JP4280096B2 - Filter member and package for storing solid-state image sensor using the same - Google Patents

Filter member and package for storing solid-state image sensor using the same Download PDF

Info

Publication number
JP4280096B2
JP4280096B2 JP2003089425A JP2003089425A JP4280096B2 JP 4280096 B2 JP4280096 B2 JP 4280096B2 JP 2003089425 A JP2003089425 A JP 2003089425A JP 2003089425 A JP2003089425 A JP 2003089425A JP 4280096 B2 JP4280096 B2 JP 4280096B2
Authority
JP
Japan
Prior art keywords
substrate
filter member
dielectric multilayer
multilayer film
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003089425A
Other languages
Japanese (ja)
Other versions
JP2004296949A (en
Inventor
洋二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003089425A priority Critical patent/JP4280096B2/en
Publication of JP2004296949A publication Critical patent/JP2004296949A/en
Application granted granted Critical
Publication of JP4280096B2 publication Critical patent/JP4280096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Optical Filters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、外界からの入力光を補正して固体撮像素子に届けるフィルタ部材およびこれを用いた固体撮像素子収納用パッケージ関し、、特にCCD・CMOSイメージセンサ等のカラー撮像素子を搭載する光学機能部品に用いられるフィルタ部材およびこれを用いた固体撮像素子収納用パッケージ関する。
【0002】
【従来の技術】
近年、CCD・CMOS等のカラー撮像素子を搭載する光学機能部品を含むカメラの軽薄短小化および低価格化が急激に進展し、これに伴って搭載されるカメラモジュールをはじめとする光学機能部品も軽薄短小化あるいは部品削減が進んでいる。
このような光学機能部品は、一般に画像を集光しカラー撮像素子に導くためのガラス材あるいはプラスチック材から成るレンズと、赤みがかる色調を補正するための金属錯体を含有する赤外線カットフィルタと、酸化アルミニウム質焼結体や有機プリント板等の電気絶縁材料から成り、これらの各部品を保持するホルダーとから構成されている。
【0003】
しかしながら、このような光学機能部品構成では、個々の特性を得るための部材厚みの制約から薄型化が困難であり、結果としてカメラ本体が小型化できないという問題点があった。
そこで、特性が厚みに依存するため薄型化が困難な赤外線カットフィルタに変わり、赤外線遮蔽機能を硼珪酸ガラスに誘電体多層膜を施すことにより得る方法が、特開2000−114502号公報に提案されている。
【0004】
この提案によれば、例えばCVD法・スパッタ法・真空蒸着法により形成される、Ta25・TiO2・Nb25・LaF3・La23・Ta25・ZrO2・Y23等の屈折率が1.7以上の誘電体から成る高屈折率層とSiO2・Al23・MgF2・Na3AlF6等の屈折率が1.6以下の低屈折率層とを、基板片面の全面あるいは画像認識の有効エリアに交互に数十層積層することにより赤外線遮蔽機能を有する誘電体多層膜を形成するので、赤外線遮蔽特性は基板の厚みに依存することがなくカメラの薄型化が可能になるというものである。なお、一般的には、λ/4(λは設計波長)で算出される光学的膜厚を屈折率と形状膜厚の積(n×d)で表し、各層の屈折率および形状膜厚を変えることにより特定波長光の反射をコントロールし、結果として透過率をコントロールすることにより遮蔽膜の機能を発揮することが可能となる。
【0005】
【特許文献1】
特開2000−114502号公報
【0006】
【発明が解決しようとする課題】
しかしながら、硼珪酸ガラスに誘電体多層膜を施すことにより赤外線遮蔽機能を付与する構成では、実装時あるいは使用環境下での温度変化により硼珪酸ガラスが膨張・収縮し、特に硼珪酸ガラスが膨張する際に誘電体多層膜が硼珪酸ガラスの外周方向に引張られてしまい、誘電体多層膜にクラックが発生し誘電体多層膜の赤外線遮蔽機能が低下してしまうという問題点を有していた。
【0007】
本発明は、かかる従来技術の問題点に鑑み案出されたものであり、その目的は、光学特性に優れ、長期信頼性に優れたフィルタ部材およびこれを用いた固体撮像素子収納用パッケージを提供することにある。
【0008】
【課題を解決するための手段】
本発明のフィルタ部材は、硼珪酸ガラスから成り、四角平板状の基板の一主面に誘電体多層膜を被着して成るフィルタ部材において、前記基板は、3.3×10-5(mm)×(L1×L21/2/T≦X≦1×10-3(mm)×(L1×L21/2/T(ただし、Xは凸部の高さ(mm)、L1は基板の縦方向の長さ(mm)、L2は基板の横方向の長さ(mm)、Tは基板の厚み(mm))の条件を満足するように、中央部が前記一主面側に凸部となっていることを特徴とするものである。
【0009】
本発明のフィルタ部材によれば、基板は、3.3×10-5(mm)×(L1×L21/2/T≦X≦1×10-3(mm)×(L1×L21/2/Tの条件を満足するように、中央部が誘電体多層膜が被着された一主面側に凸部となっていることから、基板には平坦に戻ろうとする力が働くので、誘電体多層膜には常にその中央領域に向かって圧縮応力が働き、誘電体多層膜にクラックが発生して誘電体多層膜の赤外線遮蔽機能が低下してしまうことはなく、光学特性に優れたフィルタ部材とすることができる。
【0010】
本発明の固体撮像素子収納用パッケージは、上面に撮像素子を収容するための凹部を有する絶縁基体と、この絶縁基体の上面に前記凹部を覆うように封止材を介して接合される上記フィルタ部材から成る蓋体とを具備することを特徴とするものである。
【0011】
本発明の固体撮像素子収納用パッケージによれば、蓋体が上記フィルタ部材から成ることから、光学特性に優れ、長期信頼性に優れた固体撮像素子収納用パッケージとすることができる。
【0012】
【発明の実施の形態】
次に、本発明のフィルタ部材およびこれを用いた固体撮像素子収納用パッケージを、添付の図面に基づいて詳細に説明する。
図1は、本発明のフィルタ部材の実施の形態の一例を示す断面図であり、2は硼珪酸ガラスから成る基板、3は誘電体多層膜であり、主にこれらでフィルタ部材1が構成される。また、図2は、本発明の固体撮像素子収納用パッケージの実施の形態の一例を示す断面図であり、4は絶縁基体、5はフィルタ部材1から成る蓋体5であり、主にこれらで本発明の固体撮像素子収納用パッケージが構成され、これに固体撮像素子6やホルダー8を介してレンズ7を実装することにより固体撮像素子装置等の光学機能部品となる。
【0013】
フィルタ部材1は、赤外線遮蔽機能を有し、硼珪酸ガラスから成る、四角平板状の基板2の一主面に誘電体多層膜3を被着することにより形成されている。
なお、フィルタ部材1は、通常、固体撮像素子収納用パッケージ等の絶縁基体にフィルタ部材1の一主面の外周部あるいは他主面の外周部が接着材等により接合され、内部に収容する固体撮像素子を気密に封止することから、フィルタ部材1を構成する基板2は、その一主面の外周の4つの辺および他主面の外周の4つの辺が、それぞれ同一平面内に位置するように製作されている。
また、基板2は、その厚みが均一であることが好ましいが、製造方法によっては±10%程度の厚みバラツキを有する場合もある。さらに一主面の外周の4つの辺および他主面の外周の4つの辺も、基板2の厚みバラツキや部分的な反り等により、同一平面内からずれて位置する場合もある。
【0014】
誘電体多層膜3は、フィルタ部材1に赤外線遮蔽機能を付与するものであり、CVD法やスパッタ法・真空蒸着法等の従来周知の薄膜形成技術により成膜される。また、誘電体多層膜3が、例えば真空蒸着法により成膜される場合は、蒸着物質を真空蒸着器の内部に配置した坩堝内に置き、真空蒸着器の内部を真空にした後連続して、Ta25・TiO2・Nb25等の屈折率が1.7以上の誘電体から成る高屈折率層とSiO2・Al23・MgF2等の屈折率が1.55以下の誘電体から成る低屈折率層とを、基板2の一主面の全面あるいは画像認識の有効エリアに交互に数十層積層することにより形成される。
【0015】
なお、撮像素子のフィルタとして用いられる部材には異物・傷等の外観欠陥は撮像素子の画質に影響を与えることから、真空蒸着器の開放放置等により発生する真空蒸着器内部での発塵を抑えることが必要である。
【0016】
そして、本発明のフィルタ部材1は、基板2の中央部が、3.3×10-5(mm)×(L1×L21/2/T≦X≦1×10-3(mm)×(L1×L21/2/T(ただし、Xは凸部の高さ(mm)、L1は基板の縦方向の長さ(mm)、L2は基板の横方向の長さ(mm)、Tは基板の厚み(mm))の条件を満足するように、誘電体多層膜3が被着された一主面側に凸部となっており、このことが重要である。
【0017】
なお、ここで凸部の高さXとは、一主面の外周の4つの辺が位置する平面から一主面までの高さのうち、最大の高さをいう。また、フィルタ部材1を透過する光の歪を小さくするという観点からは、一主面は、それぞれの外周辺から一主面の中心部にかけて連続的に膨らんでいることが好ましく、さらには、一主面の中心点、すなわち一主面の対角線の交点における一主面の外周の4つの辺で形成される平面から一主面までの高さを凸部の高さXとすることが好ましい。
【0018】
本発明のフィルタ部材1によれば、基板2の中央部が、3.3×10-5(mm)×(L1×L21/2/T≦X≦1×10-3(mm)×(L1×L21/2/Tの条件を満足するように、誘電体多層膜3が被着された一主面側に凸部となっていることから、基板2には平坦に戻ろうとする力が働くので、誘電体多層膜3には常にその中央領域に向かって圧縮応力が働き、誘電体多層膜3にクラックが発生して誘電体多層膜3の赤外線遮蔽機能が低下してしまうことはなく、光学特性に優れたフィルタ部材1とすることができる。
【0019】
なお、基板2は、中央部が他主面側に凸部となっている形状である場合、硼珪酸ガラスから成る基板2が平坦に戻る力が誘電体多層膜3に対して引っ張り応力として働くため、誘電体多層膜3にクラックが発生しやすくなり、誘電体多層膜3の赤外線遮蔽機能が低下してしまう傾向がある。
【0020】
また、凸部の高さXが3.3×10-5(mm)×(L1×L21/2/T未満となると、硼珪酸ガラスが大きく収縮した場合に、硼珪酸ガラスから成る基板2と誘電体多層膜3の熱膨張差により誘電体多層膜3にクラックが発生し易く成る傾向あり、他方、凸部の高さXが1×10-3(mm)×(L1×L21/2/Tを超えると、誘電体多層膜3が大きく歪んで内部応力が大きなものとなり、硼珪酸ガラスから成る基板2を破壊してしまう危険性がある。さらには、フィルタ部材1を透過する光が歪み、フィルタ部材2としての機能を果たさなくなる危険性がある。従って、一主面は、3.3×10-5(mm)×(L1×L21/2/T≦X≦1×10-3(mm)×(L1×L21/2/Tの条件を満足するように外側に膨らんでいることが重要である。
【0021】
なお、ここで基板2の縦方向の長さ(L1)および横方向の長さ(L2)は、例えば基板2が長方形である場合は、長辺を縦方向の長さ(L1)、短辺を横方向の長さ(L2)とすればよく、正方形である場合は、縦方向の長さ(L1)および横方向の長さ(L2)は等しくなるので、特に区別する必要はない。
【0022】
このような中央部が一主面側に凸部となった形状の基板2は、例えば誘電体多層膜を真空蒸着法により成膜する場合であれば、基板2の加熱温度や成膜数、成膜厚み、成膜面積、真空蒸着装置内の蒸着時の真空度やガス濃度を調整することにより得ることができる。
【0023】
かくして本発明のフィルタ部材1によれば、誘電体多層膜3には常にその中央領域に向かって圧縮応力が働き、誘電体多層膜3にクラックが発生して誘電体多層膜3の赤外線遮蔽機能が低下してしまうことはなく、光学特性に優れたフィルタ部材1とすることができる。
【0024】
次に、本発明の固体撮像素子収納用パッケージについて説明する。
本発明の固体撮像素子収納用パッケージは、主に上面に凹部4aを有する絶縁基体4とフィルタ部材1から成る蓋体5とで構成され、固体撮像素子6を容器内部に気密に収容することにより、固体撮像装置等の光学機能部品となる。
【0025】
このような絶縁基体4は、エポキシ樹脂・フェノール樹脂・液晶ポリマー・ポリフェニレンサルファイド等の有機絶縁材料あるいは、酸化アルミニウム質焼結体やムライト質焼結体・窒化アルミニウム質焼結体・窒化珪素質焼結体・炭化珪素質焼結体等の無機絶縁材料から成り、例えば、酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等の原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿物を作り、この泥漿物を従来周知のドクターブレード法やカレンダーロール法等のシート成形法を採用しシート状にしてセラミックグリーンシート(セラミック生シート)を得、しかる後、それらセラミックグリーンシートに適当な打抜き加工を施すとともにこれを必要に応じて複数枚積層し、約1600℃の高温で焼成することによって製作される。あるいは、エポキシ樹脂から成る場合であれば、一般的にシリカ粉末を充填した樹脂コンパウンドを射出成形機により約180℃の熱で任意の金型形状に成形し硬化させることによって製作される。なお、一般的に固体撮像素子としては対角線長が2インチ以下のものが使用されるため、絶縁基体4の外形寸法としては50mm角以下の寸法のものが使用される。
【0026】
また、絶縁基体4は、その凹部4a内から絶縁基体4の外部にかけて複数の配線導体層(図示せず)が被着形成されており、凹部4a内に位置する配線導体層には撮像素子6の各電極がボンディングワイヤあるいは金属バンプを介して電気的に接続され、絶縁基体4の外部に導出する配線導体層には外部電気回路の配線導体(図示せず)が半田等の接続部材を介して電気的に接続される。
【0027】
このような配線導体層は、撮像素子6の各電極を外部電気回路に電気的に接続する際の導電路として作用し、絶縁基体4が酸化アルミニウム質焼結体から成る場合であれば、例えばタングステン・モリブデン・マンガン等の高融点金属粉末に適当な有機溶剤・溶媒・可塑剤等を添加混合して得た金属ペーストを従来周知のスクリーン印刷法等の厚膜手法を採用して絶縁基体4となるセラミックグリーンシートにあらかじめ印刷塗布しておき、これをセラミックグリーンシートと同時に焼成することによって絶縁基体4の所望の箇所に所定パターンに被着形成される。
【0028】
また、絶縁基体4の上面には、凹部4a内部に固体撮像素子6を実装後、凹部4aを覆うように封止材(図示せず)を介して上述のフィルタ部材1から成る蓋体5が接合される。蓋体5は、これを構成するフィルタ部材1が、基板2の中央部が、3.3×10-5(mm)×(L1×L21/2/T≦X≦1×10-3(mm)×(L1×L21/2/T(ただし、Xは凸部の高さ(mm)、L1は基板の縦方向の長さ(mm)、L2は基板の横方向の長さ(mm)、Tは基板の厚み(mm))の条件を満足するように、誘電体多層膜3が被着された一主面側に凸部となっていることから、基板2には平坦に戻ろうとする力が働くので、誘電体多層膜3には常にその中央領域に向かって圧縮応力が働き、誘電体多層膜3にクラックが発生して誘電体多層膜3の赤外線遮蔽機能が低下してしまうことはなく、光学特性に優れた固体撮像装置とすることができる。
【0029】
なお、蓋体5を絶縁基体4の上面に接合する場合、蓋体5の誘電体多層膜3は蓋体5の凹部4a側あるいは外部側の表面のどちらに位置してもよいが、耐湿性の観点からは蓋体5の凹部4a側に位置することが好ましい。
【0030】
また、蓋体5を絶縁基体4の上面に接合する封止材は、エポキシ樹脂またはアクリル樹脂等の樹脂から成り、耐湿性あるいは接合強度の観点からは緻密な3次元網目構造を有するエポキシ樹脂を主成分とする熱硬化性樹脂が好ましく、ビスフェノールA型エポキシ樹脂やビスフェノールA変性エポキシ樹脂・ビスフェノールF型エポキシ樹脂・フェノールノボラック型エポキシ樹脂・クレゾールノボラック型エポキシ樹脂・特殊ノボラック型エポキシ樹脂・フェノール誘導体エポキシ樹脂・ビフェノール骨格型エポキシ樹脂等のエポキシ樹脂にイミダゾール系・アミン系・リン系・ヒドラジン系・イミダゾールアダクト系・アミンアダクト系・カチオン重合系・ジシアンジアミド系等の硬化剤を添加したもので形成することが好ましい。なお、2種類以上のエポキシ樹脂を混合して用いてもよい。
【0031】
また、本実施例では絶縁基体4の上部にホルダー8を介してレンズ7を接合した例を示している。レンズ7は、例えばアクリル系樹脂あるいはガラス材の注型成形により表面が球面または火球面加工され、ホルダー8にエポキシ樹脂やアクリル樹脂等の樹脂を用いて接合され、あるいは嵌合により固定される。
なお、このようなホルダー8は、絶縁基体4と同様な材料・方法で製作される。
【0032】
かくして固体撮像装置によれば、絶縁基体4の凹部4aの底面に固体撮像素子6をガラス・樹脂・ろう材等から成る接着剤を介して接着固定するとともに、絶縁基体4の上面に凹部4aを覆って蓋体5を封止材を介して接合することにより固体撮像装置となり、これに必要に応じてレンズ7等の光学部品を取着することにより光学機能部品となる。
【0033】
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、誘電体多層膜2は赤外線遮光膜に限定されず、弗化マグネシウム等の材料を成膜した反射防止膜であってもよい。
【0034】
【実施例】
(実施例1)
試料は、まず厚みが0.3mmで、外形寸法が90mm角である硼珪酸ガラス基板を280℃に加熱し、EB蒸着により38層の赤外線遮光膜を形成した。主面の中央部の凸部の高さは、蒸着時の真空度、ガス濃度およびEB銃の出力調整を行なうことにより調整した。試料は、蒸着後24時間経過した後、および蒸着後24時間経過した後に強制的に平坦にした後の目視検査、および90mm角の資料を20mm角に切断してCCDデバイスでの画像確認を行ない評価した。結果を、表1に示す。
【0035】
なお、本試料においては、L1=L2=90mm、T=0.3mmであることから、3.3×10-5(mm)×(L1×L21/2/T=0.0099(mm)、1×10-3(mm)×(L1×L21/2/T=0.3(mm)となることから、凸部の高さXの範囲は0.0099〜0.3mmの範囲となる。
【0036】
【表1】

Figure 0004280096
【0037】
表1から、硼珪酸ガラスに誘電体多層膜を施した側の面が窪む形状すなわち、凸部の高さがマイナスおよびゼロの場合には、蒸着後24時間経過した後に膜クラックが発生することがわかった。また、0.009mm未満の場合には、蒸着後24時間経過した後に強制的に平坦にした時点で膜クラックが発生することがわかった。また、凸部の高さが0.35mm以上では、焦点距離がずれることから画像確認において外周部にぼやけが確認された。
これに対して、本発明の請求範囲内の凸部の高さでは、良好な結果が得られることがわかった。
【0038】
(実施例2)
厚みが0.5mmであること以外は、実施例1と同じ条件で試料の作成・評価を行なった。結果を表2に示す。
【0039】
【表2】
Figure 0004280096
【0040】
なお、本試料においては、L1=L2=90mm、T=0.5mmであることから、3.3×10-5(mm)×(L1×L21/2/T=0.0059(mm)、1×10-3(mm)×(L1×L21/2/T=0.18(mm)となることから、凸部の高さXの範囲は0.0059〜0.18mmの範囲となる。
【0041】
表2から、硼珪酸ガラスに誘電体多層膜を施した側の面が凹反りになる形状すなわち、凸部の高さがマイナスおよびゼロの場合には、蒸着後24時間経過した後に膜クラックが発生することがわかった。また、0.05mm未満の場合には、蒸着後24時間経過後に強制的に平坦にした時点で膜クラックが発生することがわかった。さらに、凸部の高さが0.20mm以上では、焦点距離がずれることから画像確認において外周部にぼやけが確認された。
これに対して、本発明の請求範囲内の凸部の高さでは、良好な結果が得られることがわかった。
【0042】
【発明の効果】
本発明のフィルタ部材によれば、基板は、3.3×10-5(mm)×(L1×L21/2/T≦X≦1×10-3(mm)×(L1×L21/2/Tの条件を満足するように、中央部が誘電体多層膜が被着された一主面側に凸部となっていることから、基板には平坦に戻ろうとする力が働くので、誘電体多層膜には常にその中央領域に向かって圧縮応力が働き、誘電体多層膜にクラックが発生して誘電体多層膜の赤外線遮蔽機能が低下してしまうことはなく、光学特性に優れたフィルタ部材とすることができる。
【0043】
本発明の固体撮像素子収納用パッケージによれば、蓋体が上記フィルタ部材から成ることから、光学特性に優れ、長期信頼性に優れた固体撮像素子収納用パッケージとすることができる。
【図面の簡単な説明】
【図1】本発明のフィルタ部材の実施の形態の一例を示す断面図である。
【図2】本発明の固体撮像素子収納用パッケージの実施の形態の一例を示す断面図である。
【符号の説明】
1・・・・・・フィルタ部材
2・・・・・・基板
3・・・・・・誘電体多層膜
4・・・・・・絶縁基体
4a・・・・・凹部
5・・・・・・蓋体
6・・・・・・固体撮像素子
7・・・・・・レンズ
8・・・・・・ホルダー
X・・・・・・凸部の高さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filter member that corrects input light from the outside world and delivers it to a solid-state image sensor, and a package for housing a solid-state image sensor using the filter member, and in particular, an optical function for mounting a color image sensor such as a CCD / CMOS image sensor. The present invention relates to a filter member used for parts and a package for housing a solid-state imaging device using the same.
[0002]
[Prior art]
In recent years, the miniaturization and price reduction of cameras including optical functional parts equipped with color image sensors such as CCD / CMOS have rapidly advanced, and along with this, optical functional parts such as camera modules are also installed. Miniaturization and reduction of parts are progressing.
Such optical functional parts generally include a lens made of a glass material or a plastic material for condensing an image and guiding it to a color imaging device, an infrared cut filter containing a metal complex for correcting a reddish color tone, It is made of an electrically insulating material such as an aluminum sintered body or an organic printed board, and is composed of a holder for holding these components.
[0003]
However, such an optical functional part configuration has a problem that it is difficult to reduce the thickness of the camera body due to restrictions on the member thickness for obtaining individual characteristics, and as a result, the camera body cannot be reduced in size.
Therefore, Japanese Patent Application Laid-Open No. 2000-114502 proposes a method for obtaining an infrared shielding function by applying a dielectric multilayer film to borosilicate glass instead of an infrared cut filter that is difficult to reduce in thickness because the characteristics depend on the thickness. ing.
[0004]
According to this proposal, Ta 2 0 5 · TiO 2 · Nb 2 0 5 · LaF 3 · La 2 O 3 · Ta 2 O 5 · ZrO 2 · formed by, for example, CVD, sputtering, or vacuum deposition. A high refractive index layer made of a dielectric material having a refractive index of 1.7 or higher such as Y 2 O 3 and a low refractive index layer having a refractive index of 1.6 or lower such as SiO 2 · Al 2 O 3 · MgF 2 · Na 3 AlF 6 Since a dielectric multilayer film having an infrared shielding function is formed by laminating several dozen layers alternately on the entire surface of one side of the substrate or in an effective area for image recognition, the infrared shielding characteristic does not depend on the thickness of the substrate. Thinning becomes possible. In general, the optical film thickness calculated by λ / 4 (λ is the design wavelength) is represented by the product of the refractive index and the shape film thickness (n × d), and the refractive index and the shape film thickness of each layer are expressed as follows. It is possible to control the reflection of light of a specific wavelength by changing, and as a result, it is possible to exhibit the function of the shielding film by controlling the transmittance.
[0005]
[Patent Document 1]
JP 2000-114502 JP
[Problems to be solved by the invention]
However, in a configuration in which an infrared shielding function is provided by applying a dielectric multilayer film to borosilicate glass, borosilicate glass expands and contracts due to temperature changes during mounting or in the usage environment, and in particular, borosilicate glass expands. At this time, the dielectric multilayer film is pulled in the outer peripheral direction of the borosilicate glass, so that the dielectric multilayer film is cracked and the infrared shielding function of the dielectric multilayer film is deteriorated.
[0007]
The present invention has been devised in view of the problems of the prior art, and an object of the present invention is to provide a filter member having excellent optical characteristics and excellent long-term reliability, and a package for housing a solid-state imaging device using the same. There is to do.
[0008]
[Means for Solving the Problems]
The filter member of the present invention is a filter member made of borosilicate glass and having a dielectric multilayer film deposited on one main surface of a square plate-like substrate, wherein the substrate is 3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 / T ≦ X ≦ 1 × 10 −3 (mm) × (L 1 × L 2 ) 1/2 / T (where X is the height of the projection (mm), L 1 is the length of the substrate in the vertical direction (mm), L 2 is the length of the substrate in the horizontal direction (mm), and T is the thickness of the substrate (mm). It is characterized by a convex portion on the main surface side.
[0009]
According to the filter member of the present invention, the substrate has a size of 3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 / T ≦ X ≦ 1 × 10 −3 (mm) × (L 1 × L 2 ) Since the central part is a convex part on one main surface side where the dielectric multilayer film is deposited so as to satisfy the 1/2 / T condition, the force to return to the flat surface on the substrate Therefore, compressive stress always acts on the dielectric multilayer film toward its central region, and cracks are not generated in the dielectric multilayer film, so that the infrared shielding function of the dielectric multilayer film does not deteriorate. It can be set as the filter member excellent in the characteristic.
[0010]
According to another aspect of the present invention, there is provided a package for housing a solid-state imaging device, the insulating base having a recess for housing the imaging device on the upper surface, and the filter bonded to the upper surface of the insulating base via a sealing material so as to cover the recess. And a lid made of a member.
[0011]
According to the solid-state image pickup device storage package of the present invention, since the lid is made of the filter member, the solid-state image pickup device storage package having excellent optical characteristics and excellent long-term reliability can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the filter member of the present invention and the solid-state image sensor housing package using the filter member will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing an example of an embodiment of a filter member of the present invention. 2 is a substrate made of borosilicate glass, 3 is a dielectric multilayer film, and the filter member 1 is mainly composed of these. The FIG. 2 is a cross-sectional view showing an example of an embodiment of a solid-state image pickup device storage package according to the present invention. Reference numeral 4 denotes an insulating substrate, and 5 denotes a lid 5 made of a filter member 1. The package for housing a solid-state image sensor according to the present invention is configured, and the lens 7 is mounted on the package via the solid-state image sensor 6 or the holder 8 to become an optical functional component such as a solid-state image sensor device.
[0013]
The filter member 1 has an infrared shielding function, and is formed by depositing a dielectric multilayer film 3 on one main surface of a square plate-like substrate 2 made of borosilicate glass.
In addition, the filter member 1 is usually a solid housed in an insulating base such as a solid-state image pickup device storage package in which the outer peripheral portion of one main surface of the filter member 1 or the outer peripheral portion of the other main surface is bonded with an adhesive or the like. Since the image pickup element is hermetically sealed, the substrate 2 constituting the filter member 1 has four sides on the outer periphery of the one main surface and four sides on the outer periphery of the other main surface, respectively, in the same plane. It is manufactured as follows.
The substrate 2 preferably has a uniform thickness, but may have a thickness variation of about ± 10% depending on the manufacturing method. Further, the four sides on the outer periphery of the one main surface and the four sides on the outer periphery of the other main surface may also be located out of the same plane due to variations in the thickness of the substrate 2 or partial warpage.
[0014]
The dielectric multilayer film 3 imparts an infrared shielding function to the filter member 1 and is formed by a conventionally known thin film forming technique such as a CVD method, a sputtering method, or a vacuum evaporation method. Further, when the dielectric multilayer film 3 is formed by, for example, a vacuum vapor deposition method, the vapor deposition material is placed in a crucible disposed inside the vacuum vapor deposition device, and after the vacuum vapor deposition device is evacuated, continuously. , Ta 2 0 5 · TiO 2 · Nb 2 0 5 and other high refractive index layers made of a dielectric material with a refractive index of 1.7 or higher, and SiO 2 · Al 2 O 3 · MgF 2 and other dielectric materials with a refractive index of 1.55 or lower The low refractive index layer is formed by laminating several dozen layers alternately on the entire main surface of the substrate 2 or the effective area for image recognition.
[0015]
In addition, appearance defects such as foreign matters and scratches on the members used as filters of the image sensor affect the image quality of the image sensor, so dust generated inside the vacuum evaporator is caused by leaving the vacuum evaporator open. It is necessary to suppress.
[0016]
In the filter member 1 of the present invention, the center portion of the substrate 2 is 3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 / T ≦ X ≦ 1 × 10 −3 (mm) × (L 1 × L 2 ) 1/2 / T (where X is the height of the projection (mm), L 1 is the length of the substrate in the vertical direction (mm), and L 2 is the length of the substrate in the horizontal direction) (Mm) and T are convex portions on one main surface side where the dielectric multilayer film 3 is deposited so as to satisfy the condition of the substrate thickness (mm), which is important.
[0017]
In addition, the height X of a convex part means the largest height among the heights from the plane where the four sides of the outer periphery of one main surface are located to one main surface here. Further, from the viewpoint of reducing distortion of light transmitted through the filter member 1, it is preferable that the one principal surface continuously swells from the outer periphery to the center of the one principal surface. It is preferable that the height from the plane formed by four sides of the outer periphery of the one principal surface at the intersection of the diagonals of the one principal surface, that is, the diagonal of the one principal surface, is the height X of the convex portion.
[0018]
According to the filter member 1 of the present invention, the central portion of the substrate 2 is 3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 / T ≦ X ≦ 1 × 10 −3 (mm) × Since the convex portion is formed on the one main surface side where the dielectric multilayer film 3 is deposited so as to satisfy the condition of (L 1 × L 2 ) 1/2 / T, the substrate 2 is flat. Since the force to return is exerted, the dielectric multilayer film 3 is always subjected to compressive stress toward the central region, and the dielectric multilayer film 3 is cracked to reduce the infrared shielding function of the dielectric multilayer film 3. The filter member 1 having excellent optical characteristics can be obtained.
[0019]
In the case where the substrate 2 has a shape in which the central portion is a convex portion on the other main surface side, the force that the substrate 2 made of borosilicate glass returns flatly acts as a tensile stress on the dielectric multilayer film 3. Therefore, cracks are likely to occur in the dielectric multilayer film 3, and the infrared shielding function of the dielectric multilayer film 3 tends to be lowered.
[0020]
Further, when the height X of the convex portion is less than 3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 / T, the substrate made of borosilicate glass when the borosilicate glass contracts greatly 2 and the dielectric multilayer film 3 tend to be easily cracked due to the difference in thermal expansion between the dielectric multilayer film 3 and the height X of the convex portion 1 × 10 −3 (mm) × (L 1 × L 2 ) When 1/2 / T is exceeded, the dielectric multilayer film 3 is greatly distorted and the internal stress becomes large, and there is a risk of breaking the substrate 2 made of borosilicate glass. Furthermore, there is a risk that light passing through the filter member 1 is distorted and the function as the filter member 2 is not performed. Therefore, one principal surface is 3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 / T ≦ X ≦ 1 × 10 −3 (mm) × (L 1 × L 2 ) 1/2 It is important to swell outward so as to satisfy the / T condition.
[0021]
Here, the vertical length (L 1 ) and the horizontal length (L 2 ) of the substrate 2 are, for example, when the substrate 2 is rectangular, the long side is the vertical length (L 1 ). The short side may be the length in the horizontal direction (L 2 ). In the case of a square, the vertical length (L 1 ) and the horizontal length (L 2 ) are equal to each other. do not have to.
[0022]
The substrate 2 having such a shape that the central portion becomes a convex portion on one main surface side is, for example, when a dielectric multilayer film is formed by a vacuum evaporation method, It can be obtained by adjusting the film thickness, the film area, the degree of vacuum at the time of vapor deposition in the vacuum vapor deposition apparatus, and the gas concentration.
[0023]
Thus, according to the filter member 1 of the present invention, the dielectric multilayer film 3 is always subjected to compressive stress toward the central region, and cracks are generated in the dielectric multilayer film 3 so that the infrared shielding function of the dielectric multilayer film 3 is achieved. The filter member 1 having excellent optical characteristics can be obtained.
[0024]
Next, the solid-state image sensor housing package of the present invention will be described.
The package for housing a solid-state imaging device of the present invention is mainly composed of an insulating base 4 having a recess 4a on the upper surface and a lid 5 made of a filter member 1, and by housing the solid-state imaging device 6 in an airtight manner inside the container. It becomes an optical functional component such as a solid-state imaging device.
[0025]
Such an insulating substrate 4 may be an organic insulating material such as epoxy resin, phenol resin, liquid crystal polymer, polyphenylene sulfide, or the like, or an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, or a silicon nitride sintered body. Consists of inorganic insulating materials such as sintered bodies and silicon carbide sintered bodies. For example, in the case of an aluminum oxide sintered body, it is suitable for raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. An organic binder, solvent, plasticizer, and dispersant are added and mixed to make a slurry, and this slurry is formed into a sheet by using a sheet forming method such as a doctor blade method or a calender roll method, which is known in the art. Ceramic green sheets), and after that, the ceramic green sheets are appropriately punched. A plurality of sheets stacked as needs arise, is manufactured by firing at a high temperature of about 1600 ° C.. Alternatively, in the case of an epoxy resin, it is generally manufactured by molding a resin compound filled with silica powder into an arbitrary mold shape with heat of about 180 ° C. by an injection molding machine and curing it. In general, a solid-state imaging device having a diagonal length of 2 inches or less is used, so that the outer dimension of the insulating substrate 4 is a size of 50 mm square or less.
[0026]
The insulating base 4 has a plurality of wiring conductor layers (not shown) formed on the insulating base 4 from the inside of the recess 4a to the outside of the insulating base 4. The imaging element 6 is provided on the wiring conductor layer located in the recess 4a. Are electrically connected via bonding wires or metal bumps, and a wiring conductor (not shown) of an external electric circuit is connected to a wiring conductor layer led out of the insulating substrate 4 via a connecting member such as solder. Are electrically connected.
[0027]
Such a wiring conductor layer acts as a conductive path when each electrode of the image sensor 6 is electrically connected to an external electric circuit, and if the insulating base 4 is made of an aluminum oxide sintered body, for example, Insulating substrate 4 using a thick film technique such as a screen printing method known in the art using a metal paste obtained by adding and mixing an appropriate organic solvent, solvent, plasticizer, etc. to a high melting point metal powder such as tungsten, molybdenum, manganese, etc. The ceramic green sheet is printed and applied in advance, and is fired at the same time as the ceramic green sheet to form a predetermined pattern on the insulating substrate 4.
[0028]
Further, on the upper surface of the insulating base 4, a lid body 5 made of the above-described filter member 1 is provided via a sealing material (not shown) so as to cover the recess 4 a after the solid-state imaging device 6 is mounted inside the recess 4 a. Be joined. The lid 5 has a filter member 1 constituting the same, and the central portion of the substrate 2 is 3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 / T ≦ X ≦ 1 × 10 −3. (Mm) × (L 1 × L 2 ) 1/2 / T (where X is the height of the projection (mm), L 1 is the length of the substrate in the vertical direction (mm), and L 2 is the width of the substrate. Since the length in the direction (mm) and T is a convex portion on one main surface side where the dielectric multilayer film 3 is deposited so as to satisfy the condition of the thickness (mm) of the substrate, the substrate 2 has a force to return to a flat state, and therefore, a compressive stress always acts on the dielectric multilayer film 3 toward the center region thereof, and a crack occurs in the dielectric multilayer film 3, so that an infrared ray of the dielectric multilayer film 3 is generated. The shielding function is not deteriorated, and a solid-state imaging device having excellent optical characteristics can be obtained.
[0029]
When the lid 5 is bonded to the upper surface of the insulating substrate 4, the dielectric multilayer film 3 of the lid 5 may be located on either the concave portion 4a side or the external surface of the lid 5, but is moisture resistant. From this point of view, it is preferable that the lid 5 is located on the concave portion 4a side.
[0030]
Further, the sealing material for bonding the lid 5 to the upper surface of the insulating base 4 is made of a resin such as an epoxy resin or an acrylic resin, and an epoxy resin having a dense three-dimensional network structure from the viewpoint of moisture resistance or bonding strength. Thermosetting resin as the main component is preferable. Bisphenol A type epoxy resin, bisphenol A modified epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, special novolac type epoxy resin, phenol derivative epoxy It must be formed with epoxy resin such as resin / biphenol skeleton type epoxy resin, etc. with addition of curing agent such as imidazole, amine, phosphorus, hydrazine, imidazole adduct, amine adduct, cationic polymerization, dicyandiamide. Is preferred. Two or more types of epoxy resins may be mixed and used.
[0031]
In this embodiment, an example in which a lens 7 is bonded to the upper portion of the insulating substrate 4 via a holder 8 is shown. The surface of the lens 7 is processed into a spherical surface or a fire-spherical surface by, for example, cast molding of an acrylic resin or glass material, and is bonded to the holder 8 using a resin such as an epoxy resin or an acrylic resin, or is fixed by fitting.
Such a holder 8 is manufactured by the same material and method as the insulating substrate 4.
[0032]
Thus, according to the solid-state imaging device, the solid-state imaging device 6 is bonded and fixed to the bottom surface of the concave portion 4a of the insulating base 4 via an adhesive made of glass, resin, brazing material, etc., and the concave portion 4a is formed on the top surface of the insulating base 4. By covering and joining the lid 5 via a sealing material, it becomes a solid-state imaging device, and if necessary, an optical component such as a lens 7 is attached to become an optical functional component.
[0033]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, the dielectric multilayer film 2 is limited to an infrared light shielding film. Alternatively, an antireflection film in which a material such as magnesium fluoride is formed may be used.
[0034]
【Example】
(Example 1)
As a sample, a borosilicate glass substrate having a thickness of 0.3 mm and an outer dimension of 90 mm square was first heated to 280 ° C., and a 38-layer infrared light shielding film was formed by EB vapor deposition. The height of the convex portion at the center of the main surface was adjusted by adjusting the degree of vacuum during vapor deposition, the gas concentration, and the output of the EB gun. Samples were checked for visual inspection after 24 hours after vapor deposition and after forcibly flattening after 24 hours after vapor deposition, and 90 mm square materials were cut into 20 mm squares and images were confirmed with a CCD device. evaluated. The results are shown in Table 1.
[0035]
In this sample, since L 1 = L 2 = 90 mm and T = 0.3 mm, 3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 /T=0.0099 (mm) Since 1 × 10 −3 (mm) × (L 1 × L 2 ) 1/2 /T=0.3 (mm), the range of the height X of the convex portion is in the range of 0.0099 to 0.3 mm.
[0036]
[Table 1]
Figure 0004280096
[0037]
From Table 1, when the surface on which the dielectric multilayer film is applied to borosilicate glass is depressed, that is, when the height of the convex portion is minus or zero, a film crack occurs after 24 hours from the deposition. I understood it. In addition, when the thickness was less than 0.009 mm, it was found that film cracks occurred when the film was forcibly flattened after 24 hours had elapsed from the deposition. In addition, when the height of the convex portion is 0.35 mm or more, the focal length is shifted, so blurring was confirmed in the outer peripheral portion in the image confirmation.
On the other hand, it has been found that good results can be obtained with the height of the convex portion within the scope of claims of the present invention.
[0038]
(Example 2)
Samples were prepared and evaluated under the same conditions as in Example 1 except that the thickness was 0.5 mm. The results are shown in Table 2.
[0039]
[Table 2]
Figure 0004280096
[0040]
In this sample, since L 1 = L 2 = 90 mm and T = 0.5 mm, 3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 /T=0.0059 (mm) Since 1 × 10 −3 (mm) × (L 1 × L 2 ) 1/2 /T=0.18 (mm), the height X of the convex portion is in the range of 0.0059 to 0.18 mm.
[0041]
Table 2 shows that the surface on which the dielectric multilayer film is applied to borosilicate glass is concavely warped, that is, when the height of the convex part is negative and zero, film cracks occur after 24 hours from the deposition. It was found to occur. In addition, when the thickness was less than 0.05 mm, it was found that a film crack occurred when the film was forcibly flattened 24 hours after the deposition. Further, when the height of the convex portion is 0.20 mm or more, the focal length is shifted, and thus blurring was confirmed in the outer peripheral portion in the image confirmation.
On the other hand, it has been found that good results can be obtained with the height of the convex portion within the scope of claims of the present invention.
[0042]
【The invention's effect】
According to the filter member of the present invention, the substrate has a size of 3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 / T ≦ X ≦ 1 × 10 −3 (mm) × (L 1 × L 2 ) Since the central part is a convex part on one main surface side where the dielectric multilayer film is deposited so as to satisfy the condition of 1/2 / T, the force to return to the flat surface on the substrate Therefore, compressive stress always acts on the dielectric multilayer film toward its central region, and cracks are not generated in the dielectric multilayer film, so that the infrared shielding function of the dielectric multilayer film does not deteriorate. It can be set as the filter member excellent in the characteristic.
[0043]
According to the solid-state image pickup device storage package of the present invention, since the lid is made of the filter member, the solid-state image pickup device storage package having excellent optical characteristics and excellent long-term reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a filter member of the present invention.
FIG. 2 is a cross-sectional view showing an example of an embodiment of a solid-state image sensor housing package of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Filter member 2 ... Substrate 3 ... Dielectric multilayer 4 ... Insulating substrate 4a ... Recess 5 ...・ Cover 6 ・ ・ ・ ・ ・ ・ Solid-state imaging device 7 ・ ・ ・ ・ ・ ・ Lens 8 ・ ・ ・ ・ ・ ・ Holder X ・ ・ ・ ・ ・ ・ Height of convex part

Claims (2)

硼珪酸ガラスから成り、四角平板状の基板の一主面に誘電体多層膜を被着して成るフィルタ部材において、前記基板は、下記式の条件を満足するように、中央部が前記一主面側に凸部となっていることを特徴とするフィルタ部材。
3.3×10-5(mm)×(L1×L21/2/T ≦ X
≦ 1×10-3(mm)×(L1×L21/2/T
ただし、Xは凸部の高さ(mm)、L1は基板の縦方向の長さ(mm)、L2は基板の横方向の長さ(mm)、Tは基板の厚み(mm)。
In a filter member made of borosilicate glass and having a dielectric flat film deposited on one main surface of a square plate-like substrate, the substrate has a central portion that satisfies the following formula: A filter member having a convex portion on the surface side.
3.3 × 10 −5 (mm) × (L 1 × L 2 ) 1/2 / T ≦ X
≦ 1 × 10 −3 (mm) × (L 1 × L 2 ) 1/2 / T
However, the height of the X convex portion (mm), L 1 is the vertical length of the substrate (mm), L 2 is the lateral length of the substrate (mm), T is the substrate thickness (mm).
上面に固体撮像素子を収容するための凹部を有する絶縁基体と、該絶縁基体の上面に前記凹部を覆うように封止材を介して接合される請求項1に記載のフィルタ部材から成る蓋体とを具備することを特徴とする固体撮像素子収納用パッケージ。The lid body comprising a filter member according to claim 1, wherein an insulating base having a recess for accommodating a solid-state imaging device on an upper surface, and a sealing member bonded to the upper surface of the insulating base so as to cover the recess. A package for housing a solid-state imaging device.
JP2003089425A 2003-03-27 2003-03-27 Filter member and package for storing solid-state image sensor using the same Expired - Fee Related JP4280096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089425A JP4280096B2 (en) 2003-03-27 2003-03-27 Filter member and package for storing solid-state image sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089425A JP4280096B2 (en) 2003-03-27 2003-03-27 Filter member and package for storing solid-state image sensor using the same

Publications (2)

Publication Number Publication Date
JP2004296949A JP2004296949A (en) 2004-10-21
JP4280096B2 true JP4280096B2 (en) 2009-06-17

Family

ID=33403273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089425A Expired - Fee Related JP4280096B2 (en) 2003-03-27 2003-03-27 Filter member and package for storing solid-state image sensor using the same

Country Status (1)

Country Link
JP (1) JP4280096B2 (en)

Also Published As

Publication number Publication date
JP2004296949A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP2587793B1 (en) Image pickup device and image-pickup device module
US8659105B2 (en) Wiring substrate, imaging device and imaging device module
US8866067B2 (en) Imaging device with an imaging element and an electronic component
CN111466028A (en) Substrate for mounting imaging element, imaging device, and imaging module
JP6166112B2 (en) Lid for imaging device and imaging device provided with the same
JP5595066B2 (en) Imaging device and imaging module
JP4280096B2 (en) Filter member and package for storing solid-state image sensor using the same
JP2002353352A (en) Package for storing image pickup device
JP4632680B2 (en) Optical filter member and solid-state imaging device using the same
JPH04137663A (en) Solid-state image sensor
JP2010153763A (en) Package for storing imaging element and imaging device
WO2006090684A1 (en) Semiconductor element mounting member and semiconductor device using same
JP6951134B2 (en) Capsule for image pickup device and image pickup device
JP2005017956A (en) Optical filter member, and package for housing solid-state image pickup element using the same
JP2002353354A (en) Package for storing image pickup device
JP2003017607A (en) Package for housing imaging element
JP2004056061A (en) Package for packaging image pickup device
JP6154200B2 (en) Optical filter member and range image capturing apparatus using the same
JP6510338B2 (en) Lid for optical device and optical device
JP2010103456A (en) Package for storing image sensor, and image capturing apparatus
JP6908506B2 (en) Imaging device
JP3814512B2 (en) Image pickup device storage package and image pickup apparatus
JP2002359314A (en) Package for housing image pickup device
JP7418484B2 (en) Packages for optical devices and optical devices
JP2003068908A (en) Package for image pickup element storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4280096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees