JP2011198804A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2011198804A
JP2011198804A JP2010060762A JP2010060762A JP2011198804A JP 2011198804 A JP2011198804 A JP 2011198804A JP 2010060762 A JP2010060762 A JP 2010060762A JP 2010060762 A JP2010060762 A JP 2010060762A JP 2011198804 A JP2011198804 A JP 2011198804A
Authority
JP
Japan
Prior art keywords
semiconductor element
semiconductor device
electrode member
members
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010060762A
Other languages
Japanese (ja)
Inventor
Daigo Ueno
大悟 上野
Akihiro Shibuya
彰弘 渋谷
Shigenobu Matsuzaki
重伸 松崎
Fumiyuki Komiyama
文行 小見山
Minoru Sato
稔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010060762A priority Critical patent/JP2011198804A/en
Publication of JP2011198804A publication Critical patent/JP2011198804A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device that reduces the possibility that a semiconductor element gets out of order.SOLUTION: The semiconductor device includes: the semiconductor element 10; a first electrode member 21 laminated on the semiconductor element 10; a second electrode member 22 laminated on the opposite side of the first electrode member 21 across the semiconductor element 10; first solder 31 for joining the semiconductor element 10 and first electrode member 21 together; and second solder 32 for joining the semiconductor element 10 and second electrode member 22 together. The second electrode member 22 has a plurality of insulating columns 22a to 22d extending in the laminating direction of the semiconductor element 10 and electrode members 21 and 22. Further, the plurality of insulating columns 22a to 22d are positioned in a region B different from an arrangement region A of the semiconductor element 10, and arranged at irregular intervals (a) and (b) in a rotating direction of the semiconductor element 10 in a region C which comes into contact with the semiconductor element 10 when the semiconductor element 10 rotates.

Description

本発明は、半導体装置に関する。   The present invention relates to a semiconductor device.

従来、半導体素子を2つの放熱部材で挟み、半導体素子と各放熱部材との間を半田等の接合部材により接合して一体化した半導体装置が提案されている。この半導体装置では、当該半導体装置の上下に配置される治具を用いて、放熱部材間の距離を制御する。詳細に説明すると、治具は、突起が半導体素子と各放熱部材との積層方向に沿って伸び、各放熱部材は治具の突起が貫通する貫通孔を有する。また、半導体素子の上方に配置された治具の突起は、半導体素子の上方に配される放熱部材の貫通孔を貫通して、半導体素子の下方に配される放熱部材に当接する。同様に、半導体素子の下方に配置された治具の突起は、半導体素子の下方に配される放熱部材の貫通孔を貫通して、半導体素子の上方に配される放熱部材に当接する。このような当接により、放熱部材間の距離(半導体装置の高さ)が制御される。よって、各放熱部材の寸法公差の影響を受けることなく、寸法公差を考慮して半田等の接合部材を厚くする必要が無くなり、接合部材の厚さは低減されることとなる。なお、治具はその使用後に不要となり、貫通孔から引き抜かれるようにして取り外されることとなる(特許文献1参照)。   2. Description of the Related Art Conventionally, there has been proposed a semiconductor device in which a semiconductor element is sandwiched between two heat radiating members and the semiconductor element and each heat radiating member are joined together by a joining member such as solder. In this semiconductor device, the distance between the heat dissipating members is controlled using jigs arranged above and below the semiconductor device. More specifically, the jig has a protrusion extending along the stacking direction of the semiconductor element and each heat radiating member, and each heat radiating member has a through hole through which the protrusion of the jig passes. Further, the protrusion of the jig disposed above the semiconductor element passes through the through hole of the heat radiating member disposed above the semiconductor element and comes into contact with the heat radiating member disposed below the semiconductor element. Similarly, the protrusion of the jig disposed below the semiconductor element passes through the through hole of the heat radiating member disposed below the semiconductor element and contacts the heat radiating member disposed above the semiconductor element. By such contact, the distance between the heat dissipating members (the height of the semiconductor device) is controlled. Therefore, it is not necessary to increase the thickness of the joining member such as solder in consideration of the dimensional tolerance without being affected by the dimensional tolerance of each heat radiating member, and the thickness of the joining member is reduced. The jig becomes unnecessary after use and is removed so as to be pulled out from the through hole (see Patent Document 1).

特許第3620399号公報Japanese Patent No. 3620399

ここで、特許文献1に記載の半導体装置の製造工程には半導体素子と2つの放熱部材とを接合するために半田を溶融させる工程がある。この工程において、半田が溶融することから、半導体素子の横方向(具体的に回転方向)に半導体素子がズレてしまうことがある。このため、半導体装置の完成後に治具を貫通孔から引き抜く段階で、治具の突起と横方向にズレた半導体素子とが接触して、半導体素子の故障を招いてしまう可能性があった。   Here, the manufacturing process of the semiconductor device described in Patent Document 1 includes a process of melting solder in order to join the semiconductor element and the two heat dissipating members. In this step, since the solder is melted, the semiconductor element may be displaced in the lateral direction (specifically, the rotation direction) of the semiconductor element. For this reason, when the jig is pulled out from the through hole after the semiconductor device is completed, there is a possibility that the protrusion of the jig and the semiconductor element displaced in the lateral direction come into contact with each other, leading to a failure of the semiconductor element.

本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、半導体素子の故障の可能性を低減することが可能な半導体装置を提供することにある。   The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a semiconductor device capable of reducing the possibility of failure of a semiconductor element.

本発明の半導体装置は、半導体素子と、半導体素子に積層される第1通電部材と、半導体素子を挟んで第1通電部材の反対側に積層される第2通電部材と、半導体素子と第1通電部材とを接合する第1接合部材と、半導体素子と第2通電部材とを接合する第2接合部材とを備えている。第1及び通電部材の少なくとも一方は、半導体素子と第1及び第2通電部材との積層方向に伸びる絶縁性の複数の支柱を有している。複数の支柱は、第1及び第2通電部材の間に配置される半導体素子の配置領域と異なる領域に位置し、且つ、半導体素子が回転した場合に半導体素子に接触する領域において回転方向に不均一な間隔でそれぞれが配置されていることを特徴とする。   The semiconductor device of the present invention includes a semiconductor element, a first energization member laminated on the semiconductor element, a second energization member laminated on the opposite side of the first energization member across the semiconductor element, the semiconductor element, and the first A first joining member that joins the energizing member; and a second joining member that joins the semiconductor element and the second energizing member. At least one of the first and current-carrying members has a plurality of insulating columns extending in the stacking direction of the semiconductor element and the first and second current-carrying members. The plurality of support columns are located in a region different from the region where the semiconductor element is disposed between the first and second current-carrying members, and are not rotated in the rotation direction in the region that contacts the semiconductor element when the semiconductor element rotates. Each of them is arranged at a uniform interval.

本発明によれば、第1及び第2通電部材の少なくとも一方は、半導体素子と第1及び第2通電部材との積層方向に伸びる複数の支柱を有しているため、支柱によって半導体装置
の高さが制御される。さらに、複数の支柱は、半導体素子が回転した場合に前記半導体素子に接触する領域において回転方向に不均一な間隔でそれぞれが配置されているため、半導体素子が時計回り及び反時計回りのいずれの方向に回転しようとしても、支柱が不均一に配置されることから、半導体素子は支柱に当接し易く、回転方向のズレが規制される。加えて、支柱は冶具のように後工程において引き抜く必要がないことから、高さの制御や回転方向のズレを規制しつつも、冶具の引き抜きによる半導体素子の故障を抑制することができる。従って、半導体素子の故障の可能性を低減することができる。
According to the present invention, at least one of the first and second current-carrying members has a plurality of columns extending in the stacking direction of the semiconductor element and the first and second current-carrying members. Is controlled. Further, since the plurality of pillars are respectively arranged at non-uniform intervals in the rotation direction in the region in contact with the semiconductor element when the semiconductor element rotates, the semiconductor element is either clockwise or counterclockwise. Even if an attempt is made to rotate in the direction, since the support pillars are unevenly arranged, the semiconductor element easily comes into contact with the support pillars, and displacement in the rotational direction is restricted. In addition, since the post does not need to be pulled out in a subsequent process unlike the jig, it is possible to suppress a failure of the semiconductor element due to the pulling out of the jig while controlling the height control and the displacement in the rotation direction. Therefore, the possibility of failure of the semiconductor element can be reduced.

本実施形態に係る半導体装置を示す構成図である。It is a block diagram which shows the semiconductor device which concerns on this embodiment. 図1に示した半導体装置の上面図である。FIG. 2 is a top view of the semiconductor device shown in FIG. 1. 本実施形態に係る半導体装置の製造方法を示す第1側面図である。It is a 1st side view showing the manufacturing method of the semiconductor device concerning this embodiment. 本実施形態に係る半導体装置の製造方法を示す第2側面図である。It is a 2nd side view which shows the manufacturing method of the semiconductor device which concerns on this embodiment. 図1に示した半導体装置の変形例を示す上面図である。FIG. 10 is a top view illustrating a modification of the semiconductor device illustrated in FIG. 1. 図1に示した半導体装置の使用時における状態を示す側面図である。It is a side view which shows the state at the time of use of the semiconductor device shown in FIG. 第2実施形態に係る半導体装置を示す構成図である。It is a block diagram which shows the semiconductor device which concerns on 2nd Embodiment. 第3実施形態に係る半導体装3を示す構成図である。It is a block diagram which shows the semiconductor device 3 which concerns on 3rd Embodiment. 図8に示した半導体装置の上面図である。FIG. 9 is a top view of the semiconductor device illustrated in FIG. 8.

以下、本発明の好適な実施形態を図面に基づいて説明する。図1は、本実施形態に係る半導体装置1を示す構成図である。なお、図1は後述する図2のI−I断面図でもある。図1に示すように、半導体装置1は、半導体素子10、第1電極部材(第1通電部材)21、第2電極部材(第2通電部材)22、第1半田(第1接合部材)31、及び第2半田(第2接合部材)32、モールド樹脂40を備えている。この半導体装置1は、半導体素子10、第1電極部材21、第2電極部材22、第1半田31、及び第2半田32が、モールド樹脂40によってモールドされた構成となっている。次に、各部について説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a semiconductor device 1 according to the present embodiment. 1 is also a cross-sectional view taken along the line II of FIG. 2 described later. As shown in FIG. 1, the semiconductor device 1 includes a semiconductor element 10, a first electrode member (first energizing member) 21, a second electrode member (second energizing member) 22, and a first solder (first joining member) 31. , And a second solder (second bonding member) 32 and a mold resin 40. The semiconductor device 1 has a configuration in which a semiconductor element 10, a first electrode member 21, a second electrode member 22, a first solder 31, and a second solder 32 are molded with a mold resin 40. Next, each part will be described.

半導体素子10は、電極部材21,22を通じで電流が供給されることにより駆動するIGBT(Insulated Gate Bipolar Transistor)やダイオード等のパワー半導体素子で
ある。第1電極部材21は半導体素子10に積層される通電部材である。第2電極部材22は半導体素子10を挟んで第1電極部材21の反対側に積層される通電部材である。これら電極部材21,22は、電気伝導性及び熱伝導性が良好な材料からなり、例えば銅やアルミニウム、又はこれらの合金により構成される。また、電極部材21,22は、それぞれ半導体装置1外部の配線部材に電気的に接続され、電力変換装置として機能する。
The semiconductor element 10 is a power semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) or a diode that is driven by a current supplied through the electrode members 21 and 22. The first electrode member 21 is an energization member laminated on the semiconductor element 10. The second electrode member 22 is a current-carrying member that is stacked on the opposite side of the first electrode member 21 with the semiconductor element 10 interposed therebetween. These electrode members 21 and 22 are made of a material having good electrical conductivity and thermal conductivity, and are made of, for example, copper, aluminum, or an alloy thereof. The electrode members 21 and 22 are electrically connected to wiring members outside the semiconductor device 1 and function as power conversion devices.

第1半田31は、半導体素子10の一方側の主面と第1電極部材21とを接合するための接合部材である。同様に第2半田32は、半導体素子10の他方側の主面と第2電極部材22とを接合するための接合部材である。具体的に第1半田31及び第2半田32は、シート半田であるが、半田ペーストであってもよい。なお、半導体素子10がIGBTである場合、第1半田31に接続される主面がエミッタ電極となり、第2半田32に接続される主面がコレクタ電極となる。   The first solder 31 is a bonding member for bonding the main surface on one side of the semiconductor element 10 and the first electrode member 21. Similarly, the second solder 32 is a bonding member for bonding the other main surface of the semiconductor element 10 and the second electrode member 22. Specifically, the first solder 31 and the second solder 32 are sheet solders, but may be solder pastes. When the semiconductor element 10 is an IGBT, the main surface connected to the first solder 31 is an emitter electrode, and the main surface connected to the second solder 32 is a collector electrode.

さらに、本実施形態に係る半導体装置1において、第2電極部材22は複数の支柱22a〜22dを有している。図2は、図1に示した半導体装置1の上面図である。なお、図2においては説明の便宜上、第1電極部材21及びモールド樹脂40の図示を省略している。   Furthermore, in the semiconductor device 1 according to the present embodiment, the second electrode member 22 has a plurality of support posts 22a to 22d. FIG. 2 is a top view of the semiconductor device 1 shown in FIG. 2, illustration of the 1st electrode member 21 and the mold resin 40 is abbreviate | omitted for convenience of explanation.

図1に示すように、複数の支柱22a〜22dは、半導体素子10と電極部材21,2
2との積層方向に伸びる絶縁性(例えばPPS(Polyphenylenesulfide)等の樹脂)の円柱部材である。これら支柱22a〜22dは、弾性率(トランスファーモールド時の温度における弾性率)が半導体素子10、第1及び第2電極部材21,22、並びに、第1及び第2半田31,32よりも大きい部材により構成されている。また、これら支柱22a〜22dは、金属−樹脂接合技術等により第2電極部材22の板部22eと一体的に形成されている。
As shown in FIG. 1, the plurality of pillars 22 a to 22 d are formed of the semiconductor element 10 and the electrode members 21 and 2.
2 is a cylindrical member having an insulating property (for example, a resin such as PPS (Polyphenylenesulfide)) extending in the stacking direction. These struts 22a to 22d are members whose elastic modulus (elastic modulus at the temperature during transfer molding) is larger than that of the semiconductor element 10, the first and second electrode members 21 and 22, and the first and second solders 31 and 32. It is comprised by. Moreover, these support | pillars 22a-22d are integrally formed with the board part 22e of the 2nd electrode member 22 by the metal-resin joining technique etc. FIG.

複数の支柱22a〜22dは、図2に示すように、半導体素子10の配置領域Aとは異なる領域B(平面視して第2電極部材22上における領域)に位置している。さらに、本実施形態において支柱22a〜22dは、半導体素子10が回転した場合に半導体素子10に接触する領域Cに配置されている。ここで、「接触する領域Cに配置されている」とは、支柱22a〜22dの全体が領域Cに配置されている場合のみならず、一部が領域Cに配置されていることも含む概念である。半導体素子10が回転した場合とは、当該半導体素子10の中心Oを基準に回転した場合をいう。   As shown in FIG. 2, the plurality of pillars 22 a to 22 d are located in a region B (region on the second electrode member 22 in plan view) different from the arrangement region A of the semiconductor element 10. Furthermore, in this embodiment, the support columns 22a to 22d are disposed in a region C that contacts the semiconductor element 10 when the semiconductor element 10 rotates. Here, “arranged in the area C in contact with” not only includes the case where the entire columns 22 a to 22 d are disposed in the area C, but also includes that part of the columns 22 a to 22 d is disposed in the area C. It is. The case where the semiconductor element 10 is rotated refers to the case where the semiconductor element 10 is rotated with reference to the center O of the semiconductor element 10.

加えて、複数の支柱22a〜22dは、半導体素子10の回転方向に不均一な間隔で配置されている。具体的に説明すると、第1支柱22aと第2支柱22bとの回転方向の間隔aは、第1支柱22aと第4支柱22dとの回転方向の間隔bと異なっている。同様に、第3支柱22cと第4支柱22dとの回転方向の間隔aは、第3支柱22cと第2支柱22bとの回転方向の間隔bと異なっている。なお、本実施形態では、第1支柱22aと第2支柱22bとの回転方向の間隔aが、第3支柱22cと第4支柱22dとの回転方向の間隔aと同じになっているが、これら間隔は異なっていてもよい。同様に、第1支柱22aと第4支柱22dとの回転方向の間隔bが、第3支柱22cと第2支柱22bとの回転方向の間隔bと同じになっているが、これら間隔は異なっていてもよい。すなわち、本実施形態に係る複数の支柱22a〜22dは、各間隔がすべて同じでなく、一部でも異なっていればよく、「不均一」とは各間隔のうち少なくとも一部が異なっていることを意味する概念である。   In addition, the plurality of support columns 22 a to 22 d are arranged at non-uniform intervals in the rotation direction of the semiconductor element 10. If it demonstrates concretely, the space | interval a of the rotation direction of the 1st support | pillar 22a and the 2nd support | pillar 22b will differ from the space | interval b of the rotation direction of the 1st support | pillar 22a and the 4th support | pillar 22d. Similarly, the interval a in the rotation direction between the third column 22c and the fourth column 22d is different from the interval b in the rotation direction between the third column 22c and the second column 22b. In this embodiment, the interval a in the rotation direction between the first column 22a and the second column 22b is the same as the interval a in the rotation direction between the third column 22c and the fourth column 22d. The spacing may be different. Similarly, the interval b in the rotation direction between the first column 22a and the fourth column 22d is the same as the interval b in the rotation direction between the third column 22c and the second column 22b, but these intervals are different. May be. That is, the plurality of support columns 22a to 22d according to the present embodiment need not be the same in each interval but may be different in some portions, and “non-uniform” means that at least some of the intervals are different. It is a concept that means

なお、複数の支柱22a〜22dは、半導体素子10が平面視して四角形状となっている場合、1辺毎に少なくとも1つ存在することが好ましい。これにより、複数の支柱22a〜22dは半導体素子10を囲むように位置することとなり、半導体素子10を第2半田32上に載置する際に、特別な治具なしに位置決めを行うことができるからである。   Note that it is preferable that at least one of the plurality of support columns 22a to 22d exists for each side when the semiconductor element 10 has a quadrangular shape in plan view. As a result, the plurality of pillars 22a to 22d are positioned so as to surround the semiconductor element 10, and when the semiconductor element 10 is placed on the second solder 32, positioning can be performed without a special jig. Because.

図3は、本実施形態に係る半導体装置1の製造方法を示す第1側面図であり、図4は、本実施形態に係る半導体装置1の製造方法を示す第2側面図である。   FIG. 3 is a first side view showing the method for manufacturing the semiconductor device 1 according to the present embodiment, and FIG. 4 is a second side view showing the method for manufacturing the semiconductor device 1 according to the present embodiment.

図3に示すように、半導体装置1の製造にあたっては、まず、第2電極部材22上に第2半田32が載置され、第2半田32上に半導体素子10及び第1半田31がこの順で載置される。また、これらの部品10,31,32を第2電極部材22上に載置する際には、複数の支柱22a〜22dが位置決めの役割を果たすこととなり、半導体素子10の横方向の位置決めが容易化される。   As shown in FIG. 3, in manufacturing the semiconductor device 1, first, the second solder 32 is placed on the second electrode member 22, and the semiconductor element 10 and the first solder 31 are placed in this order on the second solder 32. It is mounted with. Further, when these components 10, 31, and 32 are placed on the second electrode member 22, the plurality of columns 22 a to 22 d play a role of positioning, and the semiconductor element 10 can be easily positioned in the lateral direction. It becomes.

次いで、第1電極部材21が第1半田31上に載置され積層される。そして、第1電極部材21が載置された状態で、これらの複合体が半田付け炉に投入される。これにより、半田31,32が溶融及び凝固して半田付けが行われる。この際、第1電極部材21上に重りが載せられることにより、第1電極部材21は複数の支柱22a〜22dに押し付けられることとなり、半導体装置1の高さが決定されることとなる。   Next, the first electrode member 21 is placed on the first solder 31 and laminated. Then, with the first electrode member 21 placed, these composites are put into a soldering furnace. As a result, the solders 31 and 32 are melted and solidified to be soldered. At this time, by placing a weight on the first electrode member 21, the first electrode member 21 is pressed against the plurality of support columns 22a to 22d, and the height of the semiconductor device 1 is determined.

その後、図4に示すように、トランスファーモールド工程において樹脂封止が行われる。トランスファーモールド工程においては、まず半導体装置1が第2モールド金型52内
に載置される。次いで、上方から第1モールド金型51がスライドして下方に降ろされ、両金型51,52が合致する。両金型51,52が合致した後、開口部53からエポキシ樹脂等の熱硬化性のモールド樹脂40が高圧状態で注入される。これにより、上記複合体がモールドされ、半導体装置1が完成することとなる。
Thereafter, as shown in FIG. 4, resin sealing is performed in a transfer molding process. In the transfer molding process, first, the semiconductor device 1 is placed in the second mold die 52. Next, the first mold 51 is slid from below and lowered downward, so that both molds 51 and 52 match. After the molds 51 and 52 are matched, a thermosetting mold resin 40 such as an epoxy resin is injected from the opening 53 in a high pressure state. Thereby, the composite is molded, and the semiconductor device 1 is completed.

なお、第1モールド金型51には上方から型締め力F1が加えられ、第2モールド金型52には下方から型締め力F2が加えられる。ここで、本実施形態においてはトランスファーモールド時の温度における支柱22a〜22dの弾性率が、半導体素子10、第1及び第2電極部材21,22、並びに、第1及び第2半田31,32よりも大きい。このため、型締め力F1,F2を大きくしても、半導体素子10の損傷し難くできる。また、モールド金型51,52の接触面圧を上げてモールド樹脂40の漏れも抑制することができる。   A clamping force F1 is applied to the first mold 51 from above, and a clamping force F2 is applied to the second mold 52 from below. Here, in this embodiment, the elastic modulus of the pillars 22a to 22d at the temperature at the time of transfer molding is determined by the semiconductor element 10, the first and second electrode members 21 and 22, and the first and second solders 31 and 32. Is also big. For this reason, even if the mold clamping forces F1 and F2 are increased, the semiconductor element 10 can be hardly damaged. Moreover, the contact surface pressure of the mold dies 51 and 52 can be increased to suppress leakage of the mold resin 40.

次に、本実施形態に係る半導体装置1の変形例を説明する。図5は、図1に示した半導体装置1の変形例を示す上面図である。なお、図5においては説明の便宜上、第1電極部材21及びモールド樹脂40の図示を省略している。   Next, a modification of the semiconductor device 1 according to this embodiment will be described. FIG. 5 is a top view showing a modification of the semiconductor device 1 shown in FIG. In FIG. 5, illustration of the first electrode member 21 and the mold resin 40 is omitted for convenience of explanation.

図5に示すように、変形例に係る半導体装置2は四角柱からなる支柱22f〜22iを備えている。このように、支柱22f〜22iは、半導体素子10の回転方向への移動を規制できれば、円柱に限らず四角柱であってもよい。さらに、支柱22f〜22iは、四角柱に限らず、多角柱であってもよく楕円柱であってもよい。   As shown in FIG. 5, the semiconductor device 2 according to the modification includes support columns 22 f to 22 i made of quadrangular columns. As described above, the pillars 22f to 22i are not limited to cylinders but may be square pillars as long as the movement of the semiconductor element 10 in the rotation direction can be restricted. Furthermore, the support columns 22f to 22i are not limited to square columns, and may be polygonal columns or elliptic columns.

このようにして、本実施形態に係る半導体装置1によれば、第2電極部材22は、半導体素子10と第1及び第2電極部材21,22との積層方向に伸びる複数の支柱22a〜22d,22f〜22iを有しているため、支柱22a〜22d,22f〜22iによって半導体装置1の高さが制御される。さらに、複数の支柱22a〜22d,22f〜22iは、半導体素子10が回転した場合に半導体素子10に接触する領域Cにおいて回転方向に不均一な間隔でそれぞれが配置されているため、半導体素子10が時計回り及び反時計回りのいずれの方向に回転しようとしても、支柱22a〜22d,22f〜22iが不均一に配置されることから、半導体素子10は支柱に当接し易く、回転方向のズレが規制される。加えて、支柱22a〜22d,22f〜22iは冶具のように後工程において引き抜く必要がないことから、高さの制御や回転方向のズレを規制しつつも、冶具の引き抜きによる半導体素子10の故障を抑制することができる。従って、半導体素子10の故障の可能性を低減することができる。   Thus, according to the semiconductor device 1 according to the present embodiment, the second electrode member 22 includes the plurality of support posts 22a to 22d extending in the stacking direction of the semiconductor element 10 and the first and second electrode members 21 and 22. , 22f to 22i, the height of the semiconductor device 1 is controlled by the columns 22a to 22d and 22f to 22i. Further, since the plurality of pillars 22a to 22d and 22f to 22i are arranged at non-uniform intervals in the rotation direction in the region C that contacts the semiconductor element 10 when the semiconductor element 10 rotates, the semiconductor element 10 The pillars 22a to 22d and 22f to 22i are non-uniformly arranged regardless of the clockwise or counterclockwise direction, so that the semiconductor element 10 is likely to abut on the pillars and the rotational direction is displaced. Be regulated. In addition, since the columns 22a to 22d and 22f to 22i do not need to be pulled out in a subsequent process like a jig, the semiconductor element 10 is broken due to the jig pulling out while controlling the height control and displacement in the rotation direction. Can be suppressed. Therefore, the possibility of failure of the semiconductor element 10 can be reduced.

特に、回転方向のズレが規制されることから、半導体素子10が回転方向にズレてワイヤボンディングを打つための端子が第1半田31や第2半田32で埋まってしまう事態についても防止することができる。   In particular, since the displacement in the rotation direction is restricted, it is possible to prevent a situation in which the terminal for the semiconductor element 10 to be displaced in the rotation direction and wire bonding is buried with the first solder 31 or the second solder 32. it can.

また、複数の支柱22a〜22d,22f〜22iは、弾性率が半導体素子10、第1及び第2電極部材21,22、並びに、第1及び第2半田31,32よりも大きい部材によって構成されているため、トランスファーモールド工程においてモールド金型51,52の型締め力F1,F2は、半導体素子10側よりも支柱22a〜22d,22f〜22i側に伝わり易くすることができる。これにより、モールド金型51,52の接触面圧を上げても半導体素子10の損傷し難くできると共に、モールド金型51,52の接触面圧を上げてモールド樹脂40の漏れも抑制することができる。加えて、モールド樹脂40の漏れにより樹脂40を削り取る研磨等の後工程についても省略することができる。   In addition, the plurality of support posts 22 a to 22 d and 22 f to 22 i are configured by members whose elastic modulus is larger than that of the semiconductor element 10, the first and second electrode members 21 and 22, and the first and second solders 31 and 32. Therefore, in the transfer molding process, the mold clamping forces F1 and F2 of the mold dies 51 and 52 can be more easily transmitted to the support columns 22a to 22d and 22f to 22i than to the semiconductor element 10 side. Thereby, even if the contact surface pressure of the mold dies 51 and 52 is increased, the semiconductor element 10 can be hardly damaged, and the contact surface pressure of the mold dies 51 and 52 is increased to suppress the leakage of the mold resin 40. it can. In addition, post-processes such as polishing for removing the resin 40 due to leakage of the mold resin 40 can be omitted.

また、電極部材21,22は、特許文献1に記載の放熱部材のように貫通孔を備えないため、放熱面積を大きくとることができ、放熱性を向上させることができる。   Moreover, since the electrode members 21 and 22 do not have a through hole unlike the heat radiating member described in Patent Document 1, it is possible to increase the heat radiating area and improve the heat radiating property.

なお、このような半導体装置1は、使用時における電力が大きくなるにつれて半導体素子10からの放熱量が多くなり、高温に達してしまうことがある。そこで、半導体装置1の使用時には冷却器が用いられる。冷却器は、熱伝導性の良好な材料からなり、例えばアルミニウムやアルミニウム合金から構成される。このような冷却器は、ダイカスト工法、押出工法、及び摩擦攪拌接合法などによって作製される。   Note that, in such a semiconductor device 1, the amount of heat dissipated from the semiconductor element 10 increases as the power during use increases, and may reach a high temperature. Therefore, a cooler is used when the semiconductor device 1 is used. The cooler is made of a material having good thermal conductivity, and is made of, for example, aluminum or an aluminum alloy. Such a cooler is manufactured by a die casting method, an extrusion method, a friction stir welding method, or the like.

図6は、図1に示した半導体装置1の使用時における状態を示す側面図である。図6に示すように、半導体装置1は使用時において上下から2つの冷却器61,62に挟まれるように配置される。また、冷却器61,62の半導体装置1側には、半導体装置1との絶縁性を確保するために、絶縁層71,72が設けられる。この絶縁層71,72は、例えば窒化アルミニウムや窒化珪素等のセラミックス板により構成される。また、絶縁層71,72は、各種フィラーを混入させたエポキシ樹脂であってもよい。なお、窒化アルミニウムや窒化珪素等のセラミックス板を絶縁層71,72として用いる場合、冷却器61,62と絶縁層71,72との間には、放熱グリスが塗布されることとなる。   FIG. 6 is a side view showing a state when the semiconductor device 1 shown in FIG. 1 is used. As shown in FIG. 6, the semiconductor device 1 is disposed so as to be sandwiched between the two coolers 61 and 62 from above and below during use. Further, insulating layers 71 and 72 are provided on the semiconductor device 1 side of the coolers 61 and 62 in order to ensure insulation from the semiconductor device 1. The insulating layers 71 and 72 are made of a ceramic plate such as aluminum nitride or silicon nitride. Moreover, the insulating layers 71 and 72 may be epoxy resins mixed with various fillers. In the case where ceramic plates such as aluminum nitride and silicon nitride are used as the insulating layers 71 and 72, heat radiation grease is applied between the coolers 61 and 62 and the insulating layers 71 and 72.

このような構成であるため、半導体装置1は冷却器61,62により冷却されつつも、絶縁層71,72により絶縁性が確保されることとなる。   Because of such a configuration, the semiconductor device 1 is secured by the insulating layers 71 and 72 while being cooled by the coolers 61 and 62.

次に、本発明の第2実施形態を説明する。第2実施形態に係る半導体装置は第1実施形態のものと同様であるが、構成が一部異なっている。以下、第1実施形態との相違点について説明する。   Next, a second embodiment of the present invention will be described. The semiconductor device according to the second embodiment is the same as that of the first embodiment, but the configuration is partially different. Hereinafter, differences from the first embodiment will be described.

図7は、第2実施形態に係る半導体装置2を示す構成図である。図7に示すように、第2実施形態に係る半導体装置2は、第2電極部材22の板部22eに複数の貫通孔22jが形成されている。これら貫通孔22jは、その位置が複数の支柱22a〜22dの位置に対応しており、複数の支柱22a〜22dは、複数の貫通孔22jに挿入された状態で配置されている。これにより、複数の支柱22a〜22dの下面22kが、板部22eの下面22lと面一となっている。このため、半導体装置2の高さは第1電極部材21と複数の支柱22a〜22dとの高さによって一層安定的に制御される。   FIG. 7 is a configuration diagram illustrating the semiconductor device 2 according to the second embodiment. As shown in FIG. 7, in the semiconductor device 2 according to the second embodiment, a plurality of through holes 22 j are formed in the plate portion 22 e of the second electrode member 22. The positions of the through holes 22j correspond to the positions of the plurality of pillars 22a to 22d, and the plurality of pillars 22a to 22d are arranged in a state of being inserted into the plurality of through holes 22j. Thereby, the lower surfaces 22k of the plurality of columns 22a to 22d are flush with the lower surface 22l of the plate portion 22e. For this reason, the height of the semiconductor device 2 is more stably controlled by the heights of the first electrode member 21 and the plurality of support columns 22a to 22d.

このようにして、第2実施形態に係る半導体装置2によれば、第1実施形態と同様に、半導体素子10の故障の可能性を低減することができ、モールド樹脂40の漏れにより樹脂40を削り取る研磨等の後工程についても省略することができる。   As described above, according to the semiconductor device 2 according to the second embodiment, the possibility of failure of the semiconductor element 10 can be reduced as in the first embodiment. Subsequent steps such as polishing can be omitted.

さらに、第2実施形態によれば、第2電極部材22は複数の貫通孔22jを有し、複数の支柱22a〜22dは、当該複数の貫通孔22jに挿入された状態で配置されているため、半導体装置2の高さは、第1電極部材21と支柱22a〜22dとの高さによって規定されることとなり、一層半導体装置2の高さのばらつきを抑えることができる。   Furthermore, according to the second embodiment, the second electrode member 22 has a plurality of through holes 22j, and the plurality of support columns 22a to 22d are arranged in a state of being inserted into the plurality of through holes 22j. The height of the semiconductor device 2 is defined by the height of the first electrode member 21 and the support posts 22a to 22d, and the variation in the height of the semiconductor device 2 can be further suppressed.

また、半導体装置2の高さのばらつきを抑えられることから、半導体装置2を冷却器61,62で挟んで冷却する場合、高さの相違によって半導体装置2と冷却器61,62との接触具合が異なり、冷却効果にばらつきが生じてしまう事態も抑制することができる。   Moreover, since the variation in the height of the semiconductor device 2 can be suppressed, when the semiconductor device 2 is cooled by being sandwiched between the coolers 61 and 62, the contact condition between the semiconductor device 2 and the coolers 61 and 62 due to the difference in height. However, it is also possible to suppress a situation in which the cooling effect varies.

次に、本発明の第3実施形態について説明する。第3実施形態に係る半導体装置は第2実施形態のものと同様であるが、構成が一部異なっている。以下、第2実施形態との相違点について説明する。   Next, a third embodiment of the present invention will be described. The semiconductor device according to the third embodiment is the same as that of the second embodiment, but the configuration is partially different. Hereinafter, differences from the second embodiment will be described.

図8は、第3実施形態に係る半導体装置3を示す構成図であり、図9は、図8に示した半導体装置3の上面図である。なお、図9においては説明の便宜上、モールド樹脂40の
図示を省略している。なお、図8は図9のII−II断面図でもある。
FIG. 8 is a configuration diagram showing the semiconductor device 3 according to the third embodiment, and FIG. 9 is a top view of the semiconductor device 3 shown in FIG. In FIG. 9, the mold resin 40 is not shown for convenience of explanation. 8 is also a II-II cross-sectional view of FIG.

図8お呼び図9に示すように、第3実施形態に係る複数の支柱22m〜22pは、それぞれ切り欠き部22m1〜22p1を有している。また、第3実施形態では、上面視した場合に第2電極部材22よりも第1電極部材21が一回り小さく形成されており、切り欠き部22m1〜22p1に第1電極部材21が合致した状態で配置されている。このため、製造工程において第1電極部材21の位置決めが容易化される。   As shown in FIG. 8 and FIG. 9, the plurality of support columns 22m to 22p according to the third embodiment have cutout portions 22m1 to 22p1, respectively. In the third embodiment, the first electrode member 21 is formed to be slightly smaller than the second electrode member 22 when viewed from above, and the first electrode member 21 is aligned with the notches 22m1 to 22p1. Is arranged in. For this reason, the positioning of the first electrode member 21 is facilitated in the manufacturing process.

このようにして、第3実施形態に係る半導体装置3によれば、第2実施形態と同様に、半導体素子10の故障の可能性を低減することができ、モールド樹脂40の漏れにより樹脂40を削り取る研磨等の後工程についても省略することができる。また、一層半導体装置2の高さのばらつきを抑えることができると共に、冷却効果にばらつきが生じてしまう事態も抑制することができる。   As described above, according to the semiconductor device 3 according to the third embodiment, the possibility of failure of the semiconductor element 10 can be reduced as in the second embodiment. Subsequent steps such as polishing can be omitted. In addition, it is possible to further suppress the variation in the height of the semiconductor device 2 and to suppress the occurrence of variations in the cooling effect.

さらに、第3実施形態によれば、複数の支柱22m〜22pは、それぞれ切り欠き部22m1〜22p1を有し、第1電極部材21は、切り欠き部22m1〜22p1に合致した状態で配置されている。このように、第1電極部材21は切り欠き部22m1〜22p1に合致することから、第1電極部材21の位置決めを容易化して生産性の向上につなげることができる。   Furthermore, according to 3rd Embodiment, the some support | pillars 22m-22p have the notch parts 22m1-22p1, respectively, and the 1st electrode member 21 is arrange | positioned in the state corresponding to the notch parts 22m1-22p1. Yes. Thus, since the 1st electrode member 21 corresponds to the notch parts 22m1-22p1, the positioning of the 1st electrode member 21 can be facilitated and it can lead to the improvement of productivity.

以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものでは無く、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、各実施形態を組み合わせるようにしてもよい。   As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above embodiments, and modifications may be made and combinations of the embodiments may be made without departing from the spirit of the present invention. It may be.

例えば、上記実施形態において、支柱22a〜22d,22f〜22i,22m〜22pは第2電極部材22の一部として構成されているが、これに限らず、第1電極部材21の一部として構成されていてもよい。すなわち、支柱22a〜22d,22f〜22i,22m〜22pは、第1電極部材21及び第2電極部材22の少なくとも一方に設けられていればよい。   For example, in the above embodiment, the columns 22a to 22d, 22f to 22i, and 22m to 22p are configured as a part of the second electrode member 22, but not limited thereto, configured as a part of the first electrode member 21. May be. In other words, the columns 22a to 22d, 22f to 22i, and 22m to 22p may be provided on at least one of the first electrode member 21 and the second electrode member 22.

また、第2及び第3実施形態において、貫通孔22jは第2電極部材22に形成されているが、これに限らず、第1電極部材21が支柱22f〜22i,22m〜22pを有する場合には、第1電極部材21に形成されていてもよい。すなわち、貫通孔22jは、支柱22f〜22i,22m〜22pを有する側の電極部材21,22に形成されていればよい。   Moreover, in 2nd and 3rd embodiment, although the through-hole 22j is formed in the 2nd electrode member 22, when not only this but the 1st electrode member 21 has the support | pillars 22f-22i, 22m-22p, May be formed on the first electrode member 21. That is, the through-hole 22j should just be formed in the electrode member 21 and 22 by the side which has support | pillar 22f-22i, 22m-22p.

また、第3実施形態において、第2電極部材22は支柱22m〜22pを有し、第1電極部材21は切り欠き部22m1〜22p1に合致した状態で配置されているが、第1電極部材21が支柱22m〜22pを有する場合には、第2電極部材22が切り欠き部22m1〜22p1に合致した状態で配置されていてもよい。すなわち、第1電極部材21及び第2電極部材22のうち複数の支柱22m〜22pを有しない側の電極部材21,22が切り欠き部22m1〜22p1に合致した状態で配置されていればよい。   Moreover, in 3rd Embodiment, although the 2nd electrode member 22 has the support | pillars 22m-22p and the 1st electrode member 21 is arrange | positioned in the state corresponding to the notch parts 22m1-22p1, the 1st electrode member 21 is arranged. May have the support columns 22m to 22p, the second electrode member 22 may be disposed in a state of matching the notches 22m1 to 22p1. That is, it is only necessary that the electrode members 21 and 22 on the side of the first electrode member 21 and the second electrode member 22 that do not have the plurality of support columns 22m to 22p be arranged in a state of being aligned with the notches 22m1 to 22p1.

1〜3…半導体装置
10…半導体素子
21…第1電極部材(第1通電部材)
22…第2電極部材(第2通電部材)
22a〜22d,22f〜22i,22m〜22p…支柱
22e…板部
22j…貫通孔
22k…支柱の下面
22l…板部の下面
22m1〜22p1…切り欠き部
31…第1半田
32…第2半田
40…モールド樹脂
51,52…モールド金型
53…開口部
61,62…冷却器
71,72…絶縁層
A…半導体素子10の配置領域
B…配置領域Aとは異なる領域
C…半導体素子10が回転した場合に半導体素子10に接触する領域
a,b…間隔
1-3 ... Semiconductor device 10 ... Semiconductor element 21 ... 1st electrode member (1st electricity supply member)
22 ... 2nd electrode member (2nd electricity supply member)
22a to 22d, 22f to 22i, 22m to 22p ... column 22e ... plate portion 22j ... through hole 22k ... bottom surface 22l of plate column ... bottom surface 22m1-22p1 of plate portion ... notch 31 ... first solder 32 ... second solder 40 ... mold resin 51, 52 ... mold die 53 ... openings 61, 62 ... coolers 71, 72 ... insulating layer A ... arrangement area B of semiconductor element 10 ... area C different from arrangement area A ... semiconductor element 10 rotates The regions a, b... That contact the semiconductor element 10

Claims (4)

半導体素子と、当該半導体素子に積層される第1通電部材と、当該半導体素子を挟んで当該第1通電部材の反対側に積層される第2通電部材と、前記半導体素子と前記第1通電部材とを接合する第1接合部材と、前記半導体素子と前記第2通電部材とを接合する第2接合部材と、を備えた半導体装置であって、
前記第1及び第2通電部材の少なくとも一方は、前記半導体素子と前記第1及び第2通電部材との積層方向に伸びる絶縁性の複数の支柱を有し、
前記複数の支柱は、前記第1及び第2通電部材の間に配置される前記半導体素子の配置領域と異なる領域に位置し、且つ、前記半導体素子が回転した場合に前記半導体素子に接触する領域において回転方向に不均一な間隔でそれぞれが配置されている
ことを特徴とする半導体装置。
A semiconductor element, a first energization member laminated on the semiconductor element, a second energization member laminated on the opposite side of the first energization member across the semiconductor element, the semiconductor element and the first energization member A first joining member that joins, and a second joining member that joins the semiconductor element and the second current-carrying member,
At least one of the first and second energization members has a plurality of insulating pillars extending in the stacking direction of the semiconductor element and the first and second energization members,
The plurality of pillars are located in a region different from the region where the semiconductor element is disposed between the first and second current-carrying members and are in contact with the semiconductor element when the semiconductor element rotates In the semiconductor device, each of them is arranged at non-uniform intervals in the rotation direction.
前記第1及び第2通電部材のうち、前記複数の支柱を有する側の通電部材は複数の貫通孔を有し、
前記複数の支柱は、当該複数の貫通孔に挿入された状態で配置されている
ことを特徴とする請求項1に記載の半導体装置。
Of the first and second energization members, the energization member on the side having the plurality of support columns has a plurality of through holes,
The semiconductor device according to claim 1, wherein the plurality of support columns are arranged in a state of being inserted into the plurality of through holes.
前記複数の支柱は、弾性率が前記半導体素子、前記第1及び第2通電部材、並びに、前記第1及び第2接合部材よりも大きい部材によって構成されている
ことを特徴とする請求項1又は請求項2のいずれかに記載の半導体装置。
The plurality of struts are configured by members having an elastic modulus larger than that of the semiconductor element, the first and second energization members, and the first and second joining members. The semiconductor device according to claim 2.
前記複数の支柱は、それぞれ切り欠き部を有し、
前記第1及び第2通電部材のうち、前記複数の支柱を有しない側の通電部材は、前記切り欠き部に合致した状態で配置されている
ことを特徴とする請求項1から請求項3のいずれか1項に記載の半導体装置。
Each of the plurality of struts has a notch,
4. The current-carrying member on the side that does not have the plurality of columns among the first and second current-carrying members is disposed in a state of being aligned with the notch portion. 5. The semiconductor device according to any one of the above.
JP2010060762A 2010-03-17 2010-03-17 Semiconductor device Pending JP2011198804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060762A JP2011198804A (en) 2010-03-17 2010-03-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060762A JP2011198804A (en) 2010-03-17 2010-03-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2011198804A true JP2011198804A (en) 2011-10-06

Family

ID=44876691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060762A Pending JP2011198804A (en) 2010-03-17 2010-03-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2011198804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014038587A1 (en) * 2012-09-07 2016-08-12 日立オートモティブシステムズ株式会社 Semiconductor device and manufacturing method thereof
US11276629B2 (en) 2019-08-02 2022-03-15 Kabushiki Kaisha Toshiba Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014038587A1 (en) * 2012-09-07 2016-08-12 日立オートモティブシステムズ株式会社 Semiconductor device and manufacturing method thereof
US9530722B2 (en) 2012-09-07 2016-12-27 Hitachi Automotive Systems, Ltd. Semiconductor device and production method for same
US11276629B2 (en) 2019-08-02 2022-03-15 Kabushiki Kaisha Toshiba Semiconductor device

Similar Documents

Publication Publication Date Title
JP4438489B2 (en) Semiconductor device
US8981552B2 (en) Power converter, semiconductor device, and method for manufacturing power converter
JP4635564B2 (en) Semiconductor device
TWI404177B (en) Electric power semiconductor circuit device and method for making same
JP5527330B2 (en) Unit for semiconductor device and semiconductor device
JP5279632B2 (en) Semiconductor module
JP4973059B2 (en) Semiconductor device and power conversion device
JP2011114176A (en) Power semiconductor device
JP4254527B2 (en) Semiconductor device
WO2015141284A1 (en) Semiconductor module unit and semiconductor module
WO2016072012A1 (en) Power semiconductor device and method for manufacturing same
JP2005123233A (en) Cooling structure of semiconductor device
US9437508B2 (en) Method for manufacturing semiconductor device and semiconductor device
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP2004303869A (en) Semiconductor device and its manufacturing method
JP2015133402A (en) Semiconductor module manufacturing method
JP2005167075A (en) Semiconductor device
US8916960B2 (en) Semiconductor unit
JP3935381B2 (en) Electronic circuit device having double-sided electrode semiconductor element and method of manufacturing the electronic circuit device
JP5452210B2 (en) Semiconductor device and manufacturing method thereof
JP2009070934A (en) Power semiconductor module, and manufacturing method thereof
JP2013149762A (en) Semiconductor module
US11735557B2 (en) Power module of double-faced cooling
JP2009206406A (en) Power semiconductor device
WO2010110445A1 (en) Semiconductor device, and apparatus and method for manufacturing semiconductor device