat dissipation plate, the conductor, and the semiconductor element. The heat dissipation side is wide and the opposite side to the heat dissipation surface is formed with a small diameter, and the solder is supplied from the heat dissipation surface of the solder injection hole of the heat dissipation plate for bonding the semiconductor element on the opposite side of the heat dissipation surface A solder layer for joining with the solder layer and / or the conductor portion is formed.
[0011]
With the above configuration, when the conductor portion and the second heat radiating plate are provided separately, the solder supplied from the injection hole is supplied in an appropriate amount to the narrowly spaced portion of the joint, thereby eliminating excessive solder. Therefore, it is possible to join the solder as much as possible.
[0012]
The present invention also includes a semiconductor element, a first heat radiating plate provided on one side surface of the semiconductor element to dissipate heat generated by the semiconductor element, a conductor portion provided on the other side surface of the semiconductor element, A semiconductor device comprising a second heat radiating plate provided substantially parallel to the first heat radiating plate on the opposite side of the conductor portion facing the semiconductor element,
On the side facing the conductor portion of the second heat radiating plate are miss starve groove solder corresponding to the outer periphery of the conductor portion is formed, in the solder escape groove, characterized in that the excess solder is accommodated .
[0013]
With the above configuration, when soldering is performed by supplying a solder foil having a predetermined thickness between the second heat radiating plate and the conductor portion, the solder escape groove is provided. The portion protruding by the variation can be released into the groove, and the variation in the amount of solder can be absorbed to prevent the solder from dripping as much as possible.
[0014]
Further, specifically, the solder escape grooves formed in correspondence with the outer periphery of the conductor portion, the outer edge of the conductor portion is provided so as to be located in the middle of the width of the solder escaping groove, also, the conductor portions There is definitive solder escape starvation grooves when formed in rectangular conductor blocks are formed corresponding to all the sides of the conductor block, the conductor portion and the appropriate amount of solder between the second heat radiating plate in addition to the supplied effect, it is absorbed into the solder escape starvation groove even if solder excess, can be eliminated more as much as possible the solder dripping.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to examples shown in the drawings. FIG. 1 is a longitudinal sectional view showing an example of a semiconductor device according to the present invention. The semiconductor device 1 includes a semiconductor element (for example, an IGBT (insulated gate bipolar transistor) element) 2 having, for example, a rectangular shape or a rectangular shape (hereinafter referred to as a rectangular shape), and a solder layer 3 on one side surface of the semiconductor element 2. The C-surface heat radiation plate electrode (IGBT collector surface) 4 serving as the first heat radiation part joined in step 4 and the other side of the semiconductor element 2 have a rectangular shape smaller than the semiconductor element 2 and are joined by the solder layer 5. An E surface heat radiation plate electrode (IGBT emitter surface) 8 as a second heat radiation portion joined by a solder layer 7 to the conductor block 6 as a conductor portion and a surface opposite to the joining surface of the semiconductor element 2 of the conductor block 6. And comprising.
[0020]
The C-surface heat radiation plate electrode 4, the E-surface heat radiation plate electrode 8, and the conductor block 6 are formed of a material having good thermal conductivity such as copper or aluminum. The C-surface heat radiation plate electrode 4 and the E-surface heat radiation plate electrode 8 are formed in a rectangular plate shape (not limited to a rectangular shape, but may be a square shape, a trapezoid shape, or other appropriate shape), and each lead is electrically connected to the outside. 4a and 8a.
[0021]
An electrode (not shown) of the semiconductor element 2 is connected to an external signal electrode 9 by a bonding wire 10 such as gold or aluminum. The conductor block 6 functions as a spacer for maintaining a distance between the semiconductor element 2 and the E-plane heat radiation plate electrode 8 so that the form of the bonding wire 10 is maintained.
[0022]
The E surface heat sink electrode 8 is provided with a solder injection hole 11 through which solder is injected. The solder injection hole 11 has a shape with a wide upper portion and a small inner diameter. Thus, in this embodiment, the solder is supplied by utilizing the capillary phenomenon of the solder itself. In order to use the capillary phenomenon, in manufacturing a semiconductor device, it is necessary to set a desired distance between the E-plane heat radiation plate electrode 8 and the conductor block 6 and hold it with a jig or the like. The distance between them is preferably about 100 μm to 200 μm, for example. Further, the diameter of the solder injection hole 11 (small diameter hole portion 11b) is set in consideration so that the solder is smoothly supplied. If the hole diameter is too small, the surface tension of the solder becomes too large to be injected, and if too large, the heat dissipation may not be deteriorated. Therefore, the hole diameter of the solder injection hole 11 is preferably 1 mm or more. The outer diameter of the large-diameter hole portion 11a corresponding to the injection hole of the solder injection hole 11 may be circular, rectangular, or other appropriate shape, and may be determined in consideration of solder injection workability. If the large-diameter hole portion 11a corresponding to the injection port is also circular, for example, the hole diameter is 2 mm or more, and the ratio of the large-diameter hole portion 11a and the small-diameter hole portion 11b is 1.5: 1 to 7: 1. It can be said that it is preferable to set the degree to be about the above-described function of the inlet and the function of the throttle.
[0023]
The semiconductor device 1 is joined to the semiconductor element 2 and the C-surface heat sink electrode 4 and the conductor block 6, connected to the signal electrode 9, and joined to the E-surface heat sink electrode 8, and then a thermosetting resin or the like. It is sealed by molding with a mold resin 12 such as an epoxy resin.
[0024]
Next, a method for manufacturing the semiconductor device 1 shown in FIG. 2 will be described. In step S1, the semiconductor element 2 is placed on the C-surface heat radiation plate electrode 4 via the solder foil (3), and the conductor block 6 is placed on the semiconductor element 2 via the solder foil (5). The solder foil is melted at a predetermined temperature by a heating device and then cured, and the semiconductor element 2, the C-surface heat radiation plate electrode 4 and the conductor block 6 are soldered. That is, the semiconductor element 2 and the C-plane heat radiation plate electrode 4 are joined by the solder layer 3, and the semiconductor element 2 and the conductor block 6 are joined by the solder layer 5.
[0025]
Next, in step S2, the signal electrode 9 and the electrode of the semiconductor element 2 are connected by wire bonding.
[0026]
In step S3, the E-surface heat radiation plate electrode 8 is held on the conductor block 6 with a jig at a predetermined interval, and is arranged in parallel with the C-surface heat radiation plate electrode 4, and the E surface of the solder injection hole 11 in a reducing atmosphere. Solder is supplied from the heat dissipation surface side of the heat dissipation plate electrode 8. In addition, it is heated by a heating device. The soldering temperature is about 30 to 70 ° C. higher than the solder melting temperature. The soldering temperature varies depending on the composition and type of solder used, and the outline may be as described above, but is not particularly limited. Since the supply of the solder is due to the capillary phenomenon of the solder itself, it is easy to enter the narrow space, and it is difficult to supply it to the portion where the interval is wide. Therefore, the solder does not protrude beyond the desired location or is difficult to protrude. Soldering is performed while performing an oxidation-reduction reaction in a reducing atmosphere. Then, it hardens | cures and the conductor block 6 and the E surface heat sink electrode 8 are joined by the solder layer 7. FIG. In this way, the solder is supplied from the solder injection hole 11, and an appropriate amount is supplied to the narrow space between the E-surface heat radiation plate electrode 8 and the conductor block 6 due to the capillary phenomenon of the solder itself, thereby eliminating excessive solder as much as possible. Therefore, it is possible to perform bonding with little or no solder dripping, and the reliability of the semiconductor device is improved.
[0027]
In addition, when solder protrudes in the solder injection hole 11 portion (large diameter hole portion 11a: corresponding to the injection port) on the upper surface of the E-surface heat radiation plate electrode 8, in order to ensure the flatness of the heat dissipation portion, It is desirable to remove the raised solder portion flatly.
[0028]
Thereafter, in step S4, the semiconductor device 1 is set in a mold die (not shown), and a thermosetting resin (for example, epoxy resin) is injected and cured. The semiconductor device 1 is sealed with a resin 12, and the semiconductor element 2 is protected from external mechanical and environmental stresses. At this time, the lower surface of the C-surface heat radiation plate electrode 4 and the upper surface of the E-surface heat radiation plate electrode 8 are exposed surfaces so that the resin does not go around. This is to efficiently dissipate heat when the semiconductor element 2 is used.
[0029]
Next, FIG. 10 shows another embodiment of the present invention. A chamfered portion 15 is formed by continuously chamfering corner portions of the lower surface (side facing the semiconductor element 2) of the rectangular conductor block 6 ′ in an annular shape. Thereby, in the soldering process, the fillet shape of the solder layer 5 ″ between the semiconductor element 2 and the conductor block 6 ′ can be made an appropriate shape.
[0030]
In addition, you may form the E surface heat sink electrode 8 and the conductor block 6 integrally. FIG. 3 shows an embodiment thereof. A conductor portion 13 is integrally formed on the lower surface of the E-surface heat radiation plate electrode 8 by pressing or the like, and a solder injection hole 11 ′ is formed through the E-surface heat radiation plate electrode 8 and the conductor portion 13. The upper portion of the solder injection hole 11 ′ is a large-diameter hole portion 11′a (also referred to as a counterbore of the hole opening portion, which corresponds to a solder injection port), and subsequently, a small-diameter hole portion 11′b is formed. The lower end opens to the lower surface of the conductor portion 13. The functions and the like of the large diameter hole portion 11′a and the small diameter hole portion 11′b are the same as in the previous embodiment. Solder is supplied from the large-diameter hole portion 11′a of the injection hole 11 ′, and the solder is guided downward through the small-diameter hole portion 11′b, whereby the conductor portion 13 and the semiconductor element 2 are joined. . As described above, an appropriate amount of solder is supplied based on the capillary phenomenon of the solder, and excessive solder can be eliminated as much as possible.
[0031]
FIG. 4 shows a method for manufacturing the semiconductor device of the embodiment of FIG. In step R1, the semiconductor element 2 is placed on the C-surface heat radiating plate electrode 4 via the solder foil (3), the solder foil is melted at a predetermined temperature by a heating device, and then cured, and the semiconductor element 2 and C The surface radiator plate electrode 4 is soldered. That is, the semiconductor element 2 and the C-plane heat radiation plate electrode 4 are joined by the solder layer 3. In the next step R2, the signal electrode 9 and the electrode of the semiconductor element 2 are connected by the bonding wire 10 in the same manner as shown in FIG. Next, in step R3, the E-surface heat radiation plate electrode 8 and the conductor portion 13 integrally formed on the semiconductor element 2 are arranged in parallel with the C-surface heat radiation plate electrode 4 while maintaining a predetermined interval with a jig. To do. In a reducing atmosphere, solder is supplied from the heat radiation surface side of the E-surface heat radiation plate electrode 8 of the solder injection hole 11 ′, and is also heated by a heating device. Thereafter, it is cured, and the semiconductor element 2 and the E-surface heat radiating plate electrode 8 are joined by the solder layer 5 ′ in the same manner as described in FIG. In this way, the solder is supplied from the injection hole 11 ′, and due to the capillary phenomenon of the solder itself, an appropriate amount is supplied to the narrow space portion between the E-surface heat radiation plate electrode 8 and the semiconductor element 2, and excessive solder can be eliminated. Bonding without solder dripping is possible. Thereafter, in step R4, the process proceeds to a step of molding with resin. This step is the same as that shown in FIG.
[0032]
In addition, although the solder injection hole 11 demonstrated the Example provided in the E surface heat sink electrode 8, the same solder injection hole 11 '' was formed in C surface heat sink electrode 4 ', and the C surface heat sink electrode 4 was formed. Solder may be supplied through the solder injection hole 11 ″ when joining “and the semiconductor element 2” (see FIG. 9). The E surface heat sink electrode 8 side may be implemented at least, and the C surface heat sink electrode 4 side may be selectively implemented. The same effect as described above can be obtained, and it is possible to join the heat sinks on both sides without solder dripping, and the reliability of the semiconductor device is improved.
[0033]
Next, FIG. 5 shows another embodiment of the present invention. In this example, a solder escape groove 14 is formed in the E-surface heat radiation plate electrode 8. The solder block 14 is formed corresponding to the outer periphery of the conductor block 6 on the side opposite to the joint surface of the conductor block 6 with the semiconductor element 2, and the solder relief groove 14 corresponds to the outer edge shape of the rectangular conductor block 6 facing the conductor block 6. The E-surface heat radiation plate electrode 8 is formed in a shape (for example, a rectangular shape). The size of the groove is determined in consideration of variations in the overall thickness of the semiconductor device and variations in the amount of solder supplied. When soldering is performed by supplying a solder foil (7) having a predetermined thickness between the E-surface heat radiation plate electrode 8 and the conductor block 6, excessive solder is absorbed by the solder relief groove 14 and soldering is performed. The drooping can be eliminated as much as possible.
[0034]
The solder relief groove 14 is opened on the lower surface of the E-surface heat radiation plate electrode 8 (opposite the heat radiation plate) so as to cover the outer edge of the conductor block 6, and the outer edge of the conductor block 6 is positioned in the middle of the groove width. is doing. Further, the solder relief groove 14 is continuously formed in an annular shape along the outer edge of the conductor block 6 as shown in FIG. 8A (a part may be discontinuous), (b) As shown in FIG. 4, the conductor block 6 is intermittently formed corresponding to each side portion, and the outer edge of the conductor block 6 is formed in a spot shape corresponding to the corner portion as shown in FIG. Can be adopted. Further, if the place where the solder is particularly liable to drip is known, it is only necessary to form the solder escape groove 14 only in that portion. The solder escape groove is literally formed in a groove shape, but for the purpose of releasing the solder, it may be a recess instead of a groove shape. That is, the solder relief recess may be formed on the conductor portion side of the first heat radiation plate such as the E-surface heat radiation plate electrode 8. It can be said that the solder relief groove is a form of a solder relief recess.
[0035]
The embodiment in which the solder relief groove 14 is provided may be combined with the embodiment in which the solder injection hole 11 is provided. FIG. 11 shows a combined example. The E-surface heat radiation plate electrode 8 is provided with a solder injection hole 11 having a large-diameter hole portion and a small-diameter hole portion having the same shape as that shown in FIG. 1, and a lower surface (side facing the conductor block 6). An annular solder relief groove 14 having the same shape as that indicated by 5 is provided along the outer edge of the conductor block 6. As a result, in the soldering process between the conductor block 6 and the E-surface heat radiation plate electrode 8, in addition to being able to supply an appropriate amount of solder by capillary action, even if excessive solder occurs, it is absorbed by the solder escape groove 14 and further dripping of the solder. It can be eliminated as much as possible.
[0036]
FIG. 6 shows a method of manufacturing a semiconductor device in the embodiment of FIG. Steps Q1 and Q2 are the same as S1 and S2 of FIG. 2, and the C-side heat radiation plate electrode 4 and the conductor block 6 on both sides of the semiconductor element 2 are soldered and the bonding wires 10 are connected. In step Q3, the E-surface heat radiation plate electrode 8 is placed on the conductor block 6 with the conductor block 6 and the solder relief groove 14 aligned with each other via the solder foil (7) having a predetermined thickness on the conductor block 6. Fix with a jig. The solder foil is melted at a predetermined temperature by a heating device in a reducing atmosphere, then cured, and soldered by the solder layer 7. At this time, the excessive and protruding solder is absorbed by the solder relief groove 14. Thereby, the dripping of the solder in the case of excessive solder due to variation in the amount of solder can be eliminated as much as possible. Thereafter, in Q4, the resin is molded as described above.
[0037]
In the above description, the solder injection hole is in the form of a stepped hole as shown in FIG. 7A. In addition to this, as shown in FIG. A solder injection hole 31 in which the end of the small diameter side is connected to the continuous small diameter hole portion 31b, or the injection side opens as a large diameter opening as shown in FIG. It is also possible to make the whole into a tapered solder injection hole 41 that is reduced in diameter so as to open at the lower end. Furthermore, as shown in FIG. 6D, a taper hole 51a having a large taper angle on the solder injection port side and a taper hole 51b having a taper angle smaller than the taper hole 51a are connected to each other. In this example, a two-step tapered hole) may be used as the solder injection hole 51. In short, by forming a large solder injection hole and a small solder pouring side opposite to the solder injection hole, it is possible to facilitate the injection of solder and to effectively cause the capillary action of the solder.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a semiconductor device of the present invention.
2 is an explanatory view showing a manufacturing method of the semiconductor device shown in FIG. 1; FIG.
3 is a longitudinal sectional view showing another embodiment of FIG. 1. FIG.
4 is an explanatory view showing a manufacturing method of the semiconductor device shown in FIG. 3; FIG.
FIG. 5 is a longitudinal sectional view showing another embodiment of the semiconductor device of the present invention.
6 is an explanatory view showing a manufacturing method of the semiconductor device shown in FIG. 5;
FIG. 7 is a sectional view showing another embodiment of a solder injection hole according to the present invention.
FIG. 8 is an explanatory view showing another embodiment of a solder relief groove according to the present invention.
FIG. 9 is an explanatory view showing another embodiment of the semiconductor device of the present invention.
FIG. 10 is a longitudinal sectional view showing another embodiment of the semiconductor device of the invention.
FIG. 11 is a longitudinal sectional view showing another embodiment of the semiconductor device of the invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2, 2 'Semiconductor element 3, 3' Solder layer 4, 4 'C surface heat sink electrode 5, 5', 5 '' Solder layer 6, 6 'Conductor block 7 Solder layer 8 E surface heat sink electrode 11 , 11 ', 11''Solder injection hole 13 Conductor portion 14 Solder relief groove 15 Chamfered portion

Claims (6)

半導体素子と、この半導体素子の発熱を放熱するために半導体素子の一側面側に設けられる第1の放熱部と、この第1の放熱部と略平行に前記半導体素子の他側面側に設けられる第2の放熱部とを備えた半導体装置であって、
前記第1および第2の放熱部はそれぞれ前記半導体素子に面した側と反対側を放熱面とし、
前記第1および第2の放熱部の少なくとも1つに、その放熱部と半導体素子とを接合するためのはんだ注入孔が放熱部を貫通して形成されており、そのはんだ注入孔は放熱面側が広く放熱面側とは反対側が小径をなして形成され
前記放熱部のはんだ注入孔の放熱面側から供給されるはんだにより前記放熱面側とは反対側に前記半導体素子との接合のためのはんだ層が形成されることを特徴とする半導体装置。
A semiconductor element, a first heat radiating portion provided on one side surface of the semiconductor element to dissipate heat generated by the semiconductor element, and provided on the other side surface of the semiconductor element substantially parallel to the first heat radiating portion. A semiconductor device comprising a second heat dissipating part,
Wherein the first and second heat radiation member opposite to the side facing the respective said semiconductor element and the heat radiating surface,
At least one of the first and second heat radiating portions has a solder injection hole formed through the heat radiating portion for joining the heat radiating portion and the semiconductor element. Widely formed on the opposite side of the heat dissipation surface with a small diameter ,
The solder is supplied from the heat radiating surface side of the solder injection hole of the heat radiating portion, and wherein a solder layer for bonding between the semiconductor element being formed on the side opposite from the heat radiation surface side.
前記第2の放熱部の前記半導体素子に面する側に突出して導体部が一体形成され、この導体部は前記半導体素子の外周囲より小さい形状とし、この導体部と前記第2の放熱部とを貫通して接合用のはんだ注入孔が形成され、この注入孔の放熱面側から供給されるはんだにより前記半導体素子と前記導体部との接合のためのはんだ層が形成されることを特徴とする請求項1記載の半導体装置。  A conductor portion is formed integrally with the second heat radiating portion so as to protrude to the side facing the semiconductor element, the conductor portion having a shape smaller than the outer periphery of the semiconductor element, and the conductor portion and the second heat radiating portion; A solder injection hole for joining is formed, and a solder layer for joining the semiconductor element and the conductor portion is formed by the solder supplied from the heat radiation surface side of the injection hole. The semiconductor device according to claim 1. 半導体素子と、この半導体素子の発熱を放熱するために半導体素子の一側面側に設けられる第1の放熱板と、前記半導体素子の他側面側に設けられる導体部と、この導体部の前記半導体素子と面した側と反対側に、前記第1の放熱板と略平行に設けられる第2の放熱板とを備えた半導体装置であって、
前記第1の放熱板は前記半導体素子に面した側と反対側を放熱面とし、かつ第2の放熱板は前記導体部と面した側と反対側を放熱面とし、
前記第1および第2の放熱板の少なくとも1つに、その放熱板と半導体素子および/または放熱板と導体部と半導体素子とを接合するためのはんだ注入孔が放熱板を貫通して形成されており、そのはんだ注入孔は放熱面側が広く放熱面側とは反対側が小径をなして形成され
前記放熱板のはんだ注入孔の放熱面側から供給されるはんだにより前記放熱面側とは反対側に前記半導体素子との接合のためのはんだ層および/または導体部との接合のためのはんだ層が形成されることを特徴とする半導体装置。
A semiconductor element; a first heat dissipating plate provided on one side of the semiconductor element to dissipate heat generated by the semiconductor element; a conductor provided on the other side of the semiconductor element; and the semiconductor of the conductor A semiconductor device comprising a second heat radiating plate provided substantially parallel to the first heat radiating plate on the side opposite to the side facing the element,
Said first heat radiating plate and the heat radiating surface opposite the side facing the semiconductor element, and the second heat radiating plate and the heat radiating surface opposite the side facing said conductor portion,
At least one of the first and second heat sinks is formed with a solder injection hole penetrating the heat sink for joining the heat sink and the semiconductor element and / or the heat sink, the conductor, and the semiconductor element. The solder injection hole is formed with a large diameter on the heat dissipation surface side and a small diameter on the opposite side to the heat dissipation surface side .
The solder is supplied from the heat radiating surface side of the solder injection hole of the heat radiating plate, solder for bonding the solder layer and / or the conductor portion for bonding with the semiconductor element on the side opposite to the heat radiation surface side A semiconductor device, wherein a layer is formed.
半導体素子と、この半導体素子の発熱を放熱するために半導体素子の一側面側に設けられる第1の放熱板と、前記半導体素子の他側面側に設けられる導体部と、この導体部の前記半導体素子と面した側と反対側に、前記第1の放熱板と略平行に設けられる第2の放熱板とを備えた半導体装置であって、
前記第2の放熱板の前記導体部に面した側に、導体部の外周囲に対応してはんだ逃がし溝が形成され、このはんだ逃がし溝には余剰なはんだが収容されることを特徴とする半導体装置。
A semiconductor element; a first heat dissipating plate provided on one side of the semiconductor element to dissipate heat generated by the semiconductor element; a conductor provided on the other side of the semiconductor element; and the semiconductor of the conductor A semiconductor device comprising a second heat radiating plate provided substantially parallel to the first heat radiating plate on the side opposite to the side facing the element,
Characterized on the side facing the conductor part of the second radiating plate, escape starvation groove solder corresponding to the outer periphery of the conductor portion is formed, that the excess solder is accommodated in the solder escape groove A semiconductor device.
前記導体部の外周囲に対応して形成したはんだ逃がし溝は、前記導体部の外縁がはんだ逃がし溝の幅の中間に位置していることを特徴とする請求項4に記載の半導体装置。  5. The semiconductor device according to claim 4, wherein an outer edge of the conductor portion is located in the middle of the width of the solder escape groove. 前記導体部は四角形状の導体ブロックにて形成し、前記はんだ逃がし溝は、導体ブロックの全ての辺に対応して形成されていることを特徴とする請求項4又は請求項5に記載の半導体装置。  6. The semiconductor according to claim 4, wherein the conductor portion is formed by a rectangular conductor block, and the solder relief groove is formed corresponding to all sides of the conductor block. apparatus.
JP2003093574A 2003-03-31 2003-03-31 Semiconductor device Expired - Lifetime JP4281050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093574A JP4281050B2 (en) 2003-03-31 2003-03-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093574A JP4281050B2 (en) 2003-03-31 2003-03-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2004303869A JP2004303869A (en) 2004-10-28
JP4281050B2 true JP4281050B2 (en) 2009-06-17

Family

ID=33406326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093574A Expired - Lifetime JP4281050B2 (en) 2003-03-31 2003-03-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4281050B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724229B (en) * 2008-10-16 2012-09-05 上海红京印实业有限公司 Ultrahigh heat-resistant polyester alloy for vehicle lamp and preparation method thereof
CN103069935A (en) * 2010-07-26 2013-04-24 日立汽车系统株式会社 Power semiconductor unit, power module, production method for power semiconductor unit and production method for power module

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899678B2 (en) * 2005-07-27 2012-03-21 ブラザー工業株式会社 Liquid transfer device, actuator unit, and method of manufacturing liquid transfer device
JP4702196B2 (en) * 2005-09-12 2011-06-15 株式会社デンソー Semiconductor device
JP2011023748A (en) * 2005-12-07 2011-02-03 Mitsubishi Electric Corp Electronic apparatus
JP2007184525A (en) * 2005-12-07 2007-07-19 Mitsubishi Electric Corp Electronic apparatus
JP2007317850A (en) * 2006-05-25 2007-12-06 Matsushita Electric Works Ltd Semiconductor switch
JP4765918B2 (en) * 2006-12-06 2011-09-07 株式会社デンソー Manufacturing method of semiconductor device
JP4640345B2 (en) * 2007-01-25 2011-03-02 三菱電機株式会社 Power semiconductor device
JP5217014B2 (en) * 2008-01-15 2013-06-19 日産自動車株式会社 Power conversion device and manufacturing method thereof
JP4968195B2 (en) * 2008-06-24 2012-07-04 株式会社デンソー Manufacturing method of electronic device
JP2010092918A (en) * 2008-10-03 2010-04-22 Toyota Industries Corp Connection structure and connection method between plate type electrode and block type electrode
JP2011086743A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Power semiconductor device and method for manufacturing the power semiconductor device
WO2011092859A1 (en) 2010-02-01 2011-08-04 トヨタ自動車株式会社 Method for manufacturing semiconductor device and semiconductor device
JP2012089563A (en) * 2010-10-15 2012-05-10 Sanken Electric Co Ltd Semiconductor module
JP2013021254A (en) * 2011-07-14 2013-01-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
JP5817589B2 (en) * 2012-02-28 2015-11-18 株式会社豊田自動織機 Semiconductor device and manufacturing method thereof
JP5796520B2 (en) * 2012-03-16 2015-10-21 株式会社豊田自動織機 Semiconductor device
JP6444537B2 (en) * 2015-12-16 2018-12-26 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2018101664A (en) * 2016-12-19 2018-06-28 トヨタ自動車株式会社 Semiconductor device manufacturing method
EP3399546A1 (en) * 2017-05-02 2018-11-07 Siemens Aktiengesellschaft Electronic assembly having a built-in component between two substrates and method for the production of same
CN111373517B (en) * 2018-03-01 2024-03-19 新电元工业株式会社 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
DE102018207537A1 (en) * 2018-05-15 2019-11-21 Robert Bosch Gmbh Composite arrangement of three stacked joining partners
JP7341345B2 (en) 2020-06-30 2023-09-08 三菱電機株式会社 Terminal member, assembly, semiconductor device, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724229B (en) * 2008-10-16 2012-09-05 上海红京印实业有限公司 Ultrahigh heat-resistant polyester alloy for vehicle lamp and preparation method thereof
CN103069935A (en) * 2010-07-26 2013-04-24 日立汽车系统株式会社 Power semiconductor unit, power module, production method for power semiconductor unit and production method for power module
CN103069935B (en) * 2010-07-26 2015-07-22 日立汽车系统株式会社 Power semiconductor unit, power module, production method for power semiconductor unit and production method for power module

Also Published As

Publication number Publication date
JP2004303869A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4281050B2 (en) Semiconductor device
JP4438489B2 (en) Semiconductor device
JP5061717B2 (en) Semiconductor module and method for manufacturing semiconductor module
JP5279632B2 (en) Semiconductor module
JP5046378B2 (en) Power semiconductor module and power semiconductor device equipped with the module
JP5306171B2 (en) Semiconductor device
JP6288254B2 (en) Semiconductor module and manufacturing method thereof
JP2005244166A (en) Semiconductor device
CN109314063B (en) Power semiconductor device
JP2009105267A (en) Semiconductor apparatus, and method of manufacturing the same
JP2002314038A (en) Power semiconductor module
JP2018133598A (en) Semiconductor device and manufacturing method of the same
US11552065B2 (en) Semiconductor device
JP2005116963A (en) Semiconductor device
JP7413668B2 (en) Semiconductor device and its manufacturing method
JP2005116875A (en) Semiconductor device
JP4258391B2 (en) Semiconductor device
JP2014146644A (en) Semiconductor device and manufacturing method of the same
KR102410257B1 (en) Double side cooling power semiconductor discrete package
WO2022208870A1 (en) Semiconductor device and semiconductor device production method
WO2024070884A1 (en) Semiconductor module
CN112997308B (en) Semiconductor device and method for manufacturing semiconductor device
WO2021117145A1 (en) Semiconductor package
JP2008027935A (en) Power semiconductor device
JP2011198804A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Ref document number: 4281050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250