JP2007043063A - Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus - Google Patents

Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus Download PDF

Info

Publication number
JP2007043063A
JP2007043063A JP2006049581A JP2006049581A JP2007043063A JP 2007043063 A JP2007043063 A JP 2007043063A JP 2006049581 A JP2006049581 A JP 2006049581A JP 2006049581 A JP2006049581 A JP 2006049581A JP 2007043063 A JP2007043063 A JP 2007043063A
Authority
JP
Japan
Prior art keywords
solid
imaging device
refractive index
state imaging
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006049581A
Other languages
Japanese (ja)
Inventor
Takahiro Nakao
貴博 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006049581A priority Critical patent/JP2007043063A/en
Publication of JP2007043063A publication Critical patent/JP2007043063A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging device storing package capable of effectively storing an imaging device and having excellent optical characteristics, and to provide a substrate for mounting the imaging device, and an imaging apparatus. <P>SOLUTION: The package is provided with a base body 7 on which a storage for storing the solid state imaging device 6 is formed and an aperture for leading light to a light receiver of the solid state imaging device 6 is formed on the upper surface, and a translucent substrate 1 stuck to the base body 7 through adhesive so as to close the aperture; a dielectric multilayer film 2 formed by alternately laminating a plurality of dielectric layers 3 of a high refractive index and dielectric substrates 4 of a low refractive index, and forming an outermost low-refractive-index dielectric layer composed of silicon dioxide as an outermost layer 14 is formed on the main surface of the translucent substrate 1 which is joined with the base body 7. The adhesive 10 is directly brought into contact with the outermost low-refractive-index dielectric layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、CCD,CMOSイメージセンサ等の固体撮像素子を搭載するための固体撮像素子収納用パッケージおよび固体撮像素子搭載用基板、ならびにこれを用いた固体撮像装置に関する。   The present invention relates to a solid-state image pickup device storage package for mounting a solid-state image pickup device such as a CCD or CMOS image sensor, a solid-state image pickup device mounting substrate, and a solid-state image pickup apparatus using the same.

近年、CCDやCMOS等の固体撮像素子を搭載する固体撮像装置を含むカメラの軽薄短小化および低価格化が急激に進展し、これに伴って搭載されるカメラモジュールをはじめとする固体撮像装置も軽薄短小化あるいは部品削減が進んでいる。   In recent years, there has been a rapid progress in the reduction in the size and price of cameras including solid-state imaging devices equipped with solid-state imaging devices such as CCDs and CMOSs. Miniaturization and reduction of parts are progressing.

このような固体撮像装置は、一般に画像を得るために外部からの入射光を集光して固体撮像素子に導くためのガラス材あるいはプラスチック材から成るレンズや、赤外線を遮蔽する部品として例えばホウケイ酸ガラスから成る透光性基板の表面に誘電体多層膜を形成した光学部材などを樹脂製などから成る基体で保持することにより形成された撮像素子収納用パッケージに、撮像素子を収納することにより構成されている(例えば下記の特許文献1参照)。   Such a solid-state imaging device generally includes a lens made of a glass material or a plastic material for collecting incident light from the outside and guiding it to a solid-state imaging device in order to obtain an image. Constructed by storing an image sensor in a package for storing an image sensor formed by holding an optical member with a dielectric multilayer film formed on the surface of a transparent substrate made of glass by a base made of resin or the like (For example, see Patent Document 1 below).

この光学部材は、透光性基板の片面の全面あるいは画像認識に有効な範囲に五酸化タンタルや酸化チタン,酸化ニオブ,フッ化ランタン,酸化ジルコニウム等の屈折率が1.7以上の誘電体から成る高屈折率誘電体層と、SiOやMgF,NaAlF等の屈折率が1.6以下の低屈折率誘電体層とを、交互に数十層積層することにより赤外線を遮蔽する誘電体多層膜を形成するものである。 This optical member is made of a dielectric material having a refractive index of 1.7 or more, such as tantalum pentoxide, titanium oxide, niobium oxide, lanthanum fluoride, and zirconium oxide, on the entire surface of one side of the translucent substrate or in an effective range for image recognition. comprising shielding a high refractive index dielectric layer, the infrared by SiO 2 or MgF 2, Na 3 AlF 6 or the like refractive index of a 1.6 or lower refractive index dielectric layer, stacked several tens of layers alternately A dielectric multilayer film is formed.

誘電体多層膜は、一般的には、光の干渉効果を用いて、各層におけるλ/4(λは任意の光の設計波長)の整数倍とした光学膜厚を変えることにより、特定波長の反射強度の極大極小を制御することにより光学的フィルタとしての機能を発揮することが可能となる。これは、誘電体多層膜の各層の光学膜厚が1/4波長変わるごとに、その波長での光の位相が同じになったり、反転したりするためである。つまり、誘電体多層膜の各層の光学膜厚を調整することで誘電体多層膜を構成する高屈折率誘電体層と低屈折率誘電体層との界面や誘電体多層膜と透光性基板との界面からの反射光の位相を調整し、誘電体多層膜の表面での反射光と干渉させて、反射強度を増加させたり、減少させたりすることが可能となる。   In general, a dielectric multilayer film has a specific wavelength by changing the optical film thickness that is an integral multiple of λ / 4 (λ is a design wavelength of arbitrary light) in each layer using the interference effect of light. By controlling the maximum and minimum of the reflection intensity, the function as an optical filter can be exhibited. This is because each time the optical film thickness of each layer of the dielectric multilayer film changes by ¼ wavelength, the phase of light at that wavelength becomes the same or is reversed. That is, by adjusting the optical film thickness of each layer of the dielectric multilayer film, the interface between the high refractive index dielectric layer and the low refractive index dielectric layer constituting the dielectric multilayer film, or the dielectric multilayer film and the translucent substrate It is possible to increase or decrease the reflection intensity by adjusting the phase of the reflected light from the interface and interfering with the reflected light on the surface of the dielectric multilayer film.

従って、入射光のうち透過させたくない波長の光に対して、光学膜厚をλ/4の奇数倍とすることによって、入射光に対する反射強度が増加することによって透過光を減少させ、特定の波長帯域に対して遮光効果を有することができる。実際には、誘電体多層膜を形成する高屈折率誘電体層と低屈折率誘電体層の光学膜厚をより詳細に調整することによって、良好な特性を有する光学部材としている。なお、光学膜厚は屈折率nと実際の物理的な膜厚dの積(n×d)で表わされる。   Therefore, by setting the optical film thickness to an odd multiple of λ / 4 for light having a wavelength that is not desired to be transmitted among the incident light, the transmitted light is reduced by increasing the reflection intensity with respect to the incident light. It can have a light blocking effect on the wavelength band. Actually, an optical member having good characteristics is obtained by adjusting the optical film thicknesses of the high refractive index dielectric layer and the low refractive index dielectric layer forming the dielectric multilayer film in more detail. The optical film thickness is represented by the product (n × d) of the refractive index n and the actual physical film thickness d.

このような透光性基板は、基体にUV硬化型エポキシ接着剤や熱硬化型エポキシ接着剤を用いて接合される。UV硬化型エポキシ接着剤を用いる場合は、接合部分にUV硬化型エポキシ接着剤を塗布した後、紫外線を照射して接着剤の硬化反応を促進させることによって、透光性基板と基体との接合を行い、その後、加熱を行うことによって接着剤の硬化反応を十分に進めて完全に接着させる。また、熱硬化型エポキシ接着剤を用いる場合は、透光性基板の接合面にあらかじめ熱硬化型エポキシ接着剤を塗布し、仮硬化状態にしたものを基体と重ね合わせた状態で、加熱を行うことによって仮硬化状態の熱硬化型エポキシ接着剤を再溶融させて透光性基板と基体との接合を行い、更に加熱を行うことによって熱硬化型接着剤の硬化反応を十分に進めて完全に接着させる。   Such a translucent substrate is bonded to the substrate using a UV curable epoxy adhesive or a thermosetting epoxy adhesive. In the case of using a UV curable epoxy adhesive, after the UV curable epoxy adhesive is applied to the joining portion, ultraviolet light is irradiated to promote the curing reaction of the adhesive, thereby joining the translucent substrate and the substrate. Then, heating is performed to sufficiently advance the curing reaction of the adhesive so that it is completely adhered. Moreover, when using a thermosetting epoxy adhesive, it heats in the state which apply | coated the thermosetting epoxy adhesive beforehand to the joint surface of the translucent board | substrate, and was superposed on the base | substrate. By re-melting the thermosetting epoxy adhesive in the temporarily cured state, the translucent substrate and the substrate are joined, and further heating is performed to sufficiently advance the curing reaction of the thermosetting adhesive. Adhere.

また、従来の固体撮像装置の別の形態として表面に誘電体多層膜が被着された透光性基板の外周部、すなわち撮像領域以外の部位に配線導体を形成し、この配線導体に撮像素子を、この撮像素子の受光部が透光性基板の撮像領域と対向するようにフリップチップ実装した後、撮像素子の外周縁部と透光性基板とを接着剤により接合するという構成も提案されている(下記の特許文献2参照)。   As another form of the conventional solid-state imaging device, a wiring conductor is formed on the outer peripheral portion of the translucent substrate having a dielectric multilayer film deposited on the surface thereof, that is, a portion other than the imaging region, and an imaging element is formed on the wiring conductor. Is proposed in which the light receiving portion of the image sensor is flip-chip mounted so as to face the imaging region of the translucent substrate, and then the outer peripheral edge of the image sensor and the translucent substrate are joined by an adhesive. (See Patent Document 2 below).

この場合の接着剤としてもUV硬化型エポキシ接着剤や熱硬化型エポキシ接着剤が用いられている。
特開2001−245186号公報 特許3207319号公報
As the adhesive in this case, a UV curable epoxy adhesive or a thermosetting epoxy adhesive is used.
JP 2001-245186 A Japanese Patent No. 3307319

しかしながら、基体と透光性基板との接合や撮像素子と透光性基板との接合において良好な接合強度が得られないという問題があった。その結果、撮像素子を良好に収容するのができず、撮像素子を正常に作動させることが困難になるという問題点を有していた。   However, there has been a problem that good bonding strength cannot be obtained in the bonding between the base and the light-transmitting substrate or in the bonding between the imaging element and the light-transmitting substrate. As a result, there has been a problem that the image pickup device cannot be satisfactorily accommodated and it is difficult to operate the image pickup device normally.

また、基体と透光性基板とを接合する際、または透光性基板にフリップチップ実装した撮像素子と透光性基板とを接合する際、接着剤が透光性基板上に被着された誘電体多層膜上をぬれ広がり、所定の接合領域を超えて透光性部材の撮像領域にまで達し、良好な光学特性を得られなくなるという問題点もあった。   In addition, when the base body and the translucent substrate are bonded, or when the imaging element flip-chip mounted on the translucent substrate and the translucent substrate are bonded, the adhesive was deposited on the translucent substrate. There is also a problem that the dielectric multilayer film wets and spreads, reaches the imaging region of the translucent member beyond the predetermined junction region, and good optical characteristics cannot be obtained.

従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、撮像素子を良好に収容することができるとともに光学特性に優れた撮像素子収納用パッケージおよび撮像素子搭載用基板ならびに撮像装置を提供することである。   Therefore, the present invention has been completed in view of the above problems, and an object of the present invention is to provide an image pickup device storage package, an image pickup device mounting substrate, and an image pickup device mounting substrate that can well store an image pickup device and have excellent optical characteristics. An imaging device is provided.

本発明の固体撮像素子収納用パッケージは、固体撮像素子を収納するための収納部が形成されているとともに上面に前記固体撮像素子の受光部に光を導入するための開口部が形成された基体と、前記開口部を塞ぐように接着剤を介して前記基体に取着された透光性基板とを具備した固体撮像素子収納用パッケージにおいて、前記透光性基板の前記基体に接合される主面に、高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成るとともに最外層を酸化珪素から成る最外低屈折率誘電体層とした誘電体多層膜を形成し、前記最外低屈折率誘電体層に直接前記接着剤を接触させたことを特徴とする。   The solid-state image pickup device storage package of the present invention has a storage portion for storing the solid-state image pickup device and a base on which an opening for introducing light into the light receiving portion of the solid-state image pickup device is formed on the upper surface. And a translucent substrate that is attached to the base via an adhesive so as to close the opening, and is a main body that is bonded to the base of the translucent substrate. On the surface, a dielectric multilayer film is formed by alternately laminating a plurality of high-refractive index dielectric layers and low-refractive index dielectric layers, with the outermost layer being the outermost low-refractive index dielectric layer made of silicon oxide. The adhesive is in direct contact with the outermost low refractive index dielectric layer.

本発明の固体撮像素子収納用パッケージにおいて、好ましくは、前記最外低屈折率誘電体層の表面粗さRaを0.5〜3.0nmとしたことを特徴とする。   In the solid-state image pickup device storage package of the present invention, preferably, the outermost low refractive index dielectric layer has a surface roughness Ra of 0.5 to 3.0 nm.

本発明の固体撮像素子収納用パッケージにおいて、好ましくは、前記透光性基板の表面粗さRaを0.20nm以下としたことを特徴とする。   In the solid-state image pickup device storage package of the present invention, preferably, the surface roughness Ra of the light-transmitting substrate is 0.20 nm or less.

本発明の固体撮像素子収納用パッケージにおいて、好ましくは、前記誘電体多層膜が、前記高屈折率誘電体層または前記低屈折率誘電体層を1層被着形成した後に、表面に陽イオンのみを所定の時間照射させていることを特徴とする。   In the solid-state image pickup device storage package according to the present invention, preferably, the dielectric multilayer film is formed by depositing the high refractive index dielectric layer or the low refractive index dielectric layer as a single layer, and then has only a cation on the surface. Is irradiated for a predetermined time.

本発明の固体撮像素子搭載用基板は、透光性基板の主面の外周部に配線導体が形成されており、該配線導体に固体撮像素子を電気的に接続するとともに前記固体撮像素子の外周縁部を接着剤で前記透光性基板に接合するための固体撮像素子搭載用基板において、前記主面に高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成るとともに最外層を酸化珪素から成る最外低屈折率誘電体層とした誘電体多層膜を形成し、前記最外低屈折率誘電体層に直接前記接着剤を接触させたことを特徴とする。   In the substrate for mounting a solid-state imaging device of the present invention, a wiring conductor is formed on the outer peripheral portion of the main surface of the translucent substrate, and the solid-state imaging device is electrically connected to the wiring conductor and the outside of the solid-state imaging device. In a solid-state imaging device mounting substrate for bonding a peripheral portion to the translucent substrate with an adhesive, a plurality of high refractive index dielectric layers and low refractive index dielectric layers are alternately stacked on the main surface. And forming a dielectric multilayer film having an outermost low refractive index dielectric layer made of silicon oxide as the outermost layer, and directly contacting the adhesive with the outermost low refractive index dielectric layer. .

本発明の固体撮像素子搭載用基板において、好ましくは、前記最外低屈折率誘電体層の表面粗さRaを0.5〜3.0nmとしたことを特徴とする。   In the solid-state imaging element mounting substrate of the present invention, preferably, the outermost low refractive index dielectric layer has a surface roughness Ra of 0.5 to 3.0 nm.

本発明の固体撮像素子搭載用基板において、好ましくは、前記透光性基板の表面粗さRaを0.20nm以下としたことを特徴とする。   In the solid-state imaging device mounting substrate of the present invention, preferably, the surface roughness Ra of the translucent substrate is set to 0.20 nm or less.

本発明の固体撮像素子搭載用基板において、好ましくは、前記誘電体多層膜が、前記高屈折率誘電体層または前記低屈折率誘電体層を1層被着形成した後に、表面に陽イオンのみを所定の時間照射させていることを特徴とする。   In the solid-state imaging device mounting substrate of the present invention, it is preferable that the dielectric multilayer film is formed by depositing the high refractive index dielectric layer or the low refractive index dielectric layer as a single layer, and then has only a cation on the surface. Is irradiated for a predetermined time.

本発明の固体撮像装置は、上記本発明の固体撮像素子収納用パッケージの前記収納部に固体撮像素子を収納し、前記誘電体多層膜および前記透光性基板を透過した光を前記固体撮像素子に結合させたことを特徴とする。   In the solid-state imaging device of the present invention, the solid-state imaging device is housed in the housing portion of the solid-state imaging device housing package of the present invention, and light transmitted through the dielectric multilayer film and the translucent substrate is transmitted to the solid-state imaging device. It is combined with.

本発明の固体撮像装置は、上記本発明の固体撮像素子搭載用基板の前記配線導体に固体撮像素子を電気的に接続するとともに該固体撮像素子の外周縁部を接着剤で前記透光性基板に接合し、前記誘電体多層膜および前記透光性基板を透過した光を前記固体撮像素子に結合させたことを特徴とする。   The solid-state imaging device of the present invention is configured to electrically connect a solid-state imaging device to the wiring conductor of the solid-state imaging device mounting substrate of the present invention and to use the translucent substrate with an outer peripheral edge of the solid-state imaging device with an adhesive. The light transmitted through the dielectric multilayer film and the translucent substrate is coupled to the solid-state imaging device.

本発明の固体撮像素子収納用パッケージは、透光性基板の基体に接合される主面に、高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成るとともに最外層を酸化珪素から成る最外低屈折率誘電体層とした誘電体多層膜を形成し、最外低屈折率誘電体層に直接前記接着剤を接触させたことから、接着剤と誘電体多層膜の最外層表面の接合において水酸基を介した水素結合を行なうことにより、良好な接着強度を得ることができるとともに、外部環境に対して安定な酸化珪素で誘電多層膜を保護することができるので、透光性基板を、接着剤を介して基体に接合する際に加わる熱や、使用環境下での固体撮像素子の動作の際に発生する熱応力に対しても良好な接合強度を得ることができ、光学特性に優れるとともに、長期信頼性に優れた固体撮像素子収納用パッケージとすることができる。   The package for housing a solid-state imaging device of the present invention is formed by alternately laminating a plurality of high-refractive index dielectric layers and low-refractive index dielectric layers on a main surface bonded to a base of a translucent substrate. Forming a dielectric multilayer film with an outer layer made of silicon oxide as an outermost low refractive index dielectric layer, and contacting the adhesive directly with the outermost low refractive index dielectric layer, the adhesive and the dielectric multilayer By performing hydrogen bonding via a hydroxyl group at the junction of the outermost layer surface of the film, it is possible to obtain good adhesive strength and to protect the dielectric multilayer film with silicon oxide that is stable against the external environment. To obtain good bonding strength against heat applied when a translucent substrate is bonded to a substrate via an adhesive or thermal stress generated during operation of a solid-state imaging device in a use environment With excellent optical characteristics and long-term reliability It can be a solid-state imaging device housing package.

本発明の固体撮像素子搭載用基板は、透光性基板の主面の外周部に配線導体が形成されており、配線導体に固体撮像素子を電気的に接続するとともに固体撮像素子の外周縁部を接着剤で透光性基板に接合するための固体撮像素子搭載用基板において、主面に高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成るとともに最外層を酸化珪素から成る最外低屈折率誘電体層とした誘電体多層膜を形成し、最外低屈折率誘電体層に直接接着剤を接触させたことから、接着剤と誘電体多層膜の最外層表面の接合において水酸基を介した水素結合を行なうことにより、接着剤と誘電体多層膜の最外層表面の接合において、良好な接着強度を得ることができるとともに、透光性基板と固体撮像素子との接合において、良好な接合強度を得ることができ、光学特性に優れるとともに、長期信頼性に優れた固体撮像素子搭載用基板とすることができる。   In the substrate for mounting a solid-state imaging device of the present invention, a wiring conductor is formed on the outer peripheral portion of the main surface of the translucent substrate, and the solid-state imaging device is electrically connected to the wiring conductor and the outer peripheral edge of the solid-state imaging device. In the substrate for mounting a solid-state imaging device for bonding the substrate to the translucent substrate with an adhesive, the outermost layer is formed by alternately laminating a plurality of high refractive index dielectric layers and low refractive index dielectric layers on the main surface. Was formed as an outermost low refractive index dielectric layer made of silicon oxide, and an adhesive was brought into direct contact with the outermost low refractive index dielectric layer. By performing hydrogen bonding via the hydroxyl group at the outermost layer surface bonding, good bonding strength can be obtained at the outermost layer surface bonding of the adhesive and the dielectric multilayer film, and the translucent substrate and the solid-state imaging Good bonding strength is obtained in bonding with elements. Bets can be, excellent in optical properties can be a good solid-state image pickup device mounting board in long-term reliability.

さらに、基体およびボンディングワイヤを省くことができるためにより製品の小型化、薄型化が可能となると共に、配線導体が形成された光学部材に固体撮像素子の電極を、接着剤を介してフリップチップ実装法により接続する際の温度変化や外力により光学部材に加わる応力に対しても良好な接合強度を得ることができ、光学特性に優れるとともに、長期信頼性に優れた固体撮像素子搭載用基板とすることができる。   In addition, since the substrate and bonding wires can be omitted, the product can be made smaller and thinner, and the electrodes of the solid-state image sensor are flip-chip mounted on the optical member on which the wiring conductor is formed via an adhesive. It is possible to obtain a good bonding strength against the stress applied to the optical member due to temperature change and external force when connecting by the method, and to provide a solid-state imaging device mounting substrate with excellent optical characteristics and long-term reliability be able to.

本発明の固体撮像素子収納用パッケージおよび固体撮像素子搭載用基板は、最外低屈折率誘電体層の表面粗さRaを0.5〜3.0nmとしたことから、誘電体多層膜の最外層表面の水ヌレ性が接触角測定で10〜30度となり、また、基体と透光性基板とを接合する際や固体撮像素子と透光性基板とを接合する際、接着剤が透光性基板上に被着された誘電体多層膜上をぬれ広がり、所定の接合領域を超えて透光性部材の撮像領域にまで達するのを有効に抑制するとともに、基体と透光性基板との接合や固体撮像素子と透光性基板との接合強度をきわめて良好にできる。   In the solid-state image pickup device storage package and the solid-state image pickup device mounting substrate of the present invention, the outermost low refractive index dielectric layer has a surface roughness Ra of 0.5 to 3.0 nm. The water repellency of the outer layer surface is 10 to 30 degrees in contact angle measurement, and the adhesive is transparent when joining the base and the translucent substrate or joining the solid-state imaging device and the translucent substrate. The dielectric multilayer film deposited on the transparent substrate wets and spreads over the predetermined junction region and effectively reaches the imaging region of the translucent member, and between the base and the translucent substrate. The bonding strength between the bonding and the solid-state imaging device and the translucent substrate can be made extremely good.

本発明の固体撮像装置は、上記本発明の固体撮像素子収納用パッケージの収納部に固体撮像素子を収納し、誘電体多層膜および透光性基板を透過した光を固体撮像素子に結合させたことから、透光性基板を、接着剤を介して基体に接合する際に加わる熱や、使用環境下での固体撮像素子の動作の際に発生する熱応力に対しても良好な接合強度を得ることができ、光学特性に優れるとともに、長期信頼性に優れた固体撮像装置とすることができる。   In the solid-state imaging device of the present invention, the solid-state imaging device is housed in the housing portion of the solid-state imaging device housing package of the present invention, and light transmitted through the dielectric multilayer film and the translucent substrate is coupled to the solid-state imaging device. Therefore, it has good bonding strength against heat applied when the translucent substrate is bonded to the base via an adhesive and thermal stress generated during operation of the solid-state imaging device under the usage environment. It is possible to obtain a solid-state imaging device having excellent optical characteristics and long-term reliability.

本発明の固体撮像装置は、上記本発明の固体撮像素子搭載用基板の配線導体に固体撮像素子を電気的に接続するとともに固体撮像素子の外周縁部を接着剤で透光性基板に接合し、誘電体多層膜および透光性基板を透過した光を固体撮像素子に結合させたことから、基体およびボンディングワイヤを省くことができるためにより製品の小型化、薄型化が可能となると共に、配線導体が形成された光学部材に固体撮像素子の電極を、接着剤を介してフリップチップ実装法により接続する際の温度変化や外力により光学部材に加わる応力に対しても良好な接合強度を得ることができ、光学特性に優れるとともに、長期信頼性に優れた固体撮像装置とすることができる。   The solid-state imaging device of the present invention is configured to electrically connect the solid-state imaging device to the wiring conductor of the solid-state imaging device mounting substrate of the present invention and to bond the outer peripheral edge of the solid-state imaging device to the translucent substrate with an adhesive. Since the light transmitted through the dielectric multilayer film and the light-transmitting substrate is coupled to the solid-state imaging device, the substrate and the bonding wire can be omitted, so that the product can be made smaller and thinner, and the wiring Obtaining good bonding strength against stress applied to the optical member due to temperature changes and external force when connecting the electrode of the solid-state imaging device to the optical member on which the conductor is formed by the flip chip mounting method via an adhesive In addition to being excellent in optical characteristics, it is possible to provide a solid-state imaging device having excellent long-term reliability.

本発明の固体撮像装置を添付の図面に基づき詳細に説明する。   A solid-state imaging device of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の固体撮像装置の実施の形態の一例を示す断面図である。透光性基板1に誘電体多層膜2を被着形成することにより光学部材5を構成している。   FIG. 1 is a cross-sectional view showing an example of an embodiment of a solid-state imaging device of the present invention. The optical member 5 is configured by depositing and forming the dielectric multilayer film 2 on the translucent substrate 1.

透光性基板1は、ホウケイ酸ガラスから成るガラス材料、もしくはニオブ酸リチウム,水晶,サファイア等の複屈折材料、アクリル樹脂等の高分子材料が用いられる。   The translucent substrate 1 is made of a glass material made of borosilicate glass, a birefringent material such as lithium niobate, crystal, or sapphire, or a polymer material such as acrylic resin.

ホウケイ酸ガラスは、ガラス原料にホウ酸を加えることで耐熱性や耐薬品性に優れる材料となり、さらに透明で平坦な無孔性の表面を有することから光学的に欠陥の少ない材料として好適に用いられる。このようなホウケイ酸ガラスは、溶融した高純度のガラス原料をダウンドロー法により、無研磨にて板厚のバラツキの少ない透光性基板1とすることができる。   Borosilicate glass becomes a material with excellent heat resistance and chemical resistance by adding boric acid to the glass raw material, and it has a transparent, flat and nonporous surface, so it is suitably used as a material with few optical defects. It is done. Such a borosilicate glass can be made into the translucent board | substrate 1 with few board | plate thickness variations by non-polishing by the downdraw method using the molten high purity glass raw material.

または、溶融させた高純度のガラス原料をガラスの溶融温度よりも融点が高い金属から成る容器内、好ましくは、不純物の溶け込みを効果的に防止できる例えば白金(Pt)から成る容器内に流し込んだ後、数日に渡って徐冷却し、ブロック状に形成する。しかる後、所定の板厚および外形寸法に切断するとともに、各稜線部を機械的に切削することによりC面加工を行なうか、もしくは、バレル加工やケミカルエッチングによりR面加工を行なった後、アルミナ等から成る研磨材を用いてラップ研磨を行ない、さらにアルミナ,酸化セリウム等から成る研磨材を用いて光学研磨することにより透光性基板1とすることができる。このようにして作成することで、高純度のガラス原料に固体撮像素子6に悪影響を及ぼすα線を発生する不純物が溶け込むことを防止することができる。   Alternatively, the molten high-purity glass raw material is poured into a container made of a metal having a melting point higher than the melting temperature of the glass, preferably into a container made of, for example, platinum (Pt) that can effectively prevent the intrusion of impurities. Thereafter, it is gradually cooled over several days to form a block shape. After that, it is cut into a predetermined plate thickness and outer dimensions, and each ridge portion is mechanically cut to perform C-face machining, or after R-face machining by barrel machining or chemical etching, alumina The light-transmitting substrate 1 can be obtained by performing lapping using an abrasive made of, and the like, and optically polishing using an abrasive made of alumina, cerium oxide, or the like. By creating in this way, it is possible to prevent the impurities that generate α-rays that adversely affect the solid-state imaging device 6 from being dissolved in the high-purity glass raw material.

また、ニオブ酸リチウムや水晶、サファイアは高圧高温にした育成炉内で種結晶に人工的に結晶成長させることにより単結晶からなるブロックを得た後、切り出し面が結晶軸に対して所定の角度となるようにワイヤーソーやバンドソー等を用いてウエハーを切り出す。このウエハーを所定の板厚および外形寸法に切断するとともに、各稜線部を機械的に切削することによりC面加工を行なった後、アルミナ等から成る研磨材を用いてラップ研磨を行ない、さらに、アルミナ,酸化セリウム等から成る研磨材を用いて光学研磨することにより透光性基板1とすることができる。   In addition, lithium niobate, quartz, and sapphire are obtained by artificially growing a seed crystal in a growth furnace at high pressure and high temperature to obtain a block made of a single crystal, and then the cut surface has a predetermined angle with respect to the crystal axis. Then, the wafer is cut out using a wire saw or a band saw. The wafer is cut into a predetermined plate thickness and outer dimensions, and after c-plane processing is performed by mechanically cutting each ridge line portion, lapping is performed using an abrasive made of alumina or the like. The light-transmitting substrate 1 can be obtained by optical polishing using an abrasive made of alumina, cerium oxide or the like.

このようにして作成した、ニオブ酸リチウムや水晶、サファイア等から成る透光性基板1においては、透光性基板1に光が入射すると、2つの屈折光が現れ、強さの等しい2本の光線に分かれて進み、互いに垂直な振動面を持つ直線偏光となって出力される。 この現象は複屈折と呼ばれ、物質中に偏光の方向に依存する二つの屈折率があり、各々の屈折率における二つの光線のうち、一方の光線は通常の屈折法則に従い常光線と呼ばれ、他方の光線は、方向によって物質中を進行する光の速度が変化するために屈折法則に従わず、異常光線と呼ばれる。ニオブ酸リチウムや水晶,サファイアは、入射光を常光線と異常光線とに分離することから、一つの入射光を固体撮像素子6の画素配置および画素ピッチに対応して常光線と異常光線とに分離して格子縞などを写すと、固体撮像素子6にて発生する色むらや縞模様などの本来存在しない擬似信号を除去する機能を有する。   In the translucent substrate 1 made of lithium niobate, quartz, sapphire and the like thus created, when light is incident on the translucent substrate 1, two refracted lights appear and two of the same intensity are emitted. The light travels by being divided into rays, and is output as linearly polarized light having vibration planes perpendicular to each other. This phenomenon is called birefringence, and there are two refractive indexes in the material that depend on the direction of polarization, and one of the two rays at each refractive index is called an ordinary ray according to the usual refraction law. The other light ray is called an extraordinary ray because it does not follow the law of refraction because the speed of light traveling through the material changes depending on the direction. Since lithium niobate, quartz, and sapphire separate incident light into ordinary light and extraordinary light, one incident light is converted into ordinary light and extraordinary light according to the pixel arrangement and pixel pitch of the solid-state imaging device 6. When separated and copied, such as lattice fringes, it has a function of removing pseudo signals that do not exist originally, such as color unevenness and stripe patterns generated in the solid-state imaging device 6.

また、ニオブ酸リチウムや水晶,サファイア等の複屈折材料は複数枚重ねて使用することにより、入射光を固体撮像素子6の画素配置および画素ピッチに対応させた正方形または長方形の隣接する4つの画素に対応した均等な透過光に分離させることで、固体撮像素子6の擬似信号をより良好に除去することができる。   Further, by using a plurality of birefringent materials such as lithium niobate, quartz, and sapphire in a stacked manner, four adjacent pixels of square or rectangular shape corresponding to the pixel arrangement and pixel pitch of the solid-state image sensor 6 are used. , The pseudo signal of the solid-state imaging device 6 can be removed more satisfactorily.

このようにして、さまざまな方法で透光性基板1を作成することができるが、光学研磨を行った透光性基板1の表面状態は、原子間力顕微鏡を用いた表面粗さRaを0.20nm以下とすることが望ましい。透光性基板1の表面粗さRaが0.20nmより大きいと、誘電体多層膜表面の表面粗さが大きくなる傾向があり、最外低屈折率誘電体層の表面粗さを0.5〜3.0nmとし難くなる傾向がある。   Thus, although the translucent board | substrate 1 can be produced by various methods, the surface state Ra of the translucent board | substrate 1 which performed optical grinding | polishing uses atomic force microscope 0 Desirably 20 nm or less. When the surface roughness Ra of the translucent substrate 1 is larger than 0.20 nm, the surface roughness of the surface of the dielectric multilayer film tends to increase, and the surface roughness of the outermost low refractive index dielectric layer is reduced to 0.5. There is a tendency that it is difficult to set to ~ 3.0 nm.

また、誘電体多層膜2を被着形成する直前に、10%〜30%の水酸化ナトリウム水溶液を用いて洗浄することによって、透光性基板1表面を化学的に研磨すると共に、透光性基板1表面にプラズマを照射するプラズマ洗浄によって透光性基板1表面を活性化することが望ましい。これらの洗浄を行なうことによって、透光性基板1表面と誘電体層の密着性と光学的な透過性、反射性を向上させることができる。   In addition, the surface of the light-transmitting substrate 1 is chemically polished and washed with a 10% to 30% aqueous sodium hydroxide solution immediately before the dielectric multilayer film 2 is deposited. It is desirable to activate the surface of the translucent substrate 1 by plasma cleaning in which the surface of the substrate 1 is irradiated with plasma. By performing these cleaning operations, it is possible to improve the adhesion between the surface of the translucent substrate 1 and the dielectric layer, the optical transparency, and the reflectivity.

また、透光性基板1の平面視の形状は、正方形や長方形等の四角形状、四隅を面取りした略四角形状、多角形状、円形や楕円形等の略円形状でもよい。   Further, the shape of the translucent substrate 1 in plan view may be a quadrangular shape such as a square or a rectangle, a substantially quadrangular shape with four corners chamfered, a polygonal shape, a substantially circular shape such as a circle or an ellipse.

図2に誘電体多層膜2の拡大図を示す。この誘電体多層膜2は、通常は屈折率が1.7以上の誘電体材料から成る高屈折率誘電体層3および、通常は屈折率が1.6以下の誘電体材料から成る低屈折率誘電体層4を、蒸着法やスパッタリング法等を用い特定の条件で、数十層に渡って順次交互に複数層積層することにより形成される。   FIG. 2 shows an enlarged view of the dielectric multilayer film 2. The dielectric multilayer film 2 includes a high refractive index dielectric layer 3 usually made of a dielectric material having a refractive index of 1.7 or more, and a low refractive index usually made of a dielectric material having a refractive index of 1.6 or less. The dielectric layer 4 is formed by sequentially laminating a plurality of layers over several tens of layers under specific conditions using a vapor deposition method, a sputtering method, or the like.

このようにして作成した誘電体多層膜2は、一般的に近赤外領域の波長の入射波を遮蔽する光学フィルタとして必要な機能である波長400nm〜600nmの領域において、反射率の最大値が20%以下であり、波長700nm〜1000nmの領域において、反射率の最小値が90%以上である機能を有している。   The dielectric multilayer film 2 produced in this way generally has a maximum reflectance in a wavelength range of 400 nm to 600 nm, which is a function necessary as an optical filter that shields incident waves having wavelengths in the near infrared range. It has a function of 20% or less and a minimum reflectance of 90% or more in a wavelength range of 700 nm to 1000 nm.

また、光学フィルタの機能を有する誘電体多層膜2が被着形成された一主面と対向する主面に、すくなくとも波長450nm〜600nmの領域において、反射率の最大値が2%以下となる反射防止膜を形成してもよい。これにより、所望の入射光の損失を少なくすることができ、更に良好な画像信号を得ることができる。   Further, a reflection having a maximum reflectance of 2% or less on a principal surface opposite to the principal surface on which the dielectric multilayer film 2 having the function of an optical filter is deposited is at least in a wavelength region of 450 nm to 600 nm. A prevention film may be formed. As a result, the loss of desired incident light can be reduced, and a better image signal can be obtained.

このような屈折率が1.7以上の絶縁材料としては、例えば五酸化タンタルや酸化チタン,五酸化ニオブ,酸化ランタン,酸化ジルコニウム等が用いられ、屈折率が1.6以下の絶縁材料としては、例えば酸化珪素や酸化アルミニウム,フッ化ランタン,フッ化マグネシウム等がある。硬さや安定性などの機械的特性、および所望の光学フィルタとしての機能を付与するために必要となる屈折率等の光学的特性から、高屈折率誘電体層3としては酸化チタンを、低屈折率誘電体層4としては酸化珪素が望ましい。   As such an insulating material having a refractive index of 1.7 or more, for example, tantalum pentoxide, titanium oxide, niobium pentoxide, lanthanum oxide, zirconium oxide or the like is used, and as an insulating material having a refractive index of 1.6 or less, Examples include silicon oxide, aluminum oxide, lanthanum fluoride, and magnesium fluoride. Due to the mechanical properties such as hardness and stability, and the optical properties such as refractive index necessary for imparting a function as a desired optical filter, titanium oxide is used as the high refractive index dielectric layer 3 and low refractive index is used. The dielectric constant layer 4 is preferably silicon oxide.

高屈折率誘電体層3と低屈折率誘電体層4を被着形成する方法として、イオンビームアシスト法を用いる。イオンビームアシスト法は、製膜プロセスである真空蒸着法に陽イオンの照射を併用する真空蒸着法である。イオンビームアシスト法で使用する陽イオンは、例えばアルゴンからなる不活性ガスと酸素ガスからなる活性ガスの両方を装置のイオン源に導入してプラズマとしたものから生成したものを用いる。   As a method for depositing and forming the high refractive index dielectric layer 3 and the low refractive index dielectric layer 4, an ion beam assist method is used. The ion beam assist method is a vacuum deposition method in which cation irradiation is used in combination with a vacuum deposition method which is a film forming process. As the cation used in the ion beam assist method, for example, a cation generated from plasma obtained by introducing both an inert gas composed of argon and an active gas composed of oxygen gas into an ion source of the apparatus is used.

イオンビームアシスト法では、例えば透光性基板1を真空蒸着装置内に設置した坩堝に入れ、光学的に良質な誘電体多層膜2を得るために、酸素欠乏を起こさないように十分に酸素を供給し、そして真空蒸着装置内を1×10-3Pa程度の真空度に設定された状態で陽イオンの照射を併用しながら真空蒸着が行なわれる。真空蒸着装置内にて誘電体多層膜2が被着形成される際の透光性基板1の表面温度は、熱電対により透光性基板1付近の温度を計測することにより管理され、電熱線ヒーター等を用いて温度範囲30〜350℃程度に保持される。しかる後、透光性基板1の主面の全面あるいはマスキングをして固体撮像素子6と対向する所望の領域に、高屈折率誘電体層3と低屈折率誘電体層4とを陽イオンの照射を併用しながら順次交互に合計10〜100層程度誘電体層を被着することにより透光性部材5が形成される。陽イオンが真空中を飛来する蒸着物質が気体分子に衝突することによって、蒸着物質の気体分子が励起されて大きな運動エネルギーを得る。そして、この大きな運動エネルギーを得た蒸着物質の気体分子が被着材である透光性基板1の表面に到達すると、被着材の表面の広い領域を移動するとともに、広い領域の移動に伴って被着材表面のより低いエネルギー状態にある場所を見つけ出す確率が大幅に増大するため、蒸着物質の分子同士が凝集することなく被着材の表面に均一に被着し、周辺に存在する蒸着原子同士が凝集して核を形成することなく膜を形成することができる。 In the ion beam assist method, for example, the translucent substrate 1 is placed in a crucible installed in a vacuum deposition apparatus, and oxygen is sufficiently added so as not to cause oxygen deficiency in order to obtain an optically good dielectric multilayer film 2. supplied, and vacuum deposition is performed while a combination of irradiation of a cation in a state of being set in the vacuum deposition device to 1 × 10 -3 Pa degree of vacuum of about. The surface temperature of the translucent substrate 1 when the dielectric multilayer film 2 is deposited and formed in the vacuum deposition apparatus is managed by measuring the temperature in the vicinity of the translucent substrate 1 with a thermocouple. The temperature is maintained at about 30 to 350 ° C. using a heater or the like. Thereafter, the high refractive index dielectric layer 3 and the low refractive index dielectric layer 4 are placed on the entire principal surface of the translucent substrate 1 or in a desired region facing the solid-state imaging device 6 by masking. The translucent member 5 is formed by depositing a total of about 10 to 100 dielectric layers alternately while using irradiation together. When the vapor deposition material in which cations fly in the vacuum collides with the gas molecules, the gas molecules of the vapor deposition material are excited to obtain a large kinetic energy. And when the gas molecule of the vapor deposition material which obtained this big kinetic energy reaches | attains the surface of the transparent substrate 1 which is a to-be-adhered material, while moving the wide area | region of the to-be-adhered material surface, with the movement of a wide area | region. This greatly increases the probability of finding a lower energy state on the surface of the adherend, so that the deposition material molecules are uniformly deposited on the surface of the adherend without agglomerating with each other, and vapor deposition exists in the vicinity. A film can be formed without agglomerating atoms to form nuclei.

加えて、本発明においては、高屈折率誘電体層3もしくは低屈折率誘電体層4を1層被着形成した後に、表面に陽イオンのみを所定の時間照射させることが好ましい。これにより、被着材の表面でエネルギーを失った蒸着物質の分子に陽イオンが衝突すると、その蒸着物質の分子は薄膜内部に押し込まれ、より緻密なアモルファス状態の薄膜を得ることができるとともに、被着形成された各層の表面が陽イオンが叩きつけられることによって平坦になるため、層と層の間の界面をより平坦にすることができる。   In addition, in the present invention, it is preferable to irradiate the surface only with a cation for a predetermined time after the high refractive index dielectric layer 3 or the low refractive index dielectric layer 4 is deposited and formed. As a result, when a cation collides with a molecule of the vapor deposition material that has lost energy on the surface of the adherend, the molecule of the vapor deposition material is pushed into the thin film, and a denser amorphous thin film can be obtained. Since the surface of each deposited layer becomes flat when the cations are struck, the interface between the layers can be made flatter.

ここで、接着剤10と誘電体多層膜2の最外層表面14との接合における接着剤10の濡れ広がりを良好にするという観点からは誘電体多層膜の最外層表面が原子間力顕微鏡を用いて測定した表面粗さRaが0.5〜3.0nmとなることがより好ましい。   Here, from the viewpoint of improving the wetting and spreading of the adhesive 10 in the bonding between the adhesive 10 and the outermost layer surface 14 of the dielectric multilayer film 2, the outermost layer surface of the dielectric multilayer film uses an atomic force microscope. It is more preferable that the measured surface roughness Ra is 0.5 to 3.0 nm.

一般的にイオンビームアシスト法で誘電体層をアモルファスとする場合は蒸着物質を被着形成している間に同時に陽イオンを照射することが行なわれるが、高屈折率誘電体層3および低屈折率誘電体層4のすべての層を被着形成した後に、表面に陽イオンのみを照射しようとすると、表面粗さRaを0.5〜3.0nmのような低いものとするのに陽イオンを照射する時間が長くなるため、陽イオン中の主成分である酸素イオンが誘電体層に過剰に打ち込まれるため、誘電体層中の酸素の比率が高まり正常な誘電体層とするのが困難である。これに対し、本発明においては誘電体層1層被着毎に陽イオンを照射することによって、酸素の比率を高めず、なおかつ表面を平坦化することができる。   In general, when the dielectric layer is made amorphous by the ion beam assist method, cation is radiated at the same time as the deposition material is deposited, but the high refractive index dielectric layer 3 and the low refractive index are applied. If all the layers of the dielectric constant layer 4 are deposited and then the surface is irradiated with only cations, the cations will be reduced even though the surface roughness Ra is as low as 0.5 to 3.0 nm. Because the oxygen irradiation time, which is the main component in the cation, is excessively implanted into the dielectric layer, the ratio of oxygen in the dielectric layer increases, making it difficult to obtain a normal dielectric layer. It is. On the other hand, in the present invention, the surface of the dielectric layer can be flattened without increasing the oxygen ratio by irradiating the cation for each deposition of the dielectric layer.

これらにより、誘電体多層膜2の透光性基板1から数えて最外層表面14を、酸化珪素から成る低屈折率誘電体層4にて終端させることで、誘電体多層膜2の最外層表面14の原子間力顕微鏡を用いた表面粗さRaを0.5〜3.0nmのような低いものとすることができる。それによって、誘電体多層膜2の最外層表面14の水ヌレ性が接触角測定で10〜30度程度となり、接着剤10と誘電体多層膜2の最外層表面14の接合において、良好な接着強度を得ることができる。   Accordingly, the outermost layer surface 14 of the dielectric multilayer film 2 counted from the translucent substrate 1 is terminated by the low refractive index dielectric layer 4 made of silicon oxide, so that the outermost layer surface of the dielectric multilayer film 2 is terminated. The surface roughness Ra using the 14 atomic force microscope can be as low as 0.5 to 3.0 nm. As a result, the water repellency of the outermost layer surface 14 of the dielectric multilayer film 2 becomes about 10 to 30 degrees in contact angle measurement, and good adhesion is achieved in the bonding between the adhesive 10 and the outermost layer surface 14 of the dielectric multilayer film 2. Strength can be obtained.

ある物質表面の水ヌレ性は、物質固有の特性とその表面の粗度に起因する。一般的に、接触角測定で90度以下を示すような水ヌレ性を有する場合、表面の凹凸が多くなるほど、水ヌレ性が増加する。よって、表面の粗さを所定の状態とすることによって、所望とする水ヌレ性を得ることができる。   The water wettability of a surface of a substance is due to the inherent properties of the substance and the roughness of the surface. In general, in the case of water repellency such that the contact angle measurement shows 90 degrees or less, the water repellency increases as the surface irregularities increase. Therefore, desired water wetting can be obtained by setting the surface roughness to a predetermined state.

ここで、アモルファスというのは、構造的には結晶のように構成原子の配列が周期構造を持ち規則的であるのに対して、短距離秩序はあるが、長距離秩序がない固体状態のことである。すなわち、結合の仕方がランダムで構造が幾何学的に均一であるため、均質で粒界がないという特徴を有している。アモルファス状態は、X線回折法におけるブロードなピークとして観察できる。また、透過型電子顕微鏡観察を用いて観察することができる。透過型電子顕微鏡観察は、電子線を電場あるいは磁場により屈折させる電子レンズを有し、電子線は可視光線やX線よりも波長が短いため高い倍率と分解能が得られるため、微細な形態や内部構造を観察でき、結晶粒界の有無を視覚的に確認することができる。更に、電子線回折パターンから構造解析も行うことができ、ハローパターンからアモルファス状態を確認することができる。   Here, the term “amorphous” refers to a solid state that has a short-range order but no long-range order, whereas the arrangement of constituent atoms has a periodic structure and is regular like a crystal. It is. In other words, since the bonding is random and the structure is geometrically uniform, it is characterized by being homogeneous and free of grain boundaries. The amorphous state can be observed as a broad peak in the X-ray diffraction method. Moreover, it can observe using transmission electron microscope observation. Transmission electron microscope observation has an electron lens that refracts an electron beam by an electric field or a magnetic field. Since the electron beam has a shorter wavelength than visible light or X-ray, high magnification and resolution can be obtained. The structure can be observed, and the presence or absence of crystal grain boundaries can be visually confirmed. Furthermore, structural analysis can be performed from the electron diffraction pattern, and the amorphous state can be confirmed from the halo pattern.

通常の真空蒸着においては、基板表面に被着した際に持っているエネルギーが熱エネルギーを源とする比較的小さなエネルギー量であるため、基板表面を十分に拡散することができず、まずはじめに、周辺に存在する蒸着原子同士が凝集して核を形成し、更に被着する原子がその核に結合していくことによって膜を形成する。このため、核が成長していく中で周辺の核同士が結合して連続膜へといたる過程を経て膜を形成する。この結果、柱状構造と呼ばれ多孔質状の膜となり、膜界面の平坦性が損なわれることとなり、最終的な誘電多層膜2の表面においても多孔質状な面が形成されるため、表面が荒れてしまう。これにより、接着剤10と誘電体多層膜2の最外層表面14の接合において、接着剤10が最外層表面14上をぬれ広がり、所定の接合領域を超えて透光性部材1の撮像領域にまで流れ込んでしまうために、良好な光学特性を得られにくい。   In normal vacuum deposition, the energy that is possessed when deposited on the substrate surface is a relatively small amount of energy that uses thermal energy as the source, so the substrate surface cannot be sufficiently diffused. Vapor deposition atoms present in the periphery aggregate to form nuclei, and further, the deposited atoms are bonded to the nuclei to form a film. For this reason, a film is formed through a process in which peripheral nuclei are bonded to each other to form a continuous film as the nuclei grow. As a result, a porous film called a columnar structure is formed, the flatness of the film interface is impaired, and a porous surface is also formed on the surface of the final dielectric multilayer film 2, so that the surface is It will be rough. Thereby, in the joining of the adhesive 10 and the outermost layer surface 14 of the dielectric multilayer film 2, the adhesive 10 wets and spreads on the outermost layer surface 14, and exceeds the predetermined joining region into the imaging region of the translucent member 1. Therefore, it is difficult to obtain good optical characteristics.

また、最外層表面14を形成する低屈折率誘電体層4としてフッ化マグネシウムを使用した際には、誘電体多層膜2の最外層表面14の水ヌレ性が接触角測定で30度を超えて非常に大きくなり、接着剤10と誘電体多層膜2の最外層表面14の接合において、接着剤10が最外層表面14の接合領域に十分に塗れ広がらず、良好な密着が得られない。   In addition, when magnesium fluoride is used as the low refractive index dielectric layer 4 forming the outermost layer surface 14, the water wettability of the outermost layer surface 14 of the dielectric multilayer film 2 exceeds 30 degrees in contact angle measurement. Therefore, when the adhesive 10 and the outermost layer surface 14 of the dielectric multilayer film 2 are joined, the adhesive 10 is not sufficiently applied to the joining region of the outermost layer surface 14 to spread, and good adhesion cannot be obtained.

基体7は、酸化アルミニウム質焼結体やムライト質焼結体,窒化アルミニウム質焼結体,窒化珪素質焼結体,炭化珪素質焼結体等の無機絶縁材料あるいは、エポキシ樹脂,フェノール樹脂,液晶ポリマー,ポリフェニレンサルファイド,ポリイミド樹脂等の有機絶縁材料等から成り、例えば、酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウムや酸化珪素,酸化マグネシウム,酸化カルシウム等の原料粉末に適当な有機バインダ,溶剤,可塑剤および分散剤を添加混合して泥漿物を作り、この泥漿物を従来周知のドクターブレード法やカレンダーロール法等のシート成形法によりシート状にしてセラミックグリーンシート(セラミック生シート)を得、しかる後、それらセラミックグリーンシートに適当な打抜き加工を施すとともに複数枚積層し、約1600℃の高温で焼成することによって製作される。あるいは、エポキシ樹脂から成る場合であれば、一般的にシリカ粉末を充填した樹脂コンパウンドを射出成形機により、約180℃に加熱した金型形状に成形硬化することにより形成される。   The substrate 7 is made of an inorganic insulating material such as an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a silicon carbide sintered body, or an epoxy resin, a phenol resin, It is composed of organic insulating materials such as liquid crystal polymer, polyphenylene sulfide, and polyimide resin. For example, when it is composed of an aluminum oxide sintered body, it is suitable for raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. An organic binder, a solvent, a plasticizer, and a dispersant are added and mixed to make a slurry, and this slurry is formed into a sheet by a sheet forming method such as a doctor blade method or a calender roll method, which is conventionally known. Sheet), and then appropriate punching is performed on the ceramic green sheets. Both laminating a plurality, it is manufactured by firing at a high temperature of about 1600 ° C.. Alternatively, in the case of an epoxy resin, it is generally formed by molding and curing a resin compound filled with silica powder into a mold shape heated to about 180 ° C. by an injection molding machine.

また、基体7の上面には、固体撮像素子6を収納するための収納部である凹部が形成されている。また、凹部の底面や内側面から基体7の下面に導出された複数の配線導体8が被着形成されており、この凹部に形成された配線導体8には固体撮像素子6の電極12がボンディングワイヤ9を介して電気的に接続される。また、基体7の下面に導出された配線導体8の部位(図示せず)は外部電気回路(図示せず)に半田等の電気的接続手段を介して電気的に接続される。   In addition, a concave portion that is a storage portion for storing the solid-state imaging element 6 is formed on the upper surface of the base body 7. In addition, a plurality of wiring conductors 8 led out from the bottom surface or inner side surface of the concave portion to the lower surface of the base body 7 are deposited, and the electrodes 12 of the solid-state imaging device 6 are bonded to the wiring conductors 8 formed in the concave portion. It is electrically connected through the wire 9. Further, a portion (not shown) of the wiring conductor 8 led out to the lower surface of the base body 7 is electrically connected to an external electric circuit (not shown) through an electric connection means such as solder.

配線導体8は、固体撮像素子6の各電極12を外部電気回路に電気的に接続する導電路として機能し、例えば基体7が無機絶縁材料から成る場合、タングステンやモリブデン,マンガン等の高融点金属粉末に適当な有機溶剤,溶媒および可塑剤等を添加混合して得た金属ペーストを従来周知のスクリーン印刷法等の厚膜手法により基体と成るセラミックグリーンシートにあらかじめ印刷塗布し、セラミックグリーンシートと同時に焼成することによって所定パターンに被着形成される。   The wiring conductor 8 functions as a conductive path that electrically connects each electrode 12 of the solid-state imaging device 6 to an external electric circuit. For example, when the substrate 7 is made of an inorganic insulating material, a refractory metal such as tungsten, molybdenum, or manganese. A metal paste obtained by adding and mixing an appropriate organic solvent, a solvent, a plasticizer, and the like to the powder is preliminarily printed and applied to a ceramic green sheet as a base by a thick film technique such as a screen printing method. By baking at the same time, a predetermined pattern is deposited.

なお、配線導体8はその表面にニッケルや金等の導電性や耐蝕性に優れるとともにロウ材との濡れ性が良好な金属を電解めっき法や無電解めっき法により1〜20μmの厚みに被着させておくとよい。これにより、配線導体8の酸化腐蝕を有効に防止することができるとともに配線導体8とボンディングワイヤ9との接続および配線導体8と外部電気回路基板の配線導体8との接続をより強固とすることができる。以上のようにして基体7を作製することができる。   In addition, the wiring conductor 8 has a surface of excellent conductivity and corrosion resistance such as nickel and gold, and a metal having good wettability with the brazing material is applied to a thickness of 1 to 20 μm by electrolytic plating or electroless plating. It is good to leave it. Thereby, the oxidative corrosion of the wiring conductor 8 can be effectively prevented, and the connection between the wiring conductor 8 and the bonding wire 9 and the connection between the wiring conductor 8 and the wiring conductor 8 of the external electric circuit board are made stronger. Can do. The substrate 7 can be manufactured as described above.

そして、基体7の凹部に固体撮像素子6を従来周知のダイボンド樹脂等で接着し、電極12と配線導体8をボンディングワイヤ9で電気的に接続する。   Then, the solid-state imaging device 6 is bonded to the concave portion of the base 7 with a conventionally known die bond resin or the like, and the electrode 12 and the wiring conductor 8 are electrically connected by the bonding wire 9.

基体7と光学部材5との接合は、一般的に紫外線硬化型エポキシ樹脂もしくは熱硬化型エポキシ樹脂等から成る接着剤10を介して行なわれる。例えば接着剤10として熱硬化型エポキシ樹脂を用いる場合、従来周知のスクリーン印刷法等で接着剤10を光学部材5の誘電体多層膜2を形成した面に塗布し、基体7に重ねあわせた後、90〜250℃の温度で60〜90分間加圧加熱することにより固体撮像装置となる。   The base 7 and the optical member 5 are generally joined via an adhesive 10 made of an ultraviolet curable epoxy resin or a thermosetting epoxy resin. For example, when a thermosetting epoxy resin is used as the adhesive 10, the adhesive 10 is applied to the surface on which the dielectric multilayer film 2 of the optical member 5 is formed by a conventionally known screen printing method or the like, and is superposed on the substrate 7. The solid-state imaging device is obtained by pressurizing and heating at a temperature of 90 to 250 ° C. for 60 to 90 minutes.

なお、基体7と光学部材5との接合の際の部材間の応力を低減するという観点からは、90〜110℃程度の低い温度での加熱が好ましい。なお、接着剤10は、基体7と光学部材5との接合の際はもちろんのこと、その後の個体撮像装置を外部配線基板(図示せず)に実装する際のリフロー等による熱、さらには固体撮像素子6が作動する際に発生する熱により生ずる部材間の応力を緩和して、光学部材5が破壊されるのを有効に防止するものが選ばれる。このような接着剤10としては、例えば、ビスフェノールA型エポキシ樹脂やビスフェノールA変性エポキシ樹脂,ビスフェノールF型エポキシ樹脂,フェノールノボラック型エポキシ樹脂,クレゾールノボラック型エポキシ樹脂,特殊ノボラック型エポキシ樹脂,フェノール誘導体エポキシ樹脂,ビフェノール骨格型エポキシ樹脂等のエポキシ樹脂にイミダゾール系,アミン系,リン系,ヒドラジン系,イミダゾールアダクト系,アミンアダクト系,カチオン重合系,ジシアンジアミド系等の硬化剤を添加したもので形成されている。なお、2種類以上のエポキシ樹脂を混合して用いてもよい。また、接着剤10に含有される有機材料粉末としては、エポキシ樹脂を主成分とする熱硬化性樹脂よりも弾性率が低いシリコンゴムやシリコンレジン,LDPE,HDPE,PMMA,架橋PMMA,ポリスチレン,架橋ポリスチレン,エチレン−アクリル共重合,ポリメタクリル酸エチル,ブチルアクリレート,ウレタン等の軟質樹脂が用いられることが好ましい。   In addition, from the viewpoint of reducing stress between members when the base body 7 and the optical member 5 are bonded, heating at a low temperature of about 90 to 110 ° C. is preferable. The adhesive 10 is used not only when the base body 7 and the optical member 5 are bonded, but also by heat caused by reflow or the like when the individual imaging device is mounted on an external wiring board (not shown), or solid. A material that relieves stress between members caused by heat generated when the image sensor 6 operates and effectively prevents the optical member 5 from being destroyed is selected. Examples of the adhesive 10 include bisphenol A type epoxy resin, bisphenol A modified epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, special novolac type epoxy resin, and phenol derivative epoxy. It is made of epoxy resin such as resin, biphenol skeleton type epoxy resin, etc. with addition of curing agent such as imidazole, amine, phosphorus, hydrazine, imidazole adduct, amine adduct, cationic polymerization, dicyandiamide. Yes. Two or more types of epoxy resins may be mixed and used. The organic material powder contained in the adhesive 10 includes silicon rubber, silicon resin, LDPE, HDPE, PMMA, crosslinked PMMA, polystyrene, crosslinked, which has a lower elastic modulus than a thermosetting resin mainly composed of epoxy resin. It is preferable to use a soft resin such as polystyrene, ethylene-acrylic copolymer, polyethyl methacrylate, butyl acrylate, or urethane.

図3は本発明の固体撮像装置の実施の形態の他の一例を示す断面図である。光学部材5は、図1の例と同様にして作製する。図3に示すような固体撮像装置は、上面に固体撮像素子6を搭載する搭載部を有する基板7’と、搭載部に搭載された固体撮像素子6と、基板7’の上面の外周部に接合された筐体18と、筐体18の上部に鏡筒16を介して取り付けられた撮像レンズ17と、筐体18内側の撮像レンズ17の下方に配置されるとともに固体撮像素子6の上面で筐体18の開口を塞ぐように外周部が接着剤10を介して筐体18の内面に誘電体多層膜2の最外層表面14を接着剤10と接するようにして光学部材5を接合している。   FIG. 3 is a sectional view showing another example of the embodiment of the solid-state imaging device of the present invention. The optical member 5 is produced in the same manner as in the example of FIG. A solid-state imaging device as shown in FIG. 3 has a substrate 7 ′ having a mounting portion for mounting the solid-state imaging device 6 on the upper surface, a solid-state imaging device 6 mounted on the mounting portion, and an outer peripheral portion on the upper surface of the substrate 7 ′. On the upper surface of the solid-state imaging device 6, the housing 18 is joined, the imaging lens 17 is attached to the top of the housing 18 via the lens barrel 16, and is disposed below the imaging lens 17 inside the housing 18. The optical member 5 is bonded so that the outermost surface 14 of the dielectric multilayer film 2 is in contact with the adhesive 10 on the inner surface of the casing 18 through the adhesive 10 so that the opening of the casing 18 is closed. Yes.

なお、図3の例では、基板7’と筐体18とで本発明の基体7を構成しており、基板7’と筐体18とで固体撮像素子6を収納するための収納部を形成している。   In the example of FIG. 3, the substrate 7 ′ and the casing 18 form the base body 7 of the present invention, and the substrate 7 ′ and the casing 18 form a storage portion for storing the solid-state imaging device 6. is doing.

また、基板7’には、上面から基板7’の下面や側面に導出された複数の配線導体8が被着形成されており、この上面に形成された配線導体8には固体撮像素子6の電極12がボンディングワイヤ9を介して電気的に接続される。また、基板7’の下面に導出された配線導体8の部位(図示せず)は外部電気回路(図示せず)に半田等の電気的接続手段を介して電気的に接続される。   A plurality of wiring conductors 8 led out from the upper surface to the lower surface and side surfaces of the substrate 7 ′ are formed on the substrate 7 ′. The wiring conductors 8 formed on the upper surface are attached to the solid-state imaging device 6. The electrode 12 is electrically connected via the bonding wire 9. Further, a portion (not shown) of the wiring conductor 8 led to the lower surface of the substrate 7 ′ is electrically connected to an external electric circuit (not shown) through an electric connection means such as solder.

筐体18は、一般にはエポキシ樹脂にシリカ粉末を充填した樹脂コンパウンドを射出成形機により約180℃の熱で任意の金型形状に成形し硬化させることによって製作される。筐体18と光学部材5とを接合する接着剤10は、紫外線硬化型エポキシ樹脂もしくは熱硬化型エポキシ樹脂等が用いられる。このような筐体18と光学部材5との接合は、光学部材5の接合部、または筐体18の接合部に接着剤10を塗布した後、光学部材5を筐体18に重ね合わせる。しかる後、熱硬化型エポキシ樹脂を用いる場合は、約80〜150℃の温度で60〜90分間加熱することにより硬化させる。紫外線硬化型エポキシ樹脂を用いる場合は、紫外線を当て固定した後、加熱を行い接着剤10を完全に硬化させる。   The casing 18 is generally manufactured by molding and curing a resin compound in which silica powder is filled in an epoxy resin into an arbitrary mold shape with heat of about 180 ° C. by an injection molding machine. The adhesive 10 that joins the casing 18 and the optical member 5 is made of an ultraviolet curable epoxy resin or a thermosetting epoxy resin. In such joining of the housing 18 and the optical member 5, the adhesive 10 is applied to the joint portion of the optical member 5 or the joint portion of the housing 18, and then the optical member 5 is superimposed on the housing 18. Thereafter, when a thermosetting epoxy resin is used, it is cured by heating at a temperature of about 80 to 150 ° C. for 60 to 90 minutes. In the case of using an ultraviolet curable epoxy resin, the adhesive 10 is completely cured by heating after being fixed by applying ultraviolet rays.

撮像レンズ17は、鏡筒16を介して筐体18の上部に取り付けられており、撮像レンズ17の焦点が固体撮像素子6の受光面の表面に合うように配置されている。または、撮像レンズ17は鏡筒16に固定されており、この鏡筒16を撮像レンズ17の焦点が固体撮像素子6の受光面の表面に合うように位置を調整された後に筐体18に固定されてもよい。   The imaging lens 17 is attached to the upper part of the housing 18 via the lens barrel 16, and is arranged so that the focal point of the imaging lens 17 matches the surface of the light receiving surface of the solid-state imaging device 6. Alternatively, the imaging lens 17 is fixed to the lens barrel 16, and the lens barrel 16 is fixed to the housing 18 after the position is adjusted so that the focus of the imaging lens 17 matches the surface of the light receiving surface of the solid-state imaging device 6. May be.

図4は本発明の固体撮像装置の他の発明における実施の形態の一例を示す断面図である。誘電体多層膜2は、図1の例と同様にして透光性基板1上に形成する。   FIG. 4 is a cross-sectional view showing an example of an embodiment in another invention of the solid-state imaging device of the present invention. The dielectric multilayer film 2 is formed on the translucent substrate 1 in the same manner as in the example of FIG.

配線導体8は、アルミニウム,クロム,ニッケル,銀,金,チタン等の少なくとも1種類の金属から成り、真空蒸着法やスパッタリング法、メッキ法により透光性基板1上に被着形成された後、フォトリソグラフィ法およびエッチング法等により不要部を除去して配線導体8が形成される。これら、透光性基板1と配線導体とで配線基板13が構成される。   The wiring conductor 8 is made of at least one kind of metal such as aluminum, chromium, nickel, silver, gold, and titanium, and is deposited on the translucent substrate 1 by vacuum deposition, sputtering, or plating, Wiring conductors 8 are formed by removing unnecessary portions by photolithography and etching. The light transmitting substrate 1 and the wiring conductor constitute a wiring substrate 13.

または、ステンレススチール(SUS)やアルミニウム(Al)からなる金属板に配線導体8のパターンに対応した抜き加工を施したマスクパターンを透光性基板1の表面に載置し、その上から真空蒸着法やスパッタリング法によりマスクパターンの開口部に金属を堆積させることにより配線導体8のパターンが形成される。   Alternatively, a mask pattern obtained by performing a punching process corresponding to the pattern of the wiring conductor 8 on a metal plate made of stainless steel (SUS) or aluminum (Al) is placed on the surface of the translucent substrate 1, and vacuum deposition is performed thereon. A pattern of the wiring conductor 8 is formed by depositing a metal in the opening of the mask pattern by a method or a sputtering method.

あるいは、配線導体8は、例えばタングステン,モリブデン,マンガン等の高融点金属粉末に適当な有機溶剤,溶媒,可塑剤等を添加混合して得た金属ペーストをスクリーン印刷法等の厚膜手法を用いて透光性基板1にマスクパターンを介して印刷塗布しておき、これを焼成することによって被着形成される。   Alternatively, the wiring conductor 8 uses a thick film technique such as a screen printing method using a metal paste obtained by adding and mixing an appropriate organic solvent, solvent, plasticizer or the like to a high melting point metal powder such as tungsten, molybdenum, or manganese. Then, printing is applied to the translucent substrate 1 through a mask pattern, and this is baked to be deposited.

特に、マスクパターンを用いる方法は、配線導体8以外の透光性基板1の素地表面をエッチングしないことから、その表面がエッチング液により化学的に侵食されることがなく光学鏡面からの劣化を防止することができるので好ましい。配線導体8は、固体撮像素子6の各電極12と金バンプ15等を介して接続され、固体撮像素子6の電気信号を外部電気回路に電気的に接続する際の導電路となる。   In particular, the method using the mask pattern does not etch the substrate surface of the translucent substrate 1 other than the wiring conductor 8, so that the surface is not chemically eroded by the etchant and prevents deterioration from the optical mirror surface. This is preferable. The wiring conductor 8 is connected to each electrode 12 of the solid-state imaging device 6 via the gold bumps 15 and the like, and serves as a conductive path when the electrical signal of the solid-state imaging device 6 is electrically connected to an external electric circuit.

なお、配線導体8は、透光性基板1の誘電体多層膜2の上に形成することを避けるのが好ましく、従って、透光性基板1の誘電体多層膜2が被着されていない主面に形成するか、誘電体多層膜2の被着領域を避けて形成するか、または予め配線導体8を形成しない部分に誘電体多層膜2を形成するのが好ましい。誘電体多層膜2の上に配線導体8を形成すると、誘電体多層膜2と配線導体8との熱膨張係数の違いによる熱応力や内部応力の差が配線導体8の周辺に発生し、配線導体8を蒸着等により形成する際の熱や、固体撮像素子6の動作による熱が加わった際に、誘電体多層膜2にクラックが生じやすくなる。   In addition, it is preferable to avoid the formation of the wiring conductor 8 on the dielectric multilayer film 2 of the translucent substrate 1. Accordingly, the main portion of the translucent substrate 1 to which the dielectric multilayer film 2 is not attached is preferably avoided. It is preferable to form the dielectric multilayer film 2 on the surface, avoid the deposition region of the dielectric multilayer film 2, or form the dielectric multilayer film 2 in a portion where the wiring conductor 8 is not formed in advance. When the wiring conductor 8 is formed on the dielectric multilayer film 2, a difference in thermal stress or internal stress due to a difference in thermal expansion coefficient between the dielectric multilayer film 2 and the wiring conductor 8 occurs around the wiring conductor 8, Cracks are likely to occur in the dielectric multilayer film 2 when heat is applied when the conductor 8 is formed by vapor deposition or the heat of the solid-state imaging device 6 is applied.

固体撮像素子6と配線基板13は、電極12と配線導体8部分を金バンプ15で電気的に接合するとともに、紫外線硬化樹脂等から成る接着剤10により機械的に接合される。もしくは固体撮像素子6と配線基板13は、エポキシ樹脂中に導電性粒子を分散させた異方導電性を有する接着剤10を用いて電気的かつ機械的に接合してもよい。   The solid-state imaging device 6 and the wiring board 13 are mechanically joined by an adhesive 10 made of an ultraviolet curable resin or the like while the electrodes 12 and the wiring conductor 8 are electrically joined by the gold bumps 15. Alternatively, the solid-state imaging device 6 and the wiring board 13 may be electrically and mechanically joined using an adhesive 10 having anisotropic conductivity in which conductive particles are dispersed in an epoxy resin.

本発明の固体撮像素子収納用パッケージの実施例を以下に説明する。   Examples of the solid-state image pickup device storage package of the present invention will be described below.

本実施例では、試料番号1〜9までの各条件で光学部材5を作成し、それを基体7に接合させることで図3の形状の固体撮像素子収納用パッケージを作成し、その気密性と外観の結果で判定を行なった。   In this embodiment, the optical member 5 is prepared under each condition of sample numbers 1 to 9, and the solid member for housing a solid-state imaging device having the shape shown in FIG. Judgment was made based on the appearance results.

板厚0.5mmで外形寸法が90mm角であるホウケイ酸ガラスを用いて、透光性基板1を作成した。   The translucent board | substrate 1 was created using the borosilicate glass whose plate | board thickness is 0.5 mm and whose external dimensions are 90 mm square.

まず、全てのホウケイ酸ガラスに光学研磨を行い、表面状態が原子間力顕微鏡を用いた表面粗さRaが0.15および0.10nmとし、10%〜30%の水酸化ナトリウム水溶液を用いて洗浄することによって、表面を化学的に研磨すると共に、プラズマを照射するプラズマ洗浄によって表面を活性化した。   First, all borosilicate glasses are optically polished, the surface state Ra is 0.15 and 0.10 nm using an atomic force microscope, and a 10% to 30% aqueous sodium hydroxide solution is used. By cleaning, the surface was chemically polished, and the surface was activated by plasma cleaning with plasma irradiation.

次に、試料番号1〜8まで各条件でホウケイ酸ガラス上に誘電体多層膜2を形成する。   Next, the dielectric multilayer film 2 is formed on the borosilicate glass under each condition from sample numbers 1 to 8.

(試料番号1)表面粗さRaが0.05nmのホウケイ酸ガラス上に、酸化チタンからなる高屈折率層3と酸化珪素からなる低屈折率層4とを、一般の真空蒸着法を用いて交互に4層積層し、最外層をフッ化マグネシウムとした5層からなる誘電体多層膜2を被着形成した表面粗さRaが0.3nmの試料を作製した。   (Sample No. 1) A high refractive index layer 3 made of titanium oxide and a low refractive index layer 4 made of silicon oxide are formed on a borosilicate glass having a surface roughness Ra of 0.05 nm by using a general vacuum deposition method. A sample having a surface roughness Ra of 0.3 nm was prepared by alternately depositing four layers and depositing a dielectric multilayer film 2 consisting of five layers, the outermost layer being magnesium fluoride.

(試料番号2)表面粗さRaが0.05nmのホウケイ酸ガラス上に、酸化チタンからなる高屈折率層3と酸化珪素からなる低屈折率層4とをイオンビームアシスト法を用いて交互に4層積層し、最外層を酸化珪素とした5層からなる誘電体多層膜2を被着形成した表面粗さRaが0.3nmの試料を作製した。   (Sample No. 2) A high refractive index layer 3 made of titanium oxide and a low refractive index layer 4 made of silicon oxide are alternately formed on a borosilicate glass having a surface roughness Ra of 0.05 nm by using an ion beam assist method. A sample having a surface roughness Ra of 0.3 nm was prepared by laminating four layers and depositing a five-layer dielectric multilayer film 2 with silicon oxide as the outermost layer.

(試料番号3)表面粗さRaが0.05nmのホウケイ酸ガラス上に、酸化チタンからなる高屈折率層3と酸化珪素からなる低屈折率層4とを、イオンビームアシスト法を用い、加えて誘電体層1層被着毎に陽イオンだけを各2秒照射して交互に積層し、最外層を酸化珪素とした41層からなる誘電体多層膜2を被着形成した表面粗さRaが0.5nmの試料を作製した。   (Sample No. 3) A high refractive index layer 3 made of titanium oxide and a low refractive index layer 4 made of silicon oxide were added on a borosilicate glass having a surface roughness Ra of 0.05 nm using an ion beam assist method. The surface roughness Ra is formed by depositing the dielectric multi-layer film 2 composed of 41 layers of silicon oxide as the outermost layer by alternately irradiating only cations for 2 seconds each time the dielectric layer is deposited. A sample having a thickness of 0.5 nm was prepared.

(試料番号4)表面粗さRaが0.15nmのホウケイ酸ガラス上に、酸化チタンからなる高屈折率層3と酸化珪素からなる低屈折率層4とを、イオンビームアシスト法を用い、加えて誘電体層1層被着毎に陽イオンだけを各5秒照射して交互に積層し、最外層を酸化珪素とした5層からなる誘電体多層膜2を被着形成した表面粗さRaが0.5nmの試料を作製した。   (Sample No. 4) On a borosilicate glass having a surface roughness Ra of 0.15 nm, a high refractive index layer 3 made of titanium oxide and a low refractive index layer 4 made of silicon oxide were added using an ion beam assist method. For each layer of dielectric layer deposited, the surface roughness Ra is formed by depositing alternately the cations alone for 5 seconds each, and depositing the dielectric multilayer film 2 consisting of five layers with the outermost layer being silicon oxide. A sample having a thickness of 0.5 nm was prepared.

(試料番号5)表面粗さRaが0.15nmのホウケイ酸ガラス上に、酸化チタンからなる高屈折率層3と酸化珪素からなる低屈折率層4とを、イオンビームアシスト法を用い、加えて誘電体層1層被着毎に陽イオンだけを各2秒照射して交互に積層し、最外層を酸化珪素とした5層からなる誘電体多層膜2を被着形成した表面粗さRaが1.0nmの試料を作製した。   (Sample No. 5) On a borosilicate glass having a surface roughness Ra of 0.15 nm, a high refractive index layer 3 made of titanium oxide and a low refractive index layer 4 made of silicon oxide were added using an ion beam assist method. Each surface of the dielectric layer is deposited by alternately irradiating only cations for 2 seconds each time, and the surface roughness Ra is formed by depositing the dielectric multilayer film 2 consisting of five layers with the outermost layer being silicon oxide. A sample having a thickness of 1.0 nm was produced.

(試料番号6)表面粗さRaが0.15nmのホウケイ酸ガラス上に、酸化チタンからなる高屈折率層3と酸化珪素からなる低屈折率層4とを、イオンビームアシスト法を用い、加えて誘電体層1層被着毎に陽イオンだけを各5秒照射して交互に積層し、最外層を酸化珪素とした41層からなる誘電体多層膜2を被着形成した表面粗さRaが2.0nmの試料を作製した。   (Sample No. 6) On a borosilicate glass having a surface roughness Ra of 0.15 nm, a high refractive index layer 3 made of titanium oxide and a low refractive index layer 4 made of silicon oxide were added using an ion beam assist method. For each layer of dielectric layer deposited, the surface roughness Ra was formed by depositing alternately the cations alone for 5 seconds each, and depositing the dielectric multilayer film 2 composed of 41 layers of silicon oxide as the outermost layer. A sample having a thickness of 2.0 nm was produced.

(試料番号7)表面粗さRaが0.15nmのホウケイ酸ガラス上に、酸化チタンからなる高屈折率層3と酸化珪素からなる低屈折率層4とを、イオンビームアシスト法を用い、加えて誘電体層1層被着毎に陽イオンだけを各2秒照射して交互に積層し、最外層を酸化珪素とした41層からなる誘電体多層膜2を被着形成した表面粗さRaが3.0nmの試料を作製した。   (Sample No. 7) On a borosilicate glass having a surface roughness Ra of 0.15 nm, a high refractive index layer 3 made of titanium oxide and a low refractive index layer 4 made of silicon oxide were added using an ion beam assist method. The surface roughness Ra is formed by depositing the dielectric multi-layer film 2 composed of 41 layers of silicon oxide as the outermost layer by alternately irradiating only cations for 2 seconds each time the dielectric layer is deposited. A sample having a thickness of 3.0 nm was produced.

(試料番号8)表面粗さRaが0.15nmのホウケイ酸ガラス上に、酸化チタンからなる高屈折率層3と酸化珪素からなる低屈折率層4とを、イオンビームアシスト法を用い最外層を酸化珪素とした41層からなる誘電体多層膜2を被着形成した表面粗さRaが3.5nmの試料を作製した。   (Sample No. 8) A high refractive index layer 3 made of titanium oxide and a low refractive index layer 4 made of silicon oxide are formed on a borosilicate glass having a surface roughness Ra of 0.15 nm by using an ion beam assist method. A sample having a surface roughness Ra of 3.5 nm was prepared by depositing and forming a dielectric multilayer film 2 comprising 41 layers of silicon oxide.

(試料番号9)表面粗さRaが0.15nmのホウケイ酸ガラス上に、酸化チタンからなる高屈折率層3と酸化珪素からなる低屈折率層4とを、一般の真空蒸着法を用いて交互に積層し、最外層を酸化珪素とした41層からなる誘電体多層膜2を被着形成した表面粗さRaが4.0nmの試料を作製した。   (Sample No. 9) A high refractive index layer 3 made of titanium oxide and a low refractive index layer 4 made of silicon oxide are formed on a borosilicate glass having a surface roughness Ra of 0.15 nm by using a general vacuum deposition method. A sample having a surface roughness Ra of 4.0 nm was prepared by alternately laminating and depositing the dielectric multilayer film 2 composed of 41 layers of silicon oxide as the outermost layer.

試料番号1〜9の表面粗さは原子間力顕微鏡を用いて測定した値である。   The surface roughness of sample numbers 1 to 9 is a value measured using an atomic force microscope.

試料番号1〜9全てを、10mm×10mmに切断して光学部材5とした。作製した各光学部材5と、外形寸法が10mm×10mm、内寸が8mm×8mmである凹部を有するアルミナから成る基体7とを、ビスフェノール型エポキシ樹脂を主成分としてアミン系の硬化剤を添加した熱硬化型エポキシ樹脂から成る接着剤10を介して気密封止を行なうことにより、中空を有する固体撮像素子収納用パッケージとした。気密封止は、基体7に接着剤10を介して光学部材5の誘電多層膜2が被着形成された面を密着させるとともに、クリップを用いて光学部材5上面と基体7下面とを挟み込むことにより、光学部材5全体に均一に100kPaの加重を加えるとともに、バッチ式オーブン内にて120℃に加熱した状態で2時間放置することにより、熱硬化型エポキシ樹脂からなる接着剤10を硬化させて行なった。   All of sample numbers 1 to 9 were cut into 10 mm × 10 mm to obtain an optical member 5. Each manufactured optical member 5 and a base 7 made of alumina having a recess having an outer dimension of 10 mm × 10 mm and an inner dimension of 8 mm × 8 mm were added with an amine-based curing agent mainly composed of a bisphenol type epoxy resin. By carrying out airtight sealing through the adhesive agent 10 which consists of a thermosetting epoxy resin, it was set as the solid-state image sensor accommodation package which has a hollow. In the hermetic sealing, the surface of the optical member 5 on which the dielectric multilayer film 2 is deposited is adhered to the base 7 via the adhesive 10, and the upper surface of the optical member 5 and the lower surface of the base 7 are sandwiched using a clip. By applying a uniform load of 100 kPa to the entire optical member 5 and leaving it to stand at 120 ° C. for 2 hours in a batch oven, the adhesive 10 made of a thermosetting epoxy resin is cured. I did it.

次に、リークテストを行うことで、初期の気密性が確保されているかどうかを確認した。   Next, a leak test was performed to confirm whether the initial airtightness was secured.

リークテストは、MIL−Standard 883に従い、グロスリークテストによって行なった。グロスリークテストでは、封止した試料を5×10Paの圧力のヘリウムガス中に1時間放置した後、グロスリークテスター(住友3M(株)社製)を使用し、125℃±5℃のフロリナート(住友3M(株)社製、FC−40)中に浸漬して、目視判定により1分以内に連続気泡の発生しないものを合格とし、浸漬して1分以内に連続気泡の発生したものを不合格とした。 The leak test was performed by a gross leak test according to MIL-Standard 883. In the gross leak test, the sealed sample is left in helium gas at a pressure of 5 × 10 5 Pa for 1 hour, and then a gross leak tester (manufactured by Sumitomo 3M Co., Ltd.) is used. Immerse it in Fluorinert (Sumitomo 3M Co., Ltd., FC-40) and pass it if it does not generate open cells within 1 minute by visual judgment. Was rejected.

その後外観確認を行なった。外観確認としては、光学部材5と基体7との接着部分を顕微鏡(×10倍)を用いて剥離や、内部流れ込みの発生の有無を観察した。   Thereafter, the appearance was confirmed. As appearance confirmation, the adhesion part of the optical member 5 and the base | substrate 7 was observed using the microscope (x10 times), and the presence or absence of generation | occurrence | production of an internal flow was observed.

剥離や、内部流れ込みの発生の無いものを合格とした。結果を表1に示す。

Figure 2007043063
Those without peeling or internal flow were regarded as acceptable. The results are shown in Table 1.
Figure 2007043063

本発明の範囲内である試料番号3〜7つまり、最外低屈折率誘電体層が酸化珪素であり、表面粗さが0.5〜3.0nmの場合には、リークテストによる不具合が観察されず、外観観察においても、剥離や接着剤10の流れ込みも観察されず良好な封止性が確保されていた。   Sample numbers 3 to 7 within the scope of the present invention, that is, when the outermost low-refractive-index dielectric layer is silicon oxide and the surface roughness is 0.5 to 3.0 nm, defects due to a leak test are observed. In the appearance observation, neither peeling nor inflow of the adhesive 10 was observed, and good sealing properties were secured.

以下、各試料について詳しく説明する。   Hereinafter, each sample will be described in detail.

試料番号1のように最外層がフッ化マグネシウムから形成され、表面粗さが0.3nmとなる場合はリークテストによって不具合が観察され、外観観察においても、剥離が発生し、良好な接合が行なわれていないことが確認された。   When the outermost layer is made of magnesium fluoride as in sample number 1 and the surface roughness is 0.3 nm, defects are observed by a leak test, and peeling occurs even in appearance observation, and good bonding is performed. It was confirmed that it was not.

試料番号2のように最外層が酸化珪素から形成され、表面粗さが0.3nmとなる場合はリークテストによって不具合が観察され、外観観察においても、剥離が発生し、良好な接合が行なわれていないことが確認された。   When the outermost layer is formed of silicon oxide as in sample number 2 and the surface roughness is 0.3 nm, a defect is observed by a leak test, and peeling is also observed in the appearance observation, and a good bonding is performed. Not confirmed.

試料番号3〜5のように最外層が酸化珪素から形成され、高屈折率層3と低屈折率層4を交互に被着形成する際にイオンビームアシスト法を用い、加えて誘電体層1層被着毎に陽イオンだけを照射して交互に積層し表面粗さが0.5nm〜1.0nmとなる場合は、リークテストによる不具合が観察されず、外観観察においても、剥離が発生しておらず、接着剤10の流れ込みが発生していない良好な接合状態であった。   When the outermost layer is formed of silicon oxide as in sample numbers 3 to 5 and the high refractive index layer 3 and the low refractive index layer 4 are alternately formed, the ion beam assist method is used. In addition, the dielectric layer 1 When the layers are alternately laminated by irradiating only cations for each layer deposition and the surface roughness is 0.5 nm to 1.0 nm, no defects due to the leak test are observed, and peeling occurs even in appearance observation. In other words, the adhesive 10 did not flow in and was in a good joined state.

試料番号6、7のように最外層が酸化珪素から形成され、高屈折率層3と低屈折率層4を交互に被着形成する際にイオンビームアシスト法を用い、加えて誘電体層1層被着毎に陽イオンだけを照射して交互に積層し表面粗さが2.0nm〜3.0nmとなる場合は、リークテストによる不具合が観察されず、外観観察においても、剥離が発生しておらず、接着剤10が十分に接合部にヌレ広がっているにもかかわらず、接着剤10の流れ込みが発生していない非常に良好な接合状態が確保されていた。   When the outermost layer is formed of silicon oxide as in Sample Nos. 6 and 7 and the high refractive index layer 3 and the low refractive index layer 4 are alternately formed, the ion beam assist method is used. In addition, the dielectric layer 1 When the layers are deposited alternately by irradiating only cations for each layer deposition and the surface roughness is 2.0 nm to 3.0 nm, no defects due to the leak test are observed, and peeling occurs even in appearance observation. In spite of the fact that the adhesive 10 is sufficiently spread at the joining portion, a very good joined state in which no flow of the adhesive 10 occurs is ensured.

試料番号8のように最外層が酸化珪素から形成され、高屈折率層3と低屈折率層4を交互に被着形成する際に、イオンビームアシスト法を用い作製し、表面粗さが3.5nmとなる場合は、リークテストによる不具合は観察されなかったが、外観観察において、剥離の発生はないものの接着剤10の流れ込みが観察され、画像を取り込む際に接着剤10の流れ込みが画像シミとして、画像に写り込んでしまい光学的な不具合となりやすいことが確認された。   When the outermost layer is formed of silicon oxide as in sample number 8 and the high refractive index layer 3 and the low refractive index layer 4 are alternately deposited, the ion beam assist method is used, and the surface roughness is 3 In the case of .5 nm, no defect due to the leak test was observed, but in the appearance observation, the flow of the adhesive 10 was observed although no peeling occurred, and the flow of the adhesive 10 was observed when the image was captured. As a result, it was confirmed that the image appears in the image and easily causes an optical defect.

試料番号9のように最外層が酸化珪素から形成され、一般の蒸着法によって高屈折率層3と低屈折率層4を交互に被着形成し、表面粗さが4.0nmとなる場合には、リークテストによる不具合は観察されなかったが、外観観察において、剥離の発生はないものの接着剤10の大量の流れ込みが観察され、画像を取り込む際に接着剤10の流れ込みが画像シミとして、画像に写り込んでしまい光学的な不具合が発生しやすいことが確認された。   When the outermost layer is formed of silicon oxide as in sample number 9 and the high refractive index layer 3 and the low refractive index layer 4 are alternately deposited by a general vapor deposition method, and the surface roughness is 4.0 nm. In the external appearance observation, a large amount of the adhesive 10 flowed in, but no flow-out of the adhesive 10 was observed in the external appearance observation. It has been confirmed that optical defects are likely to occur.

上記の結果より、誘電体多層膜2として、陽イオンとして酸素イオンを使用したイオンビームアシスト法を用いて、加えて誘電体層1層被着毎に陽イオンだけを照射して交互に積層し酸化チタンからなる高屈折率誘電体層3と酸化珪素からなる低屈折率誘電体層4とを交互に積層し、最外層を酸化珪素とし、最外層の表面粗さを0.5〜3.0nmとすることによって、良好な接着性を有するとともに、接着剤が流れ込むことによって、画像シミとして、画像に写り込んでしまう不具合を効果的に防止することを確認できた。   From the above results, the dielectric multilayer film 2 is alternately laminated by irradiating only the cations for each deposition of the dielectric layer by using an ion beam assist method using oxygen ions as cations. The high-refractive index dielectric layer 3 made of titanium oxide and the low-refractive index dielectric layer 4 made of silicon oxide are alternately laminated so that the outermost layer is silicon oxide, and the surface roughness of the outermost layer is 0.5-3. It was confirmed that by setting the thickness to 0 nm, it had good adhesiveness, and when the adhesive flowed in, it was possible to effectively prevent the problem of appearing in the image as an image stain.

基体7に接着剤10を介して光学部材5の誘電多層膜2が被着形成された各面を密着させた固体撮像素子収納用パッケージ(料番号1〜9)を温度150℃で1分間加熱した後、冷却することにより、熱応力を加えたものを顕微鏡にて接着剤10の観察をしたところ、最外層がフッ化マグネシウムの誘電体多層膜2からなる試料番号1において、接着剤10と誘電体多層膜2との間に剥離が生じているのに対して、他の試料番号2〜9に関しては剥離がないことがわかった。   A solid-state image pickup device storage package (Rate No. 1 to 9) in which the surfaces of the optical member 5 on which the dielectric multilayer film 2 is deposited and attached to the base 7 via the adhesive 10 are heated at a temperature of 150 ° C. for 1 minute. Then, when the adhesive 10 was observed with a microscope by applying a thermal stress by cooling, in the sample number 1 in which the outermost layer is made of the dielectric multilayer film 2 of magnesium fluoride, It was found that peeling occurred between the dielectric multilayer film 2 and other samples Nos. 2 to 9 did not peel.

以上より、熱応力に対して本発明の最外層を酸化珪素から成る最外低屈折率誘電体層とした誘電体多層膜2に直接接着剤10を接触させることによって、接着強度を向上できることがわかった。また、実施例1のようにより過酷な条件での評価においては、さらに最外低屈折率誘電体層の表面粗さRaを0.5〜3.0nmとするのがよいことがわかった。   As described above, the adhesive strength can be improved by bringing the adhesive 10 into direct contact with the dielectric multilayer film 2 in which the outermost layer of the present invention is the outermost low refractive index dielectric layer made of silicon oxide against thermal stress. all right. Further, it was found that the surface roughness Ra of the outermost low refractive index dielectric layer is preferably 0.5 to 3.0 nm in the evaluation under more severe conditions as in Example 1.

なお、本発明は上記実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を施すことは何等差し支えない。   In addition, this invention is not limited to the said embodiment and Example, A various change may be performed in the range which does not deviate from the summary of this invention.

本発明の固体撮像装置の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the solid-state imaging device of this invention. 図1の誘電体多層膜の要部断面拡大図である。FIG. 2 is an enlarged cross-sectional view of a main part of the dielectric multilayer film of FIG. 1. 本発明の固体撮像装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the solid-state imaging device of this invention. 本発明の固体撮像装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the solid-state imaging device of this invention.

符号の説明Explanation of symbols

1:透光性基板
2:誘電体多層膜
3:高屈折率誘電体層
4:低屈折率誘電体層
6:固体撮像素子
7:基体
8:配線導体
10:接着剤
14:最外層表面
1: Translucent substrate 2: Dielectric multilayer film 3: High refractive index dielectric layer 4: Low refractive index dielectric layer 6: Solid-state imaging device 7: Substrate 8: Wiring conductor 10: Adhesive 14: Surface of outermost layer

Claims (10)

固体撮像素子を収納するための収納部が形成されているとともに上面に前記固体撮像素子の受光部に光を導入するための開口部が形成された基体と、前記開口部を塞ぐように接着剤を介して前記基体に取着された透光性基板とを具備した固体撮像素子収納用パッケージにおいて、前記透光性基板の前記基体に接合される主面に、高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成るとともに最外層を酸化珪素から成る最外低屈折率誘電体層とした誘電体多層膜を形成し、前記最外低屈折率誘電体層に直接前記接着剤を接触させたことを特徴とする固体撮像素子収納用パッケージ。 A base having a housing portion for housing the solid-state imaging device and an opening for introducing light into the light-receiving portion of the solid-state imaging device on the top surface, and an adhesive so as to block the opening And a translucent substrate attached to the base via a solid-state imaging device storage package, wherein a main surface of the translucent substrate to be joined to the base has a high refractive index dielectric layer and a low The outermost low refractive index dielectric layer is formed by alternately stacking a plurality of refractive index dielectric layers and forming an outermost low refractive index dielectric layer made of silicon oxide as the outermost low refractive index dielectric layer. A package for storing a solid-state imaging device, wherein the adhesive is directly brought into contact with the package. 前記最外低屈折率誘電体層の表面粗さRaを0.5〜3.0nmとしたことを特徴とする請求項1記載の固体撮像素子収納用パッケージ。 2. The package for housing a solid-state imaging device according to claim 1, wherein the outermost low refractive index dielectric layer has a surface roughness Ra of 0.5 to 3.0 nm. 前記透光性基板の表面粗さRaを0.20nm以下としたことを特徴とする請求項1または請求項2記載の固体撮像素子収納用パッケージ。 The package for housing a solid-state image pickup device according to claim 1 or 2, wherein a surface roughness Ra of the translucent substrate is 0.20 nm or less. 前記誘電体多層膜は、前記高屈折率誘電体層または前記低屈折率誘電体層を1層被着形成した後に、表面に陽イオンのみを所定の時間照射させていることを特徴とする請求項1乃至請求項3のいずれかに記載の固体撮像素子収納用パッケージ。 The dielectric multilayer film is formed by depositing one layer of the high-refractive index dielectric layer or the low-refractive index dielectric layer, and then irradiating the surface with only cations for a predetermined time. The solid-state image sensor storage package according to any one of claims 1 to 3. 透光性基板の主面の外周部に配線導体が形成されており、該配線導体に固体撮像素子を電気的に接続するとともに前記固体撮像素子の外周縁部を接着剤で前記透光性基板に接合するための固体撮像素子搭載用基板において、前記主面に高屈折率誘電体層と低屈折率誘電体層とを交互に複数層積層して成るとともに最外層を酸化珪素から成る最外低屈折率誘電体層とした誘電体多層膜を形成し、前記最外低屈折率誘電体層に直接前記接着剤を接触させたことを特徴とする固体撮像素子搭載用基板。 A wiring conductor is formed on the outer peripheral portion of the main surface of the translucent substrate, and a solid-state imaging device is electrically connected to the wiring conductor, and the outer peripheral edge of the solid-state imaging device is bonded to the translucent substrate with an adhesive. In the solid-state imaging device mounting substrate for bonding to the outer surface, a plurality of high-refractive index dielectric layers and low-refractive index dielectric layers are alternately stacked on the main surface, and the outermost layer is made of silicon oxide. A substrate for mounting a solid-state imaging device, wherein a dielectric multilayer film as a low refractive index dielectric layer is formed, and the adhesive is brought into direct contact with the outermost low refractive index dielectric layer. 前記最外低屈折率誘電体層の表面粗さRaを0.5〜3.0nmとしたことを特徴とする請求項5記載の固体撮像素子搭載用基板。 6. The substrate for mounting a solid-state imaging device according to claim 5, wherein the outermost low refractive index dielectric layer has a surface roughness Ra of 0.5 to 3.0 nm. 前記透光性基板の表面粗さRaを0.20nm以下としたことを特徴とする請求項5または請求項6記載の固体撮像素子搭載用基板。 The solid-state image pickup device mounting substrate according to claim 5 or 6, wherein a surface roughness Ra of the translucent substrate is 0.20 nm or less. 前記誘電体多層膜は、前記高屈折率誘電体層または前記低屈折率誘電体層を1層被着形成した後に、表面に陽イオンのみを所定の時間照射させていることを特徴とする請求項5乃至請求項8のいずれかに記載の固体撮像素子収納用パッケージ。 The dielectric multilayer film is formed by depositing one layer of the high-refractive index dielectric layer or the low-refractive index dielectric layer, and then irradiating the surface with only cations for a predetermined time. Item 9. A package for housing a solid-state imaging device according to any one of Items 5 to 8. 請求項1乃至請求項4のいずれかに記載の固体撮像素子収納用パッケージの前記収納部に固体撮像素子を収納し、前記誘電体多層膜および前記透光性基板を透過した光を前記固体撮像素子に結合させたことを特徴とする固体撮像装置。 5. The solid-state imaging device is housed in the housing portion of the solid-state imaging device housing package according to claim 1, and light that has passed through the dielectric multilayer film and the translucent substrate is captured by the solid-state imaging device. A solid-state imaging device characterized by being coupled to an element. 請求項5乃至請求項8のいずれかに記載の固体撮像素子搭載用基板の前記配線導体に固体撮像素子を電気的に接続するとともに該固体撮像素子の外周縁部を接着剤で前記透光性基板に接合し、前記誘電体多層膜および前記透光性基板を透過した光を前記固体撮像素子に結合させたことを特徴とする固体撮像装置。 A solid-state image pickup device is electrically connected to the wiring conductor of the solid-state image pickup device mounting substrate according to any one of claims 5 to 8, and an outer peripheral edge of the solid-state image pickup device is bonded with an adhesive. A solid-state image pickup device, wherein the solid-state image pickup device is bonded to a substrate, and light transmitted through the dielectric multilayer film and the translucent substrate is combined with the solid-state image pickup device.
JP2006049581A 2005-06-28 2006-02-27 Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus Pending JP2007043063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049581A JP2007043063A (en) 2005-06-28 2006-02-27 Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005188974 2005-06-28
JP2006049581A JP2007043063A (en) 2005-06-28 2006-02-27 Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus

Publications (1)

Publication Number Publication Date
JP2007043063A true JP2007043063A (en) 2007-02-15

Family

ID=37800726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049581A Pending JP2007043063A (en) 2005-06-28 2006-02-27 Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus

Country Status (1)

Country Link
JP (1) JP2007043063A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245244A (en) * 2007-02-26 2008-10-09 Sony Corp Imaging element package, imaging element module, lens barrel, and imaging device
JP2009212338A (en) * 2008-03-05 2009-09-17 Ricoh Microelectronics Co Ltd Photoelectric conversion module and method of manufacturing the same
CN102043173A (en) * 2009-10-09 2011-05-04 精工爱普生株式会社 Optical component, method of manufacturing optical component, and electronic apparatus
JP2013235933A (en) * 2012-05-08 2013-11-21 Nikon Corp Imaging element and manufacturing method of the same
JP2013243339A (en) * 2012-04-27 2013-12-05 Canon Inc Electronic component, electronic module, and manufacturing method of these
JP2014175557A (en) * 2013-03-12 2014-09-22 Nippon Steel & Sumikin Electronics Devices Inc Package for housing semiconductor imaging element
WO2014199991A1 (en) * 2013-06-11 2014-12-18 日本電気硝子株式会社 Cover member, display device and method for producing cover member
WO2015097898A1 (en) * 2013-12-27 2015-07-02 株式会社シンクロン Process for forming multilayer antireflection film
WO2015166897A1 (en) * 2014-04-30 2015-11-05 旭硝子株式会社 Cover glass and method for manufacturing same
JP2015211190A (en) * 2014-04-30 2015-11-24 旭硝子株式会社 Cover glass and manufacturing method of the same
WO2016017791A1 (en) * 2014-08-01 2016-02-04 Jsr株式会社 Optical filter
JP2017219851A (en) * 2011-03-16 2017-12-14 ケーエルエー−テンカー コーポレイション Euv actinic reticle inspection system using image sensor together with thin film spectral purity filter coating
JP2020106542A (en) * 2020-03-04 2020-07-09 浜松ホトニクス株式会社 Light detection device
WO2020171037A1 (en) * 2019-02-22 2020-08-27 ソニーセミコンダクタソリューションズ株式会社 Camera package, method of manufacturing camera package, and electronic equipment
US11118972B2 (en) 2015-04-28 2021-09-14 Hamamatsu Photonics K.K. Optical detection device having adhesive member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144306A (en) * 1986-12-08 1988-06-16 Toshiba Corp Dielectric multilayered film and its manufacture
JPH0462501A (en) * 1990-06-29 1992-02-27 Minolta Camera Co Ltd Distributed index lens array
JP2002022938A (en) * 2000-07-10 2002-01-23 Sumitomo Osaka Cement Co Ltd Wavelength selective filter and wavelength controlling module
JP2002033407A (en) * 2000-07-14 2002-01-31 Kyocera Corp Package for optical semiconductor element
JP2002359314A (en) * 2001-05-31 2002-12-13 Kyocera Corp Package for housing image pickup device
JP2005085931A (en) * 2003-09-08 2005-03-31 Nec Semicon Package Solutions Ltd Semiconductor chip and circuit board for its mounting
JP2005126320A (en) * 2003-10-01 2005-05-19 Nippon Electric Glass Co Ltd Window glass for solid imaging element package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144306A (en) * 1986-12-08 1988-06-16 Toshiba Corp Dielectric multilayered film and its manufacture
JPH0462501A (en) * 1990-06-29 1992-02-27 Minolta Camera Co Ltd Distributed index lens array
JP2002022938A (en) * 2000-07-10 2002-01-23 Sumitomo Osaka Cement Co Ltd Wavelength selective filter and wavelength controlling module
JP2002033407A (en) * 2000-07-14 2002-01-31 Kyocera Corp Package for optical semiconductor element
JP2002359314A (en) * 2001-05-31 2002-12-13 Kyocera Corp Package for housing image pickup device
JP2005085931A (en) * 2003-09-08 2005-03-31 Nec Semicon Package Solutions Ltd Semiconductor chip and circuit board for its mounting
JP2005126320A (en) * 2003-10-01 2005-05-19 Nippon Electric Glass Co Ltd Window glass for solid imaging element package

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7860390B2 (en) 2007-02-26 2010-12-28 Sony Corporation Imaging element package, imaging element module and lens barrel, and image capturing apparatus
JP2008245244A (en) * 2007-02-26 2008-10-09 Sony Corp Imaging element package, imaging element module, lens barrel, and imaging device
JP2009212338A (en) * 2008-03-05 2009-09-17 Ricoh Microelectronics Co Ltd Photoelectric conversion module and method of manufacturing the same
US9134462B2 (en) 2009-10-09 2015-09-15 Seiko Epson Corporation Optical component having a low-density silicon oxide layer as the outermost layer of an inorganic thin-film, method of manufacturing optical component and electronic apparatus
CN102043173A (en) * 2009-10-09 2011-05-04 精工爱普生株式会社 Optical component, method of manufacturing optical component, and electronic apparatus
JP2011100111A (en) * 2009-10-09 2011-05-19 Seiko Epson Corp Optical article, method for manufacturing the optical article, and electronic apparatus
JP2017219851A (en) * 2011-03-16 2017-12-14 ケーエルエー−テンカー コーポレイション Euv actinic reticle inspection system using image sensor together with thin film spectral purity filter coating
JP2013243339A (en) * 2012-04-27 2013-12-05 Canon Inc Electronic component, electronic module, and manufacturing method of these
JP2013235933A (en) * 2012-05-08 2013-11-21 Nikon Corp Imaging element and manufacturing method of the same
JP2014175557A (en) * 2013-03-12 2014-09-22 Nippon Steel & Sumikin Electronics Devices Inc Package for housing semiconductor imaging element
JPWO2014199991A1 (en) * 2013-06-11 2017-02-23 日本電気硝子株式会社 Cover member, display device, and method of manufacturing cover member
WO2014199991A1 (en) * 2013-06-11 2014-12-18 日本電気硝子株式会社 Cover member, display device and method for producing cover member
WO2015097898A1 (en) * 2013-12-27 2015-07-02 株式会社シンクロン Process for forming multilayer antireflection film
JPWO2015166897A1 (en) * 2014-04-30 2017-04-20 旭硝子株式会社 Cover glass and manufacturing method thereof
JP2015211190A (en) * 2014-04-30 2015-11-24 旭硝子株式会社 Cover glass and manufacturing method of the same
WO2015166897A1 (en) * 2014-04-30 2015-11-05 旭硝子株式会社 Cover glass and method for manufacturing same
WO2016017791A1 (en) * 2014-08-01 2016-02-04 Jsr株式会社 Optical filter
JPWO2016017791A1 (en) * 2014-08-01 2017-06-01 Jsr株式会社 Optical filter
US11118972B2 (en) 2015-04-28 2021-09-14 Hamamatsu Photonics K.K. Optical detection device having adhesive member
US11555741B2 (en) 2015-04-28 2023-01-17 Hamamatsu Photonics K.K. Optical detection device having adhesive member
WO2020171037A1 (en) * 2019-02-22 2020-08-27 ソニーセミコンダクタソリューションズ株式会社 Camera package, method of manufacturing camera package, and electronic equipment
CN113348064A (en) * 2019-02-22 2021-09-03 索尼半导体解决方案公司 Camera package, method of manufacturing camera package, and electronic apparatus
JP2020106542A (en) * 2020-03-04 2020-07-09 浜松ホトニクス株式会社 Light detection device

Similar Documents

Publication Publication Date Title
JP2007043063A (en) Package for storing solid state imaging device, substrate for mounting the device, and solid state imaging apparatus
KR101650065B1 (en) Optical filter member and imaging device provided with same
CN104364894B (en) Photographic device, semiconductor device and camera unit
TWI393687B (en) Glass cover for solid state image sensor and method for manufacturing the same
JP6819613B2 (en) Manufacturing methods for glass substrates, laminated substrates, laminates, and semiconductor packages
JP5132534B2 (en) Manufacturing method of optical components
CN108367966B (en) Infrared absorbing glass plate, method for manufacturing same, and solid-state imaging element apparatus
JP2014048402A (en) Optical filter member and imaging device
TWI352825B (en)
TWI791530B (en) Infrared-absorbing glass plate, manufacturing method thereof, and solid-state imaging device
JP2013216568A (en) Infrared absorbing glass wafer and method of producing the same
JP2008060121A (en) Solid-state imaging element sealing structure, and solid-state imaging apparatus
WO2017179283A1 (en) Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device
JP2007288025A (en) Solid-state imaging apparatus, and manufacturing method thereof
JP2015012474A (en) Lid for imaging apparatus and imaging apparatus with the same
JP4632680B2 (en) Optical filter member and solid-state imaging device using the same
US20140192411A1 (en) Optical Device, Imaging Device And Manufacturing Method Of Imaging Device
JP2009229472A (en) Optical component, and optical device using the same
JP2014170182A (en) Optical filter member and imaging apparatus
JP2003163297A (en) Optical semiconductor device
JP2003307832A (en) Pellicle and pellicle attached photomask
JP4614733B2 (en) Solid-state imaging device
JP2013137487A (en) Optical filter member and imaging apparatus
WO2006041074A1 (en) Cover glass for solid image pickup device and process for producing the same
JP2018025732A (en) Optical filter member and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508