JP2008060121A - Solid-state imaging element sealing structure, and solid-state imaging apparatus - Google Patents

Solid-state imaging element sealing structure, and solid-state imaging apparatus Download PDF

Info

Publication number
JP2008060121A
JP2008060121A JP2006231911A JP2006231911A JP2008060121A JP 2008060121 A JP2008060121 A JP 2008060121A JP 2006231911 A JP2006231911 A JP 2006231911A JP 2006231911 A JP2006231911 A JP 2006231911A JP 2008060121 A JP2008060121 A JP 2008060121A
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
sealing structure
translucent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006231911A
Other languages
Japanese (ja)
Inventor
Takahiro Nakao
貴博 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006231911A priority Critical patent/JP2008060121A/en
Publication of JP2008060121A publication Critical patent/JP2008060121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging element sealing structure excellent in optical characteristics and capable of obtaining an image of an excellent color tone over the entire surface, even if an imaging apparatus is reduced in thickness, and to provide the solid-state imaging apparatus employing the same. <P>SOLUTION: The solid-state imaging element sealing structure is provided with a solid-state imaging device 2 having a light receiver 1 formed on its main surface, a microlens 3 formed on the surface of the light receiver 1, and a light-transmitting substrate 4 bent so that its center can protrude and having an external portion attached on the main surface so that the inside of the bent portion can cover the microlens 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

近年、CCDやCMOS等のカラー固体撮像素子を搭載する光学機能部品を含むカメラの軽薄短小化および低価格化が急激に進展し、これに伴って搭載されるカメラモジュールをはじめとする光学機能部品も軽薄短小化あるいは部品削減が進んでいる。   In recent years, there has been a rapid progress in reducing the size and price of cameras, including optical functional parts equipped with color solid-state image sensors such as CCDs and CMOSs, and along with this, optical functional parts such as camera modules are mounted. However, lighter, thinner and smaller parts are being reduced.

このような光学機能部品は、一般に画像を得るために外部からの入射光を集光してカラー固体撮像素子に導くためのガラス材あるいはプラスチック材から成るレンズと、赤みを帯びた色調を補正するための金属錯体を含有する赤外線カットフィルタガラスと、酸化アルミニウム質焼結体や有機プリント板等の電気絶縁材料からなる絶縁基板に固体撮像素子を実装した後にガラス材からなるカバーガラスを用いて蓋をすることによって気密封止を行った固体撮像素子封止構造体と、これらの各部品を保持する樹脂筐体とから構成されている。   Such an optical functional component generally corrects a reddish color tone and a lens made of a glass material or a plastic material for collecting incident light from outside and guiding it to a color solid-state imaging device in order to obtain an image. Using a cover glass made of a glass material after mounting a solid-state imaging device on an insulating substrate made of an electrically insulating material such as an aluminum oxide sintered body and an organic printed board It is comprised from the solid-state image sensor sealing structure which performed airtight sealing by doing, and the resin housing | casing which hold | maintains each of these components.

しかしながら、このような光学機能部品の構成では、部品としての性能を得るためには薄型化には限界があり、その結果、部品を使用したカメラ本体も薄型化が困難である。   However, in the configuration of such an optical functional component, there is a limit to reducing the thickness in order to obtain performance as a component, and as a result, it is difficult to reduce the thickness of a camera body using the component.

また、その部品の中で特に光学特性が厚みに依存するとともに、薄型化が困難である赤外線カットフィルタガラスに変わり、赤外線を遮蔽する部品としてホウケイ酸ガラスに誘電体多層膜を交互に積層した光学フィルタ部材が用いられている。この光学フィルタ部材は、五酸化タンタルや酸化チタン,酸化ニオブ,フッ化ランタン,酸化ジルコニウム等の屈折率が1.7以上の誘電体から成る高屈折率誘電体層とSiOやMgF,NaAlF等の屈折率が1.6以下の低屈折率誘電体層とを、基板片面の全面あるいは画像認識に有効な範囲に交互に数十層積層することにより赤外線を遮蔽する誘電体多層膜を形成するもので、赤外線の遮蔽特性は基板の厚みに依存することがないためカメラの薄型化が可能になるというものである。 In addition, the optical characteristics depend on the thickness of the part, and it is difficult to reduce the thickness of the filter, but instead of the infrared cut filter glass, an optical element in which dielectric multilayer films are alternately laminated on borosilicate glass as a part that shields infrared rays. A filter member is used. This optical filter member is composed of a high refractive index dielectric layer made of a dielectric material having a refractive index of 1.7 or more, such as tantalum pentoxide, titanium oxide, niobium oxide, lanthanum fluoride, zirconium oxide, etc., and SiO 2 , MgF 2 , Na 3 AlF. A dielectric multilayer film that shields infrared rays is formed by laminating several dozen layers of low refractive index dielectric layers having a refractive index of 1.6 or less such as 6 on the entire surface of one side of the substrate or in an effective range for image recognition. Therefore, since the infrared shielding property does not depend on the thickness of the substrate, the camera can be thinned.

誘電体多層膜は、一般的には、光の干渉効果を用いて、各層におけるλ/4(λは任意の設計波長)の整数倍とした光学膜厚を変えることにより、特定波長の反射強度の極大極小を制御することにより光学的フィルタとしての機能を発揮することが可能となる。これは、誘電体多層膜の光学膜厚が1/4波長となるごとに、その波長での光の位相が同じになったり、反転したりするためである。つまり、誘電体多層膜の光学膜厚を調整する事で誘電体多層膜間の高屈折率誘電体層と低屈折率誘電体層の界面や誘電体多層膜と透光性基板の界面からの反射光における光の位相を調整し、誘電体多層膜の表面での反射光と干渉させて、反射強度を増加させたり、減少させたりすることが可能となる。従って、入射光を透過させたくない波長の光に対して、光学膜厚をλ/4の偶数倍とすることによって、入射光に対する反射強度が増加することによって透過光を減少させ、特定の波長帯域に対して遮光効果を有することができる。実際には、誘電体多層膜を形成する高屈折率誘電体層と低屈折率誘電体層の光学膜厚をより詳細に調整することによって、良好な特性を有する光学フィルタとしている。なお、光学的な膜厚は屈折率nと実際の物理的な膜厚dの積(n×d)で表わされる。   In general, a dielectric multilayer film uses a light interference effect to change the optical film thickness that is an integral multiple of λ / 4 (λ is an arbitrary design wavelength) in each layer, thereby reflecting the reflection intensity at a specific wavelength. The function as an optical filter can be exhibited by controlling the local maximum and minimum. This is because each time the optical film thickness of the dielectric multilayer film becomes a quarter wavelength, the phase of light at that wavelength becomes the same or is reversed. In other words, by adjusting the optical film thickness of the dielectric multilayer film, the interface between the high refractive index dielectric layer and the low refractive index dielectric layer between the dielectric multilayer films and the interface between the dielectric multilayer film and the translucent substrate is used. By adjusting the phase of the light in the reflected light and interfering with the reflected light on the surface of the dielectric multilayer film, the reflection intensity can be increased or decreased. Therefore, by setting the optical film thickness to an even multiple of λ / 4 for light with a wavelength that you do not want to transmit the incident light, the transmitted light is reduced by increasing the reflection intensity for the incident light. It can have a light blocking effect on the band. Actually, an optical filter having good characteristics is obtained by adjusting the optical film thicknesses of the high refractive index dielectric layer and the low refractive index dielectric layer forming the dielectric multilayer film in more detail. The optical film thickness is represented by the product (n × d) of the refractive index n and the actual physical film thickness d.

このような光学フィルタ部材から成るカバーガラスを絶縁基板と接合することによって、赤外線カットフィルタ部材を省くことができ、光学機能部品の薄型化が可能となった。   By joining the cover glass made of such an optical filter member to the insulating substrate, the infrared cut filter member can be omitted, and the optical functional component can be made thinner.

更に、貫通電極を有した固体撮像素子に、直接カバーガラスを接着することによってより小型薄型化とすることが提案されている。(特許文献1参照)
特開2001−351997号公報
Furthermore, it has been proposed to make the size and thickness thinner by directly bonding a cover glass to a solid-state imaging device having a through electrode. (See Patent Document 1)
JP 2001-351997 A

しかしながら、特許文献1に示すような構成では、固体撮像素子の受光部を除く周辺部に接着剤を塗布し、固体撮像素子とカバーガラスを接合させる際に、固体撮像素子の受光部の表面の画素毎に形成されたマイクロレンズに接触しないように、受光部とカバーガラスが所定の間隔を保つようにする必要があり、そのために接着剤の厚みを一定の厚みに確保した状態で硬化させる必要がある。しかしながら、接着剤は粘性を有する液体であるため一定の厚みを均一に確保することができないという問題があった。一方、カバーガラスに、受光部に対応する凹部を設けることによって、カバーガラスがマイクロレンズに接触することを防止することが提案されているが、この場合、受光部に対向する凹部の表面の平坦度を得るための加工が非常に困難であるため高コストの要因となる問題があった。   However, in the configuration as shown in Patent Document 1, when the adhesive is applied to the peripheral portion excluding the light receiving portion of the solid-state imaging device and the solid-state imaging device and the cover glass are joined, the surface of the light-receiving portion of the solid-state imaging device is It is necessary to keep the light receiving part and the cover glass at a predetermined distance so as not to come into contact with the microlens formed for each pixel. For this purpose, it is necessary to cure the adhesive with a certain thickness. There is. However, since the adhesive is a viscous liquid, there is a problem in that a certain thickness cannot be ensured uniformly. On the other hand, it has been proposed to prevent the cover glass from contacting the microlens by providing the cover glass with a recess corresponding to the light receiving portion. In this case, the surface of the recess facing the light receiving portion is flat. Since the processing for obtaining the degree is very difficult, there is a problem that causes high cost.

また、カバーガラスを直接固体撮像素子に接合することによって薄型化した結果、レンズと受光部の距離が接近するために、レンズによって集光された入射光のカバーガラスに入射する角度が受光部の中央付近から遠ざかるに従い、カバーガラスの主面に対する法線に対して大きくなる。一方、カバーガラス表面に被着形成された赤外線を遮蔽する誘電体多層膜は入射角に伴って光学特性が変化するため、受光部の中央付近と周辺付近において入射光の入射角度の相違が大きくなった結果、中央付近に比べ周辺付近で色調が赤みがかる傾向が出ることで良好な画像が得られないという問題を有していた。   In addition, as a result of thinning the cover glass by directly bonding it to the solid-state imaging device, the distance between the lens and the light receiving unit approaches, so the incident angle of incident light collected by the lens on the cover glass is As the distance from the center increases, the normal to the main surface of the cover glass increases. On the other hand, the dielectric multilayer film that shields infrared rays deposited on the surface of the cover glass changes in optical characteristics with the incident angle, so the difference in incident angle of incident light between the center and the periphery of the light receiving part is large. As a result, there is a problem that a good image cannot be obtained because the color tone tends to be reddish in the vicinity of the periphery as compared with the vicinity of the center.

従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、撮像装置を薄型化しても、全面で良好な色調の画像が得られる光学特性に優れた固体撮像素子封止構造体およびそれを用いた固体撮像装置を提供することである。   Accordingly, the present invention has been completed in view of the above problems, and its object is to encapsulate a solid-state image sensor excellent in optical characteristics that can obtain an image with good color tone on the entire surface even if the imaging apparatus is thinned. To provide a structure and a solid-state imaging device using the structure.

本発明の固体撮像素子封止構造体は、主面に受光部が形成された固体撮像素子と、前記受光部の表面に形成されたマイクロレンズと、中央部が突出するように湾曲しているとともに、該湾曲した部位の内側で前記マイクロレンズを覆うように外周部が前記主面に取着された透光性基板とを具備することを特徴とする。   The solid-state imaging device sealing structure of the present invention is curved so that a solid-state imaging device having a light receiving portion formed on the main surface, a microlens formed on the surface of the light receiving portion, and a central portion project. And a translucent substrate having an outer peripheral portion attached to the main surface so as to cover the microlens inside the curved portion.

本発明の固体撮像素子封止構造体は、前記透光性基板は全領域において厚みが一定であることを特徴とする。   The solid-state imaging device sealing structure according to the present invention is characterized in that the translucent substrate has a constant thickness in the entire region.

本発明の固体撮像素子封止構造体は、前記透光性基板の前記湾曲した部位の外側に、高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成る誘電体多層膜を被着形成したことを特徴とする。   The solid-state imaging device sealing structure of the present invention is a dielectric formed by alternately laminating a plurality of high refractive index dielectric layers and low refractive index dielectric layers on the outside of the curved portion of the translucent substrate. It is characterized in that a multilayer film is deposited.

本発明の固体撮像素子封止構造体は、前記透光性基板の前記湾曲した部位の内側に、高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成る反射防止膜を被着形成したことを特徴とする。   The solid-state imaging device sealing structure according to the present invention includes a reflective layer formed by alternately laminating a plurality of high-refractive index dielectric layers and low-refractive index dielectric layers inside the curved portion of the translucent substrate. It is characterized in that a prevention film is deposited.

本発明の固体撮像素子封止構造体は、前記反射防止膜は、前記透光性基板と前記固体撮像素子との接合部まで形成されているとともに前記固体撮像素子側の最表層が酸化珪素から成ることを特徴とする。   In the solid-state imaging device sealing structure according to the present invention, the antireflection film is formed up to a junction between the translucent substrate and the solid-state imaging device, and the outermost layer on the solid-state imaging device side is made of silicon oxide. It is characterized by comprising.

本発明の固体装置は、上記本発明の固体撮像素子封止構造体と、該固体撮像素子封止構造体が搭載された基体と、前記透光性基板に光を集光するための光学レンズとを具備することを特徴とする。   The solid-state device of the present invention includes a solid-state image sensor sealing structure according to the present invention, a base on which the solid-state image sensor sealing structure is mounted, and an optical lens for condensing light on the translucent substrate. It is characterized by comprising.

本発明の固体装置は、前記基体に貫通穴が形成されており、前記透光性基板を前記貫通穴に対向させるとともに該貫通穴を塞ぐように前記固体撮像素子封止構造体が前記基体に搭載されていることを特徴とする。   In the solid-state device of the present invention, a through hole is formed in the base, and the solid-state imaging element sealing structure is formed in the base so that the translucent substrate faces the through hole and closes the through hole. It is mounted.

本発明の固体撮像素子封止構造体は、主面に受光部が形成された固体撮像素子と、受光部の表面に形成されたマイクロレンズと、中央部が突出するように湾曲しているとともに、湾曲した部位の内側でマイクロレンズを覆うように外周部が主面に取着された透光性基板とを具備したことから、透光性基板の湾曲によって固体撮像素子の受光部の表面に形成されたマイクロレンズと透光性基板との間に十分な距離を確保することができ、透光性基板を固体撮像素子の受光部を除く周辺部に接合する際の接着剤の厚みを厚くする必要はない。よって、接着剤を非常に薄くできるので、厚みばらつきが生じにくくなる。   The solid-state imaging device sealing structure of the present invention is curved so that a solid-state imaging device having a light receiving portion formed on the main surface, a microlens formed on the surface of the light receiving portion, and a central portion project. And a translucent substrate having an outer peripheral portion attached to the main surface so as to cover the microlens inside the curved portion, the surface of the light receiving unit of the solid-state imaging device is curved by the translucent substrate A sufficient distance can be ensured between the formed microlens and the translucent substrate, and the thickness of the adhesive is increased when the translucent substrate is joined to the peripheral portion of the solid-state imaging device except the light receiving portion. do not have to. Therefore, since the adhesive can be made very thin, thickness variations are less likely to occur.

また、透光性基板は単に湾曲しただけの単純な構造なので、凹部等の複雑な形状を有する従来構成のように高コスト化を招く加工を要することなく、固体撮像素子と前記透光性基板を接合させることができる。   In addition, since the translucent substrate is a simple structure that is simply curved, the solid-state imaging device and the translucent substrate can be used without requiring processing that increases the cost as in the conventional configuration having a complicated shape such as a recess. Can be joined.

本発明の固体撮像素子封止構造体は、透光性基板の湾曲した部位の外側に、高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成る誘電体多層膜を被着形成したことから、レンズによって集光された入射光の角度を透光性基板の主面に対する法線に対して小さくすることができ前記透光性基板表面に被着形成された赤外線を遮蔽する誘電体多層膜が入射角に伴って光学特性が大きく変化することを有効に抑制することができる。   The solid-state imaging device sealing structure according to the present invention includes a dielectric multilayer formed by alternately laminating a plurality of high-refractive index dielectric layers and low-refractive index dielectric layers outside a curved portion of a translucent substrate. Since the film is deposited, the angle of the incident light collected by the lens can be reduced with respect to the normal to the main surface of the translucent substrate, and the film is deposited on the translucent substrate surface. It is possible to effectively suppress the optical properties of the dielectric multilayer film that shields infrared rays from changing greatly with the incident angle.

本発明の固体撮像素子封止構造体は、透光性基板が全領域において一定の厚みを有することから、レンズによって集光された光が透光性基板を透過する際の行路長を透光性基板の湾曲部においてほぼ均一にすることができる。その結果、透光性基板を通過する際の光の吸収率が中央部と外周部とで大きく異なることを有効に抑制でき、光学特性がより良好となる。   In the solid-state imaging device sealing structure of the present invention, since the translucent substrate has a constant thickness in the entire region, the path length when the light collected by the lens passes through the translucent substrate is translucent. The curved portion of the conductive substrate can be made almost uniform. As a result, it is possible to effectively suppress the light absorption rate when passing through the translucent substrate from being greatly different between the central portion and the outer peripheral portion, and the optical characteristics become better.

本発明の固体撮像素子封止構造体は、透光性基板の湾曲した部位の内側に、高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成る反射防止膜を被着形成したことから、反射防止膜の形成条件を調整することにより反射防止膜と透光性基板との収縮率差を適宜調整でき、この収縮率差を利用して透光性基板を容易に湾曲させることができる。そしてこの湾曲率を変化させることでレンズによって集光された入射光の角度を透光性基板の主面に対する法線に対してより小さくすることができ透光性基板表面に被着形成された赤外線を遮蔽する誘電体多層膜が入射角に伴って光学特性が大きく変化することをより有効に抑制することができる。   The solid-state imaging device sealing structure of the present invention includes an antireflection film in which a plurality of high-refractive index dielectric layers and low-refractive index dielectric layers are alternately stacked inside a curved portion of a translucent substrate. Therefore, by adjusting the formation conditions of the antireflection film, the shrinkage rate difference between the antireflection film and the translucent substrate can be appropriately adjusted. Can be easily bent. By changing the curvature, the angle of incident light collected by the lens can be made smaller than the normal to the main surface of the translucent substrate. The dielectric multilayer film that shields infrared rays can be more effectively suppressed from changing optical characteristics with the incident angle.

本発明の固体撮像素子封止構造体は、反射防止膜が透光性基板と固体撮像素子との接合部まで形成されているとともに固体撮像素子側の最表層が酸化珪素から成ることから、固体撮像素子の受光部を除く周辺部に接着剤を塗布し、固体撮像素子の受光部の表面に形成されたマイクロレンズに接触させることなく、高コスト化を招く加工を要することなく固体撮像素子と前記透光性基板を接合させる際に、接着剤と反射防止膜表面の接合において水酸基を介した水素結合を行なうことにより、より強い接着強度を得ることができる。   In the solid-state imaging device sealing structure of the present invention, the antireflection film is formed up to the junction between the translucent substrate and the solid-state imaging device, and the outermost layer on the solid-state imaging device side is made of silicon oxide. Applying an adhesive to the peripheral part of the image sensor excluding the light receiving part and contacting the microlens formed on the surface of the light receiving part of the solid state image sensor, without requiring processing that increases costs When bonding the translucent substrate, a stronger bonding strength can be obtained by performing hydrogen bonding via a hydroxyl group in bonding the adhesive and the antireflection film surface.

本発明の固体装置は、上記本発明の固体撮像素子封止構造体と、この固体撮像素子封止構造体が搭載された基体と、透光性基板に光を集光するための光学レンズとを具備することから、薄型化が可能であるとともに、良好な色調の画像が得られる光学特性に優れた固体撮像装置となる。   The solid-state device of the present invention includes a solid-state imaging element sealing structure of the present invention, a base on which the solid-state imaging element sealing structure is mounted, an optical lens for condensing light on a translucent substrate, Therefore, it is possible to reduce the thickness of the solid-state imaging device and to provide a solid-state imaging device with excellent optical characteristics that can obtain an image with a good color tone.

本発明の固体装置は、基体に貫通穴が形成されており、透光性基板を貫通穴に対向させるとともにこの貫通穴を塞ぐように固体撮像素子封止構造体が基体に搭載されていることから、貫通穴によってレンズから集光される光以外のノイズとなる光が固体撮像素子に入射されるのを有効に抑制でき、より良好な色調の画像が得られる光学特性に優れた固体撮像装置となる。   In the solid-state device of the present invention, a through-hole is formed in the base, and the solid-state image sensor sealing structure is mounted on the base so that the translucent substrate faces the through-hole and closes the through-hole. Therefore, it is possible to effectively prevent light that becomes noise other than the light collected from the lens through the through hole from being incident on the solid-state imaging device, and to obtain an image with a better color tone. It becomes.

本発明の固体撮像素子封止構造体を添付の図面に基づき詳細に説明する。   The solid-state image sensor sealing structure of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の固体撮像素子封止構造体の実施の形態の一例を示す断面図である。1は受光部、2は固体撮像素子、3は受光部1の表面に形成されたマイクロレンズ、4は中央部が突出するように湾曲しているとともに、湾曲した部位の内側でマイクロレンズ3を覆うように外周部が主面に取着された透光性基板、5は受光部から外部に信号を取り出すための配線層、6は固体撮像素子2に透光性基板4を固着する接着剤、7は固体撮像素子2からの信号を外部配線基板に接続するための接続配線、8は基体、9は固体撮像素子2の配線層5を接続配線7に電気的に接続するための接続材、10は光を受光部1に導くための光学レンズ、矢印は光路を模式的に記したものである。   FIG. 1 is a cross-sectional view showing an example of an embodiment of a solid-state imaging device sealing structure of the present invention. 1 is a light receiving unit, 2 is a solid-state imaging device, 3 is a microlens formed on the surface of the light receiving unit 1, 4 is curved so that the center part protrudes, and the microlens 3 is placed inside the curved part. A translucent substrate having an outer peripheral portion attached to the main surface so as to cover, 5 is a wiring layer for taking out a signal from the light receiving unit to the outside, and 6 is an adhesive for fixing the translucent substrate 4 to the solid-state imaging device 2. , 7 is a connection wiring for connecting a signal from the solid-state imaging device 2 to the external wiring substrate, 8 is a base, and 9 is a connection material for electrically connecting the wiring layer 5 of the solid-state imaging device 2 to the connection wiring 7. Reference numeral 10 denotes an optical lens for guiding light to the light receiving unit 1, and arrows schematically describe the optical path.

透光性基板4は、ホウケイ酸ガラス等のガラス材料、もしくはニオブ酸リチウム,水晶,サファイア等の複屈折材料、アクリル樹脂等の高分子材料が用いられる。   The translucent substrate 4 is made of a glass material such as borosilicate glass, a birefringent material such as lithium niobate, crystal, or sapphire, or a polymer material such as acrylic resin.

透光性基板4は、溶融させた高純度のガラス原料をガラスの溶融温度よりも融点が高い金属から成る容器内、好ましくは、不純物の溶け込みを効果的に防止できる例えば白金(Pt)から成る容器内に流し込んだ後、数日に渡って徐冷却し、ブロック状に形成する。しかる後、所定の板厚および外形寸法に切断するとともに、機械的に切削することにより中央部が突出するように湾曲させ、その後アルミナ等から成る研磨材を用いてラップ研磨を行ない、さらにアルミナ,酸化セリウム等から成る研磨材を用いて光学研磨することにより透光性基板4とすることができる。このようにして作成することで、高純度のガラス原料に固体撮像素子2に悪影響を及ぼすα線を発生する不純物が溶け込むことを防止することができる。   The translucent substrate 4 is made of, for example, platinum (Pt), which can effectively prevent the melting of impurities, in a container made of a metal having a melting point higher than the melting temperature of the glass, preferably a molten high-purity glass raw material. After pouring into the container, it is gradually cooled over several days to form a block. Thereafter, it is cut into a predetermined plate thickness and outer dimensions, and is curved so that the central portion protrudes by mechanical cutting, and then lapping is performed using an abrasive made of alumina or the like, and further, alumina, The light-transmitting substrate 4 can be obtained by optical polishing using an abrasive made of cerium oxide or the like. By creating in this way, it is possible to prevent the impurities that generate α-rays that adversely affect the solid-state imaging device 2 from being dissolved in the high-purity glass raw material.

また、ホウケイ酸ガラスは、ガラス原料にホウ酸を加えることで耐熱性や耐薬品性に優れる材料となり、さらに透明で平坦な無孔性の表面を有することから光学的に欠陥の少ない材料として好適に用いられる。このようなホウケイ酸ガラスは、溶融した高純度のガラス原料をダウンドロー法により、無研磨にて板厚のバラツキの少ない透光性平面基板とすることができる。これを後述するように誘電体多層膜11aを透光性平面基板の中央部が突出する面に形成する時の条件を調整することによって、または、反射防止膜11bを透光性平面基板の中央部が突出する面の逆面に形成する時の条件を調整することによって、誘電体多層膜と透光性基板との収縮率に差を持たせることができ、この収縮率差を利用して、図2のように中央部が突出するように湾曲している透光性基板4とすることができる。これにより、高コスト化を招く加工を要することなく、透光性基板を容易に湾曲させることができる。   In addition, borosilicate glass becomes a material with excellent heat resistance and chemical resistance by adding boric acid to the glass raw material, and it is also suitable as a material with few optical defects because it has a transparent, flat and nonporous surface. Used for. Such a borosilicate glass can be made into a light-transmitting flat substrate with little variation in plate thickness without polishing by using a melted high-purity glass raw material by a downdraw method. As will be described later, by adjusting the conditions when the dielectric multilayer film 11a is formed on the surface from which the central portion of the translucent flat substrate protrudes, or the antireflection film 11b is formed at the center of the translucent flat substrate. By adjusting the conditions when forming on the opposite side of the surface from which the part protrudes, it is possible to give a difference in the shrinkage rate between the dielectric multilayer film and the translucent substrate, and using this shrinkage rate difference As shown in FIG. 2, the translucent substrate 4 is curved so that the central portion protrudes. Thereby, a translucent board | substrate can be curved easily, without requiring the process which raises cost.

また、ニオブ酸リチウムや水晶、サファイアは高圧高温にした育成炉内で種結晶に人工的に結晶成長させることにより単結晶からなるブロックを得た後、切り出し面が結晶軸に対して所定の角度となるようにワイヤーソーやバンドソー等を用いてウエハーを切り出す。このウエハーを所定の板厚および外形寸法に切断するとともに、各稜線部を機械的に切削することによりC面加工を行なった後、アルミナ等から成る研磨材を用いてラップ研磨を行ない、さらに、アルミナ,酸化セリウム等から成る研磨材を用いて光学研磨することにより透光性平面基板とすることができる。これを後述するように誘電体多層膜11a、反射防止膜11bを透光性平面基板の上面、下面もしくは上下面に形成する時の条件を調整することによって、誘電体多層膜と透光性基板との収縮率に差を持たせることができ、この収縮率差を利用して、図2のように中央部が突出するように湾曲している透光性基板4とすることができる。これにより、高コスト化を招く加工を要することなく、透光性基板を容易に湾曲させることができる。   In addition, lithium niobate, quartz, and sapphire are obtained by artificially growing a seed crystal in a growth furnace at high pressure and high temperature to obtain a block made of a single crystal, and then the cut surface has a predetermined angle with respect to the crystal axis. Then, the wafer is cut out using a wire saw or a band saw. The wafer is cut into a predetermined plate thickness and outer dimensions, and after c-plane processing is performed by mechanically cutting each ridge line portion, lapping is performed using an abrasive made of alumina or the like. A light-transmitting flat substrate can be obtained by optical polishing using an abrasive made of alumina, cerium oxide or the like. As will be described later, by adjusting the conditions when the dielectric multilayer film 11a and the antireflection film 11b are formed on the upper surface, the lower surface, or the upper and lower surfaces of the light transmissive flat substrate, the dielectric multilayer film and the light transmissive substrate are adjusted. 2 can be made to have a difference in shrinkage rate, and by using this difference in shrinkage rate, the light-transmitting substrate 4 that is curved so that the central portion protrudes as shown in FIG. 2 can be obtained. Thereby, a translucent board | substrate can be curved easily, without requiring the process which raises cost.

透光性基板4は、厚みが、0.03mmから0.35mmが好ましい。透光性基板4の厚みが0.03mmより薄いと、誘電体多層膜11aや、反射防止膜11bを形成する時点での応力によって透光性基板4が大きく変形してしまい中央部が突出するように湾曲させるのが難しく、また、変形によって蒸着する誘電体層厚みを均一に形成することが難しくなる傾向があり、また、強度も不十分になりやすい。透光性基板4の厚みが0.35mmより厚いと、透光性基板4の曲げ強度が大きくなるため、誘電体多層膜11aや、反射防止膜11bを形成することで透光性基板4の中央部が突出するように湾曲させようとすると、逆に誘電体層に加わる応力が大きくなりすぎて、誘電体層にクラックが発生しやすくなる。   The translucent substrate 4 preferably has a thickness of 0.03 mm to 0.35 mm. If the thickness of the translucent substrate 4 is smaller than 0.03 mm, the translucent substrate 4 is greatly deformed by the stress at the time of forming the dielectric multilayer film 11a or the antireflection film 11b, and the central portion protrudes. It is difficult to bend, and it tends to be difficult to form a uniform dielectric layer thickness by deformation, and the strength tends to be insufficient. If the thickness of the translucent substrate 4 is greater than 0.35 mm, the bending strength of the translucent substrate 4 increases, and therefore the dielectric multilayer film 11a and the antireflection film 11b are formed to form the translucent substrate 4. If it is attempted to bend so that the central portion protrudes, on the contrary, the stress applied to the dielectric layer becomes too large, and cracks are likely to occur in the dielectric layer.

また、誘電体多層膜11a、反射防止膜11bを被着形成する直前に、10%〜30%の水酸化ナトリウム水溶液を用いて洗浄することによって、透光性基板4表面を化学的に研磨すると共に、透光性基板4表面にプラズマを照射するプラズマ洗浄によって透光性基板4の表面を活性化することが望ましい。これらの洗浄を行なうことによって、透光性基板4の表面と誘電体層の密着性と光学的な透過性、反射性を向上させることができる。   Further, immediately before the dielectric multilayer film 11a and the antireflection film 11b are deposited, the surface of the translucent substrate 4 is chemically polished by cleaning with a 10% to 30% sodium hydroxide aqueous solution. At the same time, it is desirable to activate the surface of the translucent substrate 4 by plasma cleaning in which the surface of the translucent substrate 4 is irradiated with plasma. By performing these cleaning operations, it is possible to improve the adhesion between the surface of the translucent substrate 4 and the dielectric layer, the optical transparency, and the reflectivity.

また、透光性基板4の平面視の形状は、正方形や長方形等の四角形状でも良いが、四隅を面取りした8角形状や、角をR加工した形状、円形や楕円形等の略円形状が接着剤6の厚みを薄く接合することができるので耐湿性を向上させやすくなり好ましい。   The shape of the translucent substrate 4 in plan view may be a square shape such as a square or a rectangle, but an octagonal shape with four corners chamfered, a shape with a rounded corner, a substantially circular shape such as a circle or an ellipse. However, since the thickness of the adhesive 6 can be thinly joined, moisture resistance is easily improved, which is preferable.

図3に誘電体多層膜11aおよび反射防止膜11bを被着した透光性基板4の要部拡大断面図を示す。   FIG. 3 shows an enlarged cross-sectional view of a main part of the translucent substrate 4 on which the dielectric multilayer film 11a and the antireflection film 11b are applied.

誘電体多層膜11aは、通常は屈折率が1.7以上の誘電体材料から成る高屈折率誘電体層12および、通常は屈折率が1.6以下の誘電体材料から成る低屈折率誘電体層13を、蒸着法やスパッタリング法等を用い、数十層に渡って順次交互に複数層積層することにより形成される。   The dielectric multilayer film 11a includes a high refractive index dielectric layer 12 usually made of a dielectric material having a refractive index of 1.7 or more, and a low refractive index dielectric usually made of a dielectric material having a refractive index of 1.6 or less. The body layer 13 is formed by laminating a plurality of layers alternately over several tens of layers using vapor deposition or sputtering.

このようにして作成した誘電体多層膜11aは、一般的に近赤外領域の波長の入射波を遮蔽する光学フィルタとして必要な機能である波長400nm〜600nmの領域において、反射率の最大値が20%以下であり、波長700nm〜1000nmの領域において、反射率の最小値が90%以上である機能を有している。   The dielectric multilayer film 11a produced in this way generally has a maximum reflectance in a wavelength range of 400 nm to 600 nm, which is a function necessary as an optical filter that blocks incident waves having a wavelength in the near infrared range. It has a function of 20% or less and a minimum reflectance of 90% or more in a wavelength range of 700 nm to 1000 nm.

また、光学フィルタの機能を有する誘電体多層膜11aが被着形成された一主面と対向する主面に、少なくとも波長450nm〜600nmの領域において、反射率の最大値が2%以下となる反射防止膜11bを形成することが好ましい。これにより、所望の入射光の損失を少なくすることができ、更に良好な画像信号を得ることができる。   Further, a reflection having a maximum reflectance of 2% or less on a principal surface opposite to the principal surface on which the dielectric multilayer film 11a having a function of an optical filter is deposited is at least in a wavelength region of 450 nm to 600 nm. It is preferable to form the prevention film 11b. As a result, the loss of desired incident light can be reduced, and a better image signal can be obtained.

反射防止膜11bは、通常は屈折率が1.7以上の誘電体材料から成る高屈折率誘電体層12’および、通常は屈折率が1.6以下の誘電体材料から成る低屈折率誘電体層13’を、蒸着法やスパッタリング法等を用い、数層順次交互に複数層積層することにより形成される。   The antireflective film 11b includes a high refractive index dielectric layer 12 'made of a dielectric material usually having a refractive index of 1.7 or more, and a low refractive index dielectric made of a dielectric material usually having a refractive index of 1.6 or less. The body layer 13 ′ is formed by laminating a plurality of layers alternately by several layers using vapor deposition or sputtering.

このような誘電体多層膜11a、反射防止膜11bに好適な屈折率が1.7以上の絶縁材料としては、例えば五酸化タンタルや酸化チタン,五酸化ニオブ,酸化ランタン,酸化ジルコニウム等が用いられ、屈折率が1.6以下の絶縁材料としては、例えば酸化珪素や酸化アルミニウム,フッ化ランタン,フッ化マグネシウム等がある。硬さや安定性などの機械的特性、および所望の光学フィルタとしての機能を付与するために必要となる屈折率等の光学的特性から、高屈折率誘電体層12、12’としては酸化チタンを、低屈折率誘電体層13、13’としては酸化珪素が望ましい。   As an insulating material having a refractive index of 1.7 or more suitable for the dielectric multilayer film 11a and the antireflection film 11b, for example, tantalum pentoxide, titanium oxide, niobium pentoxide, lanthanum oxide, zirconium oxide or the like is used. Examples of the insulating material having a refractive index of 1.6 or less include silicon oxide, aluminum oxide, lanthanum fluoride, and magnesium fluoride. From the mechanical characteristics such as hardness and stability, and the optical characteristics such as refractive index necessary for imparting a function as a desired optical filter, titanium oxide is used as the high refractive index dielectric layers 12 and 12 ′. The low refractive index dielectric layers 13 and 13 ′ are preferably silicon oxide.

誘電体多層膜11aを透光性基板4に被着形成する方法として、イオンビームアシスト法を用いることが好ましい。イオンビームアシスト法は、製膜プロセスである真空蒸着法に陽イオンの照射を併用する真空蒸着法である。イオンビームアシスト法で使用する陽イオンは、例えばアルゴンからなる不活性ガスと酸素ガスからなる活性ガスの両方を装置のイオン源に導入してプラズマとしたものから生成したものを用いる。   As a method of depositing and forming the dielectric multilayer film 11a on the translucent substrate 4, it is preferable to use an ion beam assist method. The ion beam assist method is a vacuum deposition method in which cation irradiation is used in combination with a vacuum deposition method which is a film forming process. As the cation used in the ion beam assist method, for example, a cation generated from plasma obtained by introducing both an inert gas composed of argon and an active gas composed of oxygen gas into an ion source of the apparatus is used.

イオンビームアシスト法では、例えば透光性平面基板を真空蒸着装置内に設置した坩堝に入れ、光学的に良質な誘電体多層膜11aを得るために、酸素欠乏を起こさないように十分に酸素を供給し、そして真空蒸着装置内を1×10-3Pa程度の真空度に設定された状態で陽イオンの照射を併用しながら真空蒸着が行なわれる。真空蒸着装置内にて誘電体多層膜11aが被着形成される際の透光性基板4の表面温度は、熱電対により透光性基板4付近の温度を計測することにより管理され、電熱線ヒーター等を用いて温度範囲30〜350℃程度に保持される。しかる後、透光性基板4の主面の全面あるいはマスキングをして固体撮像素子2と対向する所望の領域に、高屈折率誘電体層12と低屈折率誘電体層13とを陽イオンの照射を併用しながら順次交互に合計10〜100層程度誘電体層を被着することにより誘電体多層膜11aを被着形成した透光性基板4が形成される。 In the ion beam assist method, for example, a translucent flat substrate is placed in a crucible installed in a vacuum deposition apparatus, and oxygen is sufficiently added so as not to cause oxygen deficiency in order to obtain an optically good dielectric multilayer film 11a. Then, vacuum deposition is performed while using cation irradiation in a state where the degree of vacuum is set to about 1 × 10 −3 Pa in the vacuum deposition apparatus. The surface temperature of the translucent substrate 4 when the dielectric multilayer film 11a is deposited in the vacuum deposition apparatus is managed by measuring the temperature in the vicinity of the translucent substrate 4 with a thermocouple. The temperature is maintained at about 30 to 350 ° C. using a heater or the like. Thereafter, the high refractive index dielectric layer 12 and the low refractive index dielectric layer 13 are placed on the entire main surface of the translucent substrate 4 or in a desired region facing the solid-state imaging device 2 by masking. The light-transmitting substrate 4 on which the dielectric multilayer film 11a is deposited is formed by depositing a total of about 10 to 100 dielectric layers alternately while using the irradiation.

陽イオンが真空中を飛来する蒸着物質の気体分子に衝突することによって、蒸着物質の気体分子が励起されて大きな運動エネルギーを得る。そして、この大きな運動エネルギーを得た蒸着物質の気体分子が被着材である透光性基板4の表面に到達すると、被着材の表面の広い領域を移動するとともに、広い領域の移動に伴って被着材表面のより低いエネルギー状態にある場所を見つけ出す確率が大幅に増大するため、蒸着物質の分子同士が凝集することなく被着材の表面に均一に被着し、周辺に存在する蒸着原子同士が凝集して核を形成することなく緻密に充填した誘電体多層膜11aを形成することができるので、圧縮応力が残留した誘電体多層膜11aとすることができ、この圧縮応力によって、透光性基板4の中央部が突出するようにできる。 When the cations collide with the gas molecules of the vapor deposition material flying in the vacuum, the gas molecules of the vapor deposition material are excited to obtain a large kinetic energy. And when the gas molecule of the vapor deposition material which has obtained this large kinetic energy reaches the surface of the transparent substrate 4 which is the adherend, it moves on a wide area of the surface of the adherend and with the movement of the wide area. This greatly increases the probability of finding a lower energy state on the surface of the adherend, so that the deposition material molecules are uniformly deposited on the surface of the adherend without agglomerating with each other, and vapor deposition exists in the vicinity. Since the dielectric multilayer film 11a can be formed densely without agglomerating atoms to form nuclei, the dielectric multilayer film 11a in which compressive stress remains can be obtained. The center part of the translucent board | substrate 4 can be made to protrude.

加えて、本発明においては、高屈折率誘電体層12もしくは低屈折率誘電体層13を1層被着形成した後に、表面に陽イオンのみを所定の時間照射させることが好ましい。これにより、被着材の表面でエネルギーを失った蒸着物質の分子に陽イオンが衝突すると、その蒸着物質の分子は薄膜内部に押し込まれ、より緻密なアモルファス状態の薄膜を得ることができるとともに、被着形成された各層の表面に陽イオンが叩きつけられることによって、より緻密に充填した誘電体多層膜11aを形成することができるので、圧縮応力が残留した誘電体多層膜11aとすることができ、この圧縮応力によって、透光性基板4の中央部をより突出するようにできる。   In addition, in the present invention, it is preferable to irradiate the surface with only cations for a predetermined time after depositing and forming one layer of the high refractive index dielectric layer 12 or the low refractive index dielectric layer 13. As a result, when a cation collides with a molecule of the vapor deposition material that has lost energy on the surface of the adherend, the molecule of the vapor deposition material is pushed into the thin film, and a denser amorphous thin film can be obtained. The cations are struck against the surface of each deposited layer, so that a more densely filled dielectric multilayer film 11a can be formed. Therefore, the dielectric multilayer film 11a in which compressive stress remains can be obtained. By this compressive stress, the central part of the translucent substrate 4 can be protruded more.

固体撮像素子2と透光性基板4との接合は、一般的に紫外線硬化型エポキシ樹脂もしくは熱硬化型エポキシ樹脂等から成る接着剤6を介して行なわれる。例えば接着剤6として熱硬化型エポキシ樹脂を用いる場合、従来周知のスクリーン印刷法等で接着剤6を透光性基板4に塗布し、基体8に重ねあわせた後、90〜250℃の温度で60〜90分間加圧加熱することにより固体撮像素子封止構造体となる。なお、透光性基板4に反射防止膜11bを形成した場合は、反射防止膜11bの最表層を酸化珪素で形成し、固体撮像素子2との接合部まで形成して接合すると、透光性基板4と固体撮像素子2を接着剤6で接合した場合の接合強度が強くなるので好ましい。   The solid-state imaging device 2 and the translucent substrate 4 are generally joined via an adhesive 6 made of an ultraviolet curable epoxy resin or a thermosetting epoxy resin. For example, when a thermosetting epoxy resin is used as the adhesive 6, the adhesive 6 is applied to the translucent substrate 4 by a conventionally known screen printing method or the like, and is superposed on the substrate 8, and then at a temperature of 90 to 250 ° C. It becomes a solid-state image sensor sealing structure by heating under pressure for 60 to 90 minutes. When the antireflection film 11b is formed on the translucent substrate 4, the outermost layer of the antireflection film 11b is formed of silicon oxide, and is formed up to the junction with the solid-state imaging device 2 to be joined. Since the joining strength at the time of joining the board | substrate 4 and the solid-state image sensor 2 with the adhesive agent 6 becomes strong, it is preferable.

なお、固体撮像素子2と透光性基板4との接合の際の部材間の応力を低減するという観点からは、90〜110℃程度の低い温度での加熱が好ましい。なお、接着剤6は、固体撮像素子2と透光性基板4との接合の際はもちろんのこと、その後の個体撮像装置を外部配線基板(図示せず)に実装する際のリフロー等による熱、さらには固体撮像素子2が作動する際に発生する熱により生ずる部材間の応力を緩和して、透光性基板4が破壊されるのを有効に防止するものが選ばれる。このような接着剤6としては、例えば、ビスフェノールA型エポキシ樹脂やビスフェノールA変性エポキシ樹脂,ビスフェノールF型エポキシ樹脂,フェノールノボラック型エポキシ樹脂,クレゾールノボラック型エポキシ樹脂,特殊ノボラック型エポキシ樹脂,フェノール誘導体エポキシ樹脂,ビフェノール骨格型エポキシ樹脂等のエポキシ樹脂にイミダゾール系,アミン系,リン系,ヒドラジン系,イミダゾールアダクト系,アミンアダクト系,カチオン重合系,ジシアンジアミド系等の硬化剤を添加したもので形成されている。なお、2種類以上のエポキシ樹脂を混合して用いてもよい。また、接着剤6に含有される有機材料粉末としては、エポキシ樹脂を主成分とする熱硬化性樹脂よりも弾性率が低いシリコンゴムやシリコンレジン,LDPE,HDPE,PMMA,架橋PMMA,ポリスチレン,架橋ポリスチレン,エチレン−アクリル共重合,ポリメタクリル酸エチル,ブチルアクリレート,ウレタン等の軟質樹脂が用いられることが好ましい。   In addition, from a viewpoint of reducing the stress between the members at the time of joining the solid-state imaging device 2 and the translucent substrate 4, heating at a low temperature of about 90 to 110 ° C. is preferable. The adhesive 6 is used not only for bonding the solid-state imaging device 2 and the translucent substrate 4 but also for heat generated by reflow or the like when mounting the subsequent individual imaging device on an external wiring board (not shown). Furthermore, a material that relieves stress between members caused by heat generated when the solid-state imaging device 2 operates and effectively prevents the translucent substrate 4 from being destroyed is selected. Examples of the adhesive 6 include bisphenol A type epoxy resin, bisphenol A modified epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, special novolac type epoxy resin, and phenol derivative epoxy. It is made of epoxy resin such as resin, biphenol skeleton type epoxy resin, etc. with addition of curing agent such as imidazole, amine, phosphorus, hydrazine, imidazole adduct, amine adduct, cationic polymerization, dicyandiamide. Yes. Two or more types of epoxy resins may be mixed and used. The organic material powder contained in the adhesive 6 includes silicon rubber, silicon resin, LDPE, HDPE, PMMA, crosslinked PMMA, polystyrene, crosslinked, which has a lower elastic modulus than a thermosetting resin mainly composed of an epoxy resin. It is preferable to use a soft resin such as polystyrene, ethylene-acrylic copolymer, polyethyl methacrylate, butyl acrylate, or urethane.

基体8は、酸化アルミニウム質焼結体やムライト質焼結体,窒化アルミニウム質焼結体,窒化珪素質焼結体,炭化珪素質焼結体等の無機絶縁材料あるいは、エポキシ樹脂,フェノール樹脂,液晶ポリマー,ポリフェニレンサルファイド,ポリイミド樹脂等の有機絶縁材料等から成り、例えば、酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウムや酸化珪素,酸化マグネシウム,酸化カルシウム等の原料粉末に適当な有機バインダ,溶剤,可塑剤および分散剤を添加混合して泥漿物を作り、この泥漿物を従来周知のドクターブレード法やカレンダーロール法等のシート成形法によりシート状にしてセラミックグリーンシート(セラミック生シート)を得、しかる後、それらセラミックグリーンシートに適当な打抜き加工を施すとともに複数枚積層し、約1600℃の高温で焼成することによって製作される。あるいは、エポキシ樹脂から成る場合であれば、一般的にシリカ粉末を充填した樹脂コンパウンドを射出成形機により、約180℃に加熱した金型形状に成形硬化することにより形成される。   The substrate 8 is made of an inorganic insulating material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, a silicon carbide sintered body, an epoxy resin, a phenol resin, It is composed of organic insulating materials such as liquid crystal polymer, polyphenylene sulfide, and polyimide resin. For example, when it is composed of an aluminum oxide sintered body, it is suitable for raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. An organic binder, a solvent, a plasticizer, and a dispersant are added and mixed to make a slurry, and this slurry is formed into a sheet by a sheet forming method such as a doctor blade method or a calender roll method, which is conventionally known. Sheet), and then appropriate punching is performed on the ceramic green sheets. Both laminating a plurality, it is manufactured by firing at a high temperature of about 1600 ° C.. Alternatively, in the case of an epoxy resin, it is generally formed by molding and curing a resin compound filled with silica powder into a mold shape heated to about 180 ° C. by an injection molding machine.

また、基体8には、貫通孔が形成されており、貫通孔の下面周辺部には固体撮像素子2の配線層5と接合する接続配線7が形成されている。基体8の接続配線7は固体撮像素子2からの電気信号を貫通孔の周辺部から外部電気回路(図示せず)に導出する複数の導体が形成されている。配線層5と接続配線7を接続材9で電気的に接続させることで、固体撮像装置となる。なお、接続材9として、ロウ材を使用した場合は、基体8と固体撮像素子2の接合には絶縁樹脂を併用して接合強度を強化しても良い。また、エポキシ樹脂中に導電性粒子を分散させた異方導電性を有する接着剤を用いて固体撮像素子2の配線層5と
基体8の接続配線7を電気的に接合するとともに、機械的に接合してもよい。
In addition, a through hole is formed in the base 8, and a connection wiring 7 that is joined to the wiring layer 5 of the solid-state imaging device 2 is formed in the periphery of the lower surface of the through hole. The connection wiring 7 of the base 8 is formed with a plurality of conductors for leading an electric signal from the solid-state imaging device 2 from the peripheral portion of the through hole to an external electric circuit (not shown). By electrically connecting the wiring layer 5 and the connection wiring 7 with the connection material 9, a solid-state imaging device is obtained. When a brazing material is used as the connecting material 9, the bonding strength may be strengthened by using an insulating resin together for bonding the base body 8 and the solid-state imaging device 2. In addition, the wiring layer 5 of the solid-state image pickup device 2 and the connection wiring 7 of the base 8 are electrically joined using an adhesive having anisotropic conductivity in which conductive particles are dispersed in an epoxy resin, and mechanically. You may join.

接続配線7は、固体撮像素子2の各配線層5を外部電気回路に電気的に接続する導電路として機能し、例えば基体8が無機絶縁材料から成る場合、タングステンやモリブデン,マンガン等の高融点金属粉末に適当な有機溶剤,溶媒および可塑剤等を添加混合して得た金属ペーストを従来周知のスクリーン印刷法等の厚膜手法により基体8と成るセラミックグリーンシートにあらかじめ印刷塗布し、セラミックグリーンシートと同時に焼成することによって所定パターンに被着形成される。   The connection wiring 7 functions as a conductive path that electrically connects each wiring layer 5 of the solid-state imaging device 2 to an external electric circuit. For example, when the base 8 is made of an inorganic insulating material, a high melting point such as tungsten, molybdenum, manganese, or the like. A metal paste obtained by adding and mixing an appropriate organic solvent, a solvent, a plasticizer, and the like to the metal powder is preliminarily printed and applied to a ceramic green sheet serving as the substrate 8 by a thick film technique such as screen printing. A predetermined pattern is formed by firing at the same time as the sheet.

なお、接続配線7はその表面にニッケルや金等の導電性や耐蝕性に優れるとともに接続材9との濡れ性が良好な金属を電解めっき法や無電解めっき法により0.1〜20μmの厚みに被着させておくとよい。これにより、接続配線7の酸化腐蝕を有効に防止することができるとともに接続配線7と配線層5との接続および接続配線7と外部電気回路基板の配線導体との接続をより強固とすることができる。以上のようにして基体8を作製することができる。   The connection wiring 7 has a thickness of 0.1 to 20 [mu] m formed by electrolytic plating or electroless plating on a surface of a metal having excellent conductivity and corrosion resistance such as nickel and gold and good wettability with the connection material 9. It is good to attach to. Thereby, the oxidative corrosion of the connection wiring 7 can be effectively prevented, and the connection between the connection wiring 7 and the wiring layer 5 and the connection between the connection wiring 7 and the wiring conductor of the external electric circuit board can be strengthened. it can. The substrate 8 can be manufactured as described above.

そして、基体8の貫通孔の周囲に形成した接続配線7に固体撮像素子2を従来周知の錫や金を主成分とした接続材9等で接着することで配線層5と接続配線7を電気的に接続する。   Then, the wiring layer 5 and the connection wiring 7 are electrically connected by bonding the solid-state imaging device 2 to the connection wiring 7 formed around the through hole of the base body 8 with a connection material 9 or the like which is mainly composed of conventionally known tin or gold. Connect.

図4は本発明の固体撮像素子封止構造体の実施の形態の他の一例を示す断面図である。固体撮像素子2を形成する段階で、エッチング等の方法で貫通ビアを形成等し、配線層5をビア導通等によって、受光部1の逆面に導通させ、受光部1の表面にマイクロレンズ3を形成し、透光性基板4は図1の例と同様にして作製し、接着剤6で固体撮像素子2に接着することで、固体撮像素子封止構造体とすることができる。このように、基体を使用せずに固体撮像素子封止構造体とすることによって、撮像装置を大幅に小型化することができる。   FIG. 4 is a cross-sectional view showing another example of the embodiment of the solid-state image sensor sealing structure of the present invention. At the stage of forming the solid-state imaging device 2, a through via is formed by a method such as etching, the wiring layer 5 is conducted to the opposite surface of the light receiving unit 1 by via conduction or the like, and the microlens 3 is formed on the surface of the light receiving unit 1. The translucent substrate 4 is produced in the same manner as in the example of FIG. 1 and bonded to the solid-state image sensor 2 with the adhesive 6, whereby a solid-state image sensor sealing structure can be obtained. Thus, by using a solid-state imaging device sealing structure without using a base, the imaging device can be significantly reduced in size.

なお、本発明は上記実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を施すことは何等差し支えない。   In addition, this invention is not limited to the said embodiment and Example, A various change may be performed in the range which does not deviate from the summary of this invention.

本発明の固体撮像素子封止構造体の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the solid-state image sensor sealing structure of this invention. 図1の固体撮像素子封止構造体における透光性基板の断面図である。It is sectional drawing of the translucent board | substrate in the solid-state image sensor sealing structure of FIG. 図1の固体撮像素子封止構造体における透光性基板の要部拡大断面図である。It is a principal part expanded sectional view of the translucent board | substrate in the solid-state image sensor sealing structure of FIG. 本発明の固体撮像素子封止構造体の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the solid-state image sensor sealing structure of this invention.

符号の説明Explanation of symbols

1:受光部
2:固体撮像素子
3:マイクロレンズ
4:透光性基板
5:配線層
6:接着剤
7:接続配線
8:基体
9:接続材
10:光学レンズ
11a:誘電体多層膜
11b:反射防止膜
12、12’:高屈折率誘電体層
13、13’:低屈折率誘電体層
1: Light-receiving unit 2: Solid-state imaging device 3: Micro lens 4: Translucent substrate 5: Wiring layer 6: Adhesive 7: Connection wiring 8: Substrate 9: Connection material 10: Optical lens 11a: Dielectric multilayer film 11b: Antireflective films 12, 12 ': High refractive index dielectric layers 13, 13': Low refractive index dielectric layers

Claims (7)

主面に受光部が形成された固体撮像素子と、前記受光部の表面に形成されたマイクロレンズと、中央部が突出するように湾曲しているとともに、該湾曲した部位の内側で前記マイクロレンズを覆うように外周部が前記主面に取着された透光性基板とを具備することを特徴とする固体撮像素子封止構造体。 A solid-state imaging device having a light receiving portion formed on the main surface, a microlens formed on the surface of the light receiving portion, a curved portion protruding from the center, and the microlens inside the curved portion And a translucent substrate having an outer peripheral portion attached to the main surface so as to cover the solid-state imaging element sealing structure. 前記透光性基板は全領域において厚みが一定であることを特徴とする請求項1記載の固体撮像素子封止構造体。 2. The solid-state image sensor sealing structure according to claim 1, wherein the translucent substrate has a constant thickness in the entire region. 前記透光性基板の前記湾曲した部位の外側に、高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成る誘電体多層膜を被着形成したことを特徴とする請求項1または請求項2記載の固体撮像素子封止構造体。 A dielectric multilayer film formed by alternately laminating a plurality of high-refractive index dielectric layers and low-refractive index dielectric layers is formed on the outer side of the curved portion of the light-transmitting substrate. The solid-state imaging device sealing structure according to claim 1 or 2. 前記透光性基板の前記湾曲した部位の内側に、高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成る反射防止膜を被着形成したことを特徴とする請求項1乃至請求項3のいずれかに記載の固体撮像素子封止構造体。 An antireflection film comprising a plurality of alternately laminated high refractive index dielectric layers and low refractive index dielectric layers is formed on the inner side of the curved portion of the translucent substrate. The solid-state image sensor sealing structure according to any one of claims 1 to 3. 前記反射防止膜は、前記透光性基板と前記固体撮像素子との接合部まで形成されているとともに前記固体撮像素子側の最表層が酸化珪素から成ることを特徴とする請求項4記載の固体撮像素子封止構造体。 5. The solid according to claim 4, wherein the antireflection film is formed up to a junction between the translucent substrate and the solid-state imaging device, and an outermost layer on the solid-state imaging device side is made of silicon oxide. Imaging element sealing structure. 請求項1乃至請求項5のいずれかに記載の固体撮像素子封止構造体と、該固体撮像素子封止構造体が搭載された基体と、前記透光性基板に光を集光するための光学レンズとを具備することを特徴とする固体撮像装置。 A solid-state imaging device sealing structure according to any one of claims 1 to 5, a base body on which the solid-state imaging device sealing structure is mounted, and light for condensing light on the translucent substrate A solid-state imaging device comprising an optical lens. 前記基体に貫通穴が形成されており、前記透光性基板を前記貫通穴に対向させるとともに該貫通穴を塞ぐように前記固体撮像素子封止構造体が前記基体に搭載されていることを特徴とする請求項6記載の固体撮像装置。 A through hole is formed in the base, and the solid-state imaging device sealing structure is mounted on the base so that the translucent substrate faces the through hole and closes the through hole. The solid-state imaging device according to claim 6.
JP2006231911A 2006-08-29 2006-08-29 Solid-state imaging element sealing structure, and solid-state imaging apparatus Pending JP2008060121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231911A JP2008060121A (en) 2006-08-29 2006-08-29 Solid-state imaging element sealing structure, and solid-state imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231911A JP2008060121A (en) 2006-08-29 2006-08-29 Solid-state imaging element sealing structure, and solid-state imaging apparatus

Publications (1)

Publication Number Publication Date
JP2008060121A true JP2008060121A (en) 2008-03-13

Family

ID=39242556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231911A Pending JP2008060121A (en) 2006-08-29 2006-08-29 Solid-state imaging element sealing structure, and solid-state imaging apparatus

Country Status (1)

Country Link
JP (1) JP2008060121A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061353A (en) * 2009-09-08 2011-03-24 Ricoh Co Ltd Imaging apparatus
JP2013235933A (en) * 2012-05-08 2013-11-21 Nikon Corp Imaging element and manufacturing method of the same
KR20150016372A (en) 2012-10-26 2015-02-11 쿄세라 코포레이션 Optical filter member and imaging device provided with same
JP2015211190A (en) * 2014-04-30 2015-11-24 旭硝子株式会社 Cover glass and manufacturing method of the same
JPWO2015166897A1 (en) * 2014-04-30 2017-04-20 旭硝子株式会社 Cover glass and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061353A (en) * 2009-09-08 2011-03-24 Ricoh Co Ltd Imaging apparatus
JP2013235933A (en) * 2012-05-08 2013-11-21 Nikon Corp Imaging element and manufacturing method of the same
KR20150016372A (en) 2012-10-26 2015-02-11 쿄세라 코포레이션 Optical filter member and imaging device provided with same
US9651723B2 (en) 2012-10-26 2017-05-16 Kyocera Corporation Optical filter member and imaging device provided with the same
JP2015211190A (en) * 2014-04-30 2015-11-24 旭硝子株式会社 Cover glass and manufacturing method of the same
JPWO2015166897A1 (en) * 2014-04-30 2017-04-20 旭硝子株式会社 Cover glass and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2007043063A (en) Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus
KR101650065B1 (en) Optical filter member and imaging device provided with same
US20110221950A1 (en) Camera device, wafer scale package
JP2005234038A (en) Dielectric multilayer film filter and manufacturing method therefor, and solid-state imaging device
JP4712737B2 (en) Imaging device, manufacturing method thereof, and portable terminal device
JP2014048402A (en) Optical filter member and imaging device
JP2008060121A (en) Solid-state imaging element sealing structure, and solid-state imaging apparatus
JP6166112B2 (en) Lid for imaging device and imaging device provided with the same
JP4153016B1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and imaging device using the solid-state imaging device
JP4632680B2 (en) Optical filter member and solid-state imaging device using the same
JP2009229472A (en) Optical component, and optical device using the same
JP4324633B2 (en) SOLID-STATE IMAGING DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOGRAPHING DEVICE HAVING THE SOLID-STATE IMAGING DEVICE
JP2014170182A (en) Optical filter member and imaging apparatus
JP2002353352A (en) Package for storing image pickup device
JP2013137487A (en) Optical filter member and imaging apparatus
JP7055010B2 (en) Optical equipment
JP4614733B2 (en) Solid-state imaging device
US20100045846A1 (en) Image pickup device, method of manufacturing the same, and mobile terminal device
JP4663667B2 (en) Imaging device, manufacturing method thereof, and portable terminal device
JP2003017607A (en) Package for housing imaging element
JP5994686B2 (en) Optical glass
JP4663666B2 (en) Imaging device, manufacturing method thereof, and portable terminal device
JP2002033407A (en) Package for optical semiconductor element
JP2004056061A (en) Package for packaging image pickup device
JP2002359314A (en) Package for housing image pickup device