JP3814512B2 - Image pickup device storage package and image pickup apparatus - Google Patents

Image pickup device storage package and image pickup apparatus Download PDF

Info

Publication number
JP3814512B2
JP3814512B2 JP2001323988A JP2001323988A JP3814512B2 JP 3814512 B2 JP3814512 B2 JP 3814512B2 JP 2001323988 A JP2001323988 A JP 2001323988A JP 2001323988 A JP2001323988 A JP 2001323988A JP 3814512 B2 JP3814512 B2 JP 3814512B2
Authority
JP
Japan
Prior art keywords
refractive index
image pickup
lithium niobate
plate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001323988A
Other languages
Japanese (ja)
Other versions
JP2003133535A (en
Inventor
洋二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001323988A priority Critical patent/JP3814512B2/en
Publication of JP2003133535A publication Critical patent/JP2003133535A/en
Application granted granted Critical
Publication of JP3814512B2 publication Critical patent/JP3814512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、外部からの機械的衝撃や熱的衝撃、あるいは水分の浸入から半導体素子を保護するための撮像素子収納用パッケージに関し、特に200万画素を超える、CCD・CMOSイメージセンサ等のカラー撮像素子を搭載する撮像素子収納用パッケージに関する。
【0002】
【従来の技術】
近年、CCD・CMOS等の撮像装置を含むカメラの軽薄短小化および低価格化が急激に進展し、これに伴って搭載される撮像素子収納用パッケージをはじめとする光学機能部品も軽薄短小化あるいは部品削減が進んでいる。
【0003】
このような光学機能部品は、一般に画像を集光するとともに撮像素子に導くためのガラス材やプラスチック材から成るレンズと、画像のモアレを防ぐための複屈折効果や位相効果を有する水晶から成る光学ローパスフィルタと、赤みがかる色調を補正するための金属錯体を含有する赤外線カットフィルタと、ホウ珪酸ガラス板材から成る蓋体および酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・窒化珪素質焼結体等の電気絶縁材料から成り、半導体素子を搭載する凹部を有する絶縁基体から成る撮像素子収納用パッケージとから構成されている。
【0004】
しかしながら、このような光学機能部品構成では、個々の特性を得るための部材厚みの制約から薄型化が困難であり、結果としてカメラ本体を小型化できないという問題点を有していた。
【0005】
このような問題点を解決するために、特開2000−114502号公報には、光学ローパスフィルタの機能を有する水晶を撮像素子収納用パッケージの蓋体として使用し、さらにこの蓋体に誘電体多層膜を施すことにより赤外線遮蔽機能を付加して、光学機能部品を薄型化することが提案されている。
【0006】
また、水晶以上に複屈折率の大きいニオブ酸リチウムを蓋体として用いて、さらに光学部品を薄型化することが提案されている。
【0007】
この提案によれば、蓋体を、複屈折効果あるいは位相効果を有するニオブ酸リチウム板の片面全面あるいは画像認識の有効領域に、Ta25・TiO2・Nb25・LaF3・La23・Ta25・ZrO2・Y23等の屈折率が1.7以上の誘電体からなる高屈折率薄膜層とSiO2・Al23・MgF2・Na3AlF6等の屈折率が1.6以下の誘電体からなる低屈折率薄膜層とを交互に数十層積層して成る誘電体多層膜を、例えばCVD法・スパッタ法・真空蒸着法等により被着形成して赤外線遮蔽機能を有するものとすることにより、これまで光学ローパスフィルタおよび赤外線カットフィルタを設置するのに必要であった空間が削減でき、カメラの薄型化が可能になるというものである。
【0008】
なお、ニオブ酸リチウム板に多層膜を施すことにより赤外線カット機能が付与される理由は次の通りである。一般的には、光学的膜厚(λ/4:λは設計波長)が薄膜層を構成する材料の屈折率(n)と形状膜厚(d)との積(n×d)で表わされることから、薄膜層の材料および形状膜厚を適宜選択するとともに薄膜層を複数積層して特定範囲の波長光の透過・反射をコントロールすることによりニオブ酸リチウム板に赤外線カット機能を付与するものである。また、ニオブ酸リチウム板から成る蓋体は、通常はニオブ酸リチウム板が1枚、あるいは複屈折効果や位相効果を有するニオブ酸リチウム板を複数枚貼り合わせることにより形成されている。
【0009】
【発明が解決しようとする課題】
しかしながら、光学ローパスフィルタとして用いられるニオブ酸リチウムは、従来蓋体として用いられているホウ珪酸ガラスと比較して、熱膨張係数が非常に小さくかつ熱膨張の方向に異方性をもっており、また材料強度が非常に弱く脆く、さらに複屈折率が大きいことから厚みが従来用いられていた水晶と比較して約1/6と非常に薄くなり、200万画素を超えるような高画素デバイスを覆う15mm角を超える大きさの蓋体では、外部からの機械的衝撃や熱的衝撃を受けた際に絶縁基体と蓋体との接合部に集中する応力により蓋体が容易に破壊されてしまい、パッケージの気密封止が破れてしまうという問題点を有していた。
【0010】
また、誘電体多層膜を、例えば蓋体の外側に形成した場合、誘電体多層膜が空気中の水分を吸収してその赤外線遮蔽機能が劣化してしまうという問題点を、さらに、誘電体多層膜を蓋体の内側に形成した場合には、温度サイクル等の熱衝撃により誘電体多層膜が蓋体から剥離して撮像素子の画像認識領域に落下してしまい、撮像に支障をきたしてしまうという問題点を有していた。
【0011】
さらに、ニオブ酸リチウム板を用いた透光性蓋体を絶縁基体に従来の高弾性率の熱硬化性樹脂を用いて接合した場合、熱硬化性樹脂が硬化する際の応力によってニオブ酸リチウム板が破壊されてしまい、パッケージの気密封止が破れてしまうという問題点も有していた。
【0012】
本発明は、かかる従来技術の問題点に鑑み案出されたものであり、その目的は外部からの機械的衝撃や熱的衝撃に対して気密封止の信頼性が高く、かつ外界の環境に影響を受けずに安定した光学特性を得られる、光学ローパスフィルタおよび赤外線カットフィルタの機能を有する撮像素子収納用パッケージを提供することにある。
【0013】
【課題を解決するための手段】
本発明は、透光性蓋体が、封止材を介して絶縁基体に接合されるガラスから成る板材と、板材の上面に樹脂系接着剤を介して接着された複数のニオブ酸リチウム板と、複数のニオブ酸リチウム板のうち最外層に位置するニオブ酸リチウム板の撮像素子の搭載部側の面に設けられており、屈折率が1.6以下の低屈折率薄膜層と屈折率が1.7以上の高屈折率薄膜層とが交互に積層された誘電体多層膜とからなることを特徴とするものである。
【0014】
また、本発明の撮像素子収納用パッケージは、上記構成において、ニオブ酸リチウム板のいずれか1枚の板材側の面に赤外線遮蔽機能を有する誘電体多層膜が形成されていることを特徴とするものである。
【0015】
さらに、本発明の撮像素子収納用パッケージは、上記構成において、樹脂系接着剤の厚みが1〜30μmであることを特徴とするものである。
【0016】
また、本発明の撮像素子収納用パッケージは、上記構成において、封止剤がエポキシ樹脂を主成分とする熱硬化性樹脂に有機材料粉末を含有させて成るとともに、封止剤の弾性率が0.1〜3GPaであることを特徴とするものである。
【0017】
本発明の撮像素子収納用パッケージによれば、透光性蓋体をガラスから成る板材と少なくとも1枚のニオブ酸リチウム板から成る光学板材とで形成したことから、15mm角を超える大きさの透光性蓋体を絶縁基体に接合したとしても、外部からの機械的衝撃や熱的衝撃を受けた際の絶縁基体と蓋体との接合部に集中する応力をガラスから成る板材がニオブ酸リチウム板全体に良好に分散し、その結果、ニオブ酸リチウム板に大きな応力が集中してニオブ酸リチウム板が容易に破壊されることはなく、気密封止の良好なパッケージとすることができる。
【0018】
また、本発明の撮像素子収納用パッケージによれば、上記構成において、ニオブ酸リチウム板のいずれか1枚の板材側の面に赤外線遮蔽機能を有する誘電体多層膜を形成したことから、水分の吸収により光学特性が変化し易い誘電体多層膜を空気中の水分から保護することが可能となり、安定した赤外線カット機能を有する撮像素子収納用パッケージとすることができる。さらに、温度サイクル等の熱衝撃により誘電体多層膜が蓋体から剥離して撮像素子の画像認識領域に落下してしまい、撮像に支障をきたしてしまうということもない。
【0019】
さらに、本発明の撮像素子収納用パッケージによれば、上記構成において、ガラスから成る板材とニオブ酸リチウム板を貼り合わせて成る光学板材とを接合する樹脂系接着剤の厚みを1〜30μmとしたことから、ガラスから成る板材とニオブ酸リチウム板の熱膨脹係数の相違に起因して発生する応力を良好に緩和することができ、その結果、パッケージが温度サイクル試験等で熱衝撃を受けたとしても光学板材が破壊されることはなく、かつ撮像素子への光の入射が阻害されることのない良好な赤外線カット機能を有する撮像素子収納用パッケージとすることができる。
【0020】
また、本発明の撮像素子収納用パッケージによれば、上記構成において、封止剤をエポキシ樹脂を主成分とする熱硬化性樹脂に有機材料粉末を含有させてその弾性率を0.1〜3GPaとしたことから、熱硬化性樹脂が硬化する際の応力によって透光性蓋体が破壊されることはなく、気密信頼性の優れた撮像素子収納用パッケージとすることができる。
【0021】
【発明の実施の形態】
以下、本発明の撮像素子収納用パッケージを添付の図面に基づき詳細に説明する。
図1は、本発明の撮像素子収納用パッケージの実施の形態の一例を示す断面図であり、図2は、その要部拡大断面図である。これらの図において、1は絶縁基体、2は透光性蓋体、3は封止剤、4は撮像素子であり、主に絶縁基体1と透光性蓋体2と封止剤3とで本発明の撮像素子収納用パッケージが構成される。なお、透光性蓋体2はガラスから成る板材2aに、1枚のニオブ酸リチウム板Xまたは複数枚のニオブ酸リチウム板Xを貼り合せて成る光学板材2bを接合することによって形成されている。また、この図の例では、ニオブ酸リチウム板Xを3枚貼り合わせた場合の例を示している。
【0022】
絶縁基体1は、その上面に撮像素子4を搭載するための凹部1aが設けてあり、この凹部1aの底面には撮像素子4がガラス・樹脂・ろう材等から成る接着剤を介して接着固定される。
【0023】
このような絶縁基体1は、酸化アルミニウム質焼結体やムライト質焼結体・窒化アルミニウム質焼結体・窒化珪素質焼結体・炭化珪素質焼結体等の無機絶縁材料あるいは、エポキシ樹脂・フェノール樹脂・液晶ポリマー・ポリフェニレンサルファイド等の有機絶縁材料から成り、例えば、酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等の原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿物を作り、この泥漿物を従来周知のドクターブレード法やカレンダーロール法等のシート成形法を採用しシート状にしてセラミックグリーンシート(セラミック生シート)を得、しかる後、それらセラミックグリーンシートに適当な打抜き加工を施すとともにこれを複数枚積層し、約1600℃の高温で焼成することによって製作される。あるいは、エポキシ樹脂からなる場合であれば、一般的にシリカ粉末を充填した樹脂コンパウンドを射出成形機により約180℃の熱で任意の金型形状に成形し硬化させることによって製作される。なお、絶縁基体1の大きさは、撮像素子4としては対角線の長が2インチ(inch)以下のものが使用されるため、縦・横の長さが50mm以下である。
【0024】
また、絶縁基体1には、凹部1aの底面から下面にかけて複数の配線導体5が被着形成されており、この配線導体5の凹部1aの底面に位置する部位には撮像素子4の各電極がボンディングワイヤ6を介して電気的に接続され、また、下面に導出する部位を外部電気回路の配線導体(図示せず)に半田等の接続部材を介して電気的に接続することにより、撮像素子4の各電極が外部電気回路の配線導体と電気的に接続されることとなる。
【0025】
配線導体5は、撮像素子4の各電極を外部電気回路に電気的に接続する際の導電路として作用し、例えば絶縁基体1が酸化アルミニウム質焼結体から成る場合であれば、タングステン・モリブデン・マンガン等の高融点金属粉末に適当な有機溶剤・溶媒・可塑剤等を添加混合して得た金属ペーストを従来周知のスクリーン印刷法等の厚膜手法を採用して絶縁基体1となるセラミックグリーンシートにあらかじめ印刷塗布しておき、これをセラミックグリーンシートと同時に焼成することによって絶縁基体1の凹部1aの底面から下面にかけて所定パターンに被着形成される。
【0026】
また、絶縁基体1の上面には、透光性蓋体2が封止剤3を介して接合されている。透光性蓋体2は、ガラスから成る板材2aに1枚のニオブ酸リチウム板Xまたは複数枚のニオブ酸リチウム板Xを貼り合せて成る光学板材2bを接合することによって形成されており、撮像素子4をパッケージ内部に気密に封止する機能を有するとともに、光学ローパスフィルタの機能を有する。
【0027】
本発明の、撮像素子収納用パッケージによれば、透光性蓋体2をガラスから成る板材2aに1枚のニオブ酸リチウム板Xまたは複数枚のニオブ酸リチウム板Xを貼り合せて成る光学板材2bを接合して成るものとしたことから、15mm角を超える大きさの透光性蓋体2を絶縁基体1に接合したとしても、外部からの機械的衝撃や熱的衝撃を受けた際の絶縁基体1と透光性蓋体2との接合部に集中する応力をガラスがニオブ酸リチウム板X全体に良好に分散し、その結果、ニオブ酸リチウム板Xに大きな応力が集中して容易に破壊されることはなく、気密封止の良好なパッケージとすることができる。
【0028】
なお、板材2aを形成するガラスとしては、一般的にホウ珪酸ガラスが用いられ、その厚みは0.1〜1.5mmである。板材2aの厚みが0.1mm未満であると透光性蓋体2の強度が弱いものとなり、外部からの機械的衝撃や熱的衝撃により蓋体が容易に破壊されてしまう危険性があり、また、1.5mmを超えると光の透過率が低下し、画質が劣化する傾向がある。したがって、板材2aの厚みは0.1〜1.5mmの範囲が好ましい。
【0029】
また、ニオブ酸リチウム板Xは、その厚みが0.05〜1mm程度であり、0.05mm未満であるとニオブ酸リチウム板Xを研磨加工する際に割れ易くなる傾向があり、また、1mmを超えるとその厚みが厚いものとなり、撮像素子収納用パッケージを薄型化することが困難となる傾向がある。したがって、ニオブ酸リチウム板Xの厚みは0.05〜1mmの範囲が好ましい。なお、ニオブ酸リチウム板Xの枚数としては何枚でも可能であるが、枚数を多くすると薄型化が困難になること、および光学ローパスフィルタの機能の大幅な改善が期待し難いことにより、ニオブ酸リチウム板Xの枚数としては1〜5枚が好ましい。
【0030】
なお、ニオブ酸リチウム板Xは、その結晶軸に対する切断方向により複屈折板や位相板として用いられるが、透光性蓋体2の光学特性を考慮して適宜複屈折板と位相板を組み合わせて用いればよい。
【0031】
また、板材2aと光学板材2bとの接着は、エポキシ樹脂やアクリル樹脂等の樹脂系接着剤7を、好ましくは紫外線硬化樹脂を板材2aと光学板材2bとの間の全面に塗布あるいは印刷し、しかる後両者を貼り合わせるとともに樹脂系接着剤7を硬化することにより行なわれる。
【0032】
そして本発明の撮像素子収納用パッケージにおいては、樹脂系接着剤7の厚みを1〜30μmとすることが好ましい。樹脂系接着剤7の厚みが1μm未満の場合、パッケージに外部から機械的衝撃や熱的衝撃が印加された場合、樹脂系接着剤7がホウ珪酸ガラス(熱膨脹係数α≒6.0〜7.0×10-6/℃)とニオブ酸リチウム(結晶方向熱膨脹係数α≒15.4×10-6/℃)の熱膨張係数差を緩和することが困難となり、光学板材2bが破壊されてしまう危険性があり、また、30μmを超えると樹脂系接着剤7により撮像素子4への光の入射が阻害され、画質が低下してしまう傾向がある。したがって、樹脂系接着剤7の厚みは、1〜30μmの範囲とすることが好ましい。
【0033】
なお、ニオブ酸リチウム板X同士の貼り合わせは、板材2aと光学板材2bとの接着と同様に、エポキシ樹脂やアクリル樹脂等の樹脂系接着剤7を用いて、その厚みを1〜30μmの範囲として接着すればよい。
【0034】
また、本発明の撮像素子収納用パッケージにおいては、ニオブ酸リチウム板Xのいずれか1枚の板材2a側の面に赤外線遮蔽機能を有する誘電体多層膜8を形成することが好ましい。
【0035】
このような誘電体多層膜8は、図2に要部拡大断面図に示すように、屈折率が1.6以下の絶縁材料から成る低屈折率薄膜層8aおよび屈折率が1.7以上の絶縁材料から成る高屈折率薄膜層8bを順次交互に複数層積層することにより形成され、撮像レンズ(図示せず)を通過した光から赤外線の波長領域の成分を反射し、撮像素子4によって得られる画像の画質を高める機能を有し、また、透光性蓋体2に赤外線カット機能を付与することにより光学機能部品を薄型化することができる。
【0036】
また、本発明の撮像素子収納用パッケージによれば、誘電体多層膜8をニオブ酸リチウム板X間、あるいはガラスから成る板材2aとニオブ酸リチウム板Xとの間に挟みこんだことから、水分の吸収により光学特性が変化し易い誘電体多層膜8を空気中の水分から保護することが可能となり、安定した赤外線カット機能を有する撮像素子収納用パッケージとすることができる。さらに、誘電体多層膜8を透光性蓋体2の最も外側に位置するニオブ酸リチウム板Xの板材2a側の面に形成して撮像素子4から遠ざけることにより、誘電体多層膜8の成形時に膜欠陥が発生した場合においても、膜欠陥の影響を撮像素子4のイメージ認識に与え難い赤外線カット機能を有する撮像素子収納用パッケージとすることができる。
【0037】
なお、高屈折率薄膜層8bの屈折率と低屈折率薄膜層8aの屈折率との差を0.1以上とすることにより、高屈折率薄膜層8bと低屈折率薄膜層8aとの界面での赤外線の反射量が少なくなる、すなわち赤外線カット効果が小さくなることはなく、その結果、良好な赤外線カット機能を有する撮像素子収納用パッケージとすることができる。高屈折率薄膜層8bの屈折率と低屈折率薄膜層8aの屈折率との差が0.1未満であると、高屈折率薄膜層8bと低屈折率薄膜層8aとの界面での赤外線の反射量が極端に少なくなり、良好な赤外線カット機能を得ることが困難となる傾向がある。したがって、高屈折率薄膜層8bの屈折率と低屈折率薄膜層8aの屈折率との差を0.1以上とすることが、さらに好適には0.5以上とすることが好ましい。
【0038】
このような高屈折率薄膜層8bおよび低屈折率薄膜層8aは、両者の屈折率の差を0.1以上として良好な赤外線カット機能を得るとともに誘電体多層膜8の厚みを薄くするという観点からは、それぞれの屈折率を1.7以上および1.6以下とすることが好ましい。これは、光学的膜厚(λ/4:λは設計波長)が薄膜層を構成する材料の屈折率(n)と形状膜厚(d)との積(n×d)で表わされることから、高い周波数領域の赤外線を遮断する場合には屈折率(n)の大きな材料を用いることにより高屈折率薄膜層8bを薄くすることができ、また、低屈折率薄膜層8aの屈折率を1.6以下とすることにより、高屈折率薄膜層8bと低屈折率薄膜層8aの屈折率の差を十分なものとし良好な赤外線カット機能を得ることができるからである。
【0039】
このような屈折率が1.7以上の絶縁材料としては、Ta25やTiO2・Nb25・La23・ZrO2・Y23等が用いられ、屈折率が1.6以下の絶縁材料としては、SiO2やAl23・LaF3・MgF2・Na3AlF6等が用いられる。また、高屈折率薄膜層8bはその屈折率の範囲が通常は1.7〜3.0、低屈折率薄膜層8aはその屈折率の範囲が通常は1.2〜1.6であり、これらを形成する絶縁材料は薄膜層の硬さ等の特性や形成し易さ・価格等を考慮して選択される。
【0040】
なお、図1では、誘電体多層膜8をニオブ酸リチウム板Xの板材2b側の全面に被着形成した例を示しているが、誘電体多層膜8をニオブ酸リチウム板Xの板材2b側の撮像素子4の受光領域(凹部1aの開口に対応する領域)のみに被着形成してもよい。
【0041】
このような低屈折率薄膜層8aおよび高屈折率薄膜層8bから成る誘電体多層膜8は、CVD法やスパッタ法・真空蒸着法等により成形され、例えば真空蒸着法により成形する場合、SiO2・Al23・MgF2等の屈折率が1.6以下の絶縁材料と、Ta25やTiO2・Nb25等の屈折率が1.7以上の絶縁材料とをそれぞれ真空蒸着装置内に設置した坩堝に入れ、そして真空蒸着装置内を1×10-6Pa程度の真空度で250〜300℃の温度に設定した後、ニオブ酸リチウム板Xの一方の主面の全面あるいはマスキングをして撮像素子4の受光領域となる領域に、まず低屈折率薄膜層8aを被着し、その後、高屈折率薄膜層8bと低屈折率薄膜層8aとを順次交互に合計10〜100層被着することにより形成される。
【0042】
また、低屈折率薄膜層8aや高屈折率薄膜層8bのそれぞれの厚みは、遮断しようとする赤外線波長λ(nm)の0.1λ〜0.5λの厚みとすることが好ましい。低屈折率薄膜層8aや高屈折率薄膜層8bの厚みが0.1λ未満、あるいは、0.5λと超えると、屈折率(n)と形状膜厚(d)との積(n×d)がλ/4で算出される光学的膜厚と大きく異なって反射・屈折の光学的特性の関係が崩れてしまい、特定波長を遮断・透過するコントロールができなくなってしまう傾向がある。したがって、低屈折率薄膜層8aや高屈折率薄膜層8bの層の厚みは、遮断しようとする赤外線波長λ(nm)の0.1λ〜0.5λの範囲の厚みとすることが好ましい。
【0043】
また、低屈折率薄膜層8aおよび高屈折率薄膜層8bの積層数が10層未満であると、赤外線領域の波長を良好に遮断することが困難となる傾向があり、100層を超えると誘電体多層膜8を真空蒸着後に透光性蓋体2を室温に冷却する際の誘電体多層膜8の熱収縮が大きなものとなり、ニオブ酸リチウム板Xが割れ易くなる傾向がある。したがって、低屈折率薄膜層8aおよび高屈折率薄膜層8bの積層数は10〜100層の範囲が好ましく、赤外線領域の波長をより良好に遮断する、および、室温に冷却する際の誘電体多層膜8の熱収縮を小さくしてニオブ酸リチウム板Xが割れ難くするという観点からは、30〜45層の範囲が好ましい。
【0044】
さらに、本発明の撮像素子収納用パッケージにおいては、低屈折率薄膜層8aを二酸化珪素で、高屈折率薄膜層8bを二酸化チタンで形成することが好ましい。
二酸化チタンおよび二酸化珪素の蒸着粒子は、これらの粒径が薄膜層8a・8bの形成に用いられる他の絶縁材料の蒸着粒子に比較して微細であるとともに硬いことから、低屈折率薄膜層8aおよび高屈折率薄膜層8bの膜厚を精度良くコントロールすることができるとともにニオブ酸リチウム板Xの取り扱いの際に傷つき難く、その結果、特定波長光の透過・反射を良好にコントロールできる赤外線カットフィルタの機能を有する撮像素子収納用パッケージとすることができる。
【0045】
次に、絶縁基体1と透光性蓋体2とを接合する封止剤3は、エポキシ樹脂を主成分とする熱硬化性樹脂に有機材料粉末を含有させてその弾性率を0.1〜3GPaの値とすることが重要である。
【0046】
本発明の撮像素子収納用パッケージによれば、透光性蓋体2と絶縁基体1とを接合する封止剤3を、エポキシ樹脂を主成分とする熱硬化性樹脂に有機材料粉末を含有させて0.1〜3GPaの弾性率としたことから、封止剤3が硬化する際の応力によってニオブ酸リチウム板Xが破壊されることはなく、気密信頼性の優れた撮像素子収納用パッケージとすることができる。また、封止剤3がエポキシ樹脂を主成分とすることから、熱硬化性エポキシ樹脂接着剤が緻密な3次元網目構造を有し絶縁基体1と透光性蓋体2との接合を強固なものとすることができ、その結果、気密信頼性のより高い撮像素子収納用パッケージとすることができる。
【0047】
このような絶縁基体1と透光性蓋体2との接合は、接合部に封止剤3を塗布した透光性蓋体2を絶縁基体1に重ねあわせた後、約110℃の温度で60〜90分間加圧加熱することにより行われる。なお、接合の際の残留応力を低減するという観点からは、110℃程度の低温度での加熱が好ましいが、90〜250℃の温度で加熱してもよい。なお、封止剤3は、絶縁基体1と透光性蓋体2との接合時はもちろんのこと、その後の基板への2次実装時に加えられる熱、さらには撮像素子4の作動時に発生する熱によって生ずる部材間の応力を緩和して、透光性蓋体2が破壊されるのを有効に防止する機能を有する。
【0048】
このような封止剤3としては、例えば、ビスフェノールA型エポキシ樹脂やビスフェノールA変性エポキシ樹脂・ビスフェノールF型エポキシ樹脂・フェノールノボラック型エポキシ樹脂・クレゾールノボラック型エポキシ樹脂・特殊ノボラック型エポキシ樹脂・フェノール誘導体エポキシ樹脂・ビフェノール骨格型エポキシ樹脂等のエポキシ樹脂にイミダゾール系・アミン系・リン系・ヒドラジン系・イミダゾールアダクト系・アミンアダクト系・カチオン重合系・ジシアンジアミド系等の硬化剤を添加したもので形成されている。なお、2種類以上のエポキシ樹脂を混合して用いてもよい。
【0049】
また、封止剤3に含有される有機材料粉末としては、エポキシ樹脂を主成分とする熱硬化性樹脂よりも弾性率が低いシリコンゴムやシリコンレジン・LDPE・HDPE・PMMA・架橋PMMA・ポリスチレン・架橋ポリスチレン・エチレン−アクリル共重合・ポリメタクリル酸エチル・ブチルアクリレート・ウレタン等の軟質微粒子が好ましい。
【0050】
なお、封止剤3は、その弾性率が0.1GPa未満であると、機械的応力が透光性蓋体2に加わった際に封止剤3が歪み、所定の位置に透光性蓋体2を保持することが困難となる傾向があり、また、弾性率が3GPaを超えると、撮像素子収納用パッケージに落下等の大きな衝撃が加わった際に生じる応力あるいは撮像素子4の発熱による熱応力を吸収することができず、透光性蓋体2が絶縁基体1から外れてしまう、あるいは透光性蓋体2が破壊しやすくなる傾向がある。したがって、封止剤3は、その弾性率を0.1〜3GPaの範囲とすることが好ましい。
【0051】
また、封止剤3は、その硬化後の厚みが1〜50μmの範囲であることが好ましく、1μm未満であると応力緩和が有効に働かなくなる傾向があり、50μmを超えると封止剤3の透湿量が増加し、撮像素子4が水分により劣化しやすくなる傾向がある。したがって、封止剤3は、硬化後の厚みが1〜50μmの範囲であることが好ましい。
【0052】
かくして本発明の撮像素子収納用パッケージによれば、絶縁基体1の凹部1aの底面に撮像素子4をガラス・樹脂・ろう材等から成る接着剤を介して接着固定するとともに撮像素子4の各電極をボンディングワイヤ6を介して配線導体5に接続させ、しかる後、絶縁基体1と透光性蓋体2とを封止剤3を介して接続して、絶縁基体1と透光性蓋体2とから成る容器の内部に撮像素子4を気密に収容することによって最終製品としての撮像装置が完成する。
【0053】
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、誘電体多層膜7は赤外線遮光膜に限定されず、弗化マグネシウム等の材料を成膜した反射防止膜であってもよい。
【0054】
【発明の効果】
本発明の撮像素子収納用パッケージによれば、透光性蓋体をガラスから成る板材と少なくとも1枚のニオブ酸リチウム板から成る光学板材とで形成したことから、15mm角を超える大きさの透光性蓋体を絶縁基体に接合したとしても、外部からの機械的衝撃や熱的衝撃を受けた際の絶縁基体と蓋体との接合部に集中する応力をガラスから成る板材がニオブ酸リチウム板全体に良好に分散し、その結果、ニオブ酸リチウム板に大きな応力が集中してニオブ酸リチウム板が容易に破壊されることはなく、気密封止の良好なパッケージとすることができる。
【0055】
また、本発明の撮像素子収納用パッケージによれば、上記構成において、ニオブ酸リチウム板のいずれか1枚の板材側の面に赤外線遮蔽機能を有する誘電体多層膜を形成したことから、水分の吸収により光学特性が変化し易い誘電体多層膜を空気中の水分から保護することが可能となり、安定した赤外線カット機能を有する撮像素子収納用パッケージとすることができる。さらに、温度サイクル等の熱衝撃により誘電体多層膜が蓋体から剥離して撮像素子の画像認識領域に落下してしまい、撮像に支障をきたしてしまうということもない。
【0056】
さらに、本発明の撮像素子収納用パッケージによれば、上記構成において、ガラスから成る板材とニオブ酸リチウム板を貼り合わせて成る光学板材とを接合する樹脂系接着剤の厚みを1〜30μmとしたことから、ガラスから成る板材とニオブ酸リチウム板の熱膨脹係数の相違に起因して発生する応力を良好に緩和することができ、その結果、パッケージが温度サイクル試験等で熱衝撃を受けたとしても光学板材が破壊されることはなく、かつ撮像素子への光の入射が阻害されることのない良好な赤外線カット機能を有する撮像素子収納用パッケージとすることができる。
【0057】
また、本発明の撮像素子収納用パッケージによれば、上記構成において、封止剤をエポキシ樹脂を主成分とする熱硬化性樹脂に有機材料粉末を含有させてその弾性率を0.1〜3GPaとしたことから、熱硬化性樹脂が硬化する際の応力によって透光性蓋体が破壊されることはなく、気密信頼性の優れた撮像素子収納用パッケージとすることができる。
【図面の簡単な説明】
【図1】本発明の撮像素子収納用パッケージの実施の形態の一例を示す断面図である。
【図2】図1の要部拡大断面図である。
【符号の説明】
1・・・・・・・・・絶縁基体
1a・・・・・・・・凹部
2・・・・・・・・・透光性蓋体
2a・・・・・・・・ガラスから成る板材
2b・・・・・・・・光学板材
3・・・・・・・・・封止剤
4・・・・・・・・・撮像素子
7・・・・・・・・・樹脂系接着剤
8・・・・・・・・・誘電体多層膜
8a・・・・・・・・低屈折率薄膜層
8b・・・・・・・・高屈折率薄膜層
X・・・・・・・・・ニオブ酸リチウム板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image sensor housing package for protecting a semiconductor element from external mechanical shock, thermal shock, or moisture ingress, and in particular, color imaging such as a CCD / CMOS image sensor exceeding 2 million pixels. The present invention relates to an image sensor housing package on which an element is mounted.
[0002]
[Prior art]
In recent years, cameras, including CCD / CMOS imaging devices, have been made lighter, thinner, and cheaper, and optical function parts such as image sensor housing packages mounted on these devices have also become lighter, thinner, or smaller. Parts reduction is progressing.
[0003]
Such optical functional parts generally include a lens made of a glass material or a plastic material for condensing an image and guiding it to an image sensor, and an optical made of a crystal having a birefringence effect or a phase effect for preventing image moire. Low-pass filter, infrared cut filter containing metal complex for correcting reddish color tone, lid made of borosilicate glass plate, aluminum oxide sintered body, aluminum nitride sintered body, mullite sintered body An imaging element housing package made of an electrically insulating material such as a silicon nitride sintered body and made of an insulating substrate having a recess for mounting a semiconductor element.
[0004]
However, such an optical functional component configuration has a problem that it is difficult to reduce the thickness of the camera body due to restrictions on the member thickness for obtaining individual characteristics, and as a result, the camera body cannot be reduced in size.
[0005]
In order to solve such problems, Japanese Patent Application Laid-Open No. 2000-114502 uses a crystal having a function of an optical low-pass filter as a lid of an image pickup device storage package, and further a dielectric multilayer on the lid. It has been proposed to add an infrared shielding function by applying a film to reduce the thickness of the optical functional component.
[0006]
Further, it has been proposed to further reduce the thickness of an optical component by using lithium niobate having a higher birefringence than quartz as a lid.
[0007]
According to this proposal, the lid is placed on the entire surface of one side of the lithium niobate plate having a birefringence effect or a phase effect or an effective area for image recognition. 2 0 Five ・ TiO 2 ・ Nb 2 0 Five ・ LaF Three ・ La 2 O Three ・ Ta 2 O Five ・ ZrO 2 ・ Y 2 O Three High refractive index thin film layer made of a dielectric material having a refractive index of 1.7 or more and SiO 2 2 ・ Al 2 O Three ・ MgF 2 ・ Na Three AlF 6 A dielectric multilayer film formed by alternately laminating dozens of low refractive index thin film layers made of a dielectric having a refractive index of 1.6 or less is deposited by, for example, CVD, sputtering, vacuum evaporation, etc. By having an infrared shielding function, the space required for installing the optical low-pass filter and the infrared cut filter so far can be reduced, and the camera can be made thinner.
[0008]
The reason why the infrared cut function is imparted by applying a multilayer film to the lithium niobate plate is as follows. In general, the optical film thickness (λ / 4: λ is a design wavelength) is represented by the product (n × d) of the refractive index (n) of the material constituting the thin film layer and the shape film thickness (d). Therefore, the material and shape film thickness of the thin film layer is appropriately selected and a plurality of thin film layers are laminated to control the transmission and reflection of light in a specific range of wavelengths, thereby giving an infrared cut function to the lithium niobate plate. is there. The lid made of a lithium niobate plate is usually formed by laminating a single lithium niobate plate or a plurality of lithium niobate plates having a birefringence effect or a phase effect.
[0009]
[Problems to be solved by the invention]
However, lithium niobate used as an optical low-pass filter has a very small thermal expansion coefficient and anisotropy in the direction of thermal expansion compared to borosilicate glass conventionally used as a lid, and the material The strength is very weak and brittle, and the birefringence is large, so the thickness is about 1/6 that of the quartz crystal used in the past. In the case of a lid with a size exceeding the corner, the lid easily breaks due to stress concentrated on the joint between the insulating base and the lid when subjected to mechanical or thermal shock from the outside. There was a problem that the hermetic sealing of this was broken.
[0010]
Further, when the dielectric multilayer film is formed outside the lid, for example, the dielectric multilayer film absorbs moisture in the air and its infrared shielding function deteriorates. When the film is formed inside the lid, the dielectric multilayer film peels off from the lid due to a thermal shock such as a temperature cycle and falls to the image recognition area of the image sensor, which may hinder imaging. It had the problem that.
[0011]
Furthermore, when a light-transmitting lid using a lithium niobate plate is bonded to an insulating substrate using a conventional high-modulus thermosetting resin, the lithium niobate plate is caused by stress when the thermosetting resin is cured. Is broken, and the hermetic sealing of the package is broken.
[0012]
The present invention has been devised in view of the problems of the prior art, and its purpose is to have a high reliability of hermetic sealing against external mechanical shocks and thermal shocks, and to the outside environment. An object of the present invention is to provide an image sensor housing package having functions of an optical low-pass filter and an infrared cut filter, which can obtain stable optical characteristics without being affected.
[0013]
[Means for Solving the Problems]
The present invention includes a plate material made of glass in which a translucent lid is bonded to an insulating substrate via a sealing material, and a plurality of lithium niobate plates bonded to the upper surface of the plate material via a resin-based adhesive. The low-refractive-index thin film layer having a refractive index of 1.6 or less and a refractive index of the lithium niobate plate, which is the outermost layer of the plurality of lithium niobate plates, is provided on the surface of the imaging element mounting portion. It consists of a dielectric multilayer film in which high refractive index thin film layers of 1.7 or more are alternately laminated.
[0014]
In the image pickup device storage package of the present invention, in the above configuration, a dielectric multilayer film having an infrared shielding function is formed on the surface of any one of the lithium niobate plates on the plate material side. Is.
[0015]
Furthermore, the imaging element storage package of the present invention is characterized in that, in the above configuration, the thickness of the resin adhesive is 1 to 30 μm.
[0016]
The image pickup device storage package according to the present invention has the above-described configuration, in which the sealant contains an organic material powder in a thermosetting resin mainly composed of an epoxy resin, and the sealant has an elastic modulus of 0.1. It is ˜3 GPa.
[0017]
According to the image pickup device storage package of the present invention, the translucent lid is formed of a glass plate and an optical plate made of at least one lithium niobate plate. Even if the optical lid is bonded to the insulating substrate, the glass plate is made of the glass material that stresses concentrated on the bonded portion between the insulating substrate and the lid when subjected to mechanical or thermal shock from the outside. As a result, a large stress is concentrated on the lithium niobate plate and the lithium niobate plate is not easily broken, and a package with good hermetic sealing can be obtained.
[0018]
Further, according to the image pickup device storage package of the present invention, in the above configuration, since the dielectric multilayer film having an infrared shielding function is formed on the surface of any one of the lithium niobate plates, It becomes possible to protect the dielectric multilayer film whose optical characteristics are likely to change due to absorption from moisture in the air, so that an image sensor housing package having a stable infrared cut function can be obtained. Furthermore, the dielectric multilayer film does not peel off from the lid due to a thermal shock such as a temperature cycle, and falls into the image recognition area of the image pickup device, which does not hinder image pickup.
[0019]
Furthermore, according to the image pickup device storage package of the present invention, in the above configuration, the thickness of the resin-based adhesive that joins the glass plate and the optical plate formed by bonding the lithium niobate plate to 1 to 30 μm. Therefore, it is possible to satisfactorily relieve the stress generated due to the difference in thermal expansion coefficient between the glass plate and the lithium niobate plate. As a result, even if the package is subjected to thermal shock in a temperature cycle test etc. The optical plate material is not destroyed, and an image sensor housing package having a good infrared cut function that does not hinder the incidence of light on the image sensor can be obtained.
[0020]
Further, according to the image pickup device storage package of the present invention, in the above-described configuration, the sealant is contained in an organic material powder in a thermosetting resin mainly composed of an epoxy resin, and the elastic modulus is set to 0.1 to 3 GPa. For this reason, the translucent lid is not destroyed by the stress when the thermosetting resin is cured, and an image sensor housing package with excellent airtight reliability can be obtained.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an image pickup device storage package according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing an example of an embodiment of an image sensor housing package according to the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part thereof. In these drawings, 1 is an insulating substrate, 2 is a translucent lid, 3 is a sealing agent, 4 is an image sensor, and mainly includes an insulating substrate 1, a translucent lid 2 and a sealing agent 3. The image pickup device storage package of the present invention is configured. The translucent lid 2 is formed by joining an optical plate 2b formed by bonding one lithium niobate plate X or a plurality of lithium niobate plates X to a plate 2a made of glass. . Moreover, in the example of this figure, the example at the time of bonding together three lithium niobate plates X is shown.
[0022]
The insulating base 1 is provided with a recess 1a for mounting the image pickup device 4 on the upper surface, and the image pickup device 4 is bonded and fixed to the bottom surface of the recess 1a through an adhesive made of glass, resin, brazing material, or the like. Is done.
[0023]
Such an insulating substrate 1 may be an inorganic insulating material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, a silicon carbide sintered body, or an epoxy resin. -Made of an organic insulating material such as phenol resin, liquid crystal polymer, polyphenylene sulfide, etc. For example, if it is made of an aluminum oxide sintered body, it is suitable for raw material powders of aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. An organic binder, solvent, plasticizer, and dispersant are added and mixed to make a slurry, and this slurry is formed into a sheet by using a sheet forming method such as a doctor blade method or a calender roll method, which is known in the art. Ceramic green sheets), and after that, the ceramic green sheets are appropriately punched. This laminating a plurality, it is manufactured by firing at a high temperature of about 1600 ° C.. Or if it consists of an epoxy resin, generally it manufactures by shape | molding and hardening the resin compound filled with the silica powder to the arbitrary metal mold | die shape with the heat | fever of about 180 degreeC with the injection molding machine. The size of the insulating base 1 is such that the length of the diagonal line is 2 inches or less as the image pickup element 4, and therefore the vertical and horizontal lengths are 50 mm or less.
[0024]
A plurality of wiring conductors 5 are deposited on the insulating substrate 1 from the bottom surface to the bottom surface of the recess 1a, and each electrode of the image sensor 4 is located at the bottom surface of the recess 1a of the wiring conductor 5. The imaging element is electrically connected through the bonding wire 6 and is electrically connected to a wiring conductor (not shown) of the external electric circuit through a connecting member such as solder, and the like. 4 electrodes are electrically connected to the wiring conductor of the external electric circuit.
[0025]
The wiring conductor 5 acts as a conductive path for electrically connecting each electrode of the image sensor 4 to an external electric circuit. For example, if the insulating base 1 is made of an aluminum oxide sintered body, tungsten / molybdenum is used.・ Ceramic to be an insulating substrate 1 by using a thick film technique such as a screen printing method known in the art using a metal paste obtained by adding and mixing an appropriate organic solvent / solvent / plasticizer to a high melting point metal powder such as manganese. The green sheet is preliminarily printed and applied, and is fired at the same time as the ceramic green sheet to form a predetermined pattern from the bottom surface to the bottom surface of the recess 1a of the insulating substrate 1.
[0026]
In addition, a translucent lid 2 is bonded to the upper surface of the insulating substrate 1 via a sealant 3. The translucent lid 2 is formed by joining an optical plate 2b formed by bonding one lithium niobate plate X or a plurality of lithium niobate plates X to a plate 2a made of glass. The device 4 has a function of hermetically sealing the element 4 inside the package, and also has a function of an optical low-pass filter.
[0027]
According to the image pickup device storage package of the present invention, an optical plate material obtained by bonding a single lithium niobate plate X or a plurality of lithium niobate plates X to a plate material 2a made of glass. Since 2b is joined, even if the translucent cover 2 having a size exceeding 15 mm square is joined to the insulating base 1, it is subjected to mechanical or thermal impact from the outside. The stress that concentrates on the joint between the insulating substrate 1 and the translucent lid 2 is well dispersed throughout the lithium niobate plate X, and as a result, a large stress is easily concentrated on the lithium niobate plate X. The package is not broken and can be a hermetically sealed package.
[0028]
In addition, as glass which forms the board | plate material 2a, borosilicate glass is generally used and the thickness is 0.1-1.5 mm. If the thickness of the plate member 2a is less than 0.1 mm, the light-transmitting lid body 2 is weak, and there is a risk that the lid body may be easily destroyed by an external mechanical shock or thermal shock. If the thickness exceeds 1.5 mm, the light transmittance tends to decrease and the image quality tends to deteriorate. Therefore, the thickness of the plate material 2a is preferably in the range of 0.1 to 1.5 mm.
[0029]
Further, the lithium niobate plate X has a thickness of about 0.05 to 1 mm, and if it is less than 0.05 mm, it tends to break when the lithium niobate plate X is polished. There is a tendency that it becomes difficult to reduce the thickness of the image pickup device storage package because the thickness is increased. Therefore, the thickness of the lithium niobate plate X is preferably in the range of 0.05 to 1 mm. Any number of lithium niobate plates X can be used. However, if the number of lithium niobate plates X is increased, it is difficult to reduce the thickness and it is difficult to expect significant improvement in the function of the optical low-pass filter. The number of lithium plates X is preferably 1-5.
[0030]
The lithium niobate plate X is used as a birefringent plate or a phase plate depending on the cutting direction with respect to the crystal axis, but in combination with the birefringent plate and the phase plate as appropriate in consideration of the optical characteristics of the translucent lid 2. Use it.
[0031]
Further, the adhesive between the plate 2a and the optical plate 2b is performed by applying or printing a resin adhesive 7 such as an epoxy resin or an acrylic resin, preferably an ultraviolet curable resin on the entire surface between the plate 2a and the optical plate 2b. Thereafter, the two are bonded together and the resin adhesive 7 is cured.
[0032]
And in the image pick-up element storage package of this invention, it is preferable that the thickness of the resin adhesive 7 shall be 1-30 micrometers. When the thickness of the resin-based adhesive 7 is less than 1 μm, when a mechanical shock or thermal shock is applied to the package from the outside, the resin-based adhesive 7 is made of borosilicate glass (thermal expansion coefficient α≈6.0 to 7.0 × 10 -6 / ° C) and lithium niobate (coefficient of thermal expansion α≈15.4 × 10) -6 / ° C), it becomes difficult to alleviate the difference in thermal expansion coefficient, and there is a risk that the optical plate 2b is destroyed. When the thickness exceeds 30 μm, the resin adhesive 7 causes light to enter the image sensor 4. There is a tendency for the image quality to be hindered. Therefore, the thickness of the resin adhesive 7 is preferably in the range of 1 to 30 μm.
[0033]
Note that the lithium niobate plates X are bonded to each other using a resin adhesive 7 such as an epoxy resin or an acrylic resin in the range of 1 to 30 μm, similarly to the bonding between the plate material 2a and the optical plate material 2b. Can be bonded.
[0034]
In the image pickup device storage package of the present invention, it is preferable to form the dielectric multilayer film 8 having an infrared shielding function on the surface of any one of the lithium niobate plates X on the plate member 2a side.
[0035]
Such a dielectric multilayer film 8 is composed of a low-refractive-index thin film layer 8a made of an insulating material having a refractive index of 1.6 or less and an insulating material having a refractive index of 1.7 or more, as shown in an enlarged sectional view of a main part in FIG. The image quality of the image obtained by the imaging device 4 is formed by sequentially laminating a plurality of high refractive index thin film layers 8b alternately and reflects the component in the infrared wavelength region from the light passing through the imaging lens (not shown). In addition, the optical functional component can be thinned by providing the translucent lid 2 with an infrared cut function.
[0036]
Further, according to the image pickup device storage package of the present invention, since the dielectric multilayer film 8 is sandwiched between the lithium niobate plates X or between the plate material 2a made of glass and the lithium niobate plate X, moisture It is possible to protect the dielectric multilayer film 8 whose optical characteristics are likely to change due to the absorption of moisture from moisture in the air, and it is possible to provide an image pickup device housing package having a stable infrared cut function. Furthermore, the dielectric multilayer film 8 is formed on the surface of the lithium niobate plate X located on the outermost side of the translucent lid 2 on the side of the plate 2a and away from the image pickup device 4, thereby forming the dielectric multilayer film 8. Even when a film defect sometimes occurs, it is possible to provide an image sensor housing package having an infrared cut function that hardly influences the film defect on the image recognition of the image sensor 4.
[0037]
The difference between the refractive index of the high refractive index thin film layer 8b and the refractive index of the low refractive index thin film layer 8a is set to 0.1 or more, so that the interface between the high refractive index thin film layer 8b and the low refractive index thin film layer 8a is reduced. The reflection amount of infrared rays is reduced, that is, the infrared ray cutting effect is not reduced, and as a result, an image sensor housing package having a good infrared ray cutting function can be obtained. If the difference between the refractive index of the high refractive index thin film layer 8b and the refractive index of the low refractive index thin film layer 8a is less than 0.1, infrared reflection at the interface between the high refractive index thin film layer 8b and the low refractive index thin film layer 8a. There is a tendency that the amount becomes extremely small and it becomes difficult to obtain a good infrared cut function. Therefore, the difference between the refractive index of the high refractive index thin film layer 8b and the refractive index of the low refractive index thin film layer 8a is preferably 0.1 or more, and more preferably 0.5 or more.
[0038]
Such a high refractive index thin film layer 8b and a low refractive index thin film layer 8a have a difference in refractive index between them of 0.1 or more to obtain a good infrared cut function and reduce the thickness of the dielectric multilayer film 8. The refractive indexes are preferably 1.7 or more and 1.6 or less. This is because the optical film thickness (λ / 4: λ is the design wavelength) is represented by the product (n × d) of the refractive index (n) of the material constituting the thin film layer and the shape film thickness (d). When blocking infrared rays in the high frequency region, the high refractive index thin film layer 8b can be made thin by using a material having a large refractive index (n), and the refractive index of the low refractive index thin film layer 8a is 1.6. This is because the difference in refractive index between the high-refractive-index thin film layer 8b and the low-refractive-index thin film layer 8a can be made sufficient to obtain a good infrared cut function.
[0039]
As an insulating material having such a refractive index of 1.7 or more, Ta 2 0 Five And TiO 2 ・ Nb 2 0 Five ・ La 2 O Three ・ ZrO 2 ・ Y 2 O Three As an insulating material having a refractive index of 1.6 or less, SiO 2 2 And Al 2 O Three ・ LaF Three ・ MgF 2 ・ Na Three AlF 6 Etc. are used. The refractive index range of the high refractive index thin film layer 8b is usually 1.7 to 3.0, and the refractive index range of the low refractive index thin film layer 8a is usually 1.2 to 1.6. The insulating material forming these is a thin film. It is selected in consideration of characteristics such as layer hardness, ease of formation, price, and the like.
[0040]
FIG. 1 shows an example in which the dielectric multilayer film 8 is formed on the entire surface of the lithium niobate plate X on the plate 2b side. However, the dielectric multilayer film 8 is formed on the plate 2b side of the lithium niobate plate X. Alternatively, it may be deposited on only the light receiving region (region corresponding to the opening of the recess 1 a) of the imaging element 4.
[0041]
The dielectric multilayer film 8 including the low refractive index thin film layer 8a and the high refractive index thin film layer 8b is formed by a CVD method, a sputtering method, a vacuum evaporation method, or the like. For example, when forming by a vacuum evaporation method, SiO 2 2 ・ Al 2 O Three ・ MgF 2 An insulating material having a refractive index of 1.6 or less, and Ta 2 0 Five And TiO 2 ・ Nb 2 0 Five Insulating material with a refractive index of 1.7 or more is put in a crucible installed in the vacuum deposition apparatus, and the inside of the vacuum deposition apparatus is 1 × 10 -6 After setting the temperature to 250 to 300 ° C. with a degree of vacuum of about Pa, the entire surface of one main surface of the lithium niobate plate X or masking is performed on the region that becomes the light receiving region of the image sensor 4 first. The layer 8a is applied, and then, the high refractive index thin film layer 8b and the low refractive index thin film layer 8a are sequentially and alternately applied in total 10 to 100 layers.
[0042]
The thickness of each of the low refractive index thin film layer 8a and the high refractive index thin film layer 8b is preferably 0.1λ to 0.5λ of the infrared wavelength λ (nm) to be blocked. When the thickness of the low refractive index thin film layer 8a or the high refractive index thin film layer 8b is less than 0.1λ or exceeds 0.5λ, the product (n × d) of the refractive index (n) and the shape film thickness (d) is λ. Unlike the optical film thickness calculated by / 4, the relationship between reflection and refraction optical characteristics tends to be lost, and control for blocking / transmitting a specific wavelength tends to be impossible. Therefore, the thickness of the low refractive index thin film layer 8a or the high refractive index thin film layer 8b is preferably set to a thickness in the range of 0.1λ to 0.5λ of the infrared wavelength λ (nm) to be blocked.
[0043]
Further, when the number of the low refractive index thin film layers 8a and the high refractive index thin film layers 8b is less than 10, there is a tendency that it is difficult to satisfactorily block the wavelength in the infrared region. There is a tendency that the thermal contraction of the dielectric multilayer film 8 when the translucent lid 2 is cooled to room temperature after the body multilayer film 8 is vacuum-deposited becomes large, and the lithium niobate plate X tends to break. Therefore, the number of laminated layers of the low refractive index thin film layer 8a and the high refractive index thin film layer 8b is preferably in the range of 10 to 100 layers, which better cuts off the wavelength in the infrared region and cools to the room temperature. From the viewpoint of reducing the thermal contraction of the film 8 and making the lithium niobate plate X difficult to break, a range of 30 to 45 layers is preferable.
[0044]
Furthermore, in the image pickup device storage package of the present invention, it is preferable to form the low refractive index thin film layer 8a from silicon dioxide and the high refractive index thin film layer 8b from titanium dioxide.
Since the vapor-deposited particles of titanium dioxide and silicon dioxide are finer and harder than the vapor-deposited particles of other insulating materials used for forming the thin film layers 8a and 8b, the low refractive index thin film layer 8a Infrared cut filter that can control the film thickness of the high refractive index thin film layer 8b with high accuracy and is less likely to be damaged when handling the lithium niobate plate X. It can be set as the image pick-up element accommodation package which has the function.
[0045]
Next, the sealing agent 3 for joining the insulating substrate 1 and the translucent lid 2 contains an organic material powder in a thermosetting resin mainly composed of an epoxy resin and has an elastic modulus of 0.1 to 3 GPa. The value is important.
[0046]
According to the image pickup device storage package of the present invention, the sealant 3 for bonding the translucent lid 2 and the insulating substrate 1 is mixed with an organic material powder in a thermosetting resin mainly composed of an epoxy resin. Therefore, the lithium niobate plate X is not destroyed by the stress when the sealant 3 is cured, and the imaging element storage package has excellent hermetic reliability. Can do. Further, since the sealant 3 is mainly composed of an epoxy resin, the thermosetting epoxy resin adhesive has a dense three-dimensional network structure and provides a strong bond between the insulating substrate 1 and the translucent lid 2. As a result, it is possible to obtain an image sensor housing package with higher airtight reliability.
[0047]
The insulating base 1 and the translucent lid 2 are joined to each other at a temperature of about 110 ° C. after the translucent lid 2 having the sealing agent 3 applied to the joint is superimposed on the insulating base 1. It is carried out by heating under pressure for 60 to 90 minutes. In addition, from the viewpoint of reducing the residual stress at the time of joining, heating at a low temperature of about 110 ° C. is preferable, but heating may be performed at a temperature of 90 to 250 ° C. The sealant 3 is generated not only at the time of bonding the insulating base 1 and the translucent lid 2 but also at the time of secondary mounting on the substrate, and also when the image sensor 4 is operated. It has a function to relieve stress between members caused by heat and effectively prevent the translucent lid 2 from being broken.
[0048]
Examples of the sealant 3 include bisphenol A type epoxy resin, bisphenol A modified epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, special novolac type epoxy resin, and phenol derivatives. It is made of epoxy resin such as epoxy resin, biphenol skeleton type epoxy resin, etc. with addition of curing agent such as imidazole, amine, phosphorus, hydrazine, imidazole adduct, amine adduct, cationic polymerization, dicyandiamide, etc. ing. Two or more types of epoxy resins may be mixed and used.
[0049]
The organic material powder contained in the sealant 3 includes silicon rubber, silicon resin, LDPE, HDPE, PMMA, crosslinked PMMA, polystyrene, lower elastic modulus than the thermosetting resin mainly composed of epoxy resin. Soft fine particles such as crosslinked polystyrene, ethylene-acrylic copolymer, polyethyl methacrylate, butyl acrylate, and urethane are preferred.
[0050]
If the elastic modulus of the sealant 3 is less than 0.1 GPa, the sealant 3 is distorted when mechanical stress is applied to the translucent lid 2, and the translucent lid is placed at a predetermined position. 2 tends to be difficult, and when the elastic modulus exceeds 3 GPa, the stress generated when a large impact such as a drop is applied to the image sensor housing package or the thermal stress due to the heat generated by the image sensor 4 Cannot be absorbed, and the translucent lid 2 tends to be detached from the insulating substrate 1 or the translucent lid 2 tends to break down. Therefore, the sealing agent 3 preferably has an elastic modulus in the range of 0.1 to 3 GPa.
[0051]
Moreover, it is preferable that the thickness after hardening of the sealing agent 3 is 1-50 micrometers, and when it is less than 1 micrometer, there exists a tendency for stress relaxation not to work effectively, and when it exceeds 50 micrometers, sealing agent 3 There is a tendency that the amount of moisture permeation increases and the image sensor 4 is likely to be deteriorated by moisture. Therefore, the sealant 3 preferably has a thickness after curing in the range of 1 to 50 μm.
[0052]
Thus, according to the image pickup device storage package of the present invention, the image pickup device 4 is bonded and fixed to the bottom surface of the concave portion 1a of the insulating base 1 with an adhesive made of glass, resin, brazing material, etc., and each electrode of the image pickup device 4 is fixed. Is connected to the wiring conductor 5 via the bonding wire 6, and then the insulating base 1 and the translucent lid 2 are connected via the sealant 3, so that the insulating base 1 and the translucent lid 2 are connected. The image pickup device 4 as a final product is completed by airtightly storing the image pickup element 4 in a container composed of
[0053]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, the dielectric multilayer film 7 is limited to an infrared light shielding film. Alternatively, an antireflection film in which a material such as magnesium fluoride is formed may be used.
[0054]
【The invention's effect】
According to the image pickup device storage package of the present invention, the translucent lid is formed of a glass plate and an optical plate made of at least one lithium niobate plate. Even if the optical lid is bonded to the insulating substrate, the glass plate is made of the glass material that stresses concentrated on the bonded portion between the insulating substrate and the lid when subjected to mechanical or thermal shock from the outside. As a result, a large stress is concentrated on the lithium niobate plate and the lithium niobate plate is not easily broken, and a package with good hermetic sealing can be obtained.
[0055]
Further, according to the image pickup device storage package of the present invention, in the above configuration, since the dielectric multilayer film having an infrared shielding function is formed on the surface of any one of the lithium niobate plates, It becomes possible to protect the dielectric multilayer film whose optical characteristics are likely to change due to absorption from moisture in the air, so that an image sensor housing package having a stable infrared cut function can be obtained. Furthermore, the dielectric multilayer film does not peel off from the lid due to a thermal shock such as a temperature cycle, and falls into the image recognition area of the image pickup device, which does not hinder image pickup.
[0056]
Furthermore, according to the image pickup device storage package of the present invention, in the above configuration, the thickness of the resin-based adhesive that joins the glass plate and the optical plate formed by bonding the lithium niobate plate to 1 to 30 μm. Therefore, it is possible to satisfactorily relieve the stress generated due to the difference in thermal expansion coefficient between the glass plate and the lithium niobate plate. As a result, even if the package is subjected to thermal shock in a temperature cycle test etc. The optical plate material is not destroyed, and an image sensor housing package having a good infrared cut function that does not hinder the incidence of light on the image sensor can be obtained.
[0057]
Further, according to the image pickup device storage package of the present invention, in the above-described configuration, the sealant is contained in an organic material powder in a thermosetting resin mainly composed of an epoxy resin, and the elastic modulus is set to 0.1 to 3 GPa. For this reason, the translucent lid is not destroyed by the stress when the thermosetting resin is cured, and an image sensor housing package with excellent airtight reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of an image sensor storage package according to the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of FIG.
[Explanation of symbols]
1. Insulating substrate
1a: Recessed part
2 ... Translucent lid
2a ... Plate made of glass
2b ... Optical plate material
3 .... Sealant
4 ... Image sensor
7 .... Resin adhesive
8 ····· Dielectric multilayer film
8a: Low refractive index thin film layer
8b ... High refractive index thin film layer
X ... Lithium niobate plate

Claims (2)

撮像素子が搭載される凹部を有する絶縁基体と、
該絶縁基体に、前記凹部を覆うように、封止剤を介して接合される透光性蓋体とを備え、
該透光性蓋体が、前記封止材を介して前記絶縁基体に接合されるガラスから成る板材と、該板材の上面に樹脂系接着剤を介して接着された複数のニオブ酸リチウム板と、該複数のニオブ酸リチウム板のうち最外層に位置するニオブ酸リチウム板の前記撮像素子の搭載部側の面に設けられており、屈折率が1.6以下の低屈折率薄膜層と屈折率が1.7以上の高屈折率薄膜層とが交互に積層された誘電体多層膜とからなることを特徴とする撮像素子収納用パッケージ。
An insulating substrate having a recess in which the image sensor is mounted;
The insulating base is provided with a translucent lid bonded via a sealant so as to cover the concave portion,
A plate member made of glass bonded to the insulating substrate through the sealing material, and a plurality of lithium niobate plates bonded to the upper surface of the plate member through a resin adhesive ; A low refractive index thin film layer having a refractive index of 1.6 or less and a refractive index provided on the surface of the imaging element mounting portion side of the lithium niobate plate located in the outermost layer among the plurality of lithium niobate plates An image sensor housing package comprising a dielectric multilayer film in which high refractive index thin film layers having a refractive index of 1.7 or more are alternately laminated .
請求項1に記載された撮像素子収納用パッケージと、該撮像素子収納用パッケージの前記凹部に搭載された撮像素子とを備えた撮像装置。  An image pickup apparatus comprising: the image pickup device storage package according to claim 1; and an image pickup device mounted in the concave portion of the image pickup device storage package.
JP2001323988A 2001-10-22 2001-10-22 Image pickup device storage package and image pickup apparatus Expired - Fee Related JP3814512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001323988A JP3814512B2 (en) 2001-10-22 2001-10-22 Image pickup device storage package and image pickup apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323988A JP3814512B2 (en) 2001-10-22 2001-10-22 Image pickup device storage package and image pickup apparatus

Publications (2)

Publication Number Publication Date
JP2003133535A JP2003133535A (en) 2003-05-09
JP3814512B2 true JP3814512B2 (en) 2006-08-30

Family

ID=19140797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323988A Expired - Fee Related JP3814512B2 (en) 2001-10-22 2001-10-22 Image pickup device storage package and image pickup apparatus

Country Status (1)

Country Link
JP (1) JP3814512B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118043280A (en) * 2021-10-05 2024-05-14 三菱电机株式会社 Hermetically sealed component and component module

Also Published As

Publication number Publication date
JP2003133535A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP5491628B2 (en) WIRING BOARD, IMAGING DEVICE, AND IMAGING DEVICE MODULE
JP4751385B2 (en) Piezoelectric component and manufacturing method thereof
KR101650065B1 (en) Optical filter member and imaging device provided with same
JP5289582B2 (en) Imaging device and imaging device module
JP5324667B2 (en) Imaging device
JP2010510542A (en) Control of stray light and related method in camera system employing optical laminate
JP2002373977A (en) Solid state imaging device
JP2002353352A (en) Package for storing image pickup device
JP5595066B2 (en) Imaging device and imaging module
JP2017208468A (en) Electronic component
JP3814512B2 (en) Image pickup device storage package and image pickup apparatus
JP2003017607A (en) Package for housing imaging element
JP2002353354A (en) Package for storing image pickup device
JP2008060121A (en) Solid-state imaging element sealing structure, and solid-state imaging apparatus
JP2004056061A (en) Package for packaging image pickup device
JP2002359314A (en) Package for housing image pickup device
JP2003068908A (en) Package for image pickup element storage
JP4632680B2 (en) Optical filter member and solid-state imaging device using the same
KR100878933B1 (en) Wafer Level Package and Fabricating Method of the same
JP2003163339A (en) Package for housing imaging element
JP2014038970A (en) Method for manufacturing electronic device and electronic device
JP4388209B2 (en) Optical semiconductor element storage package
JP4002472B2 (en) Optical semiconductor element storage package
JP4280096B2 (en) Filter member and package for storing solid-state image sensor using the same
JP7418484B2 (en) Packages for optical devices and optical devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees